Summary of VCSEL Problems and Opto-Board Production Plan

W. Fernando, M. Fisher, K.K. Gan, K. Loureiro The Ohio State University

Nov 30, 2006

Outline

- Chronology of VCSEL problems
- Summary of VCSEL problems/contradictions
- Opto-board production schedule

First Hint of Problem

- 2002:
 - an VCSEL array was observed to turn itself on & off repeatedly
 - related to the current problem?
- Feb 2005:
 - start of opto-board production
- Aug 2005:
 - board 3149 has low optical power during QA
 - investigation reveals no obvious problems
 - ⇒ remove wire bonds to supply current directly to VCSEL
 - ⇒ recovered 50% of power after passing 20 mA
 - mostly likely related to the current problem

Strange Siegen Observation

- Sept. 2005:
 - Siegen reported several D opto-boards:
 - low current consumption: ~190 mA
 - ⋆ nominal current consumption: ~260 mA
 - no optical power
- Why OSU observed no problem during production?
 - OSU produced several times more opto-boards
 - OSU mounted VCSEL soon after receiving
 - Siegen mounted VCSEL months after receiving
 - ⇒ VCSEL problem takes several months to develop?
- Oct. 2005: opto-board production completed at OSU

An Unstable OSU Board

- March 2006:
 - OSU board 3088 was observed to have low power at CERN
 - ⇒ board was returned to OSU
 - ⇒ board was observed to produce good power
- What we know now:
 - some VCSEL arrays have developed large common resistance
 - some VCSEL arrays can recover on its own

Start of VCSEL Fiasco

- April-July 2006:
 - → ~200 D boards passed reception test at CERN
 - optical power measurement:
 - send all "1" to channel of interest as Taiwan QA
 - send pseudo-random bit string to other channels to emulate experimental condition
- August 2006:
 - start testing of B boards
 - 2 of first 3 boards tested have low power
 - decided to measure power with all "1" in all channels
 - ⇒ 7 out of 36 boards have low or no power

Common Serial Resistance Theory

- September 2006:
 - some VCSEL arrays were observed to fail or heal instantly in LIV scan
 - ⇒ problem is electronics in nature rather than in the conductive epoxy between array and opto-board?
 - ⇒ problem was interpreted as the array developing a large common serial resistance
 - ⇒ reduce available voltage to drive the VCSEL
 - ⇒ VCSEL produces low or no power
 - Oxford irradiated 5 arrays to $\sim 10^{16} n_{1 \text{ MeV}}/\text{cm}^2$
 - power in 3 arrays drops to zero after some annealing but recovers after further annealing
 - related to the above problem?

Strange Mechanical Effect

- September 2006:
 - Siegen reported that board current consumption can be increased by pressing hard on VCSEL array
 - ★ board #1:
 - current increases from 180 to 230 mA
 - VCSEL starts to produce light
 - ★ board #2:
 - current increases from 230 to 250 mA
 - VCSEL continues to produce light
 - ⋆ above observations are repeatable
 - ⇒ VCSEL problem is in the conductive epoxy?

Analysis of Conductive Epoxy

- October 2006:
 - Maurice measured thickness of conductive epoxy of both good and bad arrays:
 - silver content are about the same for both arrays
 - ⇒ no major difference
 - epoxy thickness is $\sim 5 \mu m$ for both arrays
 - * vendor recommended thickness is ~25 μm
 - ⇒ measurement of epoxy resistance in progress
- OSU is interested to fabricate
 20 opto-packs with 25 μm thick epoxy
 - ⇒ measure optical power after running at elevated temperature for extended time

Statistics on Bad Boards

- October 2006:
 - retest D boards by sending all "1" to all channels
 - ⇒ some boards were found to have low or no power
- D boards: 15 out of ~260 boards have high CSR
- B boards: 12 out of ~53 boards have high CSR
 - ⇒ why much higher fractions of high CSR arrays in B boards?

Observations/Contradictions

- why Siegen observed during production 7 bad VCSEL arrays while OSU observed only one in much larger sample?
 - Siegen mounted arrays several months after receiving
 - ⇒ high CSR takes several months to develop?
 - ⇒ will more arrays develop high CSR in the future?
 - 11 PQSR and 72 ISP arrays have no problem so far...
- why much higher fractions of high CSR arrays in B boards which were produced later in time?
- why only one D board has high CSR at CERN reception test?
 - ⇒ running all channels with all "1" creates stress?

Observations/Contradictions

- array can fail or heal instantly in LIV scan
 - ⇒ problem is inside array rather than in conductive epoxy?
 - ✓ no observable difference in epoxy thickness/silver content
 - \times epoxy thickness ~ 5 μ m (~25 μ m recommended)
 - × VCSEL current can be increased by pressing
 - × possible to compress 5 μm gap?

Opto-board Statistics

Board	D	В
Need	228	44
1st	195	26
1st (new)	10	1
2nd	13	12
mounted	12	18
blank	15	11
recoverable	~20	

• expect enough good boards for all but one service panel in 2006