New Results on Opto-Electronics

K.K. Gan The Ohio State University

Oct 1, 2002

K.K. Gan

Outline

- Results on VDC/DORIC-I4
- Results on Irradiation
- Light Budget
- Improvements in VDC/DORIC-I5
- Summary

Opto-electronics Team

- The Ohio State University:
 - Kregg Arms, K.K. Gan, Mark Johnson, Harris Kagan, Richard Kass, Chuck Rush, Rouben Ter-Antonian, Michael Zoeller
- Siegen University:
 - ☆ Alex Ciliox, Martin Holder, Michal Ziolkowski

VDC-I4: VCSEL Drive Currents vs I_{set}

- turning over at high I_{set} is due to 10 Ω in series used in measurement
- dependence of bright current vs I_{set} is as expected
- bright and dim currents of VDC-I4 are somewhat low
- VDC-I5 is predicted to produce more currents K.K. Gan ATLAS Pixel Week

Rise/Fall Time vs I_{set} for 40 MHz Clock

Rise Time

Fall Time

rise/fall times slower than predictions
 underestimate of package stray capacitance?
 K.K. Gan ATLAS Pixel Week

Duty Cycle vs I_{set} for 40 MHz Clock

• clock duty cycle close to 50%

Current Consumption of VDC-I4

• VDC-I4 current consumption is consistent with expectation

PIN Current Thresholds in DORIC-I4

PIN current thresholds for no bit error are low
 active link increases thresholds of neighboring channels
 K.K. Gan ATLAS Pixel Week

PIN Current Thresholds in DORIC-I4

similar cross talk between channels in same and separate chips • cross talk from adjacent PIN channels? K.K. Gan **ATLAS Pixel Week**

Jitter of Recovered Clock in DORIC-I4

- jitter is low for low PIN current
- jitter is large for high PIN current due to kludge used in getting DORIC to work with common cathode PIN

Duty Cycle of Recovered Clock in DORIC-I4

• duty cycle is close to 50%

Period of Recovered Clock in DORIC-I4

• clock period is very close to 25 ns

Proton Irradiation at CERN

- use 24 GeV protons at T7
- cold box: purely electrical testing
 - cold box I:
 - \Box 1.8 x 10¹⁵ proton/cm² or 54 Mrad
 - □ 8 VDC/DORIC-I4
 - cold box II:
 - \square 1.0 x 10¹⁵ proton/cm² or 30 Mrad
 - □ 2 VDC/DORIC-I4, 6 VDC/DORIC-I3
- shuttle: opto-link testing
 - opto-board I: 5 working clock and data links
 - opto-board II: 4 working data links
 - opto-board III: 1 and 6 working clock and data links

Cold Box Test Card

VDC-I4: VCSEL Current vs. Dosage

• bright & dim currents remain constant up to 45 Mrad

VDC-I4: Clock Duty Cycle vs. Dosage

• duty cycle increases by ~ 2% after 45 Mrad

VCSEL Drive Current of Irradiated VDC-I4

no degradation from irradiation
 similar result for irradiated VDC-I3

Rise/Fall Time of Irradiated VDC-I4

no degradation from irradiation
similar result for irradiated VDC-I3

Clock Duty Cycle of Irradiated VDC-I4

• no degradation from irradiation similar result for irradiated VDC-I3 **ATLAS Pixel Week**

Current Consumption of Irradiated VDC-I4

no increase in current consumption after irradiation
 similar result for irradiated VDC-I3
 K.K. Gan ATLAS Pixel Week

Bit Error Thresholds for DORIC-I3/I4

low PIN current thresholds remain constant up to 30 Mrad
 3 DORIC-I3 have small upper thresholds after 13 Mrad
 K.K. Gan ATLAS Pixel Week

Test Boards for Irradiation in Shuttle

Opto-board with 7 opto-links

Bit error test boards in control room (one per opto-link)

Opto-Board for Irradiation Study

PIN array 4-channel DORIC-I4

VCSEL array 4-channel VDC-I4

Opto-Board I: Bit Error Thresholds vs. Dosage

Pre/Post-Irradiation Bit Error Thresholds

• no degradation from irradiation

Errors during Spill on Opto-links

• expect bit error rate of 2.5 x 10⁻¹⁰ at PP0

Opto-power vs Dosage for April 2001 Irradiation

Opto-Board II: Optical Power vs. Dosage

• optical power above $300 \ \mu W$ after correcting for cable loss

Post-Irradiation Maximum Optical Power

⇒ radiation hardness of optical link is adequate

Irradiation Facility at OSU

OSU research nuclear reactor can deliver 2 x 10¹⁵ n/cm² (1 MeV eq.) in one day
OSU ⁶⁰Co source can deliver 5 Mrad in one day
⇒ irradiate opto-link with neutrons and γ?

TTC Link Light Budget

• PIN current at opto-board after 30 Mrad: 63-848 μA

Data Link Light Budget

• PIN current at BOC after 30 Mrad: 54-1139 μA

Status of VDC-I5

- improve rise/fall time using large number of smaller transistors
 need to ensure 50% duty cycle at 80 MHz
- ✓ use larger transistor at current source to produce higher VCSEL current
- increase dim current

Status of DORIC-I5

- convert DORIC-I4 pre-amp to work with common cathode PIN
 - DORIC-I4 pre-amp:
 - high gain
 - Iimited dynamic range: 10-500 μA
 - sensitive to cross talk
 - DORIC-I5 pre-amp:
 - □ lower gain
 - **□** larger dynamic range: 20-1000 µA
 - less sensitive to cross talk
 - ⇒ optimization in progress

K.K. Gan

Summary

- performance of VDC/DORIC-I4 is satisfactory
- VDC/DORIC-I4 is radiation hard up to at least 30 Mrad