

Search for Heavy, Long-Lived Particles Decaying to Lepton Pairs in *pp* Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

K.K. Gan The Ohio State University

March 15, 2019

K.K. Gan

SJTU Seminar

Outline

- Introduction
- Long-Lived Particles Reconstruction/Selection
- Background Estimates
- Systematic Uncertainties
- Summary

State of LHC

- LHC has been a spectacular success:
 - reliable operation
 - high luminosity
 - ◆ delivered large data sample (~100 fb⁻¹) at 13 TeV:
 - discovery of Higgs at 7/8 TeV
 - produced hundreds of papers on searches for physics beyond SM
 no luck so far
 - □ most searches for particles decayed near *pp* collision region
 - ➡ searches for long-lived particles are of particular interest

New Particle Search Signatures

• Two long-lived particles decaying into two leptons are searched for

- $\bullet Z' \rightarrow ee + \mu\mu + e\mu$
 - □ can be produced in pairs or from a decay
 - □ cannot be produced via $q\overline{q}$ or else would have been observed as displaced jets
- SUSY RPV simplified model

ATLAS Detector

K.K. Gan

Challenge in Long-Lived Particle Search

- Standard ATLAS trigger + track/vertex reconstruction are designed for particles originated near *pp* collision region
 - need special triggers without using inner tracker information
 - loose enough without producing too much data
 - need to recover tracks not originated near *pp* collision region
 need special reprocessing

LLP Triggers

- search for LLP that decays into *ee*, $\mu\mu$, $e\mu$
- do not use inner tracker information
- muon:
 - identified using muon spectrum information only
 - $P_T > 60 \text{ GeV} + |\eta| < 1.05$
- electron:
 - use photon trigger only
 - single photon: $P_T > 140 \text{ GeV}$
 - di-photon: $P_T > 50 \text{ GeV}$

Data and Global Event Selection

- 32.8 fb⁻¹ at 13 TeV
- event primary vertex with z < 200 mm
- two leptons forming a detached vertex
- no other global event requirement to be model independent

Pre-Selection

- cuts on events passing special trigger to limit CPU/disk consumption
- muon:
 - $P_T > 62 \text{ GeV} + |\eta| < 1.07$
 - χ^2 /DoF < 5 if good match between tracks found with inner tracker and muon spectrometer
- electron:
 - single photon: $P_T > 150 \text{ GeV} + |\eta| < 2.5$
 - photon: $P_T > 10 \text{ GeV} + |\eta| < 2.5$
 - electron: $P_T > 10 \text{ GeV} + |\eta| < 2.5 + |d_0| > 2.0 \text{ mm}$
 - $P_T > 10 \text{ GeV} + |\eta| < 2.5 + |d_0| > 1.5 \text{ mm}$ muon:
 - di-photon:

 - two photons: $P_T > 55 \text{ GeV} + |\eta| < 2.5$
 - two electron: $P_T > 55 \text{ GeV} + |\eta| < 2.5 + |d_0| > 2.0 \text{ mm}$
 - photon + electron: $P_T > 55 \text{ GeV} + |\eta| < 2.5 + |d_0| > 2.0 \text{ mm}$

Large Radius Tracking

 special tracking program to recover tracks with large impact parameters not found by standard tracking program
 use hits not used by the standard tracking

	Standard	Large radius
Maximum $ d_0 $ [mm]	10	300
Maximum $ z_0 $ [mm]	250	1500
Maximum $ \eta $	2.7	5
Maximum shared silicon modules	1	2
Minimum unshared silicon hits	6	5
Minimum silicon hits	7	7

Track Requirements

Parameter	Requirement	
$p_{\rm T}~({\rm GeV})$	> 1	
χ^2 /DoF	< 50	
$ d_0 $ (mm)	2-300	
$ z_0 $ (mm)	< 1500	
SCT hits	≥ 2	
Silicon shared hits	≤ 2	
Pixel and TRT hits	TRT hits > 0 or pixel hits ≥ 2	

Vertex Requirements

- track not allowed to have pixel hits smaller than the vertex radius
- must have nearby pixel or silicon strip hits at larger radius
- vertex cannot be inside disable pixel module
- electron cannot be in tracking layer or structure
- candidate tracks must match to trigger and pre-selection objects

Vertex fit χ^2 /DoF < 5 $d_{xy} > 2 \text{ mm}$ $r_{xy} < 300 \text{ mm}, |z| < 300 \text{ mm}$ $m_{DV} > 12 \text{ GeV}$ Opposite charge Disabled module veto Material veto (excluding $\mu\mu$) Trigger matching (signal region only) Preselection matching (signal region only)

Cosmic Ray Veto

- one segment of cosmic ray could be reconstructed in opposite direction
 - ⇒ two opposite signed track forming a detached vertex
 - two tracks separated in ϕ by π
 - two tracks of opposite η
 - ⇒ CR veto:

$$\Delta R_{\rm cos} = \sqrt{(\Delta \phi - \pi)^2 + (\Sigma \eta)^2} < 0.01$$

Lepton Identification

- use standard ATLAS electron and muon reconstruction/identification algorithm
 - no requirements on pixel hits
 - no requirements on impact parameter for electron

Muon	Overlap removal
	Combined ID + MS
	No requirement on pixel hits
	$ \eta < 2.5$
	$p_{\rm T} > 10.0 \; {\rm GeV}$
Electron	Overlap removal
	Cluster quality criteria
	No requirements on d_0 or pixel hits
	$ \eta < 2.47$
	$p_{\rm T} > 10.0 \; {\rm GeV}$

Background

- no standard model process can produce heavy lepton pair with detached vertex
- two potential backgrounds
 - cosmic ray
 - two random leptons forming a detached vertex

Cosmic Background Estimate

- use cosmic veto distribution to estimate background
- use distribution without vertex requirement to increase statistics in predicting number of cosmic events in signal region (> 0.01)
 - $0.27 \pm 50\%$ (stat.) $\pm 36\%$ (syst.) events

K.K. Gan

Random Crossing Background

- estimated using two techniques
- no assumption on lepton origin or fake rate
 - event mixing
 - calculate probability for forming detached vertex using leptons from different events
 - multiple this by number of lepton pairs in data to yield number of vertices from random crossing
 - track flipping
 - randomly flip one track in a lepton pair with respect to beam spot

 \Rightarrow try to reconstruct the vertex

 number of successfully reconstructed vertex is then the estimated background

Random Crossing Background Test

- use xx, ex, μx samples to test reliability of estimates
 - measure number of xx, ex, μx pairs in data
 - calculate expected number of xx, ex, μx pairs
 - both methods reproduce the structures observed in data
 - both methods overestimate number of xx pairs by $\sim 20\%$

Random Crossing Background Estimate

Channel	$N_{ m pairs}^{ m obs}$	$p_{\rm xing} \left(10^{-5}\right)$	N_{vx}^{est} (10 ⁻⁴)
ee	21 ± 4.6	1.2	2.6 ± 0.6
eμ	10 ± 3.2	7.0	7.0 ± 2.2
μμ	9 ± 3.0	15.9	14.3 ± 4.8
SR			23.9 ± 5.3

- track flipping estimates background of 39.2 x 10⁻⁴ vertices
 - difference of 63% is assigned as systematic uncertainty
- dilepton vertex can be misidentified as xx, ex, μx vertex
 - estimated systematic uncertainty to be less than 40%
- total systematic uncertainty: 75%

K.K. Gan

Summary of Background

Source	Yield [Events]	Stat. uncertainty (%)	Syst. uncertainty (%)
Cosmic-ray muons	0.27	±50	±36
Random crossings	24×10^{-4}	±21	±75

Systematic Uncertainty

- SUSY production cross section:
 - 8.7% for 700 GeV squark
 - 17.8% for 1600 GeV squark
- luminosity: 2.2%
- pile-up reweighting: ~10%
 - reweighted MC events to reproduce observed number of primary vertices
- trigger: few %
 - using *Z* boson with tag-and-probe technique
 - tag lepton satisfies stringent identification/isolation criteria
 - probe lepton satisfies same identification criteria as signal
 - comparing the trigger efficiencies measured
 - in the data to those of Z+jets MC sample.

K.K. Gan

Systematic Uncertainty

- tracking and vertexing efficiency for LLP
 - use $K_s \rightarrow \pi \pi$
 - K_s can be reconstructed using standard or large radius tracking
 - number of K_s is not well known simulated by MC
 - \Rightarrow normalize number of K_s found in data with standard tracking to MC
 - \Rightarrow compare number of K_s found in data with large radius tracking to MC as a function of transverse decay radius

Systematic Uncertainty

- Largest discrepancy between data and MC is 6%, including statistical error
 - 2% systematic uncertainty in standard tracking
 - 1% systematic uncertainty in standard secondary vertexing
 - in principle the above two standard tracking/vertexing systematic uncertainties have been normalized out but...
 - add three systematic uncertainties linearly to yield conservative 10% systematic uncertainty

K.K. Gan

SJTU Seminar

Sensitivity for Z' vs. P_T

• efficiency ~20% in central region of ATLAS

SJTU Seminar

Sensitivity for Z' vs. Decay Radius

 efficiency ~20% in central region of ATLAS out to r ~ 100 mm

Sensitivity for RPV SUSY

- two independent scenarios:
 - LSP decay is mediated
 by single dominant RPV coupling λ₁₂₁ or λ₁₂₂
 - 1.3 TeV neutralino: 40%
 - 50 GeV neutralino: 12%

K.K. Gan

SJTU Seminar

Summary

- Search for heavy, long-lived particles with two lepton final states in two search scenarios
 - $Z' \rightarrow ee + \mu\mu + e\mu$
 - SUSY RPV simplified model
 - efficiency is ~20% per vertex in the ATLAS central tracker
 - results will be submitted for publication shortly

