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Patterns of Synchrony in
Coupled Cell Networks with Multiple Arrows∗

Martin Golubitsky†, Ian Stewart‡, and Andrei Török†

Abstract. A coupled cell system is a network of dynamical systems, or “cells,” coupled together. The archi-
tecture of a coupled cell network is a graph that indicates how cells are coupled and which cells are
equivalent. Stewart, Golubitsky, and Pivato presented a framework for coupled cell systems that
permits a classification of robust synchrony in terms of network architecture. They also studied
the existence of other robust dynamical patterns using a concept of quotient network. There are
two difficulties with their approach. First, there are examples of networks with robust patterns of
synchrony that are not included in their class of networks; and second, vector fields on the quotient
do not in general lift to vector fields on the original network, thus complicating genericity arguments.
We enlarge the class of coupled systems under consideration by allowing two cells to be coupled in
more than one way, and we show that this approach resolves both difficulties. The theory that we
develop, the “multiarrow formalism,” parallels that of Stewart, Golubitsky, and Pivato. In addition,
we prove that the pattern of synchrony generated by a hyperbolic equilibrium is rigid (the pattern
does not change under small admissible perturbations) if and only if the pattern corresponds to
a balanced equivalence relation. Finally, we use quotient networks to discuss Hopf bifurcation in
homogeneous cell systems with two-color balanced equivalence relations.
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1. Introduction. Stewart, Golubitsky, and Pivato [10] formalize the definition of a coupled
cell system in terms of the symmetry groupoid of an associated coupled cell network and prove
three general theorems about such networks. First, a set of cells can be robustly synchronous
if and only if the cells are in the same equivalence class of some balanced equivalence relation.
Second, every balanced relation leads to a new coupled cell network, called a quotient network,
that is formed by identifying equivalent cells. Third, the restriction of a coupled cell system
to a synchrony subspace (or polydiagonal) is a coupled cell system associated to the quotient
network. The approach in [10] has two difficulties:

(1) Not every coupled cell system of ODEs corresponding to the quotient network is the
restriction of a coupled cell system corresponding to the original network. This fact
makes it difficult to prove genericity statements about dynamics in the original network
based only on genericity statements about dynamics of the quotient network. (Dias and
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Stewart [3] obtain necessary and sufficient conditions, on a network with a balanced
relation, for every quotient system to be a restriction of a cell system corresponding
to the original network.)

(2) Reasonable networks that are not included in the theory developed in [10] can exhibit
patterns of robust synchrony. Examples are linear chains with Neumann boundary
conditions considered in Epstein and Golubitsky [5] and square arrays of cells with
Neumann boundary conditions considered in Gillis and Golubitsky [6].

In this paper we show that both of these difficulties can be resolved if the class of coupled cell
networks is enlarged to permit multiple couplings between cells and self-coupling. We call this
the multiarrow formalism for coupled cell networks. Although the abstract definition of this
enlarged class of coupled cell networks is more complicated than the more restrictive definition
in [10], the multiarrow formalism has the side benefit that quotient systems are more easily
defined in the enlarged class and have more convenient properties.

We first motivate the generalization by considering two examples in the important case
of a homogeneous network, which we now define. A cell is a system of ODEs, and a coupled
cell system is a collection of N cells with couplings. As discussed in [10], a class of coupled
cell systems is defined by a coupled cell network, which is a (directed, labeled) graph that
specifies, among other information, which cells are coupled to which. Two cells of the network
are input isomorphic (see [10]) if the dynamics of the cells are specified by the same differential
equations, up to a permutation of the variables. More precisely, if cells 1 and 2 with internal
state variables x1, x2 ∈ Rk are input isomorphic, then the relevant components of the system
of ODEs take the form

ẋ1 = f(x1, y1, . . . , yl),
ẋ2 = f(x2, z1, . . . , zl),

(1.1)

where the yj (resp., zj) are internal state variables of the cells connected to cell 1 (resp., cell 2).
In particular, the two cells receive inputs from the same number l of cells, the input variables
are of the same type yj , zj ∈ Rkj , and the dependence of the corresponding components of ẋ
is specified using the same function f of the relevant internal variables and input variables.
The phase space of the coupled cell system is

P = {x = (x1, . . . , xn) ∈ Rk1 × · · · × RkN }.

We call a coupled cell network homogeneous if all cells are input isomorphic (in which
case k1 = · · · = kN ). Homogeneous coupled cell systems are determined by a single function
f , as illustrated in (1.1). For the remainder of this introduction we focus on homogeneous
coupled cell networks.

We can visualize an equivalence relation �� on cells by coloring all equivalent cells with the
same color. This equivalence relation is balanced (in the homogeneous case with one kind of
coupling) if the sets of colors of input cells for two equivalent cells consist of the same colors
with the same multiplicities. Theorem 6.5 of [10] states that the subspace

∆�� = {x ∈ P : xi = xj if i �� j}

is flow-invariant for all f if and only if �� is balanced. A solution in ∆�� is synchronous in the
strong sense that the time series from cells of the same color are identical; the synchrony is
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robust in the sense that it holds for any choice of f . We call ∆�� the polydiagonal or synchrony
subspace corresponding to ��.

Quotients lead to multiple arrows. We describe circumstances in which multiple arrows
are natural and useful. Consider the homogeneous five-cell coupled cell network pictured in
Figure 1 (left). A balanced coloring of this network is given in the right panel of that figure.

1

2

3

4

5

1

2

3

4

5

Figure 1. (Left) Homogeneous five-cell network. (Right) Balanced coloring of the network.

The differential equations corresponding to this five-cell network have the form

ẋ1 = f(x1, x2, x5),
ẋ2 = f(x2, x3, x5),
ẋ3 = f(x3, x4, x5),
ẋ4 = f(x4, x1, x5),
ẋ5 = f(x5, x1, x3),

where f(a, b, c) = f(a, c, b) since all couplings are assumed to be identical. It is straightforward
to check that the subspace ∆ defined by x1 = x3 and x2 = x4 is flow-invariant. The restricted
system on ∆ has the form

ẋ1 = f(x1, x2, x5),
ẋ2 = f(x2, x1, x5),
ẋ5 = f(x5, x1, x1).

The quotient cell construction in [10] leads to the coupled cell network of Figure 2 (left).
The coupled cell system corresponding to that quotient network, which is not homogeneous,
has the form

ẇ = f(w, p, c),
ṗ = f(p, w, c),
ċ = g(c, p).

Therefore, a coupled cell system corresponding to the quotient network is the restriction of a
coupled cell system corresponding to the five-cell network if and only if g(b, w) = f(b, w,w),
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where f(a, b, c) = f(a, c, b). In this paper we remove such conditions from consideration by
allowing multiple couplings between cells. With multiple couplings, the quotient network is
the homogeneous one of Figure 2 (right). Quotient coupled cell systems for the new quotient
have the form

ẇ = f(w, p, c),
ṗ = f(p, w, c),
ċ = f(c, p, p),

and each of these systems is the restriction to ∆ of a five-cell system. Homogeneous three-cell
networks with each cell having at most two input arrows are classified in [9]. See Figure 8;
there are 34 such networks.

p w

c

p w

c

Figure 2. (Left) Three-cell quotient from [10] of five-cell network in Figure 1 (right). (Right) Three-cell
quotient using multiarrows.

Neumann boundary conditions lead to self-coupling. We now provide a reason for per-
mitting self-coupling. Epstein and Golubitsky [5] consider patterns of synchrony in N -cell
bidirectional linear arrays with Neumann boundary conditions. The systems of ODEs have
the form

ẋ1 = f(x1, x1, x2),
ẋj = f(xj , xj−1, xj+1), 1 < j < N,
ẋN = f(xN , xN−1, xN ),

where f(a, b, c) = f(a, c, b). When self-coupling of a cell to itself is allowed, the network
architecture is the one pictured in Figure 3.

1 2 . .. NN −1

Figure 3. Linear array network.

The ten-cell array in Figure 4 provides an example of a balanced coloring that cannot be
obtained from the results in [10], since self-coupling is not permitted in that theory. To see
that this coloring is balanced observe that each pink cell (cells 1, 5, 6, 10) receives an input
from one pink cell and one white cell, each cyan cell (cells 3, 8) receives inputs from two white
cells, and each white cell (cells 2, 4, 7, 9) receives inputs from one pink cell and one cyan cell.
See also [7].
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1 2 4 5 6 7 8 9 103

Figure 4. Linear array network of ten cells with a three-color balanced relation.

Structure of the paper. The paper is structured as follows. The enlarged class of “mul-
tiarrow” coupled cell networks, which permits multiple arrows and self-coupling, is defined in
section 2. The associated admissible vector fields are constructed in section 3. In that section
we also show that distinct networks in the enlarged class can correspond to the same space of
admissible vector fields. We call two such networks ODE-equivalent. This (undesired) feature
is not present in the class of networks considered in [10]. The connection between balanced
equivalence relations and robust polysynchrony is discussed in section 4. In this section we
prove Theorem 4.3, which states that flow-invariant subspaces correspond to balanced equiv-
alence relations in the multiarrow formalism. Quotient networks are defined in the context of
multiple arrows and self-coupling in section 5. In Theorem 5.2 we show that all admissible
vector fields on a quotient network lift to admissible vector fields on the original network, a
property that fails for the quotients defined in [10].

Some examples of coupled cell networks with self-coupling and multiple arrows are dis-
cussed in section 6. The important special case of identical-edge homogeneous networks (ho-
mogeneous networks in which all coupling arrows are equivalent) is considered in section 8.
Proposition 8.2 states that every homogeneous network with multiarrows and/or self-coupling
is a quotient of a homogeneous network with neither multiarrows nor self-coupling. In sym-
metric networks, Hopf bifurcation typically leads to periodic states in which some cells have
identical waveforms (hence identical amplitudes) except for a well-defined phase shift. In sec-
tion 9 we show that in identical-edge homogeneous networks, Hopf bifurcation can lead to
periodic states with well-defined approximate phase shifts and different amplitudes.

As noted, Theorem 4.3 states that flow-invariant subspaces can be identified with balanced
equivalence relations. Theorem 7.6 strengthens this result by showing that if a hyperbolic
equilibrium has a pattern of synchrony that does not change under small admissible pertur-
bations, then the subspace corresponding to this pattern of synchrony is flow-invariant and
hence corresponds to a balanced equivalence relation.

The proofs of several of the main theorems in this paper (particularly Theorems 4.3 and
5.2(a)) are straightforward adaptations of corresponding results in [10] to the enlarged cat-
egory of networks considered here. The general results that go beyond those in [10] are the
lifting of quotient vector fields (Theorem 5.2(b)) and the result that rigid hyperbolic equilibria
correspond to balanced equivalence relations (Theorem 7.6).

2. Coupled cell networks. We begin by formally defining a class of coupled cell networks
that permits multiple arrows and self-couplings.

Definition 2.1. In the multiarrow formalism, a coupled cell network G consists of the fol-
lowing:

(a) A finite set C = {1, . . . , N} of nodes or cells.
(b) An equivalence relation ∼C on cells in C. The type or cell label of cell c is the ∼C-

equivalence class [c]C of c.
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(c) A finite set E of edges or arrows.
(d) An equivalence relation ∼E on edges in E. The type or coupling label of edge e is the

∼E-equivalence class [e]E of e.
(e) Two maps H : E → C and T : E → C. For e ∈ E we call H(e) the head of e and T (e)

the tail of e.
We also require a consistency condition:
(f) Equivalent arrows have equivalent tails and heads. That is, if e1, e2 ∈ E and e1 ∼E e2,

then

H(e1) ∼C H(e2), T (e1) ∼C T (e2).

Observe that self-coupling is permitted (that is, we allow H(e) = T (e)) and multiple
arrows are permitted (it is possible to have H(e1) = H(e2) and T (e1) = T (e2) for e1 �= e2).

Associated with each cell c ∈ C is an important set of edges, namely, those that will be
interpreted as representing couplings into cell c.

Definition 2.2. Let c ∈ C. Then the input set of c is

I(c) = {e ∈ E : H(e) = c}.(2.1)

An element of I(c) is called an input edge or input arrow of c.
The following concept is fundamental.
Definition 2.3. The relation ∼I of input equivalence on C is defined by c ∼I d if and only

if there exists an arrow-type preserving bijection

β : I(c) → I(d).(2.2)

That is, for every input arrow i ∈ I(c)

i ∼E β(i).(2.3)

Any such bijection β is called an input isomorphism from cell c to cell d. The set B(c, d)
denotes the collection of all input isomorphisms from cell c to cell d. The set

BG =
⋃

c,d∈C
B(c, d)(2.4)

is a groupoid (Brandt [1], Brown [2], Higgins [8]), which is an algebraic structure rather like a
group, except that the product of two elements is not always defined. We call BG the groupoid
of the network. Note that the union in (2.4) is disjoint and that B(c, c) is a permutation group
acting on the input set I(c).

The definitions of input equivalence, input isomorphism, and groupoid of the network are
direct generalizations to the multiarrow context of Definitions 3.2 and 3.5 in [10]. By the
consistency condition (f) of Definition 2.1, c ∼I d implies c ∼C d, but the converse fails in
general.

Remark 2.4. (a) Suppose that a cell c has two edge equivalent input arrows i, j ∈ I(c),
that is, i ∼E j. Then the transposition (i j) is an input isomorphism in B(c, c).
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(b) The reason for introducing an explicit set I(c) of input arrows is to provide a well-
defined set for the input isomorphism β in (2.2) to act on. Otherwise we must consider “sets”
in which elements may occur more than once. This is the main novelty in Definition 2.3
compared to that in [10].

There does exist a standard theory of such “sets,” which are called multisets. See Wild-
berger [12]. The multiarrow formalism could also be set up in multiset language.

Definition 2.5. A homogeneous network is a coupled cell network such that B(c, d) �= ∅ for
every pair of cells c, d.

3. Vector fields on a coupled cell network. We now define the class FP
G of admissible

vector fields corresponding to a given coupled cell network G. This class consists of all vector
fields that are “compatible” with the labeled graph structure or, equivalently, are “symmetric”
under the groupoid BG . It also depends on a choice of “total phase space” P , which we assume
is fixed throughout the subsequent discussion.

For each cell in C define a cell phase space Pc. This must be a smooth manifold of
dimension ≥ 1, which for simplicity we assume is a nonzero finite-dimensional real vector
space. We require

c ∼C d =⇒ Pc = Pd,

and we employ the same coordinate systems on Pc and Pd. Only these identifications of cell
phase spaces are canonical; that is, the relation c ∼C d implies that cells c and d have the
same phase space but not that they have isomorphic (conjugate) dynamics.

Define the corresponding total phase space to be

P =
∏
c∈C

Pc

and employ the coordinate system

x = (xc)c∈C

on P .

More generally, suppose that D = (d1, . . . , ds) is any finite ordered subset of s cells in C.
In particular, the same cell can appear more than once in D. Define

PD = Pd1 × · · · × Pds .

Further, write

xD = (xd1 , . . . , xds),

where xdj ∈ Pdj .

For a given cell c the internal phase space is Pc and the coupling phase space is

PT (I(c)) = PT (i1) × · · · × PT (is),
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where T (I(c)) denotes the ordered set of cells (T (i1), . . . , T (is)) as the arrows ik run through
I(c). Suppose c, d ∈ C and c ∼I d. For any β ∈ B(c, d), define the pullback map

β∗ : PT (I(d)) → PT (I(c))

by

(β∗(z))T (i) = zT (β(i))(3.1)

for all i ∈ I(c) and z ∈ PT (I(d)). We use pullback maps to relate different components of a
vector field associated with a given coupled cell network. Specifically, the class of vector fields
that is encoded by a coupled cell network is given in Definition 3.1.

Definition 3.1. A vector field f : P → P is BG-equivariant or G-admissible if the following
hold:

(a) For all c ∈ C the component fc(x) depends only on the internal phase space variables xc
and the coupling phase space variables xT (I(c)); that is, there exists f̂c : Pc×PT (I(c)) →
Pc such that

fc(x) = f̂c(xc, xT (I(c))).(3.2)

(b) For all c, d ∈ C and β ∈ B(c, d)

f̂d(xd, xT (I(d))) = f̂c(xd, β
∗(xT (I(d))))(3.3)

for all x ∈ P .
Observe that self-coupling is allowed (that is, Pc can be one of the factors in PT (I(c))) and

multiple arrows between two cells are allowed (since the tail of two arrows terminating in I(c)
can be the same cell). However, when repetition occurs, the repeated coordinates are always
identical.

It follows that f is determined if we specify one mapping for each input equivalence class of
cells. Indeed, each admissible vector field on a homogeneous cell system is uniquely determined
by a single mapping fc at some node c. In general, each component fc of f is invariant under
the vertex group B(c, c). Indeed, every such invariant function determines a unique admissible
vector field.

ODE-equivalent networks. In the enlarged class of coupled cell networks, it is possible for
two different coupled cell systems G1 and G2 to generate the same space of admissible vector
fields. For instance, consider the two two-cell systems in Figure 5. Their corresponding
systems of admissible vector fields are

ẋ1 = g(x1, x1, x2),
ẋ2 = g(x2, x2, x1)

and
ẋ1 = f(x1, x2),
ẋ2 = f(x2, x1).

These two-cell networks clearly define the same spaces of admissible vector fields. Indeed,
given f we can set g(x, y, z) = f(x, z), and given g we can set f(a, b) = g(a, a, b). A testable
condition for determining ODE-equivalence is given by Dias and Stewart [4] who show that
two networks are ODE-equivalent if and only if the corresponding spaces of linear admissible
vector fields are identical.
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1 2 1 2

Figure 5. Two ODE-equivalent networks.

4. Balanced equivalence relations. We now extend the key concept of a balanced equiv-
alence relation to the multiarrow formalism and generalize its properties.

Definition 4.1. An equivalence relation �� on C is balanced if for every c, d ∈ C with c �� d,
there exists an input isomorphism β ∈ B(c, d) such that T (i) �� T (β(i)) for all i ∈ I(c).

In particular, B(c, d) �= ∅ implies c ∼I d. Hence, balanced equivalence relations refine ∼I .
In the important special case where all pairs of arrows connecting the same two cells

are ∼E-equivalent, there is a graphical way to test whether a given equivalence relation ��
is balanced. Color the cells in a network so that two cells have the same color precisely
when they are in the same ��-equivalence class. Then �� is balanced if and only if every pair
of identically colored cells admits a color-preserving input isomorphism (more precisely, an
input isomorphism β where T (i) and T (β(i)) have the same color). For example, consider the
balanced relation in the network in Figure 1 (right).

Choose a total phase space P , and let �� be an equivalence relation on C. We assume that
�� is a refinement of ∼C ; that is, if c �� d, then c and d have the same cell labels. It follows
that the polydiagonal subspace

∆�� = {x ∈ P : xc = xd whenever c �� d ∀c, d ∈ C}

is well defined, since xc and xd lie in the same space Pc = Pd. The polydiagonal ∆�� is a linear
subspace of P .

Definition 4.2. Let �� be an equivalence relation on C. Then �� is robustly polysynchronous
if ∆�� is invariant under every vector field f ∈ FP

G . That is,

f(∆��) ⊆ ∆��

for all f ∈ FP
G . Equivalently, if x(t) is a trajectory of any f ∈ FP

G , with initial condition
x(0) ∈ ∆��, then x(t) ∈ ∆�� for all t ∈ R.

We now generalize Theorem 6.5 of [10] to the multiarrow formalism.
Theorem 4.3. Let �� be an equivalence relation on a coupled cell network. Then �� is

robustly polysynchronous if and only if �� is balanced.
Proof. The proof is essentially the same as that of Theorem 6.5 of [10]. The main points

are that it is easy to check directly that �� being balanced is sufficient for ∆�� to be robustly
polysynchronous, while necessity can be established by considering admissible linear vector
fields. We take these points in turn.

First, suppose that �� is balanced, and let f ∈ FP
G . Suppose that c �� d. By Definition 4.1

the set B(c, d) is nonempty, so there exists β ∈ B(c, d). We have β(c) = d.
We know that for all c ∈ C the component fc(x) is symmetric under all permutations of

the input set I(c) that preserve ��-equivalence classes. Therefore, for any x ∈ ∆��,

fd(x) = f̂d(xd, xT (I(d))) = f̂c(xd, β
∗(xT (I(d)))) = f̂c(xc, xT (I(c))) = fc(x)
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because β preserves the ��-equivalence classes. Therefore, f leaves ∆�� invariant.
For the converse, suppose that ∆�� is invariant under all f ∈ FP

G . Then, in particular, ∆��

is invariant under all linear f ∈ FP
G . Let c �= d ∈ C with c �� d. We first show that c ∼I d. If

not, we can define an admissible linear vector field f such that fc = 0, fd �= 0. This contradicts
invariance of ∆��. Therefore, c �� d implies that c, d are input-equivalent as claimed.

Next, we construct a class of admissible linear vector fields as follows. For each pair of
∼C-equivalence classes of cells ([c], [d]) choose representatives c, d ∈ C. Choose some linear
map

λdc : Pd → Pc.

If c′ ∼C c and d′ ∼C d, use the canonical identifications of Pc′ with Pc and Pd′ with Pd to pull
back λdc to a linear map

λd′c′ : Pd′ → Pc′ .

That is, we ensure that λdc remains “the same” map when cells are replaced by canonically
identified cells.

Now choose a transversal R to the set of ∼I -equivalence classes. That is, arrange for R
to contain precisely one member of each ∼I -equivalence class. For each t ∈ R define

Λt(x) =
∑
i∈I(t)

λT (i)t(xT (i)).

If i, j ∈ I(t) and i ∼E j, impose the extra condition

λT (i)t = λT (j)t,(4.1)

where we canonically identify PT (i) with PT (j). Condition (4.1) ensures that Λt is B(t, t)-
invariant.

Any c ∈ C is ∼I -equivalent to precisely one t(c) ∈ R. Let β ∈ B(t(c), c) and use the
pullback β∗ to define

Λc(x) = Λβ(t(c))(x) = Λt(c)(β
∗(x)).

The B(t, t)-invariance of Λt(c) implies that all β ∈ B(t(c), c) lead to the same Λc. Lemma 4.5
of [10], trivially extended to the multiarrow formalism, implies that Λ is BG-equivariant, that
is, admissible.

The final preparatory step is to partition the input sets I(c) according to the ∼E-equivalence
classes of arrows. Full details (which easily generalize to the multiarrow formalism) are at the
end of section 3 of [10] under the heading “Structure of B(c, d).” Introduce an equivalence
relation ≡c on I(c) for which

j1 ≡c j2 ⇐⇒ j1 ∼E j2.

That is, ≡c is the restriction of ∼E to I(c). Let the ≡c-equivalence classes be Kc
0, . . . ,K

c
r for

r = r(c). By convention Kc
0 = {c}. By section 3 of [10] the vertex group B(c, c) is isomorphic

to the direct product of symmetric groups Skcj
acting on the sets Kc

j , where kcj = |Kc
j |.
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Let the ��-equivalence classes be A1, . . . , Am. Let Xl denote the common value of the
components xi for i ∈ Al. Let µc

s denote the common value of the λT (j)t(c) for j ∈ Kc
s .

Restrict Λ to ∆��. If c ∈ C, then

Λc(x) =
∑

j∈I(c)
λT (j)t(c)(xT (j))

=

r(c)∑
s=0

∑
j∈Kc

s

λT (j)t(c)(xT (j))

=

r(c)∑
s=0

m∑
l=1

∑
j∈Kc

s∩T −1(Al)

λT (j)t(c)(xT (j))

=

r(c)∑
s=0

m∑
l=1

∑
j∈Kc

s∩T −1(Al)

µc
s(Xl)

=

r(c)∑
s=0

m∑
l=1

|Kc
s ∩ T −1(Al)|µc

s(Xl).

Now suppose that c �� d with c �= d. Since �� is robustly synchronous, Λc and Λd must
agree on ∆��. Therefore,

|Kc
s ∩ T −1(Al)| = |Kd

s ∩ T −1(Al)|

whenever 0 ≤ s ≤ r(c) = r(d) and 1 ≤ l ≤ m. This is the “cardinality condition” (6.2) of [10],
and it clearly implies that �� is balanced (use the fact that B(c, c) ∼= Skc1

× · · · × Skc
r(c)

, as in

the proof of Theorem 6.5 of [10]).

5. Quotient networks. In this section we show that each balanced equivalence relation ��
of a coupled cell network G induces a unique canonical coupled cell network G�� on ∆��, called
the quotient network. This was not the case in the setting of [10], where quotient networks
always existed but where there was not always a unique canonical choice. It was shown in [10]
in the context of coupled cell systems without self-coupling and multiple arrows that every
admissible vector field on the original network restricts to an admissible vector field on ∆��

in every quotient network. However, in general admissible vector fields on a quotient network
could not be extended to an admissible vector field on the original network.

In the present context admissible vector fields restrict to admissible vector fields and every
admissible vector field on the canonical quotient G�� lifts to an admissible vector field on G.
We begin by defining the (canonical) quotient network.

To define a network (see Definition 2.1) we need to (A) specify the cells; (B) specify an
equivalence relation on cells; (C) specify the arrows; (D) specify an equivalence relation on
arrows; (E) define the heads and tails of arrows; and (F) prove a consistency relation between
arrows and cells. We do each of these in turn.

(A) Let c denote the ��-equivalence class of c ∈ C. The cells in C�� are the ��-equivalence
classes in C; that is,

C�� = {c : c ∈ C}.
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Thus we obtain C�� by forming the quotient of C by ��, that is, C�� = C/ ��.

(B) Define

c ∼C�� d ⇐⇒ c ∼C d.

The relation ∼C�� is well defined since �� refines ∼C .

(C) Let S ⊂ C be a set of cells consisting of precisely one cell c from each ��-equivalence
class. The input arrows for a quotient cell c are identified with the input arrows in cell c,
where c ∈ S, that is, I(c) = I(c). When viewing the arrow i ∈ I(c) as an arrow in I(c), we
denote that arrow by i. Thus, the arrows in the quotient network are the projection of arrows
in the original network formed by the disjoint union

E�� =
⋃̇

c∈S
I(c).(5.1)

We show below that the definition of the quotient network structure is independent of the
choice of the representative cells c ∈ S.

(D) Two quotient arrows are equivalent when the original arrows are equivalent. That is,

i1 ∼E�� i2 ⇐⇒ i1 ∼E i2,(5.2)

where i1 ∈ I(c1), i2 ∈ I(c2), and c1, c2 ∈ S.

(E) Define the heads and tails of quotient arrows by

H(i) = H(i), T (i) = T (i).

(F) We now verify that the quotient network satisfies the consistency condition Def-
inition 2.1(f). Note that (5.2) implies that when two arrows i1 and i2 in E�� are ∼E��-
equivalent, their head and tail cells satisfy H(i1) ∼C H(i2) and T (i1) ∼C T (i2). Therefore,
H(i1) ∼C�� H(i2) and T (i1) ∼C�� T (i2). This implies H(i1) ∼C�� H(i2) and T (i1) ∼C�� T (i2),
as desired.

Independence of quotient network on choice of cells in S. We claim that, because �� is bal-
anced, choosing different representatives in S of the ��-equivalence classes leads to isomorphic
quotient networks. Indeed, suppose c1 �� c2. By Definition 4.1, there is an (arrow-type pre-
serving) input isomorphism β : I(c1) → I(c2) that preserves the ��-class of the tails. This
induces a bijection between I(c1) = {i : i ∈ I(c1)} and I(c2) = {j : j ∈ I(c2)} (and, therefore,
between the arrow sets of the two quotient networks constructed using c1 or c2 as a represen-
tative of this ��-equivalence class) that identifies the two networks in a consistent manner: i
and β(i) are in the same arrow-equivalence class, H(i) = H(β(i)), and T (i) = T (β(i)).

Remark 5.1. (a) Note that when c1 �� c2, any input arrow in I(c2) with tail cell c1 leads
to a self-coupling arrow in the quotient. If c1 and c2 are distinct ��-equivalent cells having
equivalent arrows with the same head cell d, then multiarrows will be present in the quotient
network, where a multiarrow is a set of several edge-equivalent arrows between two given cells.
For example, see Figure 1 (right) and the corresponding quotient network Figure 2 (right).

(b) Input isomorphisms on G project onto input isomorphisms of G��. Let β : I(c) → I(d)
be an input isomorphism between input sets of cells c and d. Then β : I(c) → I(d) is also
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a bijection since I(c) = I(c) and I(d) = I(d). Identity (5.2) guarantees that (2.3) is valid
for E��-equivalence and β is an input isomorphism for G��. Identity (5.2) also guarantees the
converse—every input equivalence on G�� lifts to one on G.

(c) Since input isomorphisms project, we see that any quotient of a homogeneous network
is also a homogeneous cell network. The quotient of the balanced relation of the five-cell
example in Figures 1 and 2 (left) shows that this remark is not valid for quotients in the class
of networks considered in [10].

We can now generalize Theorem 9.2 of [10] to the multiarrow formalism. The fact that
every vector field on the quotient lifts to a vector field on the original network is a major
theoretical reason for introducing this new formalism.

Theorem 5.2. Let �� be a balanced relation on a coupled cell network G.
(a) The restriction of a G-admissible vector field to ∆�� is G��-admissible.
(b) Every G��-admissible vector field on the quotient lifts to a G-admissible vector field on

the original network.
Proof. (a) The proof of Theorem 5.2(a) is identical to the proof of Theorem 9.2 of [10].
(b) Let c be a quotient cell and suppose that the dynamics on that cell are prescribed by

the ODE

ẋc = f̂c(xc, xT (I(c))),

where xc ∈ Pc = Pc are the internal state space variables and xT (I(c)) ∈ PT (I(c)) = PT (I(c)) are
the coupling variables. We can lift this ODE to each cell c that quotients onto c by

ẋc = f̂c(xc, xT (I(c))).(5.3)

Observe that if c �� d (or c = d), then there exists an input isomorphism β : I(c) → I(d). Now
G��-admissibility and the fact that input isomorphisms on G project onto input isomorphisms
on G�� imply that

f̂d(xd, xT (I(d))) = f̂c(xd, β
∗(xT (I(c)))).

Note that if c = d, then (5.3) is consistent since fc is invariant under B(c, c). Therefore,

f̂d(xd, xT (I(d))) = f̂c(xd, β
∗(xT (I(d)))),

and the lift (5.3) is G-admissible.

6. Examples of networks. Several examples of networks with interesting properties were
presented in [7]. The simplest network with self-coupling is the feed-forward network shown in
Figure 6. This network has a surprising bifurcation structure. It is shown in [7] that synchrony-
breaking bifurcations occur with multiple eigenvalues (and nontrivial Jordan normal form) in
codimension one. Suppose that λ is the bifurcation parameter and that Hopf bifurcation
occurs at λ = 0. Then this bifurcation leads to periodic solutions whose amplitude growth is
the expected λ1/2 in cell 2, but is a surprising λ1/6 in cell 3.

Leite and Golubitsky [9] classify all homogeneous three-cell networks with two input arrows
at each node. See Figure 8. There are 34 different networks. We have seen previously that
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1 2 3

Figure 6. The three-cell feed-forward network.

quotient networks can have multiple arrows even when the original network does not. For
example the five-cell network in Figure 1 has network 29 in Figure 8 as a quotient network.
Another example (that was discussed in [10]) is the balanced coloring in the five-cell network in
Figure 7 whose quotient is the three-cell bidirectional ring (34 in Figure 8) with D3 symmetry.
In section 8 we prove that every (identical-edge) homogeneous network is a quotient of a
homogeneous network without self-coupling and multiple arrows.

1

2

3

4

5

Figure 7. A second homogeneous five-cell network with balanced coloring.

It is also shown in [9] that steady-state, codimension-one, synchrony-breaking bifurcations
of the networks in Figure 8 can occur with simple real eigenvalues, real double eigenvalues with
independent eigenvectors (as in the bidirectional ring), real double eigenvalues with nontrivial
Jordan blocks (as in the feed-forward network in Figure 6), or with complex-conjugate, purely
imaginary eigenvalues (as in the three-cell unidirectional ring).

Planar lattice dynamical systems with nearest neighbor coupling have interesting patterns
of synchrony. For example, [7] shows that there exists an infinite family of balanced two
colorings, almost all of which are not spatially periodic. Wang and Golubitsky [11] classify all
balanced two-color patterns with nearest neighbor coupling (NN) and with both nearest and
next nearest neighbor coupling (NNN). The classification proceeds by assuming the form of
the two-cell quotient and then classifying all balanced colorings that lead to that quotient. In
NNN, all balanced relations are spatially doubly periodic (which is strikingly different from
the NN), thus illustrating again the importance of network architecture.

7. Hyperbolic equilibria and balanced relations. Theorem 4.3 shows that balanced equiv-
alence relations determine the robust patterns of synchrony on a given network—that is, those
patterns that are determined by flow-invariant subspaces (for all admissible vector fields). A
fundamental question concerns how patterns of synchrony for a given network can be estab-
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Figure 8. Homogeneous three-cell networks with two input arrows at each node from [9].

lished in practice. One presumption is that such patterns will be observed through synchro-
nized dynamical states in simulation (or experiment). Moreover, in an abstract perfect world,
it is also reasonable to presume that patterns of synchrony will be observed only if the patterns
are unchanged by small perturbation (either in initial conditions or in changes in parameters).
We call a pattern “rigid” if it does not change when the vector field is perturbed by all suf-
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ficiently small admissible perturbations. In this section we prove that patterns of synchrony
associated to hyperbolic equilibria are rigid precisely when they are balanced. Thus, in cou-
pled cell networks, the local assumption of rigidity for patterns associated to one equilibrium
for each of a small but open set of vector fields implies the global invariance of a polydiagonal
subspace for all admissible vector fields. We conjecture that a similar statement is valid for
hyperbolic periodic states, but we are currently unable to prove this conjecture.

Let x0 = (x0
1, . . . , x

0
N ) ∈ P . Define the equivalence relation ≡x0 by c ≡x0 d if and only

if c ∼C d and x0
c = x0

d. (This notation does not conflict with our previous use of ≡c in the
proof of Theorem 4.3, which was temporary notation for that proof.) Suppose that we color
two cells c and d the same color if and only if c ≡x0 d. Then this coloring is the pattern of
synchrony associated to x0. Note that

∆≡x0
= {x ∈ P : xc = xd if c ≡x0 d}

is the smallest subspace of P that contains all points with the same pattern of synchrony.

Definition 7.1. Let x0 ∈ P be a hyperbolic equilibrium of a C1-admissible cell system.
The equivalence relation ≡x0 is rigid if in each C1 perturbed admissible system the hyperbolic
equilibrium near x0 remains in ∆≡x0

. We also say that the pattern of synchrony defined by
x0 is rigid.

Strong admissibility. In Theorem 7.6 we prove that only those patterns of synchrony that
are generated by balanced relations are rigid. We prove this theorem by showing that rigid
patterns of synchrony lead to flow-invariant subspaces. The following is a key idea in the
proof.

Definition 7.2. A map G : P → P is strongly admissible if Gc(x) = Gc(xc) for every cell c
and Gc = Gd for every pair of cells where c ∼C d.

A strongly admissible map G is admissible since c ∼I d implies c ∼C d and hence Gc = Gd.

Lemma 7.3. Let F : P → P be admissible and let G : P → P be strongly admissible. Then
F ◦G and G◦F are admissible.

Proof. Both (F ◦G)c and (G◦F )c are functions defined on Pc × PT (I(c)). That is,

(G◦F )c(xc, xT (I(c))) = Gc(Fc(xc, xT (I(c)))),

(F ◦G)c(xc, xT (I(c))) = Fc(Gc(xc), GT (i1)(xT (i1)), . . . , GT (is)(xT (is))),

where I(c) = {i1, . . . , is}.
Let β : I(c) → I(d) be an input isomorphism in B(c, d). Order I(d) = {j1, . . . , js} so that

β(ik) = jk. It follows from the definition of input isomorphism that c ∼I d and T (ik) ∼C T (jk)
for each k. Hence, Fc = Fd, Gc = Gd, and GT (ik) = GT (jk).

We claim that both (F ◦G)c and (G◦F )c are β related to (F ◦G)d and (G◦F )d. To verify
this point for G◦F , compute

(G◦F )d(xd, xT (I(d))) = Gd(Fd(xd, xT (I(d))))

= Gd(Fc(xd, β
∗xT (I(d))))

= Gc(Fc(xd, β
∗xT (I(d))))

= (G◦F )c(xd, β
∗xT (I(d))).
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Thus G◦F is admissible. It also follows that

(F ◦G)d(xd, xT (j1), . . . , xT (js)) = Fd(Gd(xd), GT (j1)(xT (j1)), . . . , GT (js)(xT (js)))

= Fc(Gd(xd), GT (j1)(xT (j1)), . . . , GT (js)(xT (js)))

= Fc(Gc(xd), GT (i1)(xT (j1)), . . . , GT (is)(xT (js)))

= (F ◦G)c(xd, xT (j1), . . . , xT (js)).

Thus F ◦G is also admissible.

Definition 7.4. Let �� be an equivalence relation. A point x = (x1, . . . , xN ) ∈ ∆�� is generic
if xi = xj for i ∼C j implies that i ∼�� j.

Observe that generic points are open and dense in ∆��.

Lemma 7.5. Let �� be an equivalence relation on cells. Let x0 be a generic point in ∆�� and
let y0 be any point in ∆��. Then there exists a strongly admissible map G : P → P such that
G(x0) = y0.

Proof. Let x0 = (x1, . . . , xN ) and y0 = (y1, . . . , yN ). We need to choose functions Gc

(where Gc = Gd whenever c ∼C d) so that

Gc(xc) = yc.(7.1)

Conditions (7.1) are incompatible only when c ∼C d, xc = xd, and yc �= yd. When these
conditions are compatible we can always choose strongly admissible interpolation functions
Gc to satisfy (7.1). The facts that x0, y0 ∈ ∆�� and x0 is generic ensure that conditions (7.1)
are compatible because xc = xd implies yc = yd.

Perturbation spaces and hyperbolic equilibria. Let x0 ∈ P . Form the subspace

Wx0 = {p(x0) : p is admissible}

consisting of all points obtained from x0 by applying an admissible map. Let ∆ ⊂ P be
the smallest flow-invariant subspace that contains the point x0. Flow-invariance implies that
∆ = ∆��x0

for some balanced equivalence relation ��x0 . The balanced equivalence relation
��x0 is the coarsest for which x0 ∈ ∆��x0

. Since ∆��x0
is flow-invariant, x0 ∈ ∆��x0

, and p is
admissible, it follows that p(x0) ∈ ∆��x0

. Thus, Wx0 ⊂ ∆��x0
. Equality need not hold, in

general. However, equality does hold when the pattern of synchrony defined by a hyperbolic
equilibrium x0 is rigid.

Theorem 7.6. The equivalence relation ≡x0 determined by the hyperbolic equilibrium x0 is
rigid if and only if ≡x0 is balanced. Moreover, in this case, ≡x0= ��x0 and

Wx0 = ∆≡x0
= ∆��x0

.(7.2)

Proof. Let x0 ∈ P be a hyperbolic equilibrium for a C1-admissible vector field f and
assume that ≡x0 is a balanced equivalence relation. It is straightforward to show that ≡x0

is rigid. Hyperbolicity implies that every small admissible C1 perturbation g of f will have
a unique hyperbolic equilibrium y0 near x0. Since ∆��x0

is flow-invariant, uniqueness implies
that y0 ∈ ∆��x0

. Just restrict f and g to ∆��x0
and use hyperbolicity on this subspace. So the

pattern of synchrony of the equilibrium x0 is rigid.
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To prove the converse, we assume that ≡x0 is a rigid equivalence relation. By the definition
of ≡x0 , x0 is generic in ∆≡x0

. It follows from Lemma 7.5 that

∆≡x0
⊂ Wx0 .(7.3)

We claim that ∆≡x0
= Wx0 . To verify this claim, let p be an admissible vector field. Consider

the perturbation fε = f + εp and denote by xε the perturbed hyperbolic equilibrium for fε.
So

fε(xε) = 0.(7.4)

Since rigidity implies xε ∈ ∆≡x0
, it follows that

d

dε
xε

∣∣∣∣
ε=0

∈ ∆≡x0
.

Differentiating (7.4) with respect to ε and evaluating at ε = 0 yield

0 =
d

dε
(f(xε) + εp(xε))

∣∣∣∣
ε=0

= (Df)x0

d

dε
xε

∣∣∣∣
ε=0

+ p(x0).

Thus p(x0) ∈ (Df)x0(∆≡x0
); that is, Wx0 ⊂ (Df)x0(∆≡x0

). In view of (7.3), we obtain

∆≡x0
⊂ Wx0 ⊂ (Df)x0(∆≡x0

).(7.5)

Since the vector space ∆≡x0
is finite-dimensional, (7.5) implies that the inclusions above are

all equalities, particularly Wx0 = ∆≡x0
.

Next we show that ∆≡x0
is flow-invariant for all admissible vector fields. It then follows

from Theorem 4.3 that ≡x0 is a balanced relation, as desired. Let y ∈ ∆≡x0
and q be an

admissible vector field. We must show that q(y) ∈ ∆≡x0
. By Lemma 7.5, y = G(x0) for some

strongly admissible vector field G, and therefore q(y) = q ◦G(x0). By Lemma 7.3, q ◦G is an
admissible field, and therefore q(y) ∈ Wx0 = ∆≡x0

.
Finally, we verify the moreover part of the theorem. Since ∆≡x0

is flow-invariant, it follows
that ∆��x0

⊂ ∆≡x0
. Since Wx0 ⊂ ∆��x0

, (7.2) follows. Hence ≡x0= ��x0 .

8. Identical-edge homogeneous networks. An identical-edge homogeneous cell network
G is a homogeneous network in which all edges in E are equivalent.

Proposition 8.1. Every quotient of an identical-edge homogeneous network is an identical-
edge homogeneous network.

Proof. This statement follows directly from section 5 (D) and Remark 5.1.
Proposition 8.2. Every identical-edge homogeneous network is the quotient of an identical-

edge homogeneous network without multiple edges or self-coupling.
Proof. We begin by showing that if some cell in an N -cell network, say, cell 1, has m self-

couplings, then we can enlarge the network to an (N + m)-cell network, having the original
network as a quotient, so that the enlarged network has no self-couplings in cells residing in
the pullback of cell 1. Add arrows and cells to the enlarged network as follows.

(1) Replace cell 1 with m + 1 input isomorphic cells.
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(2) For each arrow in the original network with head cell 1 and tail cell i, where i �= 1,
add m edge-equivalent arrows with tail cell i, where one of the new arrows terminates
in each of the m new cells.

(3) Each pair of the m + 1 cells in the preimage of cell 1 has identical arrows with head
in the first cell of the pair and tail in the second cell of the pair.

Note that all arrows starting from one of the m new cells terminate in cell 1. In particular,
none of the m+1 cells in the preimage of cell 1 have self-coupling arrows. In the new network,
assign all cells in the preimage of cell 1 the same color and all other cells different colors.
This coloring is balanced and yields the original network as a quotient network. See Figure 9.
Therefore, we can enlarge the original network so that it has no self-coupling arrows.

1 2

3

1 2

3
1’

Figure 9. (Left) Three-cell network with self-coupling. (Right) Four-cell enlargement of original system.

Next, we assume that the network has no self-coupling and that there are m identical
arrows from cell 1 to cell 2. There is an extended coupled cell network with N + m− 1 cells
formed by replacing cell 1 with m identical cells and changing arrows as follows:

(1) Each of the m cells replacing cell 1 connects to cell 2 with one arrow. Note that
cell 2 receives the same number of arrows from the m copies of cell 1 that it received
previously from the single cell 1 in the original network.

(2) Add arrows so that every cell that was connected to cell 1 in the original network is
now connected to each of the m cell 1’s in the new network.

Note that there are no arrows starting from one of the m−1 new cells that terminate in a cell
in the original network not equal to cell 2. In the new network, color all cells in the preimage
of cell 1 the same color and all other cells different colors. This coloring is balanced and yields
the original network as a quotient network. See Figure 10. Proceeding inductively, we can
eliminate multiple arrows between cells.

1

23

2

3

1 1’

Figure 10. (Left) Three-cell network with multiple arrows. (Right) Four-cell enlargement of original system.

9. Hopf bifurcation in two-color networks. We now specialize our results to equivalence
relations with two colors. We prove a Hopf bifurcation theorem in the case of an identical-
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edge homogeneous network, with the feature that well-defined approximate phase shifts and
approximate amplitude relations hold near bifurcation.

Suppose that an identical-edge homogeneous network has a balanced relation with two
colors. The corresponding quotient network has the form given in Figure 11. Indeed, Propo-
sition 8.1 implies that the two cells are input isomorphic and all edges are identical. Such
two-cell networks are determined by the number of self-coupling arrows lj on cell j and the
number of edges m1 ≥ 0 coupling cell 2 to cell 1. Let m2 ≥ 0 be the number of edges coupling
cell 1 to cell 2; then homogeneity implies l1 + m1 = l2 + m2.

m2

m1
1 2

l l1 2

Figure 11. The two-cell quotient network.

Wang and Golubitsky [11] use this quotient network (with multiple arrows and self-
coupling) to prove that equilibria corresponding to balanced two-colorings may be obtained
from a codimension-one steady-state bifurcation from a homogeneous equilibrium; we use the
quotient to study Hopf bifurcations.

Proposition 9.1. Suppose that an identical-edge homogeneous network has a balanced rela-
tion with two colors and that the quotient network is not feed-forward, that is, m1,m2 > 0.
Then there is a unique type of synchrony-breaking Hopf bifurcation from a synchronous equi-
librium that leads to periodic solutions that are synchronous on all cells of the same color and
that are approximately one half a period out of phase with all cells of the opposite color. The
amplitudes of these periodic signals need not be equal.

Proof. The coupled cell systems have the form

ẋ1 = f(x1, x1, . . . , x1︸ ︷︷ ︸
l1 times

, x2, . . . , x2︸ ︷︷ ︸
m1 times

),

ẋ2 = f(x2, x2, . . . , x2︸ ︷︷ ︸
l2 times

, x1, . . . , x1︸ ︷︷ ︸
m2 times

),
(9.1)

where x1, x2 ∈ Rk. Since {x : x1 = x2} is flow-invariant, we can arrange for the robust
existence of an equilibrium in this subspace. Moreover, by a change of coordinates, we can
assume that the equilibrium is at the origin. Let J be the Jacobian matrix of this equilibrium.
By (9.1)

J =

[
A + l1B m1B
m2B A + l2B

]
,

where A is the linearization of the internal dynamics and B is the coupling matrix. Assume
that x1, x2 ∈ Rk. Let v ∈ Rk and observe that

J

[
v
v

]
=

[
(A + pB)v
(A + pB)v

]
and J

[
m1v
−m2v

]
=

[
(A + (l2 −m1)B)m1v
−(A + (l2 −m1)B)m2v

]
,
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Figure 12. (Left) Two-cell homogeneous network. (Right) Half-period out of phase periodic state with
different amplitudes obtained by Hopf bifurcation.

where p = m1 + l1 = m2 + l2. Thus, the eigenvalues of J are given by eigenvalues of the k× k
matrices A + pB and A + (l2 −m1)B. Either matrix can have purely imaginary eigenvalues
when k ≥ 2. Critical eigenvalues in the matrix A + pB lead to periodic solutions that are
synchronous on all cells, since the synchrony subspace x1 = x2 is flow-invariant.

Synchrony-breaking Hopf bifurcations occur if the matrix A + (l2 − m1)B has (simple)
purely imaginary eigenvalues ±ωi. Let v0 ∈ Ck be an eigenvector associated to the eigenvalue
ωi. Then Hopf bifurcation can lead to a branch of periodic solutions that to first order in the
bifurcation parameter has the form

x1(t) = m1Re(eiωtv0), x2(t) = −m2Re(eiωtv0).

The amplitudes of the time series x1(t) and x2(t) are different (unless m1 = m2). Indeed, to
first order they are in the ratio m1 : m2 near the bifurcation point. The minus sign in x2

shows that the time series are (to first order) a half-period out of phase.
Example 9.2. Consider the two-cell system in Figure 12 (left). This network can be ob-

tained as a two-color quotient network of the five-cell network in Figure 1 (right) by identifying
the four pink and white cells as one color and the cyan cell as the other color. The time series
of a periodic state obtained by Hopf bifurcation in this network is shown in Figure 12 (right).
Note that the time series from cells 1 and 2 are approximately one half a period out of phase
even though the amplitudes of these signals are quite different. The amplitude ratio here is
convincingly close to m1/m2 = 2. This coupled cell system has the form

ẋ1 = f(x1, x2, x2, λ),
ẋ2 = f(x2, x2, x1, λ).

The time series in Figure 12 (right) was obtained using f : R2 × R2 × R2 → R2, where

f(y1, y2, y3, λ) =

([
0 −1
1 0

]
+ (λ− 1)I2

)
y1 − (y2 + y3) − |y1|2y1 − (y2, y3)y1.

A supercritical Hopf bifurcation from the trivial equilibrium at the origin occurs at λ = 0. In
the given time series λ = 0.1.

When m1 = m2 (so l1 = l2) we can say more.
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Corollary 9.3. Suppose that an identical-edge homogeneous network has a balanced equiva-
lence relation with two colors, black and white. If the number of white cells coupled to a white
cell is equal to the number of black cells coupled to a black cell, then the synchrony-breaking
Hopf bifurcation in Proposition 9.1 leads to robust periodic solutions that are synchronous on
cells of the same color and exactly one half a period out of phase with cells of the opposite
color.

Proof. When m1 = m2 (and hence l1 = l2) in Proposition 9.1, the transposition (x1, x2) �→
(x2, x1) is a symmetry of (9.1) and the bifurcating states have an exact spatio-temporal sym-
metry x2(t) = x(t + T

2 ), where T is the (minimal) period.

10. Concluding remarks. Primary goals of our research are the study of the types of typi-
cal states that can occur in networks of coupled systems of differential equations (synchronous
states are one of these) and the study of typical (codimension-one) synchrony-breaking bi-
furcations. Any study of genericity must begin with a precise description of the classes of
differential equations that are to be considered, and any abstract study of synchrony-breaking
bifurcations must begin with a definition of what synchrony means. In this paper and [10] we
have set up a framework (based on groupoids) that specifies both the classes of differential
equations (associated to a fixed network) and the notion of (robust) synchrony that can occur
in that network (balanced relations).

An important observation is that the restrictions of coupled cell systems to polysyn-
chronous subspaces are themselves coupled cell systems associated to the quotient network.
This restriction has profound and interesting consequences for the generic behavior of polysyn-
chronous dynamics. In this paper we have refined the notion of quotient dynamical systems,
through the network theoretic conventions of the multiarrow formalism, to the point that
genericity arguments on quotient networks now lift to genericity arguments about polysyn-
chronous dynamics in the original network.

It is a nontrivial task to compute all balanced relations in a complicated network; never-
theless this is a simpler task than that of computing all flow-invariant subspaces for admissible
vector fields. In certain instances, such as with certain types of colorings [7, 11], this clas-
sification can be completed, and these classifications provide interesting information about
patterns of synchrony. The work in [7, 9] shows that codimension-one synchrony-breaking
bifurcations can be highly nonstandard (and complicated to analyze). A complete theory
for synchrony-breaking will require a better understanding of the Jacobian matrices at syn-
chronous equilibria (parallel to the representation theory of matrices commuting with a given
group action). At present such a theory does not exist, but some initial steps can be found in
[3].
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