Tracker Optical Link Upgrade R&D Plans and Status

K.K. Gan The Ohio State University

November 10, 2005

Outline

- Experience from Pixel opto-link
- R&D plans
- R&D results
- Summary

Inner Detector Optical Links

- SCT: ~ 12,000 links, including data transmission redundancy
- Pixel: ~ 4,000 links
 - based on SCT design
- both use driver/receiver of similar architecture:
 - VDC: VCSEL Driver Circuit
 - DORIC: Digital Optical Receiver Integrated Circuit

US ATLAS Upgrade Workshop

Inner Detector Optical Modules

- SCT harness:
 - speed: 40 Mb/s
 - single fiber (fragile)
 - short flex to reduce electromagnetic interference
 - many harness flavors
- Pixel opto-boards:
 - speed: 80 Mb/s using both clock rising/falling edges
 - B-layer uses two data links to transmit at 160 Mb/s
 - robust ribbonized fiber
 - ∼ 1 meter of micro-twisted pairs
 - much reduced radiation level
 - decouple pixel module & opto-link production
 - ⇒ greatly simplify construction
 - ⇒ 2 BeO board flavors

Opto-board Production Experience

• few production problems

⇒ upgrade based on pixel link is widely viewed as logical choice

Bandwidth Requirements

- Inner Tracker Opto-Link Upgrade by Gan @ Genova:
 - pixel tracker:
 - 320 Mb/s: minimum
 - 640 Mb/s: more conservative
 - retain double links for innermost barrel
 - strip tracker:
 - multiple of 40 Mb/s per module
- can current pixel type0 cables & spliced fibers transmit data at 320 or 640 Mb/s?
 ⇒ R&D

Radiation Hardness of VCSEL/PIN

• VCSEL/PIN from several vendors can operate at Gb/s

- Can they survive SLHC dosage?
 - What is the PIN responsivity after irradiation?
 - What is the PIN SEU rate?
 - What is the VCSEL optical power after irradiation?
 - Can the VCSEL be annealed after irradiation?
 What VCSEL current is needed for annealing?
 - US plans to characterize VCSEL/PIN from various vendors
 design of test system in progress at Ohio State
 - ★ SCT group has done neutron irradiations at Ljubljana
 - ★ US/Germany plan to do irradiation at PS in 2006

Result on Neutron Irradiation of VCSEL/PIN

- Truelight VCSEL/PIN arrays were irradiated to various dosages with neutrons at Ljubljana reactor
 - PIN arrays not yet analyzed
 - ten 8-channel VCSEL arrays were irradiated:
 - arrays contained broken channels before irradiation
 - arrays were not biased during irradiation
 - after ~30 hours of annealing:
 - □ 8 arrays irradiated up to 5 x 10^{15} 1-MeV n_{eq} /cm²
 - ★ recover > 70% of optical power
 - □ 2 arrays irradiated to 10^{16} 1-MeV n_{eq} /cm²
 - ★ some channels lost all optical power

Result on 2 Arrays after 10^{16} 1-MeV n_{eq}/cm^2

- VCSEL array #10:
 - 7 working channels before irradiation
 - 1 channel drawing no current
 - 1 channel drawing current but produces no light
 - ◆ 2 channels: recover ~70% of optical power after annealing
 - 3 channels: same as above but intermittently
- VCSEL array #2:
 - 3 working channels before irradiation
 - 1 channel drawing no current
 - 1 channel drawing current but produces no light
 - ♦ 1 channel: recover ~15% of optical power after annealing

Implications of Neutron Irradiation Results

- VCSEL is not suitable for SLHC if results are confirmed
 - results might be different if intermediate annealing is possible
- ability to recover 70% of optical power on some channels and intermittently on other channels indicates that problems could be mechanical
- irradiation must be repeated with quality arrays
- US/Germany plan to use 24 GeV protons from PS at CERN next year with monitoring and annealing during irradiation

Bandwidth of Type0 Cables

- Pixel modules transmit LVDS to/from opto-links with tiny wires
 - barrel:140 cm of 100 μm wires
 - disk: 60 cm of 60 μm wires
- \Rightarrow measure bandwidth and compare to Skewclear (150 cm/400 µm)

Time (ps) (20-80%)	Rise (ps)	Fall (ps)
Barrel	400	390
Disk	291	297
Skewclear	149	157
PCB Trace	128	130

Eye Diagrams at 350 Mb/s

Eye Diagrams at 640 Mb/s

Pass/Fail

(01) -

13

Eye Diagrams at 1 Gb/s

Pass/Fail

(Q1) = 1

Summary on Cable Bandwidth

disk

Skewclear

Thinking of using Skewclear? A picture is worth a thousand words...

- transmission at 320 Mb/s may be adequate
- transmission at 640 Mb/s might be acceptable
- ordering custom micro-twisted cables to see if transmission will improve...

Bandwidth of Spliced Fibers

- Present Pixel: spliced several meters of SIMM with GRIN
 - SIMM: rad-hard pure silica core, low bandwidth
 - GRIN: rad-tolerant, medium bandwidth
- What is the bandwidth of spliced fibers?
 - Result: transmission at 1 Gb/s is quite adequate

US ATLAS Upgrade Workshop

Summary

- R&D in progress on current Pixel infrastructure
 - some Truelight VCSEL arrays die at 10¹⁶ 1-MeV n_{eq}/cm²
 - problems might be related to quality of arrays
 - measurements will be repeated, including at PS
 - type0 cable may be adequate up to 640 Mb/s
 - spliced fibers sufficient for 1 Gb/s