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Many observations from daily life and physical expe
ments give rise to a bell-shaped, Gaussian frequency di
bution. This is a consequence of the central limit theor
~CLT! of probability. In this paper, we present a procedu
for demonstrating the CLT by repeatedly measuring the m
of trays containing small steel balls. The experiment is p
of a laboratory course for physics majors that emphasizes
application of statistics to data analysis.

The CLT may be stated as follows: LetY1 ,Y2 ,...,Yn be a
sequence ofn independent random variables1 each with the
same probability distribution. Suppose that the mean~m! and
variance (s2) of this distribution are both finite. Then th
probabilityP for the normalized difference between the su
of the random variables andnm to be between two number
a andb is given by a unit Gaussian with mean aty50:

lim
n→`

PFa,
Y11Y21¯1Yn2nm

sAn
,bG

5
1

A2p
E

a

b

e2~1/2!y2
dy.

The theorem is still valid if theYi ’s are from different prob-
ability distributions, provided each distribution has a fin
mean and variance and no one term in the sum domina
The theorem implies that under a wide range of circu
stances the probability distribution that describes the sum
random variables tends toward a Gaussian distribution as
number of terms in the sum approaches infinity.

To demonstrate the CLT result that the probability dis
bution is consistent with a Gaussian, two experimental c
ditions must be satisfied:

~i! each measurement must be the result of the sum
large number of random variables (n→`); and
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~ii ! the number of measurements must be large to smo
out the fluctuations in the measured distribution.

It is difficult to satisfy both conditions in a classroom expe
ment. Fortunately, in practice a small number of rand
variables is adequate for the first requirement and, for
second requirement, about 30 measurements will produ
histogram that a student can recognize is Gaussian in sh
A classic demonstration of the CLT using a computer is
use of the sum of 12 random numbers to generate a Gaus
distribution. Each measurement is a sum of 12 random v
ables (n512) with uniform probability distribution between
0 and 1. A histogram of 30 or more such measureme
~sums! looks like a Gaussian frequency distribution.

For our laboratory experiment, it is convenient to write t
probability for the sum to be between two numbersa andb:2

P@a,Y11Y21¯1Yn,b#

.
1

A2pss
E

a

b

e2~1/2!~~y2ms!/ss!2
dy,

wherems5nm and ss
25ns2 are the mean and variance o

the probability distribution for the sum. The new limitsa and
b are related toa andb by

a5ms1ass , b5ms1bss .

We have tested four CLT experiments in the last few year
a laboratory course for physics undergraduates in their ju
year. The course also includes a computer experiment
shows that the distribution of the sum of 12 random numb
is consistent with a Gaussian; however, we believe that
important that students perform hands-on experiments in
dition to the computer simulation.

The first CLT experiment that was tried involved meas
ing the length of a 3 to 4 m long table using a 30 cm~1 foot!
1014g/ajp/ © 2001 American Association of Physics Teachers
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ruler. After collecting data, a student histogrammed the ta
length measurements in bins of 1 cm. The measured di
bution was expected to be Gaussian-like because each
surement of the table length consisted of the sum of 10 to
measurements with a ruler. Unfortunately, each measurem
of the table length was quite tedious and time-consuming
we therefore required the student to perform a total of o
30 measurements.

The experiment was therefore replaced by a second
periment which measured the mass of 100 ml of water i
graduated 400 ml beaker. The experiment was perform
using two students. A and B. Student A used two 400
beakers and filled one of them with water. The student ca
fully poured the water into the other beaker, stopping wh
the water level reached the 100 ml mark. After finishing t
pouring, student B measured the mass of the beaker~with its
100 ml of water! using a digital scale3 with a graduation of
0.1 g. Student B did not reveal the value to student A
eliminate any potential bias. Student A then emptied the b
ker, dried it off with a paper towel and repeated the proc
a total of 30 times. The students then switched roles so th
second set of measurements is obtained for student B.
students histogramed the mass measurements in bins o
g. In this experiment, there were two sources of uncerta
ties. First, it was impossible to control the exact amount
water poured, resulting in under or over pour. Second, it w
difficult to tell if the water level was exactly at the 100 m
mark due to the capillary effect. These two~desirable, for the
purposes of this experiment! effects yielded a Gaussian-lik
distribution for the measured mass. This experiment was
tedious than the first experiment but was still too tim
consuming. To save time, we required the students to
form only 30 measurements. However, the problem with
experiment with only 30 measurements is that some stud
will see large fluctuations, resulting in a distribution th
does not look like a Gaussian although the distribution
statistically consistent with a Gaussian. For the untrain
eyes of a student, this is not good evidence for the CLT.
experiment that allows the collection of approximately 1
measurements in a reasonable amount of time would gi
better demonstration of the theorem.

We therefore tried a third experiment, involving measu
ment of the mass of cans containing very small steel ba4

Each ball had a diameter of 3.2 mm and mass of 0.13 g.
used as a can the plastic container that typically comes
35 mm film. This had a diameter of 3 cm and height of 5 c
A student filled a small plastic beaker with balls and th
poured the balls into a can. The student then used a w
stick to wipe across the top of the can to remove excess b
The student should always wipe in the same manner to

Fig. 1. Trays with nine holes of~a! same diameter~23 mm! and~b! different
diameters~12 and 16 mm!. The depth of the holes is 16 mm and the thic
ness of the trays is 19 mm.
1015 Am. J. Phys., Vol. 69, No. 9, September 2001
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sure that approximately the same number of balls remai
the can. All the manipulations were done above a large c
tainer to prevent the loss of balls. The process was repe
a total of 100 times, which took a total of about 30 min. T
student then histogrammed the mass measurements in bi
0.5 g. In this experiment, there were two contributions to
uncertainty in the number of balls in each can~and hence the
total mass!. One was the packing of the balls which wa
slightly different for each pouring. The other was the sligh
different number of balls being removed by each wipe. D
to the two uncertainties, a slightly different mass was o
tained each time. The measured mass distribution loo
Gaussian.

It is difficult to explain the observed Gaussian distributi
using the CLT because we do not know the number of r
dom variables~n! in the experiment. We have therefor
modified the experiment to measure the total mass of
steel balls in a tray which contains nine small holes (n59)
as shown in Fig. 1~a!, with the mass of balls in each hol
representing a random variable. The tray is made of a stu
but machinable foam.5 The procedure for this experiment
similar to the previous experiments; however, it takes

Fig. 2. The mass distributions of trays containing steel balls as measure
six students using the tray of Fig. 1~b!. The dashed curves show the result
a Gaussian fit.

Table I. x2 per degree of freedom~DOF! and confidence level~CL! for a
Gaussian distribution fitted to the mass distributions shown in Figs. 2 an

Figure x2/DOF CL ~%!

2~a! 5.3/5 39
2~b! 5.9/6 44
2~c! 5.3/8 72
2~d! 2.3/5 81
2~e! 8.8/7 27
2~f! 8.3/4 8
3~a! 45/9 0.0001
3~b! 33/13 0.2
1015Apparatus and Demonstration Notes
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longer time~1 h! to accumulate 100 data points. The me
sured mass distribution looks Gaussian, as expected from
CLT.

We can also modify this experiment to illustrate the C
when the random variables have different probability dis
butions. Thus we have another version of the experimen
which the tray has holes of two different diameters~four of
12 mm and five of 16 mm! as shown in Fig. 1~b!. The results
from six students are shown in Fig. 2. The means of
distributions are slightly different for each student beca

Fig. 3. The mass distributions of the steel balls in the small~a! and big~b!
holes in the tray of Fig. 1~b!. The dashed curves show the result of a Gau
ian fit.
Magnetically driven chaotic pendulum
John P. Berdahl and Karel Vander Lugta)
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students wipe the excess balls off differently. Each distrib
tion is fitted to a Gaussian and thex2 per degree of freedom
and confidence level are summarized in Table I. It is evid
that the distributions are consistent with a Gaussian distr
tion and the statistics are quite adequate. To verify that
Gaussian distribution is not the result of the sum of n
Gaussian distributions,6 we measure the mass distributions
the balls in the individual holes of different diameters and
results are shown in Fig. 3. The distributions have a m
pronounced peak and fit poorly to a Gaussian distribution
evident from the largex2 per degree of freedom and low
confidence level given in Table I.

In summary, we have a simple procedure for demonst
ing the central limit theorem in an acceptable length of tim
for a laboratory experiment.

The authors wish to thank Alan Van Heuvelen for advi
and encouragement, Mike Gee for the countless meas
ments of the mass distributions, and the Machine Shop of
Department of Physics for the excellent machining job.

1A random variable is any function that associates a number with e
possible outcome. See, for example, J. L. Devore,Probability and Statis-
tics for Engineering and the Sciences~Brooks/Cole, Pacific Grove, CA,
1991!, 3rd ed., pp. 80–83.

2See, for example, G. Cowan,Statistical Data Analysis~Oxford U. P., Ox-
ford, 1998!, pp. 147–149.

3Acculab digital scale, model V-333.
4The steel balls were purchased from McMaster-Carr.
5Last-A-Foam FR6725, General Plastics Mfg. Co.
6The contribution to the width of the Gaussian from the spread in the m
of the balls is small since the ball mass is measured to be uniform
within 0.3% ~standard deviation!.
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I. INTRODUCTION

A recent article in this journal compared several comm
cial chaotic pendulum systems.1 The data obtained are im
pressive, but the units are rather expensive. This project
scribes a simple, robust, and inexpensive way to demons
and analyze chaotic motion quantitatively in the lab. We u
a relatively inexpensive physical pendulum in conjuncti
with typical data acquisition equipment~rotary motion sen-
sor, photogate, and computer!. The pendulum is driven by a
rotating permanent magnet. The data are analyzed by p
ting them in phase space, looking at time-delay plots, find
the Poincare´ section, and taking the Fourier transform. E
amples of both periodic and chaotic motion are illustrate

II. EQUIPMENT

The physical pendulum was purchased from Team La2

and is shown in Fig. 1 attached to a rotary motion probe
can be described as a ‘‘triple’’ pendulum. The three long
arms, fixed at 120° from each other, are 12 cm long, and e
r-
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has a 10-cm-long pendulum attached to it with a precis
roller bearing. Each of the three pendulums has a 40-g d
that can be adjusted along the length of the pendulum
change its natural frequency. The mass of the complete
paratus is 470 g. It has four degrees of freedom and os
lates, at least visually, in a complex and seemingly haphaz
manner. To enable the pendulum to be driven, a perma
magnet is attached to its front. Two rectangular (130.5
30.125 in.) rare earth magnets purchased from Edm
Scientific3 were placed adjacent to each other and taped
the pendulum. The body of the pendulum is attached to
rotary motion probe, which reads the angle of displacem
forty times per second with a resolution of 0.25°. To keep
angular displacement between2p and1p rad, the point of
attachment of the pendulum to the rotary probe was offse
cm from the geometrical center. The data acquisition sys
sends the measurements directly to a spreadsheet. Typic
12 000 data points are acquired for each run.

To drive the pendulum, a rotating permanent magne
placed 1–2 cm in front of the magnets attached to the p
1016g/ajp/ © 2001 American Association of Physics Teachers




