

Measurement of VCSEL Lifetime on Opto-Boards

K.K. Gan The Ohio State University

September 2, 2010

K.K. Gan

VCSEL Study Group Meeting

Outline

- Tests at Siegen/CERN
- Test at Ohio State
- Discussion of proposed sample allocation

Lifetime Test of Truelight VCSEL

- Priority of various tests is to measure lifetime of installed VCSELs
 - understanding failure mechanism is of low priority
- Siegen is performing test of four opto-boards
 - transmitting clock (50% duty cycle) at room temperature
 - Wuppertal will measure optical spectrum monthly
 - status: operational since July
- Similar study of 6-7 boards on test system at CERN
 - transmitting clock at all times
 - will measure optical spectrum monthly
 - status: 6 boards operational since late August

VCSEL Lifetime Test of at Ohio State

- Ohio State has found ~50 VCSEL arrays from original production
 - 400 channels will be monitored
 - represents a significant fraction of final system: 1,788 channels
 no need to use thermal acceleration
 - ➡ no need to use thermal acceleration
 - ~50% have improperly cured epoxy
 - will mount VCSEL on BeO board to emulate detector environment
 - will keep chamber at $\sim 20^{\circ}$ C flushed with N₂
 - will transmit bursts of 80 Mb/s pseudo-random data
 - burst duration: adjustable
 - burst repetition rate: ~100 KHz
 - can measure light-current-voltage (LIV) curves as needed
 - will measure optical spectrum monthly
 - will perform more frequent measurements during first month

K.K. Gan

VCSEL Study Group Meeting

Test Setup

- Design of various PCBs in progress
- Most components are on order
 - BeO boards delivery time: 8 weeks
 - vendor has expedited the fabrication

K.K. Gan

VCSEL Study Group Meeting

Proposed Sample Allocation

- Requested some Truelight VCSEL arrays as control sample
 awaiting delivery confirmation
- Must perform post-mortem of all initial failures to exclude any ESD induced fatality
- Spectrum measurements will qualitatively verify the degradation vs. duty cycle
- We can't do everything we wish to do without sacrificing the statistical precision of lifetime measurement

Mitigation

- VCSEL lifetime can be extended with following adjustments
 - operating at lower temperature
 - current operating temperature is already optimized
 - operating at lower drive current
 - strongly coupled with operating temperature
 - not much room for further adjustment
 - operating at 80 Mb/s to reduce transmission duration
 - implemented
 - turn off one of the two links on B layer
 - no net gain in lifetime as
 - total amount of data transmitted remains unchanged

25% vs. 50% Duty Cycle Sample

- Priority is to verify as soon as possible whether failure rate of VCSEL on opto-boards is same as those of TXs
- Should we split the sample into two to run at 25% and 50% duty cycles?
 - Cutting sample by half increase the chance of being victim of statistical fluctuation
 - Lifetime prediction based on 50% duty cycle gives most pessimistic prediction?

Lifetime Dependence on Temperature

- Temperature of opto-boards can be adjusted by few degrees
 - average temperature: 17 C
 - maximum temperature: 22 C
 - Arrhenius acceleration factor should be very modest
 - anybody interested to measure Arrhenius factor of current TX VCSELs to see how well it works?
 - should some opto-board arrays be operated at different temperature or just measure lifetime at 22 C?
 - minor detail: need to buy an environment chamber for this study

Lifetime Dependence on Current

- Expect to operate VCSELs at about same drive current over time due to self annealing of radiation damage
- To see lifetime dependence on drive currents requires operating two samples at very different currents
 - should some arrays be allocated for this?