Symmetric patterns in linear arrays of coupled cells
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In this note we show how to find patterned solutions in linear arrays of coupled cells, The
solutions are found by embedding the system in a circular array with twice the number

of cells. The individual cells have a unique steady state, so that the patterned solutions
represent a discrete analog of Turing structures in continuous media. We then use

the symmetry of the circular array (and bifurcation from an invariant equilibrium) to identify
symmetric solutions of the circular array that restrict to solutions of the original linear

array. We apply these abstract results to a system of coupled Brusselators to prove that
patterned solutions exist. In addition, we show, in certain instances, that these patterned
solutions can be found by numerical integration and hence are presumably asymptotically

stable.

I. INTRODUCTION

Recent experiments on chemically reacting systems by
Castets et al.! have confirmed Turing’s prediction’ that
spatial pattern formation can arise from the interaction of
diffusion with a system whose homogeneous reaction ki-
netics give only a single stable steady state. The patterns
observed in these quasi-two-dimensional, continuous sys-
tems are typically quite symmetric, consisting of arrays of
parallel stripes or hexagonal arrangements of spots. Ouy-
ang and Swinney’ have shown that bifurcation from one
type of pattern to another can be observed on varying a
control parameter such as the temperature.

Laplante and co-workers® have recently carried out
another type of experiment, which constitutes a discrete,
one-dimensional analog of the Turing pattern experiments.
In this system, as many as 16 flow reactors, ¢ach contain-
ing the same chemical components, are coupled together in
a linear chain by reciprocal mass exchange between each
pair of neighbors.

It is interesting to speculate whether discrete arrays of
coupled nonlinear cells can give rise to stable nonuniform
spatial patterns when each cell has only a unique stable
steady state. In other words, does the discrete analog of the
Turing bifurcation occur? If such patterns arise, are there
any symmetric ones, and are these patterns stable over any
substantial parameter range? In the sections that follow,
we use analytical methods based on group theory to show
that in general such symmetric patterns may be expected to
occur, and we derive some of their characteristics. We then
demonstrate numerically, using the popular Brusselator
model® of a chemically reacting system, the existence and
stability of some of these states.

Rovinsky® carried out a numerical investigation of a
linear array of coupled cells in which the dynamics corre-
sponded to a model of the Belousov—Zhabotinsky reaction.
With parameters corresponding either to a unique stable
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steady state or to an oscillatory state in each cell, he found
stable, symmetric, steady-state solutions for the array sim-
ilar to those obtained in this work.

It is well known that discretizations of reaction—
diffusion systems on an interval give rise to linear arrays of
coupled cells. The particular systems that we study are
discretizations of such PDEs with Neumann boundary
conditions. It may also be expected that equilibria for these
coupled cells—when the number of cells is large—should
well approximate equilibria of the PDEs. Thus we expect
to find patterned solutions to the linear arrays when pat-
terned solutions to the PDEs exist. Finally, we take the

. point of view that patterned solutions are often the product

of symmetry—or more precisely—symmetry-breaking bi-
furcations.

Armbruster and Dangelmayr’ observed that reaction—
diffusion systems satisfying Neumann boundary conditions
on an interval can be extended to intervals of twice the
length satisfying periodic boundary conditions and that
this extension introduces O{2) symmetry into the equa-
tions. Of course, one can interpret periodic boundary con-
ditions as transforming the larger interval into a circle. The
group theoretic aspects of this observation were further
studied by Crawford ef al.® In this paper we make a similar
observation by embedding the linear arrays into circular
arrays of twice the size having dihedral D,, symmetry.

We note that many authors have considered bifurca-
tions of equilibria and periodic solutions in circular arrays
of coupled cells. For example, see Winfree’ and Alexander
and Auchmuty.’® We shall follow the analysis based on
symmetry found in Refs. 11 and 12.

ll. THE EMBEDDING METHOD

We begin by writing the general form for a system of
differential equations modeling a linear array of » identical
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FIG. 1. Linear array of » identical cells.

cells with identical coupling (see Fig. 1 for a schematic of
such a coupled system). This form is

xy=f(xpx1x2),
E=f(Xim1XpXip1), 1<i<n,

xn=f(xn— laxn!xn) s

where x€R¥, fR¥—R* and f(x,y,2)=f(z,9,x). This last
constraint is just the mathematical statement that the cou- - -

pling is the same in the upstream and downstream dlrec-
tions.

An example is a system of coupled Brusselators where -

k=2, x={(u,p) and fis as follows:

#;=1— (b+ D u+auiv+ D, (up—2u+u_y), _
(2.2)

v,=bu,-—au%u,—+ Du(vi+ 1— 20+ ;1)

where g, b, D,, D, are positive constants. Equation (2.2)

is valid for 1 </<n as is. For /=1 and i=n a modification -

is necessary to indicate that the first and last cells do rot
communicate. In these cases the coupling terms at the
boundary have the form for i=1

D (uy—u), D,(v,—vy)
and for i=n
D (u,_1—u,), D,(v,_1~v,)

which is consistent with the functional identity for the
boundary terms given in (2.1). Note that the array of
Brusselators has the srivie! spatially constant equilibrium:

;=1 and v;=b/a.

The only symmetry of a linear array of coupled oscﬂ-
lators is given by :

T(X s Xy) = (X ). _
This symmetry impiies that if an equilibrium x= (x,,...,x,,)
of a coupled array system is found, then (x,,...,.x;) is also
an equilibrium for the system, which may be the same as x
or different. This symmetry, however, is not sufficient to
produce states with complicated patterns.

Nevertheless, in many treatments of linear arrays
(mainly numerical) equilibria with complicated and regu-
lar patterns are found. In this note we show how such
equilibria can arise through the process of embedding the
linear array in a circular array with twice the number of
cells and using the symmetry of the circular array to pro-
duce equilibria for the linear array.

The extension to a circular array proceeds as follows.
Let

= (X ppeeerX X peeeXp JERZ,

We consider the system of differential equations

@n

FIG. 2. Circular array of 2n identical cells.

X=f (X pXeXig1)s (2.3)

where in order to make the extended system into a circular

arrav we nse the followine conventionsg in the indices 7—1

—ngig<—1, 1<ign,
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and i41:
{—nr)—1 equals n,
(1)—1 equals —1,
(7)+1 equals —a,

(—~1)41 equals 1.

See Fig. 2.

Observe that an equilibrivm for the circular array
(2.3) that satisfies x_;=x; for 1<i<# is also an equilibrium
for the linear array (2.1). We shall use this observation
along with the symmetries of the circular array to produce

attarnad a~sililbeia § th i i i
patterned equilibria for the linear array for bifurcation

- from the trivial equilibrium.

The group of symmetries of the circular array is the
dihedral group D,, of symmetries of the regular 2n-sided

polygon.

Hl. BIFURCATION IN CIRCULAR ARRAYS

Steady-state bifurcations with I),, symmetry have been
well studied (see Ref. 12, pp. 97-103). A steady-state bi-
Iurcatlon lS one in WﬂlCIl an clgenvmue Of f,ﬂe uncarucu
system goes through zero. The multiplicity of that eigen-
value (or the dimension of the kernel of the Jacobian ma-
trix at the equilibrium) is dictated by group theory. The
theory states that generically the multiplicity wiil be the
dimension of an irreducible representation of the group of
symmetries of the equilibrium (in this case D, for the
circular array). Since all irreducible representations of D;,
are either one- or two-dimensional, we expect the multi-
plicity of the eigenvalues to be one or two.

When the eigenvalues are double, then the nonlinear
theory states that there will be two branches of solutions
(for n>2) each having a reflectional symmetry (Ref. 12,
Table XIII, 5.2). On one branch the axis of symmetry of
the reflection will connect opposite vertices and on the
other branch the axis of symmetry will connect the mid-
points of opposite sides. Note that any solution that is
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symmetric across the axis of symmetry obtained by con-
necting the midpoints of the pair of opposite sides connect-
ing cells 1 and —1 and » and —n will satisfy the identity
x_;=x; and hence be a solution to the linear array. The
other equilibria of the circular arrays will not restrict to
equilibria of the linear array. In the case of simple eigen-
values, the analysis is less clear since there are several pos-
sible one-dimensional irreducible representations. We re-
turn to this point below.

The D,, symmetry of the circular array also simplifies
the linear analysis (though the linear analysis on the linear
array could have been worked out directly). The general-
ities of the linear analysis for circular arrays have also been
worked out. The (2nk) X (2nk) matrix decomposes into
k> k blocks of a circulent form. As a resuit ali of the
eigenvalues of the large matrix can be determined by find-
ing the eigenvalues of #41 kX k matrices, a substantial
simplification. See the discussion in (Ref. 12, pp. 394
396).

Let A and B be the kx k Jacobian matrices of f(y.x,z)

of
ax

af

A= and B=-(-?-;.

Then the eigenvalues of the matrices

A+2x,B, (3.1)

where k;=cos( jmi/n) are eigenvalues of the big 2nk >} 2nk -

matrix. In fact, for /=0 and j=n these eigenvalues are
simple and for 0 <j<n they are double. Together these
eigenvalues account for all of the eigenvalues of the big
matrix.

It follows from the discussion above that if a simple
eigenvalue of A42«;B goes through zero with nonzero
speed when 0< j<pn, then there exists a branch of solu-
tions on the circular array that restricts to a branch of
equilibria on the linear array.

As an example we show that eigenvalues of (3.1) al-
ways cross through zero in the array of Brusselators. We
set D,=rD,and D;=2(1—x;) D, In these scaled variables
the jth matrix 4 +«,B is

)
i

(5

and the determinant of this matrix is

b—l—]’Dj
—b

a

rDi+(ra— (b—1))Dj+a. (3.2)

Since —1<k;<1, D;is nonnegative. Note that D;=0 when
«;=1 which occurs when j=0. Thus the Oth matrix never
hag a zero eisenvalue, since g is assumed nnmht_m If we

@ LUIU LphaaValddh, Gl O 2o doosalie AGLLE

find the roots D; of (3.2), then we get a real positive root
when

b—1
?‘<'—a— and \/E}I-l— \IE

By varying parameters, we can force simple eigenvalues to
cross through zero with nonzero speed for each of the
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FIG. 3. Patterns in equilibria indicated by square waves.

matrices 4+-2«;B. This shows that each of the desired
steady-state bifurcations occurs in the Brusselator model.

IV. PATTERNS IN SOLUTIONS

We now look at the patterns of the solutions that we
have found as they will appear in the linear array.

On the two-dimensional kernel, which we identify with
C, the rotation of the cells by one cell counterclockwise
acts by

PN e(m/n)jz'

(4.1)

Observe that when j=pn, the other simple eigenvalue
case, rotating by one cell generically leads to a different
state but rotating by two cells leads to the same state. Such
a solution cannot restrict to the linear array since the cells
1 and —1 are adjacent and hence, generically are
unequal—but must be equal to restrict to a solution on the
linear arrays. Hence we can assume that 1<j<n.

We say that a group element acts #rivially in a bifur-
cation if that group element acts as the identity on the
kernel of the linearization. If a group element acts trivially
in a bifurcation, then all of the steady states that result
from this bifurcation are fixed by that symmetry.

Suppose j and 2n are coprime. Then (4.1) shows that
no rotation of the cells acts trivially. It follows that for
these solutions on the linear array no two cells are doing
the same thing (generically).

Suppose j is even. Then rotating by n cells acts trivi-
ally. It follows that the cells in the linear array must be
left-right symmetric, that is, x,=x,_; If j/2 and n are
coprime, then generically this is the only pattern.

Now let [ be the greatest common divisor of j and 2n
and assume /> 2. Then rotating the circular array of cells
by 2n/1 cells acts trivially. Coupling this fact with the lin-
ear array restriction x;=x_; leads to some interesting pat-
terns. For example, if n=10 and j=4, then rotating by
2n/1=5 cells acts trivially and we get the pattern of cells
RGY GRRGY GR. If n=10 and j=35, then rotating by 2»n/
I=4 cells acts trivially and generically we get the pattern
RGGRRGG RRG. In this notation we are imagining that
cells that are not forced by symmetry to be identical are
colored differently. So R stands for red, G stands for green,
and ¥ stands for yellow in the given patterns. We have also
indicated these patterns using square waves in Fig. 3.

In general, when [>2, we find patterns consisting of
identical blocks of cells of length 2#/I where in each block
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the pattern is symmetric about the middle. These blocks
repeat [{/2] times with an extra half block at the end
should { be odd.

The theory of Hopf bifurcation in the presence of D,,
symmetry can also be used to predict patterns of oscillation
in time-periodic solutions for linear arrays of coupled cells.
As before, one einbeds the linear array satisfying Neumann
boundary conditions into a circular array.

Hopf bifurcation occurs when a pair of complex con-
jugate eigenvalues cross the imaginary axis with nonzero
speed. As in the case of steady-state bifurcation, the D,,
symmetry implies that generically these complex eigenval-
ues will be either simple or double. Moreover, for coupled
cells, the eigenvalues can be computed as in (3.1).

The general theory of Hopf bifurcation predicts that
when there is a complex conjugate pair of double eigenval-
ues, then there will be a unique bifurcating branch of time-

periodic solutions that will for all time satisfy Neumann

boundary conditions of the linear array and thus restrict to
a time-periodic solution of the # cell system. See Chap.
XVIH, Tables 1.2 and 1.3 of Ref. 12, p. 369.

Consequently, to each pattern in an equilibrium solu-
tion there corresponds a time-periodic solution with the
same spatial pattern. The only difference is that in each
block of length 2r/ (notation as at the end of Sec, III) the
cells that are equally spaced from the ends of the block
oscillate with the same wave form—but with a half period
phase shift. It follows that if the size of the block 2n/ is
odd, then the middle cell in each block will oscillate with
twice the frequency of the other cells.

We now remark that all of these types of Hopf bifur-
cation occur in the Brusselator example. However, except
for the standard Hopf bifurcation where all cells oscillate
in phase, these patterned periodic solutions are unstable at
bifurcation. This follows from the fact that the trivial so-
lution is unstable at these bifurcation points. (This fact is
analogous to the bifurcation of time-periodic soluticns to
the PDE Brusselator on an interval.)

To determine the points where Hopf bifurcation can
take place, we need to find points where tr(4+2«;B) is
zero while det(4 +-2«;B) is positive. The trace of the ma-
trix (3.1) is

tr(4+2x;B) =b—1—a—(r+1) D, (5.1)

The root D; obtained by setting (5.1) equal to zero is
p1=¢ 52
7T 5.2)

The Hopf bifurcation with simple eigenvalues occurs when
D=0, that is, when b=a+ 1. For double eigenvalue Hopf{
bifurcations to occur, we need D ;> 0, that is, we need

A*:.n_l_1

oAl

which we assume. A calculation shows that when D ; sat-
isfies (5.2), then

TABLE L. a=4, b=4.3, D,=0.002, D,=2.0.

i R G Y

4 (0.2470,1.4692)
5 (0.2209,1.085)

(0.222 60,1.0927)

(4.0608,0.3234)
(1.779,0.6913)

det(44-2«;B) =a(r—1)2(b—a) +(b~1—a)?>0.

Hence, there are purely imaginary eigenvalues for 442« ;B
and Hopf bifurcation does occur.

V1. NUMERICAL RESULTS

While the previous analysis reveals possible symmetric
patterns for a given array, it does not give any information
regarding either the stability or the amplitudes of the pat-
terns. One could try to determine the stability of solutions
using exchange of stability arguments at the bifurcation
point. But the caleulations based on such an approach are
almost impossibly complicated (since terms of degree /
must be computed in the bifurcation analysis in linear ar-
rays with blocks of cells of length ). Similarly, one could
try to prove stability of equilibria by finding some sort of
Liapunov function—but such an approach may be difficuit

" to implement. Thus, if one wishes to know whether such

patterns will actually arise in a particular array and, if so,
what the patterns wili look like, it seems simplest to resort
te a numerical investigation.

We examine the cases n=10, j=4, 5 discussed above.
The equations (2.2) for a set of 10 coupled Brusselators
were integrated numerically with the parameter a fixed at
4.0. The equations were solved on a VAX 8650 with the
GEAR code and on a 286-PC with a locally written nu-
merical integrator for ODE’s. The resulis obtained were
independent of the integration method.

For each value of j, the calculations were started with
parameters b=4.5, D,=0.002, D,=2.0 with an initial con-
dition corresponding o the uniform steady siate (u,=1,u;
=1.125) plus a small (£0.1) perturbation with symmetry
corresponding to the patterns found in the analysis of the
previous section. For both values of j, the system evolved
to a stable steady state that preserved the symmetry of the
initial condition, i.e., the pattern predicted by the symme-
try analysis is stable with these parameters. In Table I we
show the values of ¥ and v for the patterns RGY
GRRGY GR (j=4) and GRRGGRRGGR (j=5). These
patterns are stable even to relatively large (ca. 10%) asym-
metric perturbations.

It is worth noting that the trivial spatially constant
equilibrium given by #,=1 and v;=5b/a in the system of
coupled Brusselators is asymptotica]ly stable whenever
b—a < 1. The numerical simulations _]LIbL described fall into
this range. It follows that there are least two stable equi-
libria for these parameter values—one patterned and one
homogeneous. Indeed, numerical simulations for »> 10 in-
dicate the simultaneous existence of many different {and
presumably stable) nonsymmetric equilibria.

We next varied the parameter b to assess the range of
stability of the patterns. For each value of b, the initial
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condition was chosen as the steady state corresponding to
the previous b value. For j=4, the pattern is stable from
b~3.23 to at least b=35. For j=35 the range of stability is
much narrower; for stability we find that & must lic ap-
proximately in the interval 3.73 <b<4.57. The range of
stability narrows as the ratio r increases. When a symmet-
ric state loses stability, the initial, symmetric pattern per-
sists for some time before small differences from perfect
symmetiry arise and then grow, slowly at first, then more
rapidly, until a final, stable, asymmetric pattern is reached.
We have not carried out a systematic investigation of ejther
the basins of attraction of the symmetric states or their
stability for other values of #. These results, however, sug-
gest that such patterns may be relatively easy to find.
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