Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector

K.K. Gan

The Ohio State University

Oct 9, 2003

K.E. Arms, K.K. Gan, M. Johnson, H. Kagan, R. Kass, A. Rahimi, C. Rush, S. Smith, R. Ter-Antonian, M.M. Zoeller The Ohio State University

> A. Ciliox, M. Holder, S. Nderitu, M. Ziolkowski <u>Universitaet Siegen, Germany</u>

Outline

Introduction

• Results on IBM 0.25 µm Chips

• Results on Proton Irradiations

• Summary

ATLAS Pixel Detector

- Inner most tracking detector
- Pixel size: 50 μm x 400 μm
- 100 million channels
- Barrel layers at r = 5.1, 12.3 cm
- Disks at z = 50, 65 cm
- Dosage after 10 years:
 - optical link: 30 Mrad or 6 x 10¹⁴ 1-MeV n_{eq}/cm^2

- **VCSEL: Vertical Cavity Surface Emitting Laser diode**
- **VDC: VCSEL Driver Circuit**
- PIN: PiN diode
- **DORIC: Digital Optical Receiver Integrated Circuit**

VDC: VCSEL Driver Circuit

- Convert LVDS input signal into single-ended signal appropriate to drive VCSEL diode
- Output (bright) current: 0 to 20 mA
 - controlled by external current I_{set}
- Standing (dim) current: ~ 1 mA
 improve switching speed
- Duty cycle: $(50 \pm 4)\%$

- Rise & fall times: 1 ns nominal for 80 MHz signals
- "On" voltage of VCSEL: up to 2.3 V at 20 mA for 2.5 V supply
- Constant current consumption!
- use Truelight high-power oxide common cathode VCSEL array K.K. Gan Como03

DORIC: Digital Optical Receiver IC

- Decode Bi-Phase Mark encoded (BPM) clock and command signals from PIN diode
- Input signal: 40-600 μA
- Extract: 40 MHz clock
- Duty cycle: $(50 \pm 4)\%$
- Total timing error: < 1 ns
- Bit Error Rate (BER):
 < 10⁻¹¹ at end of life
- use Truelight common cathode PIN array

Status of VDC & DORIC

- Original design for ATLAS SemiConductor Tracker (SCT)
 AMS 0.8 µm BiPolar in radiation tolerant process (4 V)
- DMILL #1-3: Summer 1999 May 2001
 - □ 0.8 µm CMOS rad-hard process (3.2 V)
 - □ VDC & DORIC #3: meet specs
 - severe degradation of circuit performance in April 2001 proton irradiation
- IBM #1-5: Summer 2001 Dec 2002
 - \Box 0.25 µm CMOS rad-hard process (2.5 V)
 - enclosed layout transistors and guard rings for improved radiation hardness
- IBM 5e: April 2003 engineering run
 - convert 3-layer to 5-layer layout for submission with pixel Module Control Chip (MCC)
 - this is the production run since chips meet specs and sufficient quantity of chips were produced

K.K. Gan

VDC-I5e: Bright and Dim Currents vs. I_{set}

- dim current is ~ 1 mA as expected
- bright current measured with 1 Ω in series
- maximum bright current is ~ 13 mA
 - oxide VCSEL has larger effective resistance than p⁺ implanted VCSEL
 - target is 20 mA for efficient annealing from irradiation damage
 - will find out shortly if this is adequate

K.K. Gan

VDC-I5e: Rise/Fall Time + Duty Cycle

- specs:
 - \times rise time < 1 ns
 - measured with 44-pin package
 - ♦ acheive faster rise time on opto-board
 - ✓ fall time < 1 ns
 - ✓ duty cycle < $(50 \pm 4)\%$

K.K. Gan

DORIC:PIN Current Thresholds with No Bit Errors

• thresholds measured with VDC/DORIC-I5e on BeO opto-board

- thresholds are independent of activity in adjacent channels
- channels with high threshold can be reduced with 2 pF at noise-canceling input channel of PIN

K.K. Gan

PIN Current Thresholds vs Compensating Capacitance

- channels with high threshold can be reduced with 2 pF at noise-canceling input channel of PIN
- ⇒ prove the idea of noise cancellation

Status of BeO Opto-board

- converts: optical signal \leftrightarrow electrical signal
- contains 6-7 optical links
- use BeO for heat management but prototype initially in FR-4 for fast turnaround and cost saving
- 1st BeO prototype:
 - many open vias due to insufficient gold filling
 - ✓ opto-links works after via repairs!
- 2nd BeO prototype:
 - recycled BeO boards
 - many shorts due to over filling
 - ➡ use more experienced/expensive vendor

BeO Opto-board

housing

opto-pack

K.K. Gan

DORIC

Proton Irradiation at CERN

- use 24 GeV protons at T7 to verify radiation hardness of opto-links
- monitor performance of opto-links in real time
- cold box: irradiate 4 VDC-I5e and 4 DORIC-I5e with no optical components
- shuttle: irradiate 4 opto-boards
 - opto-boards can be moved in and out of beam remotely for VCSEL annealing

Shuttle Test System

• PIN current thresholds for no bit errors remain constant

Proton Induced Bit Errors in PIN

- observed bit errors has been converted to above bit error rate at optical link location
- bit error rate decreases with increasing PIN current as expected
- bit error rate ~ 3 x 10⁻¹⁰ at 100 μ A (1.4 errors/minute)
 - **DORIC** spec: 10^{-11}

K.K. Gan

Optical Power vs Dosage

- irradiation procedure: ~ 5 Mrad/day (6 hours) with the rest of day annealing
- optical power decreases with dosage as expected
- annealing at ~ 13 mA recovers some lost power
 - ⇒ need more annealing to see if VCSEL can recover > 70% of power

Summary

- VDC-I5e & DORIC-I5e (IBM 0.25 μm):
 - ✓ radiation hard to > 50 Mrad
 - ✓ meet ATLAS pixel specs
 - ✓ production is completed
- BeO opto-board:
 - ✓ prototype run has verified design
 - will be produced by a second vendor with more experience
- VCSEL lost significant fraction of optical power after irradiation
 await annealing study to see if they can recover > 70% of power
- start opto-link production in Dec 2003