

Update on Opto-Link R&D

W. Fernando, K.K. Gan, A. Law, H.P. Kagan, R.D. Kass, A. Rau, S. Smith The Ohio State University

M.R.M. Lebbai, P.L. Skubic University of Oklahoma

B. Abi, F. Rizatdinova Oklahoma State University

Feb 1, 2008

Outline

- Transmission on micro-cables
- Bandwidth of fiber
- Radiation hardness of PIN arrays
- Radiation hardness of VCSEL arrays
- Status of driver/receiver chips design
- Plan for new TX/RX modules
- Summary

Transmission on Micro-Cables

- optical links of current pixel detector use micro-twisted pairs for transmission between pixel and opto modules
 - transmission at 640 Mb/s up to 1.4 m is adequate
 - ✓ satisfy the requirements of B-layer and SLHC upgrades
- new pixel electronics without MCC requires many more micro-cables to distribute clock and data to each FE
 - can these signal be shared?
 - ⇒ test with commercial LVDS driver/receivers...

Test Setup of Shared LVDS

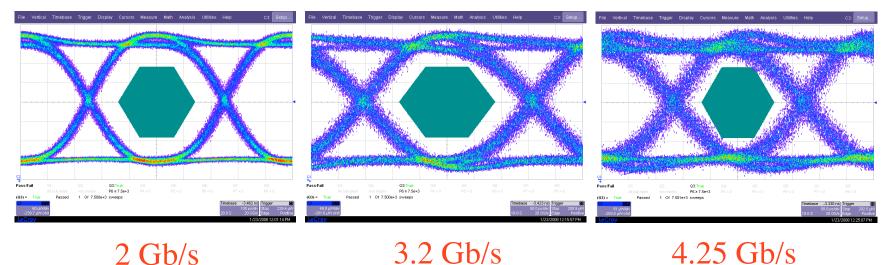
- mock up a stave with 4 commercial LVDS receivers (FEs)
 - space between receivers: 20 mm
 - use 2-layer PCB with ground plane and match length pairs
 - no special impedance control
 - all 4 inputs tied to a common pair of PCB traces
 - PCB trace pair driven by 1.4 m of micro-cable
 - one 100Ω termination

Quality of Shared LVDS

• common input trace driven by different cable:

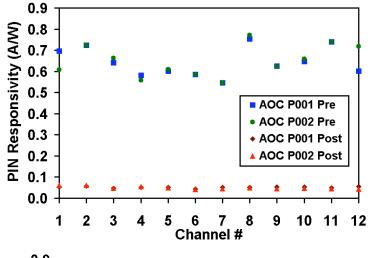
- signal driven by micro-cable is only slightly worse
- good signal on all 4 channels regardless of termination locations
 - ⇒ 4 x reduction in TTC cables?
 - ⇒ should repeat test with custom driver/receivers

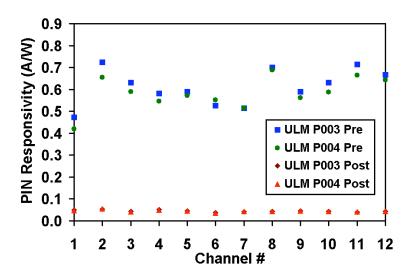
5

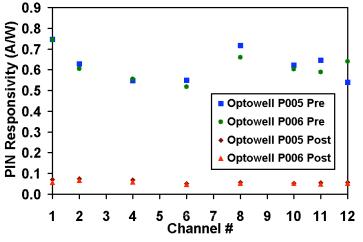

Bandwidth of Fiber

- optical links of current pixel detector use rad-hard/low-bandwidth SIMM fiber fusion spliced to rad-tolerant/medium-bandwidth GRIN fiber
 - can transmit up to at least 2 Gb/s
 - ⇒ what is the limit of the bandwidth?

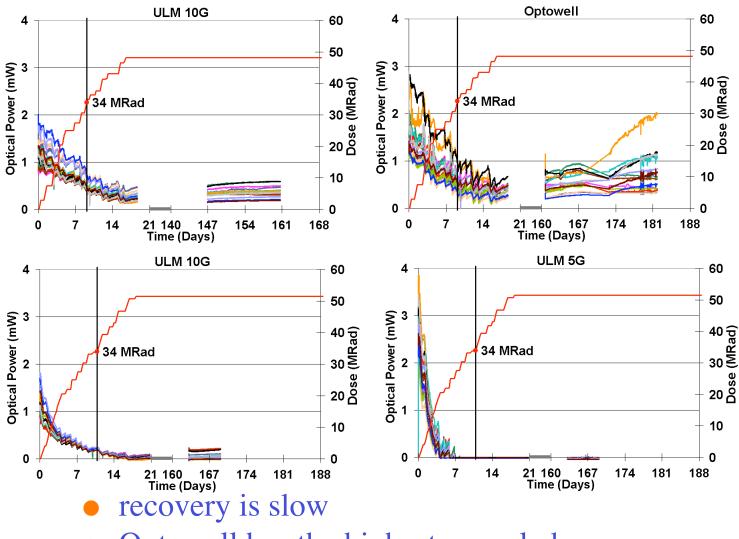
Bandwidth of Fiber


11 + 80 m spliced SIMM/GRIN fiber

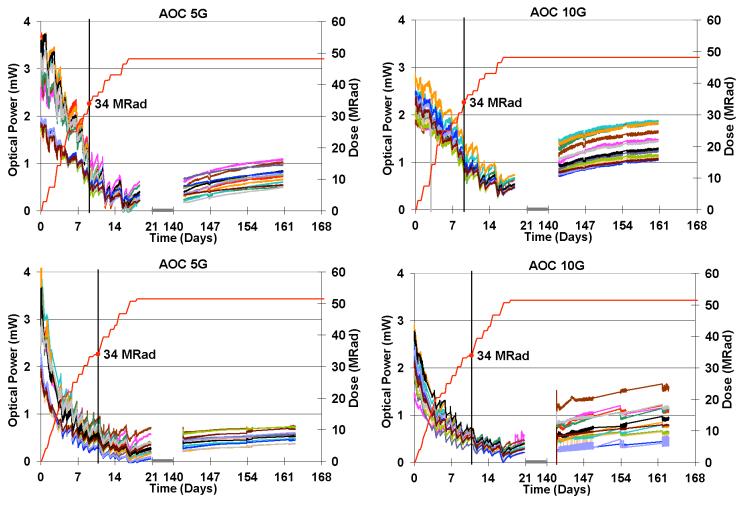



- transmission at 3.2 Gb/s is adequate
 - ✓ satisfy the requirement of B-layer upgrade
 - current SLHC architecture calls for raw rate of 3.2 Gb/s plus 20% overhead for 8b/10b encoding
 - ⇒ more efficient encoding will improve margin of operation

Radiation-Hardness of GaAs PIN



- all arrays are front side illuminated
- PIN responsivities decrease
 by ~10x at 53 Mrad
- should repeat irradiation to SLHC dosage of 34 Mrad
- Si PIN can operate up to at least
 160 MHz at SLHC dosage
 B-Layer Upgrade Meeting


Annealing of VCSEL Arrays

Optowell has the highest annealed power

Annealing of VCSEL Arrays

• recovery is slow but adequate annealed power

Status of VDC

- works well up to 2 Gb/s at
 - 5 fixed process corners
 - □ supply voltage: 1.2 & 1.5 V
 - □ -15, 25, & 50 C
- layout completed and simulated from extraction with parasitics, including pads/wire bonds
- will push the bandwidth to 3.2 Gb/s
- plan to submit both low and high speed versions

Status of DORIC

- trans-impedance + limiting amplifiers work up to 1 Gb/s:
 - uide dynamic rang: 50 1000 μA
 - corner simulation in progress
- near complete design of decoder of 160 MHz clock and data
 - based on BPM input data as in present pixel TTC
- plan to also produce a version with twice the speed

Status of SMC

- working on building blocks at schematic level:
 - serializer
 - clock multiplier: generate high speed serializer clock from TTC
 - programmable delay
 - FIFO
- work in collaboration with MC designers
- plan to have a few test circuits ready...

Chips Submission Plan

- submit a 2 x 2 mm² chip to MOSIS via CERN:
 - VDC
 - DORIC
 - □ SMC "very lite"
- submission: March 24
 - review: March 11
 - □ PS irradiation: summer
 - will compare SEU at 40, 160, and 320 Mb/s

Design of New TX/RX Modules

- use 12-channel TX/RX dice from Helix Semiconductor
 - can operate up to 4.25 Gb/s
 - TX: DAC for setting current in each VCSEL
 - RX: limiting-amp with large dynamic range
 - no need for threshold DAC
 - sample dice on order
- use 12-channel VCSEL/PIN from AOC or Optowell
 - use opto-package designed by OSU
- use FPGA to generate BPM signal at 320 MHz
 - no need for custom BPM chip
- 1st prototype: ~ May 08

Summary

- ✓ TTC signal could be shared by 4 FEs
- ✓ fusion spliced SIMM/GRIN fiber can transmit up to 3.2 Gb/s
- x responsivity of GaAs PIN decreases by 10 x at SLHC dosage
- ✓ VCSELs from two vendors survive to SLHC dosage
- small chip submission planned in March
- prototyping of RX/TX in May