

Proposal to Develop On-Detector Array-based Optical Link

A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass,H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The Ohio State University

> P. Buchholz, A. Wiese, M. Ziolkowski Universität Siegen

> > T. Flick, P. Maettig Universität Wuppertal

A. Pellegrino, T. Sluijk NIKHEF (LHCb)

November 11, 2009

ATLAS Upgrade Week

Outline

- Introduction
- Array-based Optical Links of Present Pixel Detector
- Array-based Optical Links of IBL
- Pros and Cons of Array-Based Optical Link
- R&D Plan
- Schedule/Resource
- Summary

Introduction

- VCSEL and PIN are available in three forms:
 - single channel or 4 or 12-channel array
 - array: can reserve 1 in 12 channels for redundancy
 - single channel: double the number of channels for redundancy
 - ⇒ array solution reduces the number of opto-modules to be built by a factor of 22
- sub-detector with data/TTC links spread through out the sub-detector:
 - single channel device is more efficient
- sub-detector with data/TTC links concentrated at few locations:
 - array solution is more efficient (more later)
 - pixel detector: data/TTC links are concentrated at ~ 6 m away

Optical Links of Present Pixel Detector

- Initially based on SCT design as much R&D had been performed
- Academia Sinica (Taiwan) later suggested using arrays to simplify construction
 - proposal was accepted and R&D launched
 - ➡ fabrication of 272 array based opto-modules (opto-boards) instead of 1744 single-channel opto-modules

Optical Links of IBL

- positive/extensive experience leads us to propose continued use of array-based opto-boards with improvements:
 - replace present opto-pack with new design:
 - use BeO as substrate instead of FR-4 for heat management
 - replace micro soldering with wire bonding
 - cold solder is a major source of failures in present pixel links
 - propose to add redundancy by rerouting signal through a spare VCSEL or PIN channel
 - propose to add individual control of VCSEL current
 - account for optical power spread within an array
 - some present pixel links are difficult to operate

Opto-Modules Need of IBL

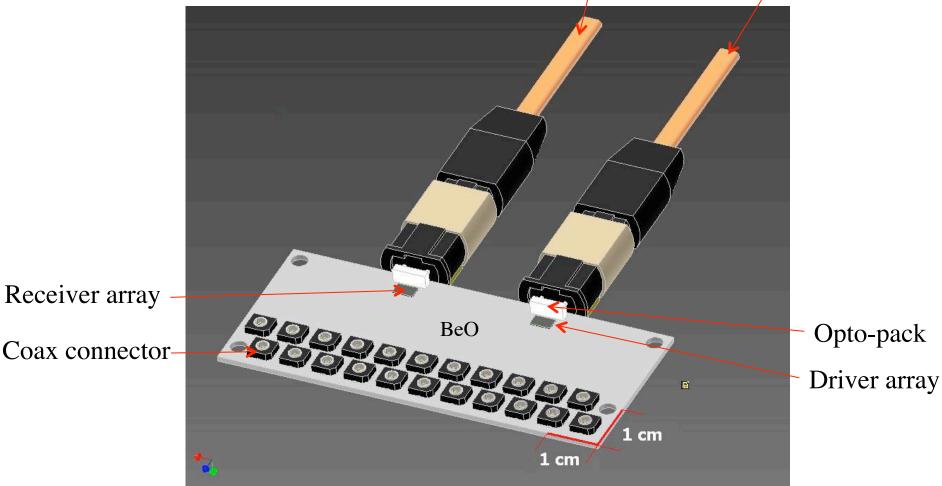
- 28 array-based opto-modules are needed for IBL
 - would have to fabricate 448 single-channel opto-modules (1 PIN + 2 VCSEL) for same functionality
 - special thanks to Tony Weidberg for not insisting on using single-channel solution for the present pixel detector

Pixel Opto-Modules Need at SLHC

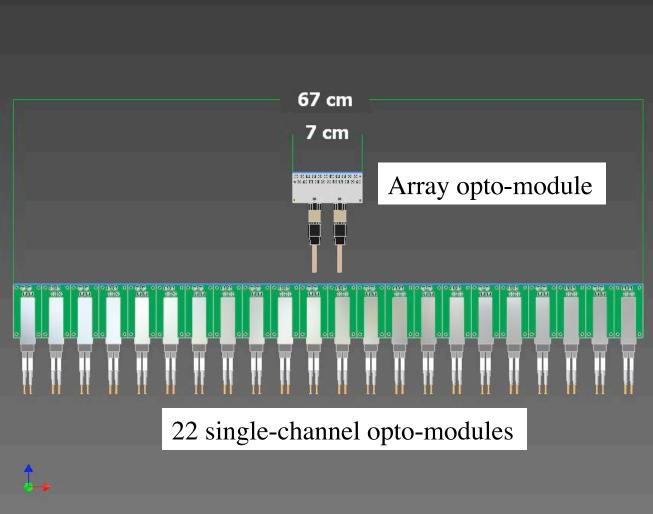
992 TTC and 992 data links with no bandwidth safety factor
 92 array-based opto-modules or 1984 single-channel opto-modules for the same functionality

Pros of Array-Based Optical Link

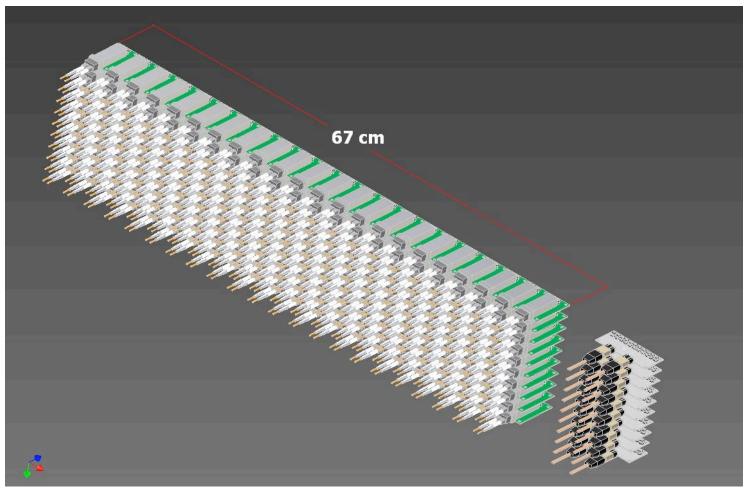
- highly compact
 - much less material in front of LAr
- simplify fabrication/installation
 - 22 times less opto-modules to build, test, and install
- no ribbon to LC fanout
 - reduce optical power loss
 - simplify installation
- reduce electrical services
 - single power line for receiver/driver ASICs instead of 11 individual power lines
 - single power line for a PIN array instead of 11 individual lines
- simplify cooling
 - cool a small area rather than much larger area
 - consume half as much power


K.K. Gan

ATLAS Upgrade Week


Array-Based Opto-module

12 TTC links 12 data links



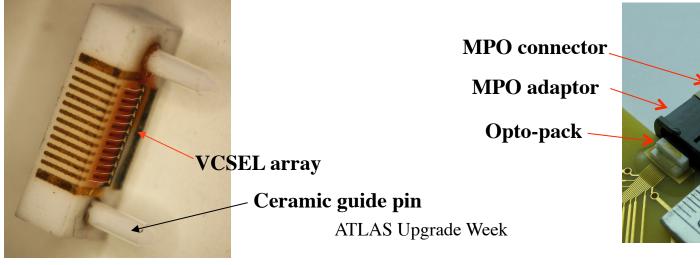
ATLAS Upgrade Week

Array/Single-Channel Opto-Module

ATLAS Upgrade Week

Cons of Array-Based Optical Link

- single point connection failure in power to ASIC or PIN could disable an opto-module
 - opto-modules will be accessible every 1-2 years

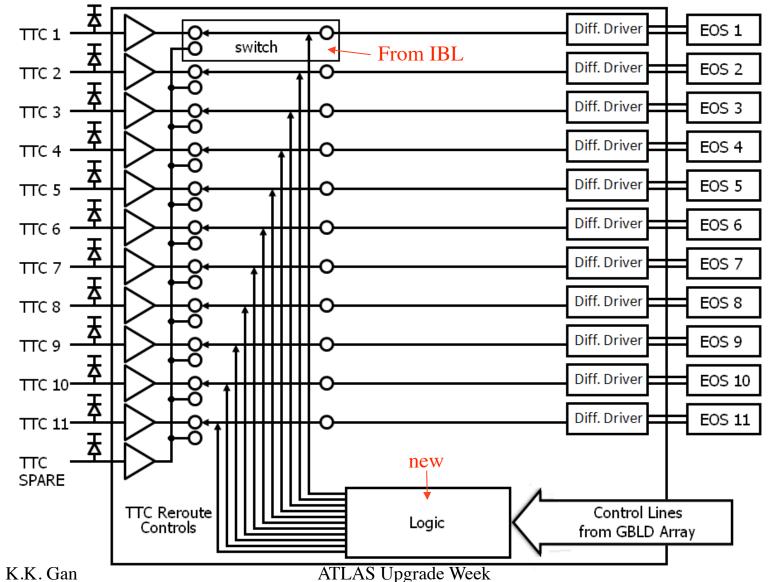

R&D Plan

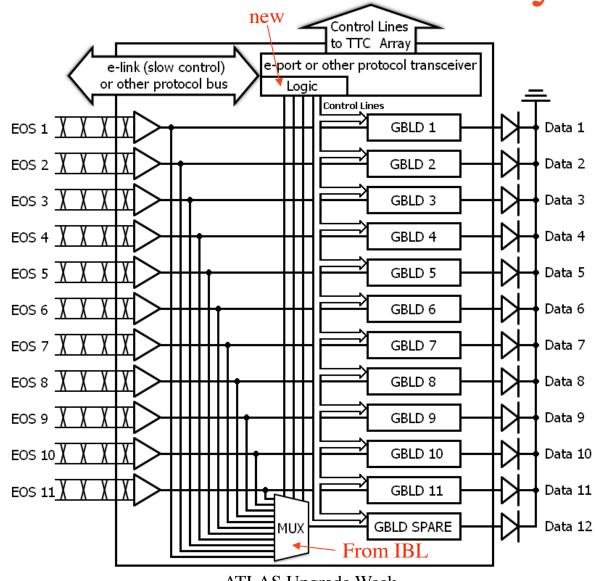
opto-pack R&D plan
array ASIC R&D plan
opto-board R&D plan

Opto-pack R&D Plan

Large amount of R&D already performed due to IBL

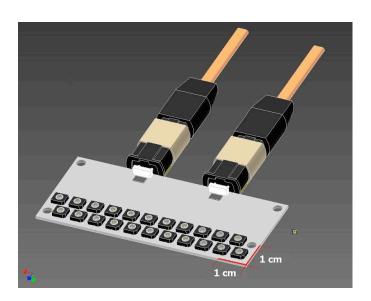
- VCSEL/PINs are aligned at Ohio State University (10-30 minutes)
 - 63 VCSEL opto-packs fabricated
 - □ 51 opto-packs have optical power > 1 mW @ 7 mA
 - can produce more power as spec on max current is 11 mA
 - ♦ 46 PIN opto-packs fabricated
 - Siegen plans to work with IZM on VCSEL/PIN alignment
 - NIKHEF plans to work with industry on VCSEL/PIN alignment




Array ASIC R&D Plan

- VCSEL driver/PIN receiver developed by GBT/VL must be laid out as an array
 - need to work closely with GBT/VL groups
 - special thanks to P. Moreira for thoughtful advice

VCSEL Driver Array



ATLAS Upgrade Week

Opto-board R&D Plan

- pre-emphasized 4.8 Gb/s signals
 in ~6 m micro-coax cables to/from end-of-stave
 - need to ensure that the signals are not compromised in last 2 cm between coax connectors and array ASIC
 - must use RF design in board layout

R&D Schedule

- Phase I:
 - 11/2010: 4-channel ASIC submission
 - 03/2011: prototype high-speed opto-board with FR4
 - 07/2011: irradiation of opto-board with array ASICs
 test radiation hardness and SEU tolerance
- Phase II:
 - 11/2011: 12-channel ASIC submission
 - 03/2012: improved prototype high-speed opto-board
 - 07/2012: irradiation of opto-board with array ASICs

R&D Resources

	Tech.*	Eng.*	Experience/Comments
OSU	0.5	0.5	designed DORIC/VDC + designed/produced opto-boards
Siegen	0.3	0.7	designed DORIC/VDC + designed/produced opto-boards
Wuppertal	0.5	0.4	produced opto-boards + designed/produced off-detector links
NIKHEF	0.5	0.5	LHCb

* FTE for technicians and engineers. In addition, physicists (students, post-docs etc) contribute to the R&D.

Summary

• on-detector array-based optical links have many advantages

- a team with extensive experience with array-based opto-links at LHC proposes to develop array-based opto-links for SLHC pixel detector
- modest effort is needed to prove the feasibility
 - feasibility can be tested with 4-channel array by 2011