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Abstract
We present a simple procedure for demonstrating the central limit theorem
by dropping stainless steel balls on a grid of pins. The experiment is part
of a laboratory course on statistics for physics students that emphasizes the
application of statistics in data analysis.

(Some figures may appear in colour only in the online journal)

1. Introduction

Many observations from daily life and physical experiments give rise to a bell-shaped, Gaussian
frequency distribution. This is a consequence of the central limit theorem (CLT) of probability.
In this paper, we present a procedure for demonstrating the CLT by dropping stainless steel
balls on a grid of pins. The experiment is part of a laboratory course on statistics for physics
students that emphasizes the application of statistics in data analysis.

The CLT may be stated as follows. Let Y1, Y2, . . . ,Yn be a sequence of n independent
random variables [1], each with the same probability distribution. Suppose that the mean
(μ) and variance (σ 2) of this distribution are both finite. Then the probability P for the
normalized difference between the sum of the random variables and nμ to be between two
numbers a and b is given by a unit Gaussian with mean at y = 0:

lim
n→∞ P

[
a <

Y1 + Y2 + · · ·Yn − nμ

σ
√

n
< b

]
= 1√

2π

∫ b

a
e− 1

2 y2
dy. (1)

The theorem is still valid if the Yis are from different probability distributions, provided each
distribution has a finite mean and variance and no one term in the sum dominates. The theorem
implies that under a wide range of circumstances the probability distribution that describes
the sum of random variables tends toward a Gaussian distribution as the number of terms in the
sum approaches infinity.
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To demonstrate the CLT result that the probability distribution is consistent with a
Gaussian, two experimental conditions must be satisfied:

• each measurement must be the result of the sum of a large number of random variables
(n → ∞);

• and the number of measurements must be large to smooth out the fluctuations in the
measured distribution.

It is difficult to satisfy both conditions in a classroom experiment. Fortunately, in practice
a small number of random variables is adequate for the first requirement and, for the second
requirement, a finite number of measurements (30 or more) will produce a histogram that a
student can recognize as Gaussian in shape.

The CLT class includes both a computer simulation and a hands-on experiment. The
computer simulation shows that the distribution of the sum of 12 random numbers is consistent
with a Gaussian. The hands-on experiment shows that a measured quantity is Gaussian
distributed as a natural consequence of the CLT. We believe that it is important for a student
to be confronted with such unavoidable experimental limitations.

2. Experimental demonstrations of CLT

For almost 20 years, we have searched continuously for a good CLT experiment that is not
too tedious and yet allows a student to collect a large enough data sample within a reasonable
time to obtain a Gaussian distribution with not too much fluctuation. Four of the experiments
were reported in our previous communication [2] and we briefly summarize the experiments
here.

(i) Measure the length of a 3–4 m table using a 30 cm (1 foot) ruler. This experiment was
quite tedious and time-consuming and we therefore required each student to perform a
total of only 30 measurements.

(ii) Measure the mass of 100 ml of water in a graduated 400 ml beaker. The experiment
was performed using two students, one filling the beaker while the other measured the
mass, without revealing the value to the other student to eliminate any potential bias. The
experiment was still somewhat tedious, so each student was required to perform only 30
measurements.

(iii) Measure the mass of cans of small steel balls. The experiment was somewhat less
tedious and each student was required to perform 100 measurements in order to obtain a
distribution with less fluctuation.

(iv) Measure the mass of a tray with nine small holes filled with steel balls. This was a modified
version of the third experiment with more random variables (n), which helped the students
to appreciate the CLT concept.

We have used the fourth experiment in the statistics class since 2001. Each experiment
takes about 1 h to accumulate 100 data points. In addition, the pouring of the balls makes a lot
of noise. These limitations led to the search for a more pleasant experiment. We believe that
we have found the ultimate experiment in which stainless steel balls are dropped on a grid of
pins, resulting in the accumulation of balls with a Gaussian shape.

The experiment is a practical implementation of the invention by Sir Francis Galton
[3] more than 100 years ago. A sketch of the apparatus we designed is shown in figure 1.
The apparatus is fabricated using acrylic glass (polycarbonate) with a nominal thickness of
3.2 mm, except those noted below. The various pieces of acrylic glass are solvent-welded
together with methyl ethyl ketone. The apparatus consists of a grid of stainless steel pins
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Figure 1. A schematic view of the apparatus for demonstrating the CLT. The vertical front cover
and horizontal top cover have been removed for clarity. The notch at the top is for placement of
the funnel.

(1.6 mm in diameter) sandwiched between two sheets of acrylic glass. The back sheet has
a grid of holes drilled and the pins are press fit into the holes (no glue). The two sheets are
separated by 8 mm, somewhat larger than the diameter of a ball, which is 6.4 mm. The evenly
spaced pins are arranged in a 14 × 15 matrix, with a space of 8.4 mm between two pins in
a row. Two adjacent rows of pins are separated by half the spacing and offset by the same
distance.

At the top of the grid is an opening for pouring down the balls. There is a V-shaped notch
on both acrylic glass sheets for the placement of a funnel for the pour. At the bottom of the
notch, there is a narrow channel constructed from two small parallel pieces (15 mm in height
and 8 mm in width) of acrylic glass to ensure that the balls fall down vertically. Students
should pour the balls down the funnel very slowly as the balls can easily pack themselves and
become stuck in the funnel.

At the base of the apparatus is a row of 17 dividers sandwiched between two sheets of
acrylic glass. The dimension of a divider is 21 cm × 1 cm × 1.6 mm. These dividers form
slots to collect the balls for counting. The slots therefore function as a ‘histogram machine’,
with each slot representing a bin in a histogram. The students can just count the number of
balls in each slot to produce a histogram of the ball distribution. The bottom sheet is somewhat
thicker, 8 mm, so that grooves can be cut to hold the dividers. The space between the dividers
is 8 mm, somewhat larger than the diameter of a ball. The apparatus is tilted by about 10◦, so
that when a ball reaches the bottom of the grid, it will roll down the incline and accumulate at
the bottom of a slot for easy counting at the completion of the experiment.

At the bottom of the row of dividers there is a removable stopper that can be inserted to
prevent the balls from rolling into the drain used for collecting the balls at the completion of
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Figure 2. The distributions of the landing locations of the balls as measured in four experiments.
The dashed curves show the result of a Gaussian fit.

the pour. The removable stopper slides along the groove on the bottom plate of the histogram
machine. After completing the pour, the stopper is removed and the balls are collected in the
drain and poured into a beaker. The balls can easily pack themselves in such a way and get
stuck in the drain. Students are advised to shake the apparatus as they pour the balls into the
beaker.

The apparatus can be readily constructed by a machine shop. Due to the simplicity and
low cost of the construction, we fabricated 25 for a class of 20 students per session. We require
each student to collect ∼70 ml of balls in a beaker and then pour the balls slowly into the
funnel. This corresponds to ∼300 balls, enough to almost fill up the central slot occasionally.

In the experiment, a stainless steel ball dropped into the grid can scatter to the left or right
on the first pin it encounters. The scattered ball then hits the next pin and rescatters either to
the left or right. The process continues until it reaches the bottom of the grid, where there are
evenly spaced slots to receive the ball. The final location where a ball lands is determined by
the number of right and left scatterings. There are 14 rows of staggered pins. This is the n in
equation (1). Each scattering contributes a deviation, Yn, from the center horizontal location
where the ball is released. The deviation can have positive or negative sign and its value
depends on the particular angle of the scattering. The final location is then the sum of all Yns.
CLT predicts that the location should be distributed approximately like a Gaussian probability
distribution.

Figure 2 shows the histograms of four experiments, each fitted with a Gaussian with
normalization floating. The χ2 of the fits are 29.1, 34.5, 42.7 and 20.0 for 29, 29, 30, and 27
degrees of freedom, respectively. The χ2 per degree of freedom of each fit is close to unity and
hence the distributions are consistent with Gaussian, as expected from the CLT. The observed
distributions are also reasonably smooth, indicating that the statistics of ∼300 data points is
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quite adequate. Students find that it is fun to watch the scattering of the balls and the formation
of a bell-shaped distribution.

The sophistication of the data analysis depends on the level of the course and the time
allocated to the experiment. In the above data analysis, the data are fitted with a Gaussian with
floating normalization and then the goodness of fit is used to verify the consistency of the data
with the CLT expectation. This requires taking the statistical uncertainty of each data point
into account in order for the fitting program to compute the χ2. A less sophisticated analysis
is to ask the students to superimpose the Gaussian expectation as a histogram on the data
distribution. The students can then comment on whether the data distribution is Gaussian-like,
as expected from the CLT.

In summary, we have a quick and simple procedure for demonstrating the central limit
theorem for a laboratory experiment.
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