

Radiation-Hard/High-Speed Parallel Optical Engine

K.K. Gan, H.P. Kagan, R.D. Kass, J. Moore, S. Smith The Ohio State University

> P. Buchholz, A. Wiese, M. Ziolkowski Universität Siegen

> > May 4, 2012

Outline

- Introduction: compact solution for data transmission
- What has been achieved with 5 Gb/s VCSEL array driver
- Preliminary design for 10 Gb/s VCSEL array driver
- Can we do more intelligent things with 40 Gb/s VCSEL array driver?
- Summary

Vertical Cavity Surface Emitting

- VCSELs are widely used in data transmission
 - available mostly with multi-mode transmission (850 nm)
 - available in 1, 4, or 12 channels
 - computer mouse uses single-channel VCSEL
 - array VCSELs in use for over ten years

Use of VCSEL Arrays in HE

- Widely used in off-detector data transmission
- First on-detector implementation in ATLAS pixel detector
 - experience has been positive
 - VCSELs used are humidity sensitive but they are installed in very low humidity location
 - modern VCSELs are humidity tolerant
 - ⇒ will use arrays for next pixel detector upgrade (IBL)

Advantage of VCSEL Arra

- highly compact with 250 μm between channels
- allow high-efficient implementation of redundancy
 - reserve 1 in 12 channels for redundancy instead of doubling the number of channels for single-channel device
- reduced service with one power supply to bias each array
 - single power supply for each PIN array
- fiber ribbon reduces the number of fibers to handle
 - fiber ribbon is less fragile than single-channel fiber
- greatly simplify production, testing, and installation
 - ATLAS: fabricated 272 opto-boards vs 2,000 opto modules
 - will use arrays for next pixel detector upgrade (IBL)
 250 μm

New Parallel Optical Engin

- Improved design for new pixel layer of ATLAS
 - use 12-channel VCSEL and PIN arrays
 - ⇒ 36 optical channels

New 12-Channel VCSEL Dri

- New ASIC designed using 130 nm CMOS
- Incorporate improvements taking advantage of experience from 1st generation parallel optical engine:
 - redundancy to bypass a broken VCSEL
 - special thanks to FE-I4 group (Roberto Beccherle et al.)
 for command decoder circuit
 - power-on reset in case of communication failure:
 - no signal steering
 - 10 mA modulation current (on current)
 - 1 mA bias current (off current)
- Will only operate at 160 Mb/s for new pixel layer but design ASIC to operate at much higher speed (5 Gb/s) to gain experience in designing high-speed parallel driver
- Array R&D compatible w/GBT is an approved ATLAS R&D project K.K. Gan WIT2012

New VCSEL Array Driver

- Only inner 8 channels connected to new pixel modules
 - future driver should reserve only one channel for redundancy

High-Speed Test Configuration

Optical Eye Diagram

• Difficult to judge eye diagram with 4.5 GHz optical probe...

SFP+ as Optical Probe

SFP+ Loopback vs VCSEL Dr

10 Gb/s SFP+ transceiver @ 5 Gb/s with optical loopback

VCSEL driver @ 5 Gb/s after 10 Gb/s SFP+ receiver

Eye with One/All Channels Act

One channel active

All channels active

- all channels work @ 5 Gb/s with bit error rate $< 5 \times 10^{-13}$ for all channels active
- jitter increases with all channels active but still passes the mask test

Effect of Steering on Eye

VCSEL spare 1

Receiving LVDS signal from channel 8, steering to VCSEL spare 1

Effect of Steering on Eye

Spare 1 output with other channels off

Spare 1 output with all channels active

- steered channel still passes the mask test
 - jitter increases with all channels active

Radiation Hardness

- 10 Gb/s VCSEL arrays have been proven to be radiation hard to tens of Mrad
 - ◆ send signal on ~1 m micro co-ax cables to less radiation and more serviceable location
- Radiation hardness of VCSEL array driver will be verified in the summer

Toward 10 Gb/s Array Drive

- 10 Gb/s transmission needed for ATLAS inner pixel layer and LAr readout upgrades
- joint ATLAS/CMS proposal funded via US DOE generic R&D program

Improved 130 nm VCSEL Array

Existing design New preliminary design (thick oxide FETs) (thin oxide FETs) 1.5 V 2.5 V **VCSEL** VCSEL Modulation **VCSEL** Bias Modulation-**Current Control Current Control Current Control** Modulation_I Modulation Plus Minus Modulator**⊸ VCSEL** VCSEL Bias Current -**VCSEL** -1.0 V Control

10 Gb/s Simulation Results

Use VCSEL model with bond pads + parasitics

- new design works better but need more simulations + layout
- plan to work with 65 nm CMOS/130 nm BiCMOS if 130 nm CMOS proves to be too marginal

40 Gb/s VCSEL Array Drive

- Vertical Integration Systems now offers 40 Gb/s VCSEL array
 - ⇒ 0.5 Tb/s in 12-channel fiber ribbon
 - ⇒ what kind of more intelligent things can we do with this much higher bandwidth?

Summary

- VCSEL array offers compact solution to data transmission
- 5 Gb/s VCSEL array driver successfully prototyped
- have preliminary design for 10 Gb/s VCSEL array driver
 - much faster VCSEL array now available