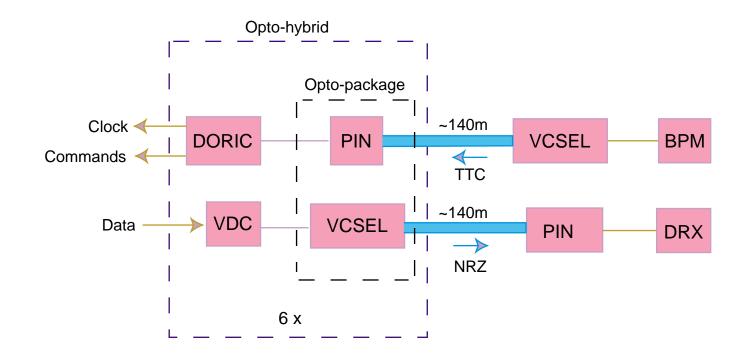
Optical Hybrids

WBS 1.1.1.4


K.K. Gan The Ohio State University

K.K. Gan

Outline

- Introduction
- Opto-package prototypes
- Opto-hybrid board design
- Cost and schedule summary
- Conclusions

ATLAS Pixel Opto-link

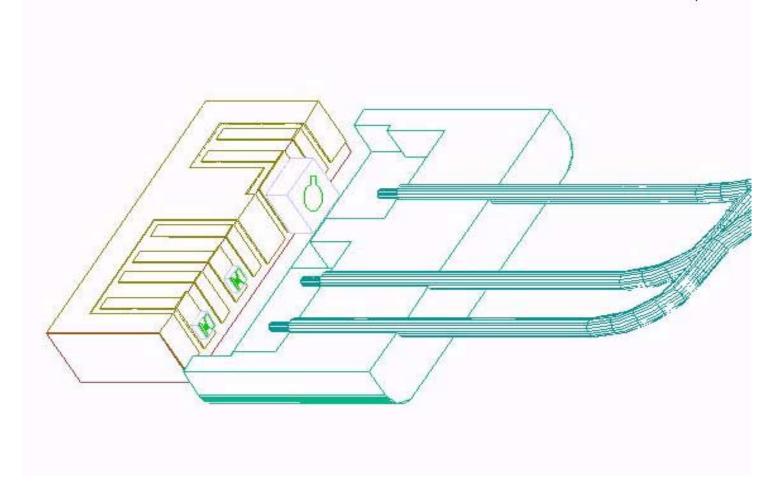
Opto-package

- 2 fibres + VCSEL + PIN
- coupled VCSEL power > 300 μ W @ 10 mA
- VCSEL tolerance:
 - 50 μ m in z (along fibre)
 - 25 µm in r (transverse to fibre)

Opto-package Designs

- Marconi
 - ☆ 8 silicon/alumina pieces
 - \Rightarrow use silicon mirror for 45⁰ light reflection
 - ☆ high cost
- Taiwan
 - ☆ 3 G-10 pieces
 - \Rightarrow cleave fibre at 45⁰
 - ☆ fibers permanently attached: need voliton connector
 - ☆ low cost
- OSU
 - ☆ 2 pieces
 - ☆ cap with fibers can be attached to package at end of module assembly
 - ☆ low cost

OSU Design


- connector concept design
 - ☆ use precisely fabricated cap and base for alignment
 - ☆ simple two-piece design for mass production and cost reduction
- cap

☆ 2 holes for fibers

• base

☆ deposit gold traces for wire bonding, VCSEL and PIN placements

Base and Cap

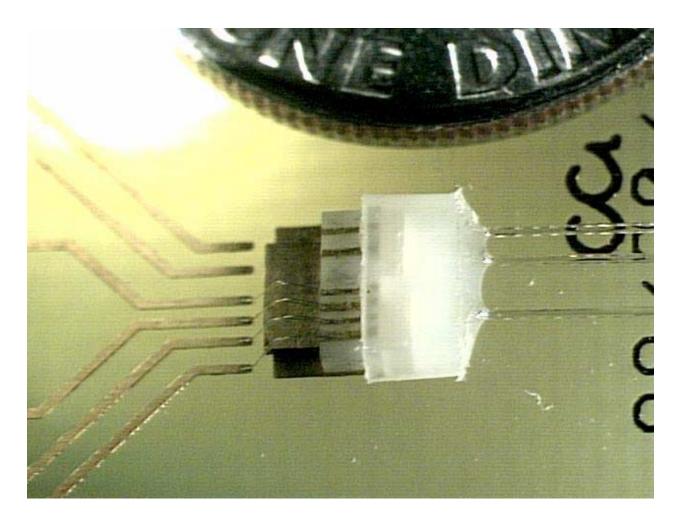
Cap and Base Prototypes

- produced caps and bases (rounded corners) using machinable ceramic
 - ☆ material tested: aluminum silicate and macor
 - ☆ difficult to obtain consistent precision
 - ⇒ redesign base with square corners for ease of fabrication by Hybrid-Tek
 ☆ alumina sheet ground to proper thickness and cut into strips
 ☆ have produced bases with precision within specification
 ☆ 3D traces have good connectivity
 - ⇒ fabricate cap with Ultem (polyetherimide) for radiation tolerance (10 Grad)
 ☆ use manual micro mold injection to save development time
 ☆ can fabricate several quality caps per hour

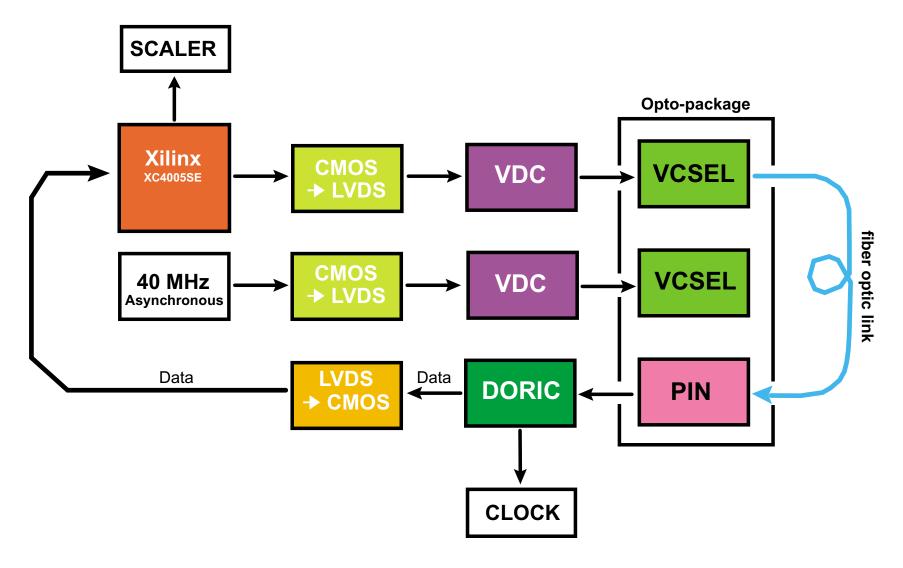
Prototype Result

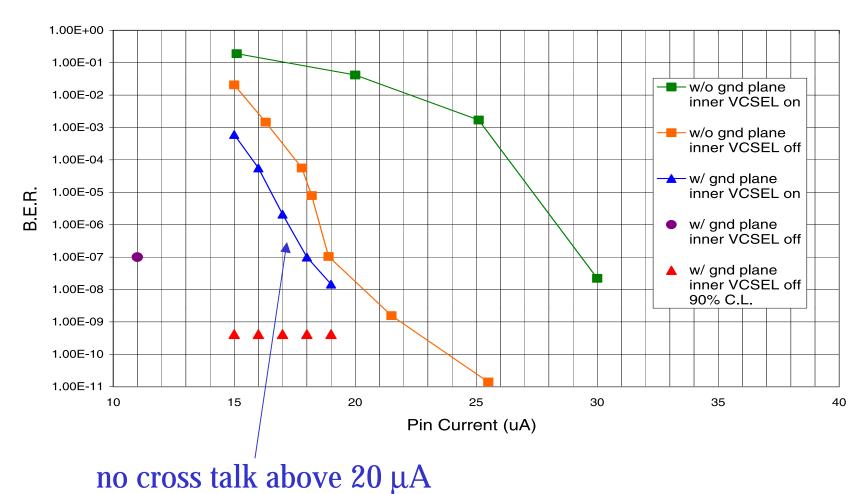
- produced 10 packages
- VCSELs have fast rise and fall time: < 1 ns
- PINs have good responsitivity: 0.5 A/W
- coupled power > 300 µW in both VCSELs simultaneously for 8 packages with different combinations of bases and caps
 ⇒ demonstrated feasibility of fabricating high precision caps and bases
- no cross-talk between VCSEL and PIN above 20 μA

Cap with Precisely Fabricated Cavity



K.K. Gan


Base with PIN and VCSELs

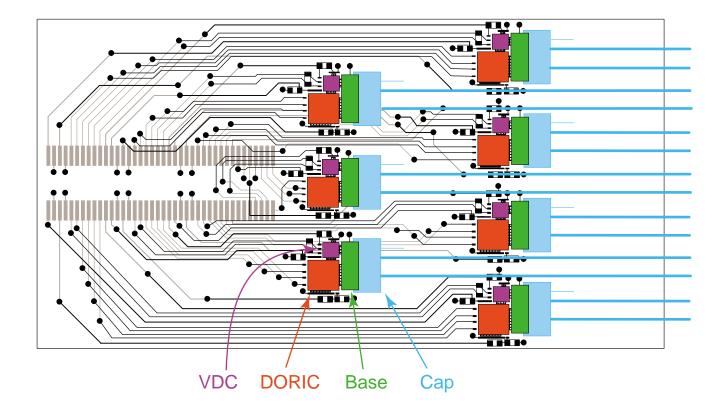

Completed Opto-package

BER/Crosstalk Measurement with DORIC and VDC

US ATLAS Review

B.E.R. O.S.U. OPTOPACKAGES

US ATLAS Review


Summary on Opto-package

- principle of two-piece connector concept demonstrated
 - ☆ precision bases with 3D traces of good connectivity fabricated
 - ☆ precision caps fabricated
 - ⇒ packages produce optical power above specification
 - → negligible cross-talk between VCSEL and PIN
- ability to produce precise die placement jig is a concern
 required six trials (one week) for current jig

Opto-hybrid Board

- convert optical signal into electrical signal and vice verse
- contains 6 sets of opto-pack, VDC, and DORIC
- electrical signal to/from module channel through 60-pin connector
- layout to serve 7 modules is ready
 - ☆ will convert to serve 6 modules
 - ☆ first submission will use FR-4 for cost saving
 - ☆ 2nd and 3rd prototypes will use BeO
- board is compatible with Taiwan opto-pack

Opto-hybrid

U.S. ATLAS E.T.C. WBS Profile Estimates

Funding Source: All Institutions: All		Funding Type: Project								10/24/00 9:05:29 PM		
WBS Number	Description	FY 96 (k\$)	FY 97 (k\$)	FY 98 (k\$)	FY 99 (k\$)	FY 00 (k\$)	FY 01 (k\$)	FY 02 (k\$)	FY 03 (k\$)	FY 04 (k\$)	FY 05 (k\$)	Total (k\$)
1.1.1.4	Flex Hybrids/Optical Hybrids	0	0	0	0	0	110	258	422	0	0	790
1.1.1.4.1	Design/Engineering	0	0	0	0	0	18	50	9	0	0	77
1.1.1.4.1.1	Prototype design	0	0	0	0	0	18	0	0	0	0	18
1.1.1.4.1.2		0	0	0	0	0	0	50	9	0	0	59
1.1.1.4.2	Development and Prototypes	0	0	0	0	0	92	62	0	0	0	154
1.1.1.4.2.1	Flex hybrids	0	0	0	0	0	35	10	0	0	0	45
1.1.1.4.2.2	Optical prototypes	0	0	0	0	0	41	41	0	0	0	82
1.1.1.4.2.3	Pigtails prototypes	0	0	0	0	0	16	11	0	0	0	27
1.1.1.4.3	Production	0	0	0	0	0	0	146	413	0	0	559
1.1.1.4.3.1	Flex hybrid	0	0	0	0	0	0	136	251	0	0	387
1.1.1.4.3.2	· · · · · · · · · · · · · · · · · · ·	0	0	0	0	0	0	0	33	0	0	33
1.1.1.4.3.3	Optical hybrids	0	0	0	0	0	0	10	130	0	0	140

		2001		2002	2003	2004	2005
WBS	Task Name	tr tr tr	tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr
1.1.1.4	Flex Hybrids/Optical Hybrids						
1.1.1.4.1	Design						
	1st Optical Prototype Design						
	2nd Optical Prototype Design						
	Optical FDR			∳]1/11			
	3rd Optical Prototype Design						
	Optical Preproduction Design						
	Optical PRR				10/15		
1.1.1.4.2	Development Prototypes						
	1st Optical Prototype Fab and Test	→					
	2nd Optical Prototype Fab and Test						
	3rd Optical Prototype Fab and Test						
1.1.1.4.3	Production						
	Optical (Pre)Production				r t		
	First optical boards				└_} 3/	31	
	Optical production complete				<u> </u>	8/4	

K.K. Gan

Conclusions

- principle of fabrication of opto-pack demonstrated
- no major technical challenge in opto-hybrid board fabrication
 - ☆ compatible with Taiwan opto-pack
 - ☆ experience in opto-pack prototyping is very useful for mounting opto-packs on opto-hybrid board