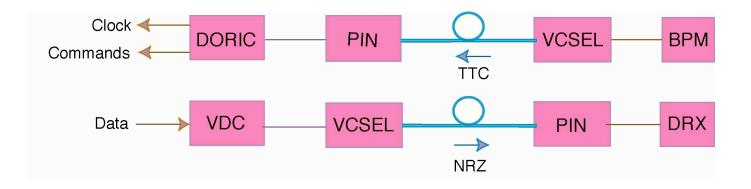
Tracker Optical Link Upgrade Options and Plans

K.K. Gan The Ohio State University

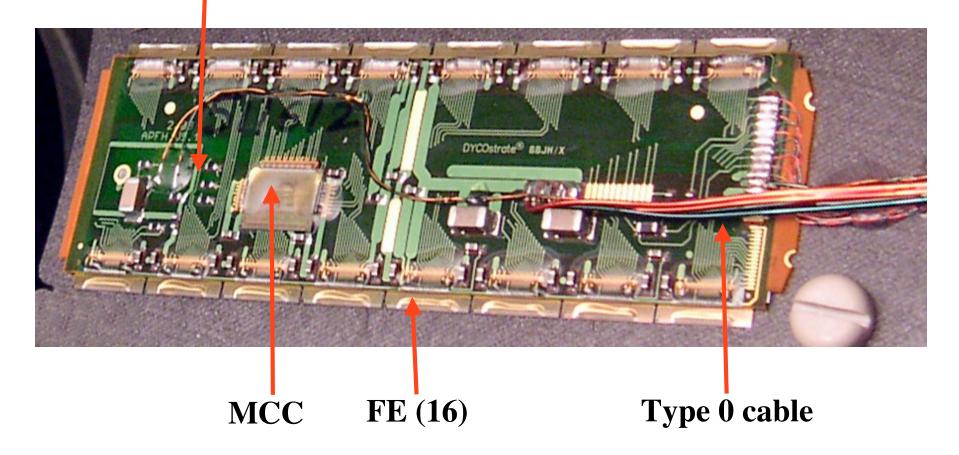

July 19, 2005

Outline

- current pixel/strip opto-links
- lessons learned
- upgrade options
- summary

Inner Detector Optical Links

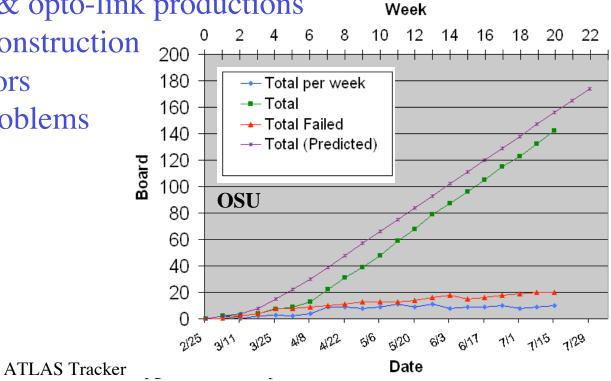
- SCT: ~ 12,000 links, including data transmission redundancy
- Pixel: ~ 4,000 links
 - based on SCT design
- both use driver/receiver of similar architect:
 - VDC: VCSEL Driver Circuit
 - DORIC: Digital Optical Receiver Integrated Circuit


ATLAS Tracker Upgrade Workshop

Inner Detector Optical Chips

- SCT:
 - AMS 0.8 μm bi-polar
 - VDC: two channels/chip
 - DORIC: one channel/chip
 - optical package: 2 Truelight VCSELs + 1 Centronic PIN
 - use two data links for redundancy
 - speed: 40 Mb/s
- Pixel:
 - IBM 0.25 μm CMOS
 - four channels/chip
 - optical package: 8-channel Truelight VCSEL/PIN arrays
 - speed: 80 Mb/s using both clock rising/falling edges
 - B-layer uses two data links to transmit at 160 Mb/s

Pixel Module


Original opto-link location (two single fibers)

ATLAS Tracker Upgrade Workshop

Optical Link/FE Connections

- SCT:
 - use short flex to avoid electromagnetic interference
- Pixel:
 - use ~ 1 meter of micro-twisted pairs (60 and 100 μ m)
 - ➡ decouple module & opto-link productions
 - ⇒ greatly simplify construction
 - ⇒ 2 BeO board flavors
 - ⇒ few production problems

SCT Optical Harness

- complicated designs
 - difficult to assemble with high yields
 - large number of flavors
- non-modular design
 - difficult to replace any component that fails
- single fiber is fragile
 - pixel uses 8-fiber ribbon
- \Rightarrow prefer upgraded link to be similar to pixel with ~ 1 m of wire link

ID Fluences at SLHC

• estimated fluences in 10^{15} 1-MeV n_{eq}/cm^2 after 5 years:

	Si	GaAs	
B-layer	20	160	
Layer 1	7.5	53	
Layer 2	4.0	23	
PP0	2.5	14	 current pixel opto-link
SCT1	1.6	7	
SCT4	0.9	3	

ATLAS Tracker Upgrade Workshop

Data Bandwidth at SLHC

- SCT:
 - current module: 12 cm long strips
 - ⇒ SLHC module: 3 cm (inner) and 12 cm (outer)?
 - bandwidth/module: 40 Mb/s
- Pixel:
 - current pixel: 50 μ m × 400 μ m
 - ⇒ ~ 3 times finer segmentation?
 - \Rightarrow charge sharing produces ~30% more hits
 - bandwidth/module:
 - ★ B-layer = $1.3 \times [10/3] \times 160 \text{ Mb/s} = 700 \text{ Mb/s}$
 - * outer layer/disk = $1.3 \times [10/3] \times 80$ Mb/s = 350 Mb/s

Upgrade Wishes

- prefer ~ 1 m of wire link between FE and opto-link
 - decouple module and opto-link production
 simplify construction and improve yield
 - much reduced radiation level
- highly desirable for upgraded pixel and SCT to use as much common components as possible
- but vastly different data bandwidth
 - SCT: 40 Mb/s
 - Pixel: 350/700 Mb/s
 - ⇒ adapt solution similar to GOL chip of LHCb?

GOL-like Solution for SCT?

- GOL (Gigabit Optical Link) chip:
 - serialize 32 links of 40 Mb/s to transmit at 1.28 Gb/s (effective)
- connect half a stave to a GOL-like chip for SCT?
 - serialize 24 links of 40 Mb/s to transmit at 960 Mb/s?
 - inner SCT: 24 pairs of wires from modules to GOL at end of stave
 - outer SCT: 6 pairs of wires/half stave (4 half staves/GOL)
 - material contribution from wires
 - ✓ ~ 6 × reduction in fiber count from current SCT
 - \times messy to connect a small chip to 24 pairs of wires
 - × input speed too slow for pixel opto-link
 - not a common solution for pixel and SCT
- GOL-like solution is probably not desirable

MCC-like Solution for SCT?

- MCC (Module Control Chip):
 - serialize 16 FEs on a pixel module to transmit at 80/160 Mb/s
- opto-board at end of stave connects to 8 MCCs via wires
- inner SCT: one MCC serving eight 3-cm modules?
 - MCC is mounted along stave
 - MCC connects via flex to 8 FEs
 - connection more complex if modules are not coplanar
 - half stave: 3 pairs of wires from MCC to opto-board
- outer SCT: one MCC serving eight 12-cm modules?
 - MCC is mounted near end of stave
 - MCC connects via wires to 8 FEs on two half staves?
 - half stave: 6 pairs of wires from FEs to MCC
- transmits data at 320 Mb/s (8 × 40 Mb/s)
- ✓ ~ 8 × reduction in fiber count from current SCT K.K. Gan ATLAS Tracker Upgrade Workshop

MCC-like Solution for SCT (cont.)?

- outer SCT: opto-board supports ~ 11 half staves
- inner SCT: opto-board supports ~ 3 half staves
- Pixel: opto-board supports 6-7 modules on 1 half stave (current)
 - VCSEL/fiber ribbon contains 8 channels
 - ⇒ waste of space and bandwidth!
 - should avoid this early in the design!
- ⇒ common solution for pixel and SCT operating at 320 Mb/s
 - compatible with estimated bandwidth of 350 Mb/s for pixel

How to use 10 Gb/s Opto-link?

- 250 pairs of wires carrying 40 Mb/s from SCT to 10 Gb/s driver is unrealistic
- need MCC-like chip for SCT/pixel
 - 32 pairs of wires from MCCs operating at 320 Mb/s
 - ✓ reduce fiber count by factor of ~ 250 from current SCT and 32 from current pixel system
 - very high reliability is needed since a link
 covers ~ 11% of the solid angle of a B-layer!
 - must survive 10 m drop and run over by a truck (lorry)
 - need to use single mode fibers for high speed transmission
 - VCSEL to fiber alignment much more challenging
 - × expensive to develop custom rad-hard/compact 10 Gb/s link
 - \times expensive to equip multiple sites with 10 Gb/s test system

Silicon-on-Sapphire Alternative

- integrated serializer, driver, VCSEL in single chip to operate at 3-10 Gb/s
 - integration of driver/VCSEL is unique in SOS
 - current opto-board uses short on-board connections
 - serializer/driver integration is not unique and may not be optimal
 - expect to be radiation hard and less sensitive to SEU
 - validation with irradiation needed
 - need to develop efficient/compact VCSEL/fiber coupling
- SMU works in close collaboration with Peregrine and SMIC

TTC Upgrade Scenarios

- TTC: Timing, Trigger and Control signals
- present system: 1 TTC link for each SCT or Pixel module
 - data is bi-phase mark encoded with 40 MHz clock
 - × would require much more TCC fibers for inner SCT
- SCT with MCC as in Pixel system?
 - one TTC link for 8 SCT modules
 - \checkmark ∼ 8 × smaller TTC fiber count than current SCT
- regenerate TTC for 8 links on an opto-board?
 - ✓ another 8 × reduction in TTC fiber count
 - current opto-board provides TTC and data links to same module
 - × need TTC only opto-board to use ribbon instead of single fiber
 - × require highly reliable links
 - × no clock phase adjustment for each MCC
 - × more sensitive to SEU for transferring 8 × more TTC bits K.K. Gan ATLAS Tracker Upgrade Workshop

Upgrade TTC Speed

- upgrade: low speed link?
 - ✓ low sensitive to SEU which changes only one data bit
 - generate $\sim 8 \times$ faster clock in MCC
 - is it fast enough to reconfigure FE/MCC due to SEU during data taking with causing deadtime?
- upgrade: high speed link?
 - × more sensitive to SEU which could change multiple bits
 - ✓ fast reconfiguration of FE/MCC due to SEU

More Channels/Volume for Pixel Link?

VCSEL opto-pack

- opto-board: 2 VCSEL + 1 PIN opto-packs
- upgrade opto-board: half as wide only 1 VCSEL + 1 PIN opto-packs
 B layer: 1 standard board + 1 board with 1 VCSEL opto-pack only
 ⇒ ~ 2 × more links per unit volume
- use 12-channel VCSEL/PIN/fiber ribbon
 - slight larger ribbon cable as cladding is most of the material
 - can't reuse current 8-channel fiber ribbons
 - current pixel system uses ~ 6.4 channels/ribbon!
 - $\Rightarrow \sim 1.5 \times \text{more links per unit volume}$
- total: ~ 3 × more links per unit volume
 K.K. Gan ATLAS Tracker Upgrade Workshop

Optical Link/MCC Connections

- pixel: connect MCC to opto-link via 1 m of 100/60 µm wires
- can these wires transmit signal at ~ 320 Mb/s?
 - if not, what is the minimum radius?
 - what is the minimum radius for various possible upgrade transmission speeds?
 - ⇒ OSU has started on the testing program

Requirements for Fibers

- single mode fiber ($\phi 6 \mu m$):
 - no modal dispersion: high bandwidth
 - × require precise alignment to VCSEL
- multi-mode fiber (ϕ 50/62.5 µm):
 - SIMM: rad-hard pure silica core, low bandwidth
 - GRIN: rad-tolerant, medium bandwidth
- present pixel: spliced several meters of SIMM with GRIN
 - what is the maximum bandwidth?
 OSU has started on this testing
 - radiation hardness of the SIMM fiber
 - ➡ Oxford/Taiwan/SMU plans to irradiate various fibers

Radiation Hardness of VCSEL/PIN

- VCSEL/PIN from several vendors can operate at Gb/s
 - can it survive SLHC dosage?
 - what is the optical power of VCSEL after irradiation?
 - can VCSEL be annealed after irradiation?
 what is the VCSEL current needed for annealing?
 - ★ OSU plans to characterize VCSEL/PIN from various vendors
 - ✤ Oxford/Taiwan has started irradiation at Ljubljana
 - ★ OSU/Siegen/Oklahoma plan to do irradiation at PS in 2006

Opto Driver/Receiver for SLHC

- pixel VDC/DORIC were fabricated using 0.25 µm technology
 - VDC needs to operate at > 320 Mb/s
 - should design VDC to operate as fast as possible
 - convert to 0.13 μm as planned for FE?
- producing enough voltage to driver VCSEL is a challenge:
 - Truelight VCSEL needs ~1.9 V to produce 10 mA
 - higher current is needed for efficient annealing
 - operating voltage of 0.13 μm chip is 1.2 V
 - thick oxide can operate at 2.5 V
 - ⇒ need to test irradiation hardness of thick oxide chip
- OSU/Siege plan to design/prototype/irradiate the chips

Summary

- upgrade based on current pixel system is a natural path:
 - use "MCC" to serialize 8 modules for SCT
 - operating at ~ 8 × faster (320 Mb/s per link)
 - ease of construction with opto-link mounted off modules
 - common solution for pixel and strip
- silicon-on-sapphire provides an alternative which integrates chips and optical devices together operating at 3-10 Gb/s
- several groups already started on R&D
- modular of 6 and 7 is wasteful in space and bandwidth
 - let's don't it again!