Study of τ Decays to Four-Hadron Final States with Kaons

CLEO III Collaboration

K.K. Gan The Ohio State University

July 22, 2005

Outline

- motivations
- K/π identification/cross check
- results
- summary

Motivations

- study of τ decay to four hadrons with kaons:
 - - improve measurements of $m_S \& \sin \theta_C (V_{us})$
 - sensitive to τ neutrino mass
 - improve measurements of $\tau^- \rightarrow K^- \pi^+ \pi^- \pi^0 \nu_{\tau} \& K^- K^+ \pi^- \pi^0 \nu_{\tau}$
 - search for $\tau^- \rightarrow K^- \omega v_{\tau}$ and $K^- K^+ K^- \pi^0 v_{\tau}$

CLEO III Experiment

K/*π Identification*

• combine RICH & dE/dx:

 $\Delta \chi^2 = \chi_{\pi}^2 - \chi_{K}^2 + \sigma_{\pi}^2 - \sigma_{K}^2$

- strict kaon ID to reduce large π backgrounds
- calibrate efficiencies and fake rates using $D^* \rightarrow D^0 \pi_s^+ \rightarrow K^- \pi^+ \pi_s^+$

Fake Rate Cross-Check

• cross check fake rate with wrong sign decays:

decay	data	prediction	au + $ au$ -	qq
$\tau K^{+} \pi^{-} \pi^{-} \pi^{0} v_{\tau}$	633 ± 25	609 ± 23	465 ± 15	144 ± 18
no angular correction	-	568 ± 23	424 ± 14	_
$\tau \rightarrow K K^{-} \pi^{+} \pi^{0} v_{\tau}$	11 ± 3	9 ± 3	9 ± 2	0 ± 2

- no excess of events
 - ➡ fake rate estimation is reliable

First Observation of $B(\tau \rightarrow K^- \omega v_{\tau})$

- η peak consistent with expectation
- clear ω signal over background

Measurements of $\tau^- \rightarrow K^- \pi^+ \pi^- \pi^0 \nu_{\tau} \& K^- K^+ \pi^- \pi^0 \nu_{\tau}$

- background above τ mass well reproduced
- clear excess of $K\pi\pi\pi^0$ & $KK\pi\pi^0$ events over background
- $50/50 K_1(1270)+K_1(1400)$ describes M(*K* ω) well
- efficiency/background corrected mass spectra can be used to extract spectral functions for measuring $m_S \& \sin \theta_C$

Search for Substructures in $K\pi\pi\pi^0$

- no evidence for K^* , K_1 , ρ^0
- presence of ρ^+ consistent with $\tau^- \rightarrow K^- a_1 v_{\tau}$
- no indication of ρ^- but not inconsistent with K^-a_1 : CL = 2.3%

Results

decay	data	$ au^+ au^-$	qq	ε (%)	B (×10 ⁻⁴)
Κω	500 ± 35	194 ± 12	64 ± 20	5.61 ± 0.09	$4.1 \pm 0.6 \pm 0.7$
K $\pi\pi\pi^0$ (ex. ω)	833 ± 36	434 ± 14	153 ± 25	5.68 ± 0.17	$3.7 \pm 0.5 \pm 0.8$
$K\!K\!\pi\pi^0$	48 ± 9	1 ± 1	9 ± 7	5.89 ± 0.12	$0.55 \pm 0.14 \pm 0.12$
$KKK\pi^0$	0	0	0	4.36 ± 0.10	< 0.048 @ 90% CL

• 1st observation of $\tau \rightarrow K^- \omega v_{\tau}$

- 1st statistically significant measurement of $B(\tau \rightarrow K^- K^+ \pi^- \pi^0 \nu_{\tau})$ and $B(\tau \rightarrow K^- \pi^+ \pi^- \pi^0 \nu_{\tau}, \text{ ex. } K_s) = (7.4 \pm 0.8 \pm 1.1) \times 10^{-4}$
- 1st limits on $B(\tau \rightarrow K^-K^+K^-\pi^0\nu_{\tau})$

 $B(\tau \rightarrow K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau})$

- CLEO III : $(7.4 \pm 0.8 \pm 1.1) \times 10^{-4}$
- CLEO II : $(7.5 \pm 2.6 \pm 1.8) \times 10^{-4}$
- ALEPH : $(6.1 \pm 3.9 \pm 1.8) \times 10^{-4}$ EPJ 1, 65 (1998)

PRL **94**, 241802 (2005) PRD **60**, 112002 (1999) EPJ **1**, 65 (1998)

• CLEO III measurement is consistent with earlier results but significantly more precise

 $B(\tau \rightarrow K K^+ \pi \pi^0 \nu_{\tau})$

- CLEO III : $(0.55 \pm 0.14 \pm 0.12) \times 10^{-4}$
- CLEO II : $(3.3 \pm 1.8 \pm 0.7) \times 10^{-4}$
- ALEPH : $(7.5 \pm 2.9 \pm 1.5) \times 10^{-4}$
- CLEO III result is ~ 10 x smaller than previous results

$B(\tau \to K^- \omega \nu_{\tau})$

	prediction	measurement
$\boldsymbol{B}(\tau^{-} \rightarrow K^{-} \omega v_{\tau})$	7.5 × 10 ⁻⁴	$(4.1 \pm 0.6 \pm 0.7) \times 10^{-4}$
$\frac{\underline{B}(\tau^{-} \to K^{-} \omega v_{\tau})}{\underline{B}(\tau^{-} \to K^{-} \rho v_{\tau})}$	1	0.26 ± 0.11

• $B(\tau \rightarrow K^- \omega v_{\tau})$ disagrees with Li's predictions

- $B(\tau \rightarrow K^- \omega v_{\tau})$ is ~ 2 × lower than predicted
- $B(\tau \rightarrow K^- \omega v_{\tau})/B(\tau \rightarrow K^- \rho v_{\tau})$ is ~ 4 × lower than predicted

• B.A. Li, PRD **55**, 1436 (1997)

Summary

- 1st observation of $\tau \rightarrow K^- \omega v_{\tau}$
 - measurement disagrees with Li's predictions
- 1st statistically significant measurement of $\tau^- \rightarrow K^- \pi^+ \pi^- \pi^0 v_{\tau}$ (ex. K_S) and $K^- K^+ \pi^- \pi^0 v_{\tau}$
- 1st limits for $\tau^- \rightarrow K^- K^+ K^- \pi^0 v_{\tau}$

• K. Arms et al., Phys. Rev. Lett. **94**, 241802 (2005)