

Ohio State Plan on IBL Opto-Link

K.K. Gan, H. Kagan, R. Kass, <u>H. Merritt</u>, J. Moore, <u>A. Nagarka</u>, S. Smith, <u>M. Strang</u> The Ohio State University

Opto-boards

- Design, testing, and production of opto-boards
 - November 09: testing of an opto-board:
 - use existing BeO board, VDCs, and DORICs
 - 7 working channels
 - □ AOC 10 Gb/s VCSEL array
 - Optowell PIN array
 - receive/transmit LVDS over 6 m of skinny wires
 - ◆ 2010: first prototype opto-board?
 - ◆ 2011: irradiation of opto-boards?
 - ◆ 2012: production?

VCSEL/PIN Irradiation

• VCSEL:

- proposed candidate: AOC 10 Gb/s
 - plan was to irradiate 20 arrays in August
 - manufacturer encountered lifetime issue
 - □ can only irradiate ~7 arrays in August
 - □ lifetime study at elevated temperature after irradiation
 - need to repeat irradiation in October or next year

• PIN:

- proposed candidate: Optowell PIN array
 - plan to irradiate 20 arrays in August
 - lifetime study at elevated temperature after irradiation

RX?

'RX installed in current pixel detector has two problems

- DRX has limited dynamic range
- PIN array has a slow tail
 - ⇒ some links are difficult to operate due to optical power spread
 - ⇒ designed new RX with commercial chip and Optowell PIN array
 - if prototype boards are successful, replace some/all current RXs
 - no plan to be involved in building RXs for IBL

Redundancy???

- Should we develop redundancy?
 - advantage: build a more robust opto-links:
 - implement redundancy to bypass broken PIN/VCSEL
 - individual control of VCSEL currents
 - disadvantage:
 - add cost: ~\$54K for chip production
 - require modest development effort