

Optical Link Layout Options

K.K. Gan The Ohio State University

November 4, 2008

K.K. Gan

Outline

- Introduction
- Possible optical-link locations
- Predictions of degradation in fibers
- Predictions of degradation in VCSEL/PIN
- Summary

Introduction

- Important to fix the location of opto components early
 - affect mechanical layout
 - affect design of electronics
 - long distance electrical transmission requires development of radiation-hard electronics for pre-emphasis of signal
 - evaluate degradation of opto components at various possible locations

Neal Hartman

Potential Opto-Board Locations for conical PST Z3300

Conical PST (P5) is not a well accepted option

Neal Hartman

Fiber Losses

- Assume $L = 3000 \text{ fb}^{-1}$ and damage is mainly due to ionizing dose
- Assumed safety factor:
 - ◆ 1.5 for r < 110 cm
 - 5 for r > 110 cm
- Loss calculated for Corning Infinicor GRIN fiber
- Fibers irradiated with gammas from Co⁶⁰ by Jingbo Ye and Todd Hoffman et al.
- Losses due to radiation calculated by Tony Weidberg
- See talk by KK on Wednesday for more details on irradiation

Prediction on Fiber Losses

	Fibre routing (cm)				Length (cm)	Loss (dB)
Step	r start	r end	z start	z end		Infinicor
1	90	110	120	120	20	0.017
2	110	110	120	340	220	0.122
3	110	420	340	340	310	0.131
4	420	420	340	0	340	0.012
5	420	572	0	0	152	0.002
6	circumfere	ential step	$\Delta \phi = \pi,$	r = 572	1797	0.005
7	572	1200	0	0	628	0.008
Total					3467	0.30

Position	1	2	3	4	5
Loss (dB)	0.33	0.22	0.16	0.31	0.28

• Losses for Infinicor GRIN fiber are small for all locations

• Losses for SIMM fiber are much smaller

Radiation Hardness of VCSEL/PIN

- Radiation hardness of 850 nm VCSEL/PIN has been studied at present opto-board patch panel PP0: $r \sim 18$ cm, $z \sim 1.4$ m
 - expected dose for 3,000 fb⁻¹, including 50% safety factor
 - assume displacement damage as proportional to non-ionizing energy loss (NIEL)
 - irradiate with 24 GeV protons at CERN
 - Si: 1.5 x 10¹⁵ 1-MeV n_{eq}/cm² (2.6 x 10¹⁵ p/cm²)
 PIN candidate: Hamamatsu
 - GaAs: 8.2 x 10^{15} 1-MeV n_{eq}/cm^2 (1.6 x 10^{15} p/cm²)
 - PIN candidates: Hamamatsu, Optowell (?)
 - VCSEL candidates: AOC (5 &10 G), Optowell (?)
- See talk by KK on Wednesday for more details

1310 nm VCSEL

- 1310 nm VCSELs are becoming available
 - radiation tolerance looks encouraging
 - readily available radiation-hard fiber
 - single mode laser is easier to understand
 - no mode hoping as in multi-mode laser
- Need to keep an eye on this development

Radiation Dose at Possible Locations

Position	PP0	1	2	3	4	5
$10^{14} \text{ 1-MeV } n_{eq}/cm^2$	17	3.0	3.4	4.0	17	8.0

 Radiation doses at 5 possible opto-board locations are comparable or less than that expected at PP0
 PIN/VCSEL candidates will survive the exposure

Comparison of Cable Lengths

Conical PST

Position	PP0	1	2	3	4	5
$10^{14} \text{ 1-MeV } n_{eq}/cm^2$	17	3.0	3.4	4.0	17	8.0
Cable length (m) (inner layers)				4.4	2.4	2.7
Cable length (m) (outer + disks)		2.0	3.2	4.3		
Pre-emphasis for 320 Mb/s			yes	yes		
Pre-emphasis for > 3.2 Gb/s		yes	yes	yes	yes	yes

- No need for pre-emphasis of signal directly from FE's if opto components are located:
 - position 4 for inner layers
 - position 1 for outer layers and disks
- pre-emphasis is needed if signals from FE's are serialized and transmitted at higher speed at end of stave

K.K. Gan

Pre-emphasis

- signals can be transmitted at 640 Mb/s up to 1.4 m or at 320 Mb/s up to 3 m
- pre-emphasis of high-frequency components in signal driver to compensate for transmission loss in long cable
 - \Rightarrow can transmit at 320 Mb/s up to ~ 4 m

K.K. Gan

Summary

- small losses (< 0.33 dB) in GRIN fiber due to radiation damage at five possible opto-link locations
- radiation dose for VCSEL/PIN at five possible locations is comparable or less than that expected at PP0 where radiation-hardness has been evaluated
 VCSEL /DDL will survive at these locations
 - ➡ VCSEL/PIN will survive at these locations
- positions 4 (inner layers) and 1 (outer layers and disks)
 require no pre-emphasis of signal directly from FE's