

Opto-Link Upgrade

K.K. Gan The Ohio State University

March 22, 2006

Outline

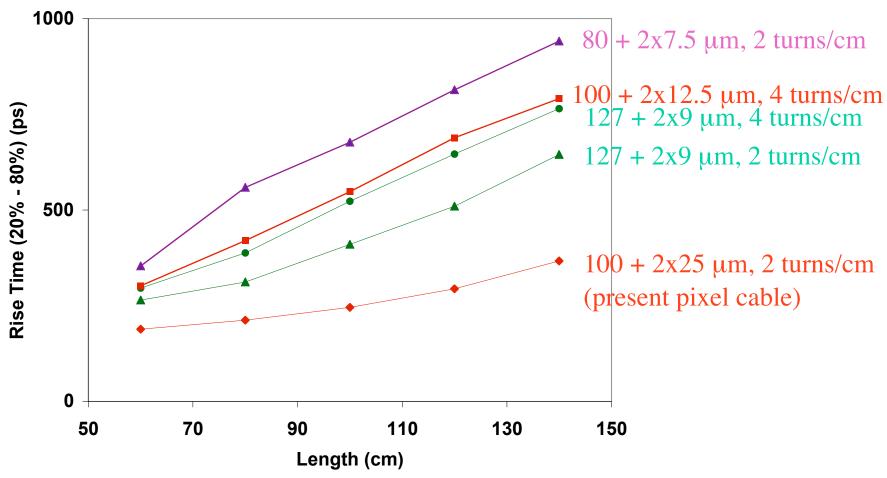
- Upgrade requirements/wishes
- Bandwidth of micro twisted-pair cables
- Bandwidth of fusion spliced SIMM-GRIN fibers
- Radiation hardness of PIN/VCSEL arrays
- Opto-Link Working Group/common projects

Need New Opto-Link for B Layer?

- opto-boards are located in radioactive area
 - cannot remove/reinstall service panels in 8 months
 - need new opto-boards + service panels: 2 MCHF?
- do we really need new opto-link for B layer?

Upgrade Requirements/Wishes

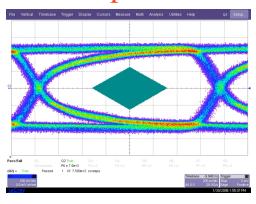
- bandwidth of ~ 500 Mb/s is needed
- services must fit within current space allocation
 - current system uses 6-7 channels in 8-channel array/ribbon
 - can almost double the number of links using 12-channel array/ribbon as most fiber volume is in the cladding
- preserve as much as possible current pixel opto-link architecture to take advantage of R&D effort and production experience



Upgrade Feasibility with Present Infrastructure

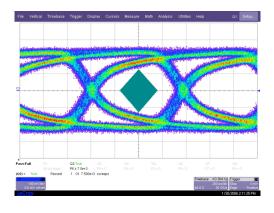
- can micro twisted pair transmit at ~ 1Gb/s?
- can fusion spliced SIMM/GRIN fiber transmit at ~ 1 Gb/s?
- can PIN/VCSEL arrays survive SLHC radiation dosage?

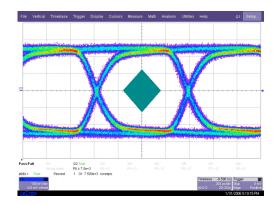
Bandwidth of Micro Twisted Pairs



- current pixel cable is the best!
- more cables with thicker insulation being ordered

Eye Diagrams

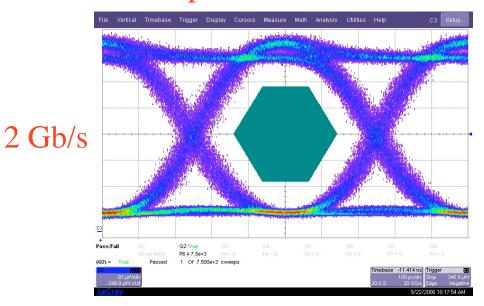

140 cm pixel cable


650 Mb/s

60 cm pixel cable

1.3 Gb/s

- transmission at 650 Mb/s is adequate
- transmission at 1.3 Gb/s may be acceptable



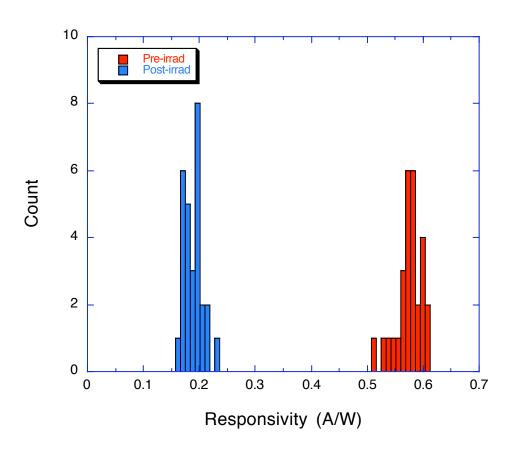
Bandwidth of Fusion Spliced Fiber

1 m GRIN fiber

Pass Fail O1 All out mest P8 a 7 5e+3 P4 = 0 P4 x 0 P5 x 0

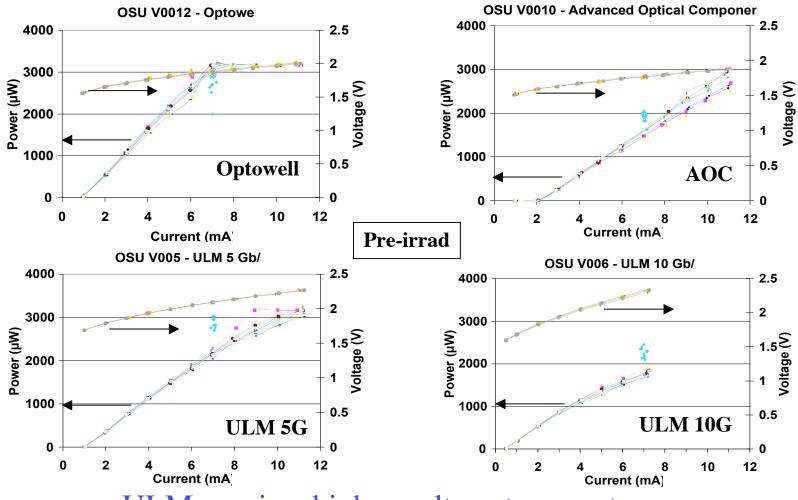
8 + 80 m spliced SIMM/GRIN fiber

transmission up to 2 Gb/s looks adequate



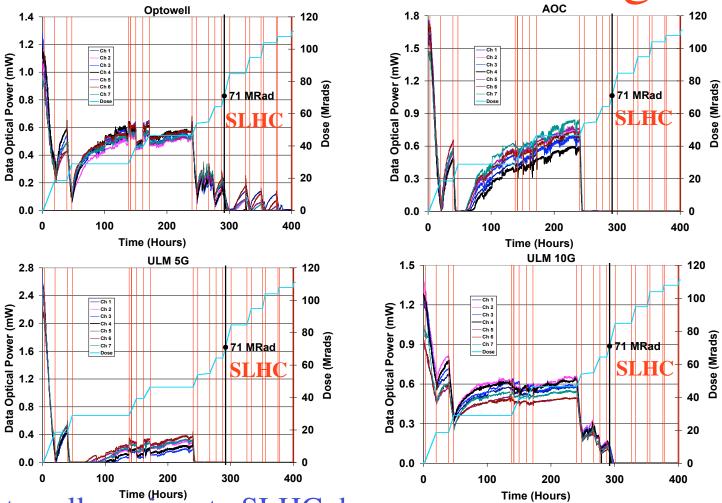
Radiation Level at SLHC

- Optical link of current pixel detector is mounted on patch panel:
 - ⇒ much reduced radiation level:
 - Si (PIN) @ SLHC:
 - \sim 2.5 x 10¹⁵ 1-MeV n_{eq}/cm²
 - 4.3 x 10¹⁵ p/cm² or 114 Mrad for 24 GeV protons
 - ◆ GaAs (VCSEL) @ SLHC:
 - $14 \times 10^{15} \text{ 1-MeV } n_{eq}/\text{cm}^2$
 - 2.7 x 10¹⁵ p/cm² or 71 Mrad for 24 GeV protons
 - above estimates include 50% safety margin


PIN Responsivity

• responsivity decreases by ~65% after SLHC dosage

VCSEL LIV Characteristics


- **×** ULM requires higher voltage to operate
- all arrays have very good optical power

K.K. Gan

B Layer Workshop

VCSEL Power vs Dosage

- Optowell survives to SLHC dosage
- more VCSEL might survive with more annealing during irradiation
 K.K. Gan
 B Layer Workshop
 12

Opto-Link Working Group/Common Projects

- CMS/ATLAS Opto-Link Working Group has been formed to share test results and plan future activity
 - biannual meetings: CERN + LECC
- two common projects proposed by CERN:
 - GBT
 - versatile link project
 - most groups prefer 2-5 Gb/s at the expense of micro twisted pairs and fiber ribbons
 - ⇒ pixel must appoint a representative to ensure compatible with lower bandwidth link

Future Directions

- complete evaluation of bandwidth of micro twisted pairs
- continue irradiation of PIN/VCSEL arrays
- should DORIC/VDC be converted to operate at high speed with 0.13 µm technology as an upgrade option?
 - VDC has been converted at schematic level
- design of a concentrator of several ~500 Mb/s data into 2-5 Mb/s output?