New Results on Opto-electronics

K.K. Gan The Ohio State University

June 12, 2001

K.K. Gan

ATLAS Pixel Week

1

Outline

- Introduction
- Result on Opto-Board/DORIC-D2
- Improvement in DORIC-I2/DORIC-D3
- Result on New Opto-Board
- Result on Opto-Board Irradiation
- Plans

Introduction

- VCSEL Driver Chip (VDC):
 - ☆ convert LVDS signal into single-ended signal appropriate to drive VCSEL
- Digital Opto-Receiver Integrated Circuit (DORIC):
 - ☆ decode clock and command signals from PIN diode

Opto-electronics Team

- Ohio State University:
 - ☆ Kregg Arms, K.K. Gan, Mark Johnson, Harris Kagan, Richard Kass, Chuck Rush, Michael Zoeller
- Siegen University:
 - ☆ Michael Kraemer, Joachim Hausmann, Martin Holder, Michal Ziolkowski

Bit Error Rate of DORIC

• some DORIC-D2 can run at low PIN current but some need to be ran at high current

Pre-amp Signal @ $I_{PIN} = 20 \ \mu A \ vs \ BER \ Threshold$

BER threshold (µA)	85	55	20
Pre-amp signal @ 20 µ	A flat	poor	good

• high BER threshold of some DORICs is due to large pre-amp offset

K.K. Gan

Simulation of DORIC-I1 Response to Pre-amp Offset

- use dc-feedback with RC = 0.8 μs to cancel pre-amp offset
- simulated with parasitic capacitance extracted from layout
 - ☆ can handle ±7.5 mV offset
 - \Rightarrow work with transistor parameters between -3.0 σ and +2.0 σ
 - ⇒ pre-amp signal too small at +2.0 σ to trigger edge-detector
 - decrease in bias current
 - ◆ decrease in effective resistance (5 K) of p-mos transistor
 - ⇒ new bias circuit in DORIC-I2 that keeps I and R change in opposite direction
 - \Rightarrow increase RC to 20 μ s
 - → new feedback scheme

New Bias Circuit for DORIC-I2

Simulation of DORIC-I2

• DORIC-I2 can decode data with 50 mV pre-amp offset for both slow-slow and fast-fast transistor parameters

Improvement in Pre-amp Feedback

Simulation of DORIC-D3 with Slow-Slow Transistor Parameter

• DORIC-D3 can decode data with 50 mV pre-amp offset for all corner transistor parameters

• new 80-pin connector is much sturdier

New Opto-board Tester

 Bi-phase marked
signal
fibers
Decoded data

Bit error test board

April Irradiation of Opto-Electronics

- use 24 GeV proton test beam at T7
- cold box: purely electrical testing of VDC-D2 and DORIC-D2
- shuttle system: testing of 4 optical links on opto-board
- test beam team:

Kregg Arms, K.K. Gan, Ingrid Gregor, Harris Kagan, Richard Kass, Michael Kraemer, Clemens Ringpfeil, Petr Sicho, Michal Ziolkowski

Test Boards for Irradiation in Cold Box

3 VDC and 5 DORIC boards in test beam

Bi-phase marked signal 40 MHz LVDS signal

20 m cables

Decoded LVDS data + clock 40 MHz signal Bit error test board in control room

K.K. Gan

Test Boards for Irradiation in Shuttle

Opto-board with 4 opto-links

(3 optical + 1 electrical)

Bit error test board in control room (4 boards)

Chronology of Opto-board Irradiation

- opto-board survived laborious packing/shipping/unpacking/dressing
 - ⇒ will replace 7-fiber (2.6 mm) + 2-wire bundle by custom cables with 14 fibers (250 µm) + 20 wires + spares
- need to run with reset low (higher gain) after installation
 noise in VVDC, VISET, or VPIN due to extra 20 m wires?
- after ~ 1 Mrad: two links needed to be ran at high PIN currents!
- after a few Mrad: Taiwan opto-pack produced bit error
 package damaged in extensive temperature cycling?

Chronology of Opto-board Irradiation Continued

- after ~ 5 Mrad: parked shuttle and annealed VCSEL
 - ⇒ more light from Truelight VCSEL and Mitel VCSEL
 - → no improvement in Truelight VCSEL of Taiwan opto-pack
 - ⇒ all links had bit errors but stopped when shuttle back in beam
 - ⇒ loose connector due to extensive handling?
- after ~ 8 Mrad: 3 good links produced bit errors
 - ⇒ light too low for receiver boards in control room
 - ☆ will design receiver board with more dynamic range
 - ⇒ unclear why electrical return produced bit errors
- At ~ 29 Mrad: irradiation stopped

Irradiation Post-Mortem

- all opto-links have bit errors
 - ⇒ isolated probles by implementing electrical returns
 - **DORIC** #2:
 - ☆ dosage: few Mrad
 - \Rightarrow pre-irrad: 56 μ A w/ reset high
 - ☆ post-irrad: 20 µA w/ reset high 28 µA w/ reset low
 - DORIC #4:
 - ☆ dosage: 15 Mrad
 - ↔ pre-irrad: 12 μA w/ reset high
 - ⇒ post-irrad: 16 μ A w/ reset high @ 3.53 V
 - $31 \,\mu\text{A}$ w/ reset low @ $3.26 \,\text{V}$

>198 µA w/ reset low @ 3.20 V

Irradiation Post-Mortem Continued

- DORIC #5:
 - ☆ dosage: 0.6 Mrad
 - ☆ pre-irrad: 61 µA w/ reset high
 - ☆ post-irrad: >198 µA w/ only data returned
- **DORIC** #6:
 - ☆ dosage: 29 Mrad
 - \Rightarrow pre-irrad: 30 μ A w/ reset high
 - ☆ post-irrad: no PIN current ⇒ dead
- To do:
 - ☆ study VDC
 - ☆ remove caps to replace fibers
- ⇒ some DORIC on opto-board were damaged by irradiation

Summary/Plan

- high pin current threshold of some DORICs is due to pre-amp offset
 - → implemented dc feedback in DORIC-I1
 - → further improvements in dc feedback in DORIC-I2/D3
- some DORIC-D2 on opto-board were damaged by irradiation