

Search for Heavy, Long-Lived Particles Decaying to Lepton Pairs in *pp* Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

K.K. Gan The Ohio State University On behalf of ATLAS Collaboration

July 31, 2019

CERN-EP-2019-139 arXiv:1907.10037 [hep-ex]

K.K. Gan The Ohio State University

Outline

- Introduction
- Long-Lived Particles Reconstruction/Selection
- Background Estimates
- Systematic Uncertainties
- Summary

New Particle Search Signatures

- No new BSM particles at LHC so far
 searches for long-lived particles are of particular interest
- Two long-lived particles decaying into two leptons are searched for
 - $\bullet Z' \rightarrow ee + \mu\mu + e\mu$
 - cannot be singly produced via qq or else would have been observed as displaced jets
 - □ can be produced in pairs or from a decay
 - SUSY RPV simplified model

K.K. Gan The Ohio State University

Challenge in LLP Search

- Standard ATLAS trigger + track/vertex reconstruction are designed for particles originated near *pp* collision region
 - need special triggers without using inner tracker information
 - loose enough without producing too much data
 - use muon spectrum information only to select muons
 - use photon trigger only to select electrons
 - need to recover tracks not originated near pp collision region
 - use hits not used by the standard tracking
 - need special reprocessing: run large radius tracking program
 - $2 < |d_0| < 300 \text{ mm}$
 - $|z_0| < 1500 \text{ mm}$

- no standard model process can produce heavy lepton pair with detached vertex
- two potential backgrounds
 - cosmic ray
 - two random leptons forming a detached vertex

- ⇒ two opposite signed track forming a detached vertex
 - two tracks separated in ϕ by π
 - two tracks of opposite η
 - \Rightarrow CR veto: $\Delta R_{cos} = \sqrt{(\Delta \phi \pi)^2 + (\Sigma \eta)^2} < 0.01$

Cosmic Background Estimate

- use cosmic veto distribution to estimate background
- use distribution without vertex requirement to increase statistics in predicting number of cosmic events in signal region (> 0.01)
 ⇒ 0.27 ± 0.14 ± 0.10 vertices

The Ohio State University

K.K. Gan

Random Crossing Background

- estimated from data using two techniques
- no assumption on lepton origin or fake rate
 - event mixing
 - calculate probability for forming detached vertex using leptons from different events
 - multiple this by number of lepton pairs in data to yield number of vertices from random crossing
 - track flipping
 - randomly flip one track in a lepton pair with respect to beam spot
 - \Rightarrow try to reconstruct the vertex
 - number of successfully reconstructed vertex is then the estimated background
- both methods over estimate non-leptonic vertices (xx) by 20%

THE OHIO STATE UNIVERSITY

- event mixing: 0.0024 vertices
- track flipping: 0.0039 vertices
 - difference of 63% is assigned as systematic uncertainty
 - $\Rightarrow 0.0024 \pm 0.0005 \pm 0.0015$ vertices
- cosmic ray: $0.27 \pm 0.14 \pm 0.10$ vertices

Systematic Uncertainty

- 8.7% for 700 GeV squark
- 17.8% for 1600 GeV squark
- luminosity: 2.2%
- pile-up reweighting: ~10%
 - reweighted MC events to reproduce observed number of primary vertices
- trigger: few %
 - using Z boson with tag-and-probe technique
- tracking and vertexing efficiency for LLP: 10%
 - use $K_s \rightarrow \pi \pi$

K.K. Gan The Ohio State University N(K°) ATLAS Data 2016 (scaled) s = 13 TeV 3000 2500 2000 1500 1000 500 1.1 Data / MC 1.05 0.95 0.9 2 - 100 100 - 150 150 - 200 200 - 250 250 - 300 r_{xy} [mm]

- efficiency ~10% to radius of 300 mm
- good sensitivity for Z' mass above 250 GeV
- present efficiency vs. radius and p_T for theorists to extract limits on their favorite models

K.K. Gan The Ohio State University

Results on RPV SUSY

- two independent scenarios searched:
 - LSP decay is mediated by single dominant RPV coupling λ_{121} or λ_{122}
 - 700 GeV squark: exclude 50-500 GeV neutralino, $c\tau = 1 \text{ mm} 6 \text{ m}$
 - 1.6 TeV squark: exclude 1.3 TeV neutralino, $c\tau = 3 \text{ mm} 1 \text{ m}$

- Search for heavy, long-lived particles with two lepton final states in two search scenarios
 - $Z' \rightarrow ee + \mu\mu + e\mu$
 - SUSY RPV simplified model
 - no event was found in the data
 - exclude some neutralino masses and lifetimes

