

K.K. Gan, S. Che, R. Ishmukhametov, H. Kagan, R.D. Kass, K. Looper, J. Moss, J. Moore, S. Smith, Y. Yang The Ohio State University

> P. Buchholz, M. Ziolkowski Universität Siegen

> > Sept 25, 2014

Use of VCSEL Arrays in HEP

- Widely used in off-detector (no radiation) data transmission
- First on-detector implementation in pixel detector of ATLAS
 - experience has been positive
 - VCSELs used are humidity sensitive but they were installed in very low humidity location
 - modern VCSELs are humidity tolerant
 - opto-links built by OSU have ~0.1% broken links
 - decided to move opto-links to more accessible location
 - use arrays for the replacement optical links for current
 3-layer pixel detector and the new inner layer (IBL)

Opto-Board Flavors

- 3 opto-board flavors
 - outer 3-layers + disks (nSQP):
 - D opto-board (disk, L1, L2): 7 TTC + 14 data links
 - B opto-board (B-layer): 7 TTC + 14 data links
 - inner layer:
 - IBL opto-board: 8 TTC + 16 data links
- 300 boards needed
 - produced ~400 boards or ~8,500 links

/CSEL

VCSEL

ΡΙΝ

3

K.K. Gan

Close Up View

Opto-pack

Opto-Board Improvements

- Implemented several improvements based on experience gained from production of 1st generation opto-boards:
 - replace custom optical connector with MPO for easier mating/de-mating
 - mount array on BeO instead of PCB for efficient heat removal
 - connect optical package to opto-board by wire bonding instead of soldering micro-leads to BeO
 - soldering was major challenge in previous opto-board production
 - too much heat cause lead detachments
 - **t**oo little heat produces cold solder
 - cold solder is a major cause of opto-link failures
 - opto-boards built by OSU have ~0.1% broken links

Opto-Pack Enforcement

Several opto-packs detached at various stages of production
 two improvements:

- scoring of PCB surface to improve adhesion
- add aluminum brace to greatly increase epoxy contact area
 cannot remove opto-pack without destroying opto-pack

Sandblasted surfaces to improve adhesion

Problematic Epoxy

- Detachment of MPO connectors on several boards (< 10) early in the production
- 22 boards used epoxy with different color
 - ➡ replace 66 MPO connectors
 - 30 insertion tests performed on 40 connectors before removal
 - □ 10 insertion tests during QA
 - ➡ no connector detached after 40 insertion tests
 - ➡ expect no detachment under normal operation
 - 19 boards successfully recovered

Opto-Board Quality Assurance

- perform QA test similar to 1st generation opto-boards to validate constructed boards
 - burn in: 72 hours @ 50°C
 - 10 thermal cycles: $0^{\circ}C \Rightarrow +50^{\circ}C$
 - 2 hours per cycle
 - 1 hour soak at 50°C
 - electrical and optical QA

Opto-Board Optical Power

D4201

Production Statistics

- Total fabricated: 421
 - Good: 393 (1st class: 383, 2nd class: 10)
 - **Bad: 28**

Summary of Failed Boards

Failed Opto-Boards

Extended Burn-In

• Several of the 400 boards have problems after burn-in/thermal cycles:

- 1 VDC: cannot adjust drive current
- 8 VCSEL arrays have low power
 - 3 failed for thermal cycle outside Finisar spec: -25 C
 ⇒ thermal cycle: 0-50 C
 - **5** arrays not properly glued to BeO substrate
- 4 leaky PIN arrays

Accelerated Lifetime Test

- Industry standard: opto-boards should survive for 1,000 hours at 85°C/85% relative humidity
 - operate each VCSEL channel with 10 mA (pk-pk)
 - perform weekly measurements
 - VCSEL optical power
 - PIN dark current
 - supply current
 - operate with no error in all channels

After 1,500 hours at 85°C/85% RH

K.K. Gan

Accelerated Lifetime Test-Phase I

- Started the test with two IBL boards on Feb. 2014
 - All VCSEL channels survived
 - Both PIN arrays became leaky before 1,000 hours
 - PIN biased at 10 V
 - ULM photonics: recommend operate at 5 V even though spec. sheet lists bias as up to 10 V

• VCSEL optical power OK up to 1,008 hours in 85°C/85% RH

Accelerated Lifetime Test-Phase II

June/July: started four D opto-boards in 85°C/85% RH

- 2 boards fabricated in 6/2013: optical power OK after 1,740 hours
- 2 boards fabricated in 12/2013: optical power OK after 1,560 hours
- PIN arrays biased at 10 V in ~4 days of burn-in/thermal cycle
 - No leaky PIN arrays for 5 V bias after ~1,650 hours!!

• VCSEL optical power OK up to 1,560 hours in 85°C/85% RH

K.K. Gan

Opto-Boards Installation

- Installation successfully completed in June
 - smooth installation process
- No infant mortality after 1 month of operation

Summary

- fabricated 400 opto-boards with many improvements
- opto-boards production was smooth
- opto-boards successfully installed
- production opto-boards passed accelerated lifetime test
 10 V bias degrades PIN array lifetime!
- planning to begin long term 50°C/50% RH study next