

WBS 6.1.2 Pixel Services

K.K. Gan Level-3 Manager & CAM The Ohio State University

U.S. ATLAS HL-LHC Upgrade Director's Review of NSF/DOE Scope Brookhaven National Laboratory Upton, New York November 6-8, 2017 (NSF) November 9-10, 2017 (DOE)

Outline

- Technical Details
 - Deliverable Overview
 - R&D Status and Plans
- Project Management
 - Management Structure: CAM and Ics
 - Basis of Estimate
- Cost and Schedule
 - Budget and Schedule estimates
 - Risk and Uncertainty
- Closing Remarks

Technical Details

Deliverable Overview

- Institution: SLAC
- 6.1.2.1.1: TwinAx

 Challenge: high-speed data transmission up to 5.5 m of skinny cables with acceptable attenuation

• 6.1.2.1.2: PPO

- Design/prototype/production of PPO with connectors for data, CMD/ CLK, LV, HV, DCS (safety monitors)
- challenge: minimum material and insertion loss in bandwidth/signal strength
- Technical Specs (see later)

- Institution: Ohio State
- 6.1.2.2: Opto-board
 - design/prototype/production of optical modules (opto-boards), including driver/receiver ASICs
 - Challenge: equalization and pre-emphasis of degraded signal after 5.5 m of skinny cable to drive a VCSEL at high-speed
- Technical Specs (see later)

	Inner	Pixel	Pixel System		
	Driver	Receiver	Driver	Receiver	
Opto-boards needed	326	22	1,528	108	
Including spares	391	26	1,833	129	
Yield (%)	80	80	80	80	
Material ordered	469	31	2,200	155	

- Institution: Oklahoma State
- 6.1.2.3.1: Power Supply
 - design/prototype/production of power supplies, backplane, control system, chassis
 - Challenge: supply constant current up to 16 FE ASICs in series
 - Technical Specs: supplies of constant current of 8 A per channel to the front-end chips with a voltage range of 1.2-1.5 V per chip

	Inner Pixel System	Pixel System
Number of modules needed	11716	2456
Number of modules per one power supply	8	8
Production yield	90%	90%
Additional spares	11%	11%
Power Supply Channels per Crate	10	10
Total number of power supplies to be produced	1806 (= 2456/8/0.9*1.11)	380 (= 2456/8/0.9*1.11)
Total cost of Inner System power supply production	\$903,000	\$190,000

- Institution: Oklahoma State
- 6.1.2.3.2: Flex Circuit
 - design/prototype/production of flex circuits for transmission of CMD/CLK, LV, HV, DCS
 - Challenge: high-speed transmission/low signal or voltage drop with minimum material
 - Technical Specs (see later)

	Production	Pre-Production
Rings needed for inner system	300	
Yield	80%	
Spares	20%	
Flexes to be produced	420	30
Total material cost	\$278,000	\$52,000

- Institution: UCSC
- 6.1.2.4: Type-1 bundle
 - design/prototype/production of cable bundles for data, CMD/CLK, LV, HV, DCS
 - Challenge: compact bundles with connectorization of minimum loss
 - Technical Specs (see later)

Technical Specs

- 6.1.3.1 (Type-0 Services), 6.1.3.2 (Patch Panel 0), 6.1.3.3 (Twinax Cables), 6.1.3.4 (Type-1 Services) and 6.1.3.7 (Equalizer): radiation-hard data transmission from the modules to the optical converters at 5.12 Gb/s up to 5.5 meters with maximum attenuation of 20 dB.
- 6.1.3.5 (Opto-Links): optical converters for converting electrical data signals to optical signals for transmission to the DAQ system at 5.12 Gb/s per channel and vice verse for the clock/command signal at 160 Mb/s from the DAQ system.
- 6.1.3.6 (Serial Powering): Serial power supplies produce a constant current up to 8 A per serial power chain and provide a voltage of 1.5-2 V per module, with a maximum of 16 modules per chain.

• 6.1.2.1:

- TwinAx: cables of different dielectric material and gauges prototyped.
 Currently evaluating a possible final prototype cable.
- PP0: R&D just started. Production in FY20.
- 6.1.2.2:
 - Opto-boards: R&D just started. Previous R&D funded via CDRD.
 Decision on 12-channel opto-boards vs "4+1"-channel opto-module of Versatile Link+ project in FY19.
- 6.1.2.3:
 - Serial Powering with several FE-I4 chips currently being tested.
 Production in FY22.
 - R&D on flex circuit just started. Production in FY20.
- 6.1.2.4:
 - R&D on Type-1 cable bundle just started. Production in FY20.

Project Management

L3 Project: Effort

- 6.1.2.1: TwinAx/PP0
 - SLAC: Su Dong leads the effort with contributions from physicists plus engineers and technicians available at cost.
 - TwinAX cost estimate based on several years of R&D and PPO based on fabricating similar objects for Insertable Barrel Layer (IBL) of ATLAS
 Pixel detector
- 6.1.2.2: Opto-board
 - Ohio State: K.K. Gan leads the effort with contributions from physicists plus engineers and technicians at cost.
 - Cost estimate based on building two generations of opto-boards for the Pixel detector of ATLAS

L3 Project: Effort

- 6.1.2.3: Power supply and flex circuit
 - Oklahoma State: F. Rizatdinova leads the effort with S. Welch as the lead engineer at cost.
 - cost estimate mostly based on quotes and data from previous hardware development projects
- 6.1.2.4: Type-1 bundle
 - UCSC: J. Nielson leads the effort with contributions from physicists plus engineers and technicians at cost.
 - cost estimate based on similar objects for Insertable Barrel Layer (IBL) of ATLAS Pixel detector

Cost and Schedule

Budget & Effort

6.01.02 Chart - L3 Ttl Cost by Res Type

6.01.02 Lbr Mat and Trvl (%)

Budget & Effort

WBS 6.01.02 Pixel Services

	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	Grand Total
6.01.02.01.01 / SLAC Twinax-Inner Section SLAC	4,104	88,312	257,522	5,503					355,441
6.01.02.01.02 / SLAC PP0-Inner Section SLAC	4,716	55,890	192,728	276,874					530,209
6.01.02.02 / OSU Optical Links_OSU		177,058	364,931	310,624	1,093,030	686,260	692,193	514,346	3,838,442
6.01.02.03.01 / OKS Serial Powering OkS	101,811	277,405	225,787	117,861	329,107	586,167	80,975		1,719,114
6.01.02.03.02 / OKS Inner Stave Flex OkS		97,343	150,678	383,936	383,671				1,015,627
6.01.02.04 / UCSC Type-I Services		50,714	139,665	425,403	227,567				843,350
Grand Total	110,631	746,722	1,331,312	1,520,201	2,033,375	1,272,427	773,168	514,346	8,302,182

6.1.2.2 Budget & Effort: Opto-Board

Schedule

• Items needed at SLAC integration in 2022:

- 6.1.2.1: TwinAx/PP0
- 6.1.2.3.2: flex circuits
- 6.1.2.4: Type-1 bundles
- Items needed at CERN in 2024:
 - 6.1.2.2: opto-boards
 - 6.1.2.3.1: serial power supplies
- Main external dependencies:
 - System test: FE ASIC (RD53) + cables + opto-board for operation at 5.12 Gb/s

Risk and Uncertainty

• RD-06-01-02-001:

- 5.12 Gb/s data transmission not achievable at 5.5 m
- Mitigation: allocate more resource in connectorization
- Responses: use slightly larger cables

• RD-06-01-02-002:

- Opto links not ready
- Mitigation: allocate three prototype cycles instead of the standard two in the ASIC development
- Responses: allocate one more prototype cycle in the ASIC development

• RD-06-01-02-003:

- Serial powering fails to meet specifications
- Mitigation: More protoyping of power supply and study of the cooling requirement
- Responses: Allocate more resource for prototyping and use new cables instead of the existing cables.

Milestones

- FY19: TwinAx FDR + PRR
- FY19: Type-1 bundle FDR
- FY19: Flex FDR
- FY19: PP0 FDR
- FY20: PP0 PRR
- FY20: Opto-board PDR
- FY20: Power supply FDR
- FY20: Type-1 bundle PRR
- FY20: Flex PRR
- FY21: Opto-board FDR + PRR
- FY23: power supply PRR

Closing Remarks

- Services WBS contains both active and passive deliverables
- Some R&D are well advanced and others just started
- Main technical challenge:
 - Achieve 5.12 Gb/s data transmission at up to 5.5 m of cables plus connectors with less then 20 dB of attenuation

Bio Sketch of L3 Manager

- K.K. Gan, Professor of Physics, The Ohio State University
- Member of ATLAS since 1998
- Leading the design and fabrication of two generations of optical links for the ATLAS pixel detector

Institute Capabilities

- 6.1.2.1, SLAC:
 - Large facility for electronics development and fabrication
 - Large pool of engineers and technician available at cost
 - Previously involved in the Insertable B-Layer pixel project
- 6.1.2.2, Ohio State:
 - Clean room with automatic wire bonders and probe stations etc
 - Two engineers available at cost
 - Previously leading two ATLAS pixel opto-link projects
- 6.1.2.3, Oklahoma State:
 - Good facility for electronics development and fabrication
 - One engineer available at cost
 - Previously involved in the Insertable B-Layer pixel project
- 6.1.2.3, UCSC:
 - Good facility for electronics development and fabrication
 - Pool of engineers and technician available at cost
 - Previously involved in the Insertable B-Layer pixel project