ASICs: Will We Reach 10 G Arrays

K.K. Gan and D.S. Smith The Ohio State University

September 19, 2012

VCSEL Arrays

- Arrays with suitable bandwidth are available from our preferred vendors
- 10 Gb/s arrays from ULM and AOC have been tested to HL-LHC dose
 - optical power degradation is acceptable
 - bandwidth has not been verified
- Awaiting receipt of irradiated array driver ASIC and VCSEL to test operation at 5 Gb/s

10 Gb/s Array Driver

- From literatures and commercial products
 - ⇒ we know that a 10 Gb/s VCSEL driver is possible using:
 - 180 nm CMOS
 - 130 nm BiCMOS
 - 130 nm CMOS
 - 90 nm CMOS...
- From our preliminary work
 - ⇒ it seems that we can achieve 10 Gb/s in 130 nm CMOS

10 Gb/s Driver in 130 nm CMOS?

- If we can achieve this
 - ⇒ low cost compared to BiCMOS or 65 nm
- Need different architecture than our present 5 Gb/s array driver ASIC:
 - Differential receiver:
 - Use CML/LVPECL/ECL like receiver
 - LVDS or LVDS like above 4 Gb/s is not commercially available
 - Working on receiver design now
 - VCSEL driver:
 - Switch to using negative cathode bias
 - No thick oxide transistors
 - Preliminary results on extracted layout simulations look promising

Improved 130 nm VCSEL Array D

Existing design New preliminary design (thick oxide FETs) (thin oxide FETs) 1.5 V 2.5 V **VCSEL** VCSEL Modulation **VCSEL** Bias Modulation-**Current Control Current Control Current Control** Modulation_I Modulation Plus Minus Modulator**→ VCSEL** VCSEL Bias Current -**VCSEL** -1.0 VControl