

Rare/Exotic Decays of the Higgs Boson

K.K. Gan The Ohio State University

On behalf of ATLAS and CMS

January 8, 2016

ZPW2016

- Introduction
- Search for $H \rightarrow e\mu$
- Search for $H \rightarrow e\tau$
- Search for $H \rightarrow \mu \tau$
- Search for Higgs decays into new light bosons
- Search for invisible Higgs decays
- Summary

Why Search for Rare/Exotic Decays?

- Discovery of Higgs in 2012 is a crowning achievement of SM
 - SM is simple/elegant but incomplete...
 - why three generations of elementary particles?
 - masses/couplings are free parameters
 - why neutrinos are left-handed?
 - what is the dark matter?
 - ⇒ search for new physics in rare/exotic decays of Higgs
 - rare decays might be more sensitive to new physics contribution
 - exotic decays would be a clear sign of physics beyond SM

Search for Lepton Flavor Violation

- lepton flavor conservation is an assumption of SM
- no known symmetry associated with lepton flavor conservation
- observation of LFV would revolutionize our understanding of particles and fields
 - require a "7 σ " signal to claim a discovery?
- discovery of muon 80 years ago started the LFV search industry
 - "best" limit: $B(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13} @ 90\%$ CL $\Rightarrow B(H \rightarrow e\mu) < O(10^{-8})$
 - much less constrained for decays involving τ leptons
 - $\Rightarrow B(\mathrm{H} \rightarrow e\tau/\mu\tau) < \mathrm{O}(10\%)$
 - ➡ promising venue for discovery

CMS Search for $H \rightarrow e\mu$

- e and μ have opposite charge
- $P_{\rm T}({\rm lepton}) > 20-25 \;{\rm GeV}$
- missing $E_{\rm T} < 20-30 \text{ GeV}$
- enhance sensitivity to different production processes (VBF, ggF, W/ZH) with different selection criteria for 0, 1, 2 jets
- no significant excess of events $\Rightarrow B(H \rightarrow e\mu) < 0.036\% @ 95\% CL$

Limits on Lepton-Flavor-Violating Couplings

• direct limits on couplings are less stringent than indirect limits but require no theoretical assumptions

- Search for $H \rightarrow e + (\mu \text{ or } h^{\pm} + \leq 2\pi^0 \text{ or } h^{\pm} h^{+} h^{-})$
- $H \rightarrow e + \mu$:
 - one isolated e + one isolated μ of opposite charge
- $H \rightarrow e$ + hadrons:
 - one isolated e + one isolated hadronic τ decay of opposite charge
- enhance sensitivity to different production processes (VBF, ggF, W/ZH) with different selection criteria for 0, 1, 2 jets
- Use collinear mass (M_{collinear}) as an estimator of the Higgs mass to discriminate against background
 - use visible τ decay products to approximate ν direction

ATLAS Search for $H \rightarrow \mu \tau$

- Search for $H \rightarrow \mu + (1 \text{ or } 3 \text{ hadrons}) + \text{missing transverse energy } (E_T)$
 - μ and τ_{had} have opposite charge
 - $P_{\rm T}(\mu) > 26 \,\,{\rm GeV}$
 - $P_{\rm T}(\tau_{\rm had}) > 45 {\rm ~GeV}$
 - $|\eta(\mu) \eta(\tau_{had})| < 2$
 - high detection efficiency: 99%
 - effective in rejecting

W + jets and multi-jet background

- Search for $H \rightarrow \mu + (e \text{ or } h^{\pm} + \leq 2\pi^0 \text{ or } h^{\pm} h^{+} h^{-})$
- $H \rightarrow \mu + e$:
 - one isolated μ + one isolated *e* of opposite charge
 - main background: $Z \rightarrow \tau \tau$
- $H \rightarrow \mu$ + hadrons:
 - one isolated μ + one isolated hadronic τ decay of opposite charge
 - main background: misidentified τ in W + jets, multiple jets, *t*-pairs
- enhance sensitivity to different production processes (VBF, ggF, W/ZH) with different selection criteria for 0, 1, 2 jets
- Use collinear mass (M_{collinear}) as an estimator of the Higgs mass to discriminate against background
 - use visible τ decay products to approximate ν direction

• consistency with background only is 2.4σ (*p*-value = 1%) K.K. Gan ZPW2016

ATLAS Search for Higgs Decays into New Light Bosons

- Some extensions to SM contain dark or hidden sector
 - provide dark vector boson Z_d that could be dark matter candidate
- Exotic decay $H \rightarrow 4l$ can be produced via two processes:
 - $H \rightarrow ZZ_d \rightarrow 4l$
 - rate depends on the kinetic or mass mixing between Z_d and Z
 - $H \rightarrow Z_d Z_d \rightarrow 4l$
 - rate depends on the coupling between Z_d and H
 - distinctive 4*l* signature is readily detectable for $m(Z_d) > 15 \text{ GeV}$

- Search for narrow resonance (m_{34}) recoiling against a Z boson
 - no evidence of an enhancement
 - set upper limit on $B(H \rightarrow ZZ_d \rightarrow 4l)$
 - can be translated into upper limits
 on the kinetic or mass mixing between Z_d and Z
 K.K. Gan ZPW2016

- Search for enhancement in distribution of minimum ∆m = lm₁₂-m₃₄l
 no evidence of a signal
 - set upper limit on $B(H \rightarrow Z_d Z_d \rightarrow 4l)$
 - can be translated into upper limit on coupling between Z_d and H

CMS Search for Higgs Decays into New Light Bosons

- Higgs can decay into a pair of light scalars or pseudo-scalars: $H \rightarrow hh \rightarrow 4\tau \text{ or } H \rightarrow aa \rightarrow 4\tau$
- Higgs production processes used:
 - gluon fusion
 - vector boson fusion
 - vector boson associated production
- Event signature:
 - one isolated high $P_{\rm T}$ muon to trigger the event
 - relative low mass h or a resulted in highly boosted pair of τ 's
 - \Rightarrow τ 's are not very isolated
 - require at least one highly boosted pair of τ 's
 - one τ must decay into a muon

- high $M_{\rm T}$ region has enhanced contribution
 - from W associated production
- Search for excess of events with high visible tau-pair mass:

 $m_{\mu+x} > 4 \text{ GeV}$

 no excess of events observed K.K. Gan
 ZPW2016

B(H → aa → 4τ) < 50% for m_a > 7 GeV at 95% CL
 B < 21% for m_a = 9 GeV

ATLAS Search for Invisible Decays

- Higgs can decay into "invisible" final state:
 - $B(H \rightarrow ZZ \rightarrow 4v) \sim 0.1\%$
- Higgs might decay into dark matter or weakly interacting long-lived/stable particles
- invisible decays of Higgs must be tagged:
 - large missing transverse energy
 - tag with leptons or jets
- search in two production mechanisms:
 - vector boson fusion
 - two jets with large separation in η
 - best sensitivity
 - vector boson associated production

ATLAS Search for Invisible Decays

JHEP11(2015)206

Channel	Observed (%)	Expected (%)
VBF	28	31
Z(ll)H	75	62
W/Z(jj)H	78	86
Combined	25	27

- B < 25% @ 95% CL for invisible Higgs decays
- B < 23% if visible Higgs decays are included
 - more model independent
 - no assumption that vector boson couplings \leq SM couplings

CMS Search for Invisible Decays

- Vector boson fusion (VBF):
 - large cross section
 - two jets plus large missing $E_{\rm T}$
 - large background
- Gluon fusion:
 - 10 x larger cross section than VBF
 - search for mono-jet
- vector boson associated production:
 - small cross section
 - tag with vector boson that decays into jets, lepton or *b*-pairs **ZPW2016**

K.K. Gan

CMS Search for Invisible Decays

CMS-PAS-HIG-15-012

Channel	Observed (%)	Expected (%)
VBF	57	40
VH	60	69
ggH	67	71
Combined	36	30

- No significant excess of events above SM backgrounds
 Set upper limit on cross section normalized to SM cross section
 - ♦ < 36% @ 95% CL for invisible Higgs decays</p>

CMS Search for Invisible Decays

• Search for Higgs decays into invisible particles and photons:

$$m_{\tilde{\chi}_1^0} > \frac{1}{2} m_H : H \to \tilde{\chi}_1^0 \tilde{G} \to \gamma \tilde{G} \tilde{G}$$

$$m_{\tilde{\chi}_1^0} < \frac{1}{2} m_H : H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G} \gamma \tilde{G}$$

• Use Higgs produced in two mechanisms:

Summary

- No evidence for lepton-flavor-violating Higgs decays:
 - $B(H \rightarrow e\mu) < 0.036\%$
 - $B(H \rightarrow e\tau) < 0.70\%$
 - $B(H \rightarrow \mu \tau) < 1.51\%$
- No evidence for Higgs decays into new light bosons
 - presented here only two of the several searches by ATLAS/CMS
- No evidence for invisible Higgs decays: B < 23%
- Results mostly based on ~20 fb⁻¹ at 8 TeV
- Will reach new level of sensitivity to new physics at 13 TeV
 - cross section increases by 2.3x
 - expected to collect 100 fb⁻¹ in three years

CMS paper on $H \rightarrow \mu \tau$ has received 66 citations...

K.K. Gan

CMS

• CMS paper on $H \rightarrow \mu \tau$ has received 66 citations...

© Original Artist I think the theorists, Reproduction rights obtain like lawyers, are chasing an ambulance ויויויויויוווח

K.K. Gan

ZPW2016

CMS paper on $H \rightarrow \mu \tau$ has received 66 citations...

K.K. Gan

30