

Status of Preparation for Opto-Board Replacement

B. Cote, K.K. Gan, H. Kagan, Z. Pollock, S. Smith, S. Monnin, B. Tar, A. Woyshville The Ohio State University

> S. Welch, E. Richards, C. Ainsworth Oklahoma State University

> > Nov 11, 2020

Outline

- Introduction
- Status of opto-board production
- Status of opto-box improvement
- Summary

Introduction

- 63 out of 2620 VCSELs have failed (2.3%)
 - opto-box in dry environment
- no failure in 448 VCSELs of IBL
 - opto-box in N₂ environment/much higher radiation
 - probability of observing no failure is 2.5×10^{-5} ("4.0 σ ")
- VCSELs survived over 2,000 hours in accelerated aging:
 - 85 C/85% relative humidity
 - industry standard is 1,000 hours
- premature dead not understood

Opto-Board

Plan

- produce 400 new opto-boards
 - 272 boards are needed
 - IBL boards will not be replaced
- sealing the opto-box to reduce humidity
 - opto-boxes were supposed to be flushed with dry air
 - valves were not open
 - no sure when valves were closed

Opto-Board Replacement

- no change in opto-board design
 - fabricated by same expensive vendor: Cirexx
- use driver/receiver ASICs produced in ~2008
 special thanks to G. Darbo for sending some ASICs
- VCSEL array:
 - Finisar arrays used in 2013/14 production no long available
 use arrays from II-VI
- PIN array:
 - ULM arrays used in 2013/14 production no long available
 - ➡ use newer arrays

Opto-Pack Production

- each opto-board contains three opto-packs
 - each opto-pack contains a VCSEL or PIN array
- no change in the opto-pack design
- new VCSEL manufacturer recommended burn-in
 - burn-in system with 15 probe cards have been setup
 - QA procedure to compare changes in device characteristics has been implemented

Opto-Connector Improvement

- several opto-connectors detached from opto-boards during the 2013/14 installation of opto-boards
 - bond between smooth aluminum and copper surfaces is not strong
 - ➡ both surfaces are now scored
 - aluminum connector modified to guarantee that epoxy cannot be completely squeezed out

COVID-19 Delay

- labs were shutdown for 2 months
 - one person (engineer) was allowed few hours/week
 - technician for VCSEL/PIN array alignment was none functional for three months due to emotional stress
 - replacement technician now fully trained
- labs now fully staffed (5 persons) after a slow reopening
 produce 12 opto-boards/week as in original goal

CERN Reception Test

- CERN reception test system resuscitated in July at St. Genis
 - **5**0 opto-boards were delivered and all passed reception test
 - 3 opto-boards with detached opto-connectors returned to Ohio State and repaired
- reception test system is now setup at SR1

Opto-Board Production Summary

D-Tall

• goal: deliver 300 boards for installation in February

K.K. Gan

Opto-Board Production Summary

Fabricated	183
Pre-production	18
1 st class	147
2 nd class	4
Rejected	14

• production yield within budget

Opto-Box

K.K. Gan Data cables

Opto-Box Sealing

- opto-boxes were supposed to be flushed with dry air
 - box is not air tight due to cables/fibers
 - ➡ improve sealing

Prototype Status

- parts have been received and test fit
 - 3D printed box end board is working well
 - 2nd round of 3D printed doors don't fit that well
 - probably due to a change in the orientation of the print
 - ◆ acceptable tolerances have been specified
 ⇒ should fix the issue.
 - 3rd round is scheduled to be finished on November 10th
- climate chamber has been serviced and is being characterized
- once the new parts are fitted
 - characterize the sealing performance of the opto-box in terms of humidity vs. flow rate of dry air

Partially Assembled First Prototype

Opto-Box Schedule

- ✓ design finished July 3
- ✓ send parts for prototyping July 5
- ✓ test fit of IBL opto-box mid August delayed
- ✗ ship to Oklahoma at end of October
- test chamber end of November
- second round of prototyping if necessary

Summary

- steady opto-board production has been achieved
 steady production critical to produce enough boards for February installation
- improved sealing of opto-box being prototyped
 schedule is tight but quite doable

Discussion

- opto-board replacement scheduled for February
 - 50 channels with failures (~half are opto-boards related)
 - 50 channels likely will fail due to shifted spectra
- 272 opto-boards needed for full replacement
 - should all boards be replaced if there are enough boards?
 - would new boards be better?