

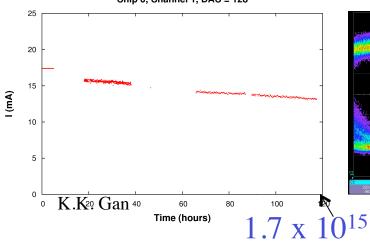
A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The Ohio State University

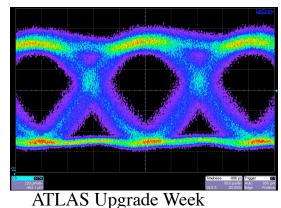
> P. Buchholz, A. Wiese, M. Ziolkowski Universität Siegen

> > November 10, 2010

ATLAS Upgrade Week

Outline


- Driver/Receiver Arrays with Redundancy
- VCSEL/PIN Arrays Irradiation with Protons/Pions
- Summary

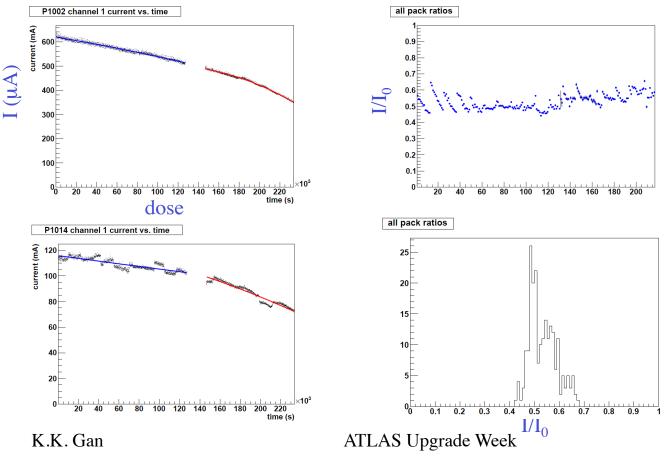

Driver/Receiver with Redundancy

- designed an updated version of driver and receiver of current Pixel detector with redundancy and individual VCSEL current control
 - experience gained from the development/testing of such new chips would help the development of on-detector array-based opto-links for SLHC
 - submission of 1st prototype chip (130 nm) in 2/2010


Summary of IBL Prototype Chips

- prototyped 4-channel driver/receiver after irradiation:
 - ✓ redundancy to bypass broken PIN or VCSEL channel
 - ✓ individual VCSEL current control
 - ✓ power-on reset to set VCSEL current to ~ 10 mA on power up
 - ✓ VCSEL driver can operate up to ~ 5 Gb/s with BER < $5x10^{-13}$
 - ✓ small decrease in VCSEL driver output current
 - ✓ PIN receiver/decoder properly decodes signal with low threshold
 - ✓ very low SEU rate in latches: $\sim 3x10^{-7}$ /year/link
 - submission of 12-channel chip: 2/2011
 Chip 0, Channel 1, DAC = 128

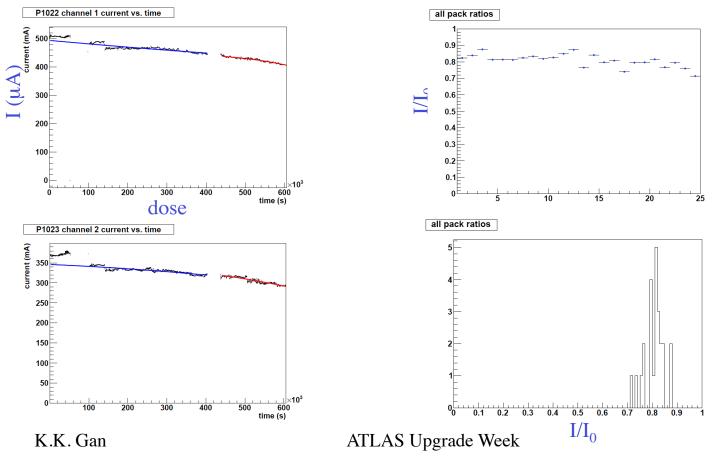
p/cm²


VCSEL/PIN Irradiation

- Study radiation hardness of VCSEL/PIN arrays since 2006:
 - vendors: AOC, Optowell, ULM, Hamamatsu
 - speed: up to 10 Gb/s
 - results: identified following devices for irradiation with 20 arrays
 - Optowell 3.125 Gb/s PIN arrays (2009): large leakage current
 - ULM 4.25 Gb/s PIN arrays (2010): see next slides
 - AOC 10 Gb/s VCSEL (2010): see next slides

Irradiation of PIN with Protons

20 ULM 12-channel PIN arrays (4.25 Gb/s) were irradiated to a dose of 1.0 x 10¹⁵ p/cm² (24 GeV/c)

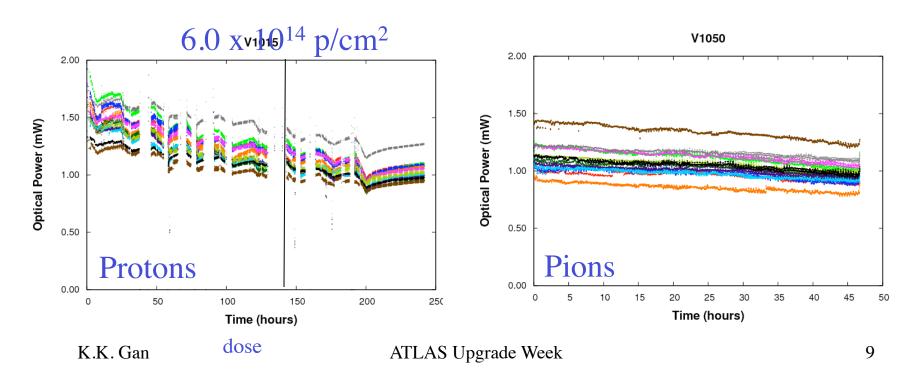

• decrease in PIN responsitivity is modest

Irradiation of PIN with Pions

2 ULM 12-channel PIN arrays (4.25 Gb/s) were irradiated to a dose of 4.3 x $10^{14} \pi/cm^2$ (300 MeV/c)

decrease in PIN responsitivity is small

Test of NIEL Hypothesis


• NIEL hypothesis:

- damage is proportional to the non ionizing energy loss (NIEL)
- 300 MeV pion is 1.5 more damaging than 24 GeV protons
- decrease in PIN responsivity with 4.3 x $10^{14} \pi/cm^2$: 81%
- decrease in PIN responsivity with 6.4 x 10^{14} p/cm²: 76%
- ➡ consistent with NIEL hypothesis

Irradiation of AOC VCSEL arrays

AOC 10 Gb/s VCSEL arrays were irradiated:

- 12 arrays to a dose of 8.0 x 10¹⁴ p/cm² (24 GeV/c)
- 1 array to a dose of 4.1 x $10^{14} \pi/cm^2$ (300 MeV/c)
- decrease in optical power is modest
- test of NIEL hypothesis complicated by annealing...

Summary

- 4-channel driver/receiver chips with redundancy and other improvements work well
- ULM PIN arrays: modest decrease in responsivity after irradiation
 - damage from pion/proton consistent with NIEL hypothesis
- AOC VCSEL arrays: modest decrease in opto-power after irradiation