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Reduction and Dynamics of a Generalized Rivalry Network
with Two Learned Patterns∗

Casey Diekman†, Martin Golubitsky†, Tyler McMillen‡, and Yunjiao Wang†

Abstract. We use the theory of coupled cell systems to analyze a neuronal network model for generalized
rivalry posed by H. Wilson. We focus on the case of rivalry between two patterns and identify
conditions under which large networks of n attributes and m intensity levels can reduce to a model
consisting of two or three cells depending on whether or not the patterns have any attribute levels
in common. (The two-cell reduction is equivalent to certain recent models of binocular rivalry.)
Notably, these reductions can lead to large recurrent excitation in the reduced network even though
the individual cells in the original network may have none. We also show that symmetry-breaking
Takens–Bogdanov (TB) bifurcations occur in the reduced networks, and this allows us to further
reduce much of the dynamics to a planar system. We analyze the dynamics of the quotient systems
near the TB singularity, discussing how variation of the input parameter I organizes the dynamics.
This variation leads to a degenerate path through the unfolding of the TB point. We also discuss
how the network structure affects recurrent excitation in the reduced networks, and the consequences
for the dynamics.
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1. Introduction and main results. Wilson (2009) introduced a network model for gener-
alized rivalry between learned patterns. Specifically, the network model consists of an m× n
array of nodes or cells where each column represents a pattern attribute and each row repre-
sents the intensity of that attribute in the pattern.

Certain reciprocal inhibitory and reciprocal excitatory connections are also specified in
the network model. First, the cells within each attribute column have powerful reciprocal
inhibitory connections. See Figure 1 (left). These connections work to prevent more than one
cell in each column from firing at the same time. In this network model, a pattern is a choice
of one node from each column, and a learned pattern is a pattern with reciprocal excitatory
connections between all pairs of cells in different columns that correspond to that pattern.
See Figure 1 (right).

The study of generalized rivalry assumes that the network has two or more learned patterns
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Figure 1. Network model for generalized rivalry. Each column represents an attribute, whereas each row
represents a level of that attribute. Left: Dashed lines indicate reciprocal inhibitory connections between all
cells in a column. Right: Solid lines indicate reciprocal excitatory connections between cells in a given learned
pattern.
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Figure 2. A learned pattern is a set consisting of one cell from each attribute column and reciprocal
excitatory connections between these cells. Two learned patterns are shown: pattern A = (a1, . . . , a5) and
pattern B = (b1, . . . , b5). Cells in a learned pattern are all-to-all connected, though not all connections are
indicated. Inhibitory connections are not indicated.

and therefore has reciprocal excitatory connections corresponding to each of these patterns.
In Figure 2 we illustrate a network with two learned patterns. We call cells that receive
reciprocal excitatory connections active, and we call the other cells inactive.

Wilson (2009) assumes that there is a two-dimensional firing rate model identified with
each network node. Hence there is a coupled system of 2mn differential equations associated
to the rivalry network. Many authors have discussed the dynamics of firing rate models
for rivalry. See Laing and Chow (2002), Moldakrimov et al. (2005), Seely and Chow (2011),
Wilson (2003), Wilson (2007), Wilson (2009), Shpiro et al. (2007), Curtu et al. (2008), Curtu
(2010), and Kilpatrick and Bressloff (2010). In this paper we present a method for reducing
the high-dimensional models of Wilson (2009) to low-dimensional models, such as those studied
by Curtu and coauthors.

We begin by listing our main contributions; then we discuss the background needed to
understand them.

1. We identify regions in parameter and state space where the model of Wilson (2009) for
two learned patterns can be rigorously reduced to either a well-studied two-node model
(consisting of four equations) or a less well studied three-node model (consisting of six
equations). Conversely, we show that the reduced models are embedded in Wilson’s
model, though we cannot prove that solutions that are stable in the reduced models
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are stable in Wilson’s model for all parameter values. Finally, we note that many
regions of state space for Wilson’s generalized models remain unexplored.

2. The two-node model is identical in form to the model of binocular rivalry considered
by Curtu et al. (2008), with the exception that recurrent excitation is nonzero. Here,
reciprocal excitation in the generalized model leads unavoidably to recurrent excitation
in the reduced model.

3. The two-node model is known to exhibit many interesting dynamic states (including
fusion, winner-take-all, rivalry, and mixed-mode oscillations) and transitions between
these states. See Curtu (2010) for an extensive discussion. We show that some of
what is known can be organized by tracking a degenerate path through the parameter
space of a symmetry-breaking Takens–Bogdanov (TB) bifurcation.
(a) The existence of TB points in the two-cell model (and its unfolding) implies the co-

existence of a stable rivalry state and a stable winner-take-all state, which has not
been mentioned previously in the literature with respect to the binocular rivalry
model. See Shpiro et al. (2007) for a discussion of such bistability in a central
pattern generator model originally considered by Taylor, Cottrell, and Kristan
(2002).

(b) The fact that the bifurcation parameter can vary degenerately through the TB
point leads to different bifurcation diagrams. See Figures 9 and 10. Note that the
diagram corresponding to path 3 seems not to have been observed previously.

4. We show that TB bifurcations also occur in the three-cell model. Hence, we learn much
about the dynamics of this three-cell model just from having organized the results of
the two-cell model around TB points.

5. Our methods make feasible the analysis of models based on three or more learned
patterns, though this will be the subject of future work.

6. Although our specific analysis is based on a particular class of rate models studied by
Wilson and others, our methods can be applied to a much larger class of equations.

1.1. Biological motivation for the generalized rivalry model. Binocular rivalry, the alter-
nations in perception that occur when different images are presented to the two eyes, has fre-
quently been touted as a powerful tool for studying neural correlates of conscious visual aware-
ness (Blake and Logothetis (2002); Tong, Meng, and Blake (2006)). While most stimuli used
in perceptual rivalry research allow exactly two distinct percepts, stimuli with more than two
interpretations have been studied before (Burton (2002); Naber, Gruenhage, and Einhäuser
(2010)). Wilson (2012) argues that generalizations of rivalry to multiple, partially overlapping
patterns can provide key insights into aspects of conscious deliberation and decision making
in the face of ambiguous or incomplete data.

The Wilson (2009) network model of interaction among multiple neural groups can be
placed within the context of the anatomy of the brain areas critical for conscious vision.
For example, suppose the network is involved with face recognition in the inferior temporal
cortex. Here, the attribute columns might represent facial features such as eye separation or
nose length. The rows within each column could then represent above average, average, or
below average values for each feature. See page 406 of Wilson (2009) for further discussion
and an alternative interpretation placing the network in the prefrontal cortex.
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The Wilson (2009) model belongs to a class of competition models that incorporate neural
adaptation, where activity associated to the currently dominant stimulus (or pattern) wanes
over time (Blake and Wilson (2011)). Since the Wilson (2009) model is deterministic, it does
not capture the noisy or irregular character of the perceptual alternations reported in rivalry
experiments (van Ee (2009); Moreno-Bote, Rinzel, and Rubin (2007)). In order to reproduce
all the dynamical behaviors exhibited during rivalry, neural models likely need to incorporate
both adaptation and noise processes (Shpiro et al. (2009); Blake and Wilson (2011)). In this
paper we do not incorporate noise and thus in effect are considering the mean switching
behavior between perceptions.

We emphasize that our work is about the mathematical analysis of classes of models that
have been and are being studied in the rivalry literature; this work is not directly about the
neuroscience consequences of our results. We now introduce the models.

1.2. Equations for the generalized rivalry model. We denote the state variables for cell
ij in the rivalry array by Xij = (XE

ij ,X
H
ij ), where X

E
ij is an activity variable representing the

firing rate of the ij node and XH
ij is an adaptation (or hyperpolarizing) variable that reduces

activity on a long time scale. We assume that these variables are nonnegative. The equation
for each cell has the form

(1.1)
εẊE

ij = −XE
ij + G

⎛
⎝Iij +w

∑
pq→ij

XE
pq − β

∑
rj⇒ij

XE
rj − gXH

ij

⎞
⎠,

ẊH
ij = XE

ij −XH
ij ,

where → denotes an excitatory connection and ⇒ denotes an inhibitory connection. Specif-
ically, β denotes the strength of the reciprocal inhibition between cells in the same column,
and w is the strength of the reciprocal excitation between cells in the same learned pattern.
The function G is the gain and is usually assumed to be nonnegative and nondecreasing (see
Laing and Chow (2001)). In this model, the adaptation variable XH

ij reduces the activity

variable XE
ij with strength g and evolves on a longer time scale than the activity variables.

Hence, ε is commonly, though not always, taken to be small. Note that the domain Ω defined
by XE

ij ≥ 0 and XH
ij ≥ 0 is flow invariant for (1.1) since the gain function is nonnegative.

The inputs Iij ≥ 0 are external signal strengths to the patterns. We assume that the
inputs Iij satisfy the following:

(a) Iij = 0 for every inactive cell ij.
(b) Each learned pattern P has an input IP ≥ 0. If ij is an active cell, then Iij is the

maximum of those IP for which ij is an active cell in pattern P .
Later we assume that all of the IP are positive and equal; that is, IP = I for all patterns P .

1.3. Gain functions and decay of inactive cells. We consider two types of gain functions
in this paper: conforming and sigmoidal. Proposition 1.2 shows that if the gain function is
conforming, then inactive cells decay to a base firing rate (0 in the models); thus inactive cells
can be eliminated.

Definition 1.1. Assume that the gain function G is smooth and satisfies the following:
(a) G′(z) > 0 for z > θ.
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(b) G′(z) has a unique maximum at z = zmax.
G is conforming if, in addition, there exists a threshold θ ≥ 0 such that

(c) G(z) = 0 for z ≤ θ.
The gain is a sigmoid if (a) and (b) are satisfied and

(d) G(z) > 0 for all z, limz→−∞G(z) = 0, and limz→+∞G(z) exists.
Proposition 1.2. Assume G is conforming. If cell ij is inactive, then Xij = 0 is a flow-

invariant subspace. Moreover, this subspace is globally attracting since Xij(t) → 0 as t→ ∞.
Proof. Since cell ij is inactive, there are no excitatory connections to cell ij and Iij = 0.

Moreover, since XE
rj ≥ 0 and XH

ij ≥ 0,

z = −β
⎛
⎝∑

rj⇒ij

XE
rj

⎞
⎠− gXH

ij ≤ 0 ≤ θ.

It follows from Definition 1.1(c) that G(z) = 0, which implies

εẊE
ij = −XE

ij + G(z) = −XE
ij .

Therefore, Ẋij = 0 whenXij = 0 so that the subspace is flow-invariant, XE
ij → 0 exponentially,

and XH
ij follows.

Remark 1.3. Proposition 1.2 leads to the 2n − k active node network shown in Figure 3
(left). The thresholded gain functions used by Wilson are conforming except for one point θ
where a discontinuity in the first derivative occurs. As long as θ > 0, Proposition 1.2 is still
valid.

Remark 1.4. Sigmoid functions are smooth, satisfy Definition 1.1(a) and (b), and approx-
imately satisfy (d) since G(0) is usually very small. Under this assumption, we believe that
the elimination of inactive cells based on conforming gain functions will be approximately true
for sigmoidal gain functions.

1.4. Quotient networks: Rivalry between two patterns. We make a second observation
that simplifies the dynamics of the Wilson network: in certain parameter regimes active cells
in a given row that belong to exactly one pattern synchronize, as do cells common to both
patterns. In terms of the network in Figure 2, this observation implies that cells a1, a2, a3
synchronize, as do cells b1, b2, b3 and cells a4/b4, a5/b5. In fact, for all parameters, setting
these three subsets of cells equal leads to a flow-invariant (polydiagonal) subspace for the
dynamics. Hence, we may identify cells a1, a2, a3 as a single cell and label the identified cell by
a. Similarly, we may identify cells b1, b2, b3 and label them by b and identify cells a4/b4, a5/b5
and label them by c. The network resulting from this identification is an example of a quotient
network (Golubitsky, Stewart, and Török (2005); Golubitsky and Stewart (2006)). The fact
that solutions with synchronized cells exist follows from quotient network theory; whether
these synchronized states are stable depends on the specifics of the model equations.

There are two types of quotient networks that can be derived from the Wilson network
for two learned patterns with inactive cells deleted: a two-cell quotient occurs when the two
patterns have no cells in common, and a three-cell quotient occurs when the two patterns
have active cells in common. Let k be the number of active cells in common between the two
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Figure 3. Left: network with n attributes and two learned patterns with k cells in common. Cells within
a pattern are all-to-all connected, though not all connections are indicated. Center: corresponding quotient
network obtained by identifying cells with the same color when k > 0. Right: corresponding quotient network
obtained by identifying cells with the same color when k = 0.

patterns, as depicted in Figure 3 (left) (note that k = 2 in the network in Figure 2.) The
three-cell quotient network (k > 0) is shown in Figure 3 (center), and the two-cell quotient
network (k = 0) in Figure 3 (right).

The equations governing the two-cell quotient are identical to the equations for the simplest
rivalry model with recurrent excitation (cf. Shpiro et al. (2007) and Wilson (2009)):

(1.2)

ε ȧE = −aE + G (I + (n− 1)waE − βbE − gaH
)
,

ȧH = aE − aH ,

ε ḃE = −bE + G (I + (n− 1)wbE − βaE − gbH
)
,

ḃH = bE − bH ,

where α0 = (n − 1)w is the effective recurrent excitation. As noted previously, we will
concentrate on the case Ia = Ib = I, where (1.2) has the transposition symmetry

(1.3) τ(aE , aH , bE , bH) = (bE , bH , aE , aH).

The model equations for the three-cell quotient network of Figure 3 when the two patterns
have k active cells in common are

(1.4)

ε ˙aE = −aE + G(I + wkcE + w(n − k − 1)aE − βbE − gaH) ,
ȧH = −aH + aE ,

ε ˙bE = −bE + G(I + wkcE + w(n − k − 1)bE − βaE − gbH) ,

ḃH = −bH + bE,
εċE = −cE + G(I + w(k − 1)cE + w(n− k)(aE + bE)− gcH) ,
ċH = −cH + cE ,

where I is the common input. Observe that cell c has k − 1 self-excitatory connections from
the other cells common to the two patterns; n− k reciprocal excitatory connections from the
cells not in common in patterns 1 and 2; and no inhibitory connections, since there is no other
active cell in its column. We reiterate that the a, b cells in the quotient network have effective
recurrent excitation

(1.5) αk = w(n− 1− k)
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even though the corresponding cells in the original network had no recurrent excitation. Note
that when k = 0 we recover α0 from (1.5). The effective recurrent excitation in the c cells is
(k − 1)w. Observe that (1.4) has the nontrivial transposition symmetry

(1.6) τ(aE , aH , bE , bH , cE , cH) = (bE , bH , aE , aH , cE , cH).

Rivalry, winner-take-all, and fusion. In the binocular rivalry literature three types of
states are described: rivalry, winner-take-all, and fusion. With respect to models these terms
have the following interpretations:

• rivalry refers to oscillations in which two or more patterns alternate in dominance,
• winner-take-all (WTA) refers to a state in which the patterns are in equilibrium with

one pattern at a higher activity level than the others, and
• fusion refers to an equilibrium in which patterns have equal values.

In the language of coupled cell theory, these states are represented by oscillations, asynchro-
nous equilibria, and synchronous equilibria, respectively.

1.5. Takens–Bogdanov bifurcations as organizing centers. Systems (1.2) and (1.4) have
five parameters (namely, w, g, ε, β, and I) and an unspecified function G. It is difficult to
determine all of the dynamics that might be present in these systems for different parameter
values. From a dynamical systems perspective there are two ways to proceed. First, one
can simulate the systems for a series of parameter values and a choice of gain function and
then use numerical continuation to organize transitions in model behavior. Second, one can
find degenerate singularities at special parameter values and understand (part of) the global
dynamics by analyzing the unfolding of that degenerate singularity. Such singularities are
called organizing centers.

Shpiro et al. (2007) and Curtu et al. (2008) take the first approach. They show in a
variety of models, including the two-cell model (1.2) with α0 = 0, that fusion states transition
to rivalry to WTA and back again as the input I is increased. See Figure 3 in Curtu (2010).
We find similar results in the three-cell model (1.4). Figure 4 (left) shows the existence of
states as a function of I; Figure 4 (right) shows simulations at particular values of I. Note that
there is a Hopf bifurcation on the synchronous branch, followed by a pitchfork bifurcation.
Then there is a Hopf bifurcation on the asynchronous branch. The branch of oscillations starts
at the Hopf bifurcation on the synchronous branch and ends at the Hopf bifurcation on the
asynchronous branch. As I continues to increase, this sequence is reversed.

In this paper we take the second approach. Based on simulation results (such as those in
Figure 4), we conjectured a symmetry-breaking TB bifurcation as an organizing center.

Two observations led to this conjecture. First, the symmetry τ is important. This can
be seen in the two-cell simulations where the two units oscillate a half-period out of phase.
Such periodic solutions can result from symmetry-breaking Hopf bifurcation. In the three-cell
system (1.4) the analogous bifurcation leads to periodic solutions where units a and b oscillate
a half-period out of phase and cell c oscillates at twice the frequency. These periodic solutions
have also been observed in simulations; see Figure 4 (right).

Second, the fact that on variation of I a symmetry-breaking Hopf bifurcation is followed
by a pitchfork bifurcation in Figure 4 (left) suggests that the dynamics can be (partially)
organized by a singularity in which these two bifurcations coalesce. Such a singularity occurs
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Figure 4. Left: activity values aE (upper) and cE (lower) as a function of I for system (1.4) with the
sigmoidal gain (4.9). Curves show steady states, and circles show the bounds of periodic orbits. Upper right:
simulations in five regions noted at top left; time series show in order fusion, rivalry, WTA, rivalry, and fusion.
Activity aE is shown in blue, bE in red, and cE in black. Lower right: multiplicity of stable solutions (between
rivalry and WTA) shown at I = 1.03 and I = 1.75. Here w = 0.25, n = 5, k = 2, β = 1.5, g = 1, ε = 0.5.
These parameter values were identified by first finding a TB bifurcation in the three-cell reduction.

when there is a double zero eigenvalue in the Jacobian at a synchronous equilibrium; that
singularity type is known as the TB bifurcation (see Guckenheimer and Holmes (1983)). This
TB bifurcation is not the standard one because of the τ symmetry in (1.6), but it is also
studied in Guckenheimer and Holmes (1983).

We show that a symmetry-breaking TB bifurcation is present in both the two- and three-
cell models (1.2) and (1.4) (see Propositions 3.4 and 3.5) and that various types of behavior,
such as WTA, rivalry, and fusion, are present in the unfolding of this bifurcation (see Figure 5).
Moreover, we show that in these models this bifurcation always occurs from a stable fusion
state (see Theorem 3.7).

1.6. Organization of paper. In section 2 we use group representation theory to give a
necessary and sufficient condition (2.1) that guarantees that for all ε solutions that are stable
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in the two-cell and three-cell reductions of two-pattern networks are also stable in Wilson’s
model. See Theorem 2.2. Therefore, under these conditions, we can reduce the study of
the original 2mn-dimensional two-learned-pattern rivalry system to a four- or six-dimensional
system, depending on whether the two patterns have active cells in common. The results in
this section also enable us to prove in Theorem 3.7 that the dynamic reduction to the small
networks is valid in a neighborhood of TB points whether or not (2.1) holds.

In section 3 we show how the symmetry-breaking TB singularity arises at certain critical
parameter values; hence for parameter values near the critical ones we can further reduce
the four- or six-dimensional system to a planar system. See Propositions 3.4 and 3.5. Con-
sequently, we can infer the existence of parameter regions with competition between stable
WTA equilibria and stable rivalry oscillations. See Figure 6.

In section 4 we discuss a degeneracy associated to having the input I as a distinguished
bifurcation parameter. We show that implications that follow from the existence of this
degeneracy can be verified numerically for sigmoidal gain functions. We observe that even
though the TB singularity, its universal unfolding, and its degenerate distinguished parameter
I have only local implications in parameter space, these implications seem to be valid over a
large range of parameter space, at least in numerical explorations.

In section 5 we explore how parameter variation, particularly the amount of recurrent
excitation, alters the qualitative behavior of solutions in the full system. We show that when
the two patterns have no cells in common, increasing the amount of recurrent excitation
causes the fusion state to lose stability at lower values of the input signal strength I (see
Proposition 5.1) and can affect whether the transition is to rivalry or WTA (see Remark 5.4).
On the other hand, increasing the number of cells in common between the two patterns
increases the value of I where the fusion state loses stability (see Proposition 5.3).

The paper ends in section 6 with comments on future directions. We briefly discuss the
quotient networks that can arise in reduction of the generalized rivalry model with three
learned patterns, and we discuss generalized rivalry systems with many learned patterns.

2. Stability of synchrony subspaces. Assuming that the gain function is conforming,
Proposition 1.2 proves that cells that are inactive in all learned patterns stay quiet over time;
that is, they converge to a base activity level of 0. It follows that the system can be reduced
to a network consisting of those cells that are active in at least one learned pattern. See
Figure 3 (left). In this section we assume that the reduction to the network of active cells
has been performed, and we weaken the definition of gain function to be either conforming or
sigmoidal.

The network in Figure 3 (left) has a number of symmetries. Indeed, every column per-
mutation that preserves the common cells (and hence the cells that are not in common) is a
symmetry of the network. That symmetry group is

Σ = Sn−k × Sk.

The fixed-point subspace of Σ is the subspace obtained by setting the noncommon cells A in
pattern 1 equal, the noncommon cells B in pattern 2 equal, and the common cells C equal.
We denote

S = Fix(Σ).
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It follows from general theory that S is flow-invariant and that the restriction of the dynamics
to S is an admissible system of the three-cell quotient network in Figure 3 (right). See
Golubitsky, Stewart, and Török (2005). Let F be an admissible system for the active cells
network. Then flow-invariance just means that F : S → S.

Let X ∈ S, and let (dF )X be the Jacobian of F at X. It follows from Lemma 2.4 and
Σ-equivariance that (dF )X leaves the orthogonal complement S⊥ invariant.

Definition 2.1. The vector field F is locally attracting at X ∈ S if all eigenvalues of
(dF )X |S⊥ have negative real part. If F is locally attracting at every point in X ∈ S, then F
is locally attracting globally on S.

Theorem 2.2 gives conditions on F that show when the space S is locally attracting
globally on S, so that much of the dynamics of the mn-cell attribute network can be under-
stood by analyzing the quotient dynamics on the appropriate two-cell or three-cell network.
Theorem 3.7 uses these results to show that the subspace S is locally attracting near every
symmetry-breaking TB bifurcation point. That is, near every TB point we can reduce the
study of a system of 2mn equations to the study of the two normal form equations associated
to the unfolding of this symmetry-breaking bifurcation.

2.1. Local attraction globally on S. Numerical exploration seems to imply that S is
locally attracting globally on S. We have found a necessary and sufficient condition that
validates this observation.

Theorem 2.2. Suppose the gain function G is smooth and nondecreasing and has a unique
point zmax, where G′′(zmax) = 0.

(a) If S is locally attracting globally on S for all small ε, then

(2.1) β <
1

G′(zmax)
+ w.

(b) If (2.1) is valid, then S is locally attracting globally on S for all ε.
Remark 2.3. (a) Even if (2.1) fails, S can still be locally attracting along individual tra-

jectories. In Theorem 3.7 we show this comment is valid for all bounded trajectories in the
unfolding of a TB singularity.

(b) If, as Wilson (2009) assumes, the inhibition β is stronger than the excitation w, then
(2.1) states that for local attraction globally on S, the degree to which β can exceed w is
bounded by the slope of the gain function G.

The proof requires use of the symmetries Σ and a number of calculations. In particular,
in order to prove Theorem 2.2 we use irreducible representations and isotypic components of
Σ (Lemma 2.4), decompositions of the Jacobian based on these results (Proposition 2.8), and
explicit calculations based on the exact form of the differential equations to compute the signs
of eigenvalues (Lemmas 2.9–2.11). The proof of Theorem 2.2 is given in subsection 2.5.

2.2. Irreducible representations and isotypic components. In the next subsection we
show that symmetry simplifies the computation of eigenvalues of Jacobian matrices through
the use of irreducible representations and isotypic components. In this subsection we introduce
these concepts and apply them to the two-pattern networks. Our reference is the second
chapter of Golubitsky, Stewart, and Schaeffer (1988).
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An action of a finite group Σ on R
n can always be decomposed into a direct sum of

irreducible representations; that is,

(2.2) R
n =W1 ⊕ · · · ⊕Wk,

where Σ acts irreducibly on each Wj. This decomposition need not be unique; nonuniqueness
stems from the occurrence of isomorphic irreducible representations in (2.2).

However, uniqueness can be recovered by considering isotypic components. Given an
irreducible representation W , we can form the isotypic component V of W , which is the
sum of all irreducible representations in R

n that are isomorphic to W . Renumber so that
W1, . . . ,W� lists the distinct irreducible representations (� ≤ k) of Σ acting on R

n, and let
V1, . . . , V� be the associated isotypic components. Theory shows that

(2.3) R
n = V1 ⊕ · · · ⊕ V�

and this decomposition is unique.
We denote the active cells by X and partition the active cells into three groups: A (active

cells in pattern A), B (active cells in pattern B), and C (common active cells), where

A = (X11, . . . ,X1,n−k),
B = (X21, . . . ,X2,n−k),
C = (X1,n−k+1, . . . ,X1,n).

To reduce the notational complexity we set ai = X1i, bi = X2i, and ci = X1,n−k+i so that
A = (a1, . . . , an−k), B = (b1, . . . , bn−k), and C = (c1, . . . , ck).

The subgroup Sn−k acts on X by simultaneously permuting the aj and bj and fixing c.
The subgroup Sk acts on X by permuting the ci and fixing a and b. It follows that

S = Fix(Σ) = {(a, . . . , a, b, . . . , b, c, . . . , c) : a, b, c ∈ R
2}.

Note that Fix(Σ) is six-dimensional and that the subgroup Σ acts trivially on Fix(Σ).
We next write the orthogonal complement of Fix(Σ) as a direct sum of irreducible repre-

sentations. Define

WE
A = {((AE , 0), 0, 0) : aE1 + · · ·+ aEn−k = 0},

WH
A = {((0, AH ), 0, 0) : aH1 + · · · + aHn−k = 0},

WA = WE
A ⊕WH

A = {(A, 0, 0) : a1 + · · ·+ an−k = 0},
and similarly for B and C.

Lemma 2.4. The action of Σ on each subspace WE
A ,W

H
A ,W

E
B ,W

H
B ,W

E
C ,W

H
C is irreducible,

and
Fix(Σ)⊥ =WE

A ⊕WH
A ⊕WE

B ⊕WH
B ⊕WE

C ⊕WH
C .

The isotypic decomposition of the phase space of the two-pattern network is

R
2n = Fix(Σ)⊕ V1 ⊕ V2,

where V1 =WA ⊕WB and V2 =WC .
Proof. The actions of Σ on WE

C and WH
C are isomorphic, and similarly for the A and B

subspaces. The action of Σ on WE
A and WE

B are also isomorphic. Finally, the actions of Σ on
WE

A and WE
C are not isomorphic (they have different kernels).
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The synchronous symmetry. When the inputs are equal, the network system has an extra
Z2 symmetry τ defined in (1.6). The actions of Σ and τ commute; hence there is an action
of Σ ⊕ Z2(τ) on the (A,B,C) phase space. Note that Z2 acts trivially on WC and leaves
WA ⊕WB invariant. Let

V+ = {(A,A, 0) : a1 + · · ·+ an−k = 0}, V− = {(A,−A, 0) : a1 + · · ·+ an−k = 0},
and note that τ acts trivially on V+ and as −Id on V−. This discussion proves the following
lemma.

Lemma 2.5. The isotypic decomposition of Fix(Σ⊕ Z2)
⊥ is

Fix(Σ⊕ Z2)
⊥ = V+ ⊕ V− ⊕ V2.

2.3. Commuting linear maps. Suppose that σ ∈ Σ is a symmetry of the differential
equation Ẋ = F (X), that is, F (σX) = σF (X), and that σX0 = X0. The chain rule implies
that

σ(DF )X0 = (DF )X0σ.

It follows that the Jacobian matrix J = (DF )X0 commutes with Σ for any point X0 ∈ Fix(Σ).
The basic theorem about commuting linear maps J and isotypic components V states that

J(V ) ⊂ V.

Hence, J is block diagonal with respect to the isotypic decomposition (2.3).
In fact, symmetry can further specify J . Suppose that the isotypic component is written

as
V = U1 ⊕ · · · ⊕ Um,

where the Uj are isomorphic irreducible representations. Then the linear map J |V has the
block form

(2.4) J |V =

⎛
⎜⎝

J11 · · · J1m
...

...
...

Jm1 · · · Jmm

⎞
⎟⎠ ,

where Jij : Uj → Ui commutes with the action of Σ on the Uj.
Next, we recall that real irreducible representations U come in two types: absolutely

irreducible and nonabsolutely irreducible. The absolutely irreducible representations are the
ones for which every commuting linear map is a scalar multiple of the identity.

Example 2.6. Suppose the permutation group S� acts on R
� by permuting coordinates. It

is well known that the space

U = {(y1, . . . , y�) ∈ R
� : y1 + · · · + y� = 0}

is an absolutely irreducible representation of S�.
If the representation of Σ on U is absolutely irreducible and dimU = p, then

(2.5) J |V =

⎛
⎜⎝

χ11Ip · · · χ1mIp
...

...
...

χm1Ip · · · χmmIp

⎞
⎟⎠ ,
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where χij ∈ R. Note that the eigenvalues of the matrix of J |V given in (2.5) are just the
eigenvalues of the m×m matrix

(2.6) χ =

⎛
⎜⎝

χ11 · · · χ1m
...

...
...

χm1 · · · χmm

⎞
⎟⎠

each repeated p times, a huge reduction.
Suppose we write the vector field as Ẋ = F(X) and the Jacobian matrix as JX = (DF)X .

The theory just outlined implies that JX : V1 → V1 and JX : V2 → V2, and we denote

J1
X = JX |V1 and J2

X = JX |V2.
Next we use the fact that the irreducible representations of Σ are absolutely irreducible.

Thus
(2.7)

J1
X ≡ JX |(WE

A ⊕WH
A ⊕WE

B ⊕WH
B ) =

⎛
⎜⎜⎝

ζ11In−k−1 ζ12In−k−1 ζ13In−k−1 ζ14In−k−1

ζ21In−k−1 ζ22In−k−1 ζ23In−k−1 ζ24In−k−1

ζ31In−k−1 ζ32In−k−1 ζ33In−k−1 ζ34In−k−1

ζ41In−k−1 ζ42In−k−1 ζ43In−k−1 ζ44In−k−1

⎞
⎟⎟⎠ .

Similarly,

(2.8) J2
X ≡ JX |(WE

C ⊕WH
C ) =

(
ξ11Ik−1 ξ12Ik−1

ξ21Ik−1 ξ22Ik−1

)
.

Lemma 2.7. Let X ∈ Fix(Σ). The eigenvalues of the Jacobian matrix JX restricted to
Fix(Σ)⊥ are given by the eigenvalues of the 2× 2 matrix

ξ =

(
ξ11 ξ12
ξ21 ξ22

)

repeated k − 1 times and by the eigenvalues of the 4× 4 matrix

ζ =

⎛
⎜⎜⎝

ζ11 ζ12 ζ13 ζ14
ζ21 ζ22 ζ23 ζ24
ζ31 ζ32 ζ33 ζ34
ζ41 ζ42 ζ43 ζ44

⎞
⎟⎟⎠

repeated n− k − 1 times.
Proof. The proof follows from (2.7) and (2.8) in the way that (2.6) follows from (2.5).
Recall that a point X ∈ S is synchronous if τX = X. More precisely, τ(A,B,C) =

(B,A,C), so X is synchronous if A = B. At such points the computation of the eigenvalues
of JX further simplifies since JX will commute with the matrix

τ =

⎛
⎝ 0 I2(n−k) 0

I2(n−k) 0 0

0 0 I2k

⎞
⎠ .
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It follows that ζ has the form

(2.9) ζ =

(
φ ψ
ψ φ

)
,

where φ,ψ are 2 × 2 matrices. The 2 × 2 matrices corresponding to JX |V+ and JX |V− are
φ± ψ. Note that

φ± ψ =

(
ζ11 ± ζ13 ζ12 ± ζ14
ζ21 ± ζ23 ζ22 ± ζ24

)
.

Proposition 2.8. Let X ∈ S be a synchronous point. Then S is locally attracting at X if
and only if

tr(φ+ ψ) < 0 and det(φ+ ψ) > 0,
tr(φ− ψ) < 0 and det(φ− ψ) > 0,

tr(ξ) < 0 and det(ξ) > 0.

Proof. The eigenvalues of a 2× 2 matrix have negative real part if and only if the matrix
has negative trace and positive determinant.

2.4. Computation of ζ and ξ from F . In this subsection we compute the matrices ξ and
ζ (and hence φ and ψ) from F . In cell-type coordinates the equations for the two-pattern
network in Figure 3 (left) have the form

F(A,B,C) = (A(A,B,C),B(A,B,C), C(A,B,C)),

where A = (A1, . . . ,An−k), B = (B1, . . . ,Bn−k), and C = (C1, . . . , Ck).
Lemma 2.9. Suppose that X ∈ S. Then the entries to the matrix ξ are

ξ11 =
∂CE

1

∂cE1
− ∂CE

2

∂cE1
, ξ21 =

∂CE
1

∂cH1
− ∂CE

2

∂cH1
, ξ22 =

∂CH
1

∂cH1
− ∂CH

2

∂cH1
, ξ12 =

∂CH
1

∂cE1
− ∂CH

2

∂cE1
.

Proof. In the cell coordinates the Jacobian is

DF =

⎛
⎝ DAA DAB DAC

DBA DBB DBC
DCA DCB DCC

⎞
⎠ ,

sinceWE
A andWE

B are isomorphic absolutely irreducible representations of Σ that are distinct
from the absolutely irreducible representation WE

C . The invariant subspace V2 implies

J2
X(V2) = (DCC)X(V2).

Order the c variables by (CE , CH) = (cE1 , . . . , c
E
k , c

H
1 , . . . , c

H
k )t, and let

v2 = (1,−1, 0, . . . , 0) ∈ R
k and vE2 = (v2, 0)

t ∈ R
2k.

Order the C coordinates of F by C = (CE , CH). Then

J2
X =

(
(DCECE)X (DCECH)X
(DCHCE)X (DBHCH)X

)
.
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Now compute

(2.10) J2
Xv

E
2 =

(
(DCECE)Xv2
(DCHCE)Xv2

)
=

(
ξ11v2
ξ21v2

)
.

By equating the first coordinate in (2.10) we find the first identity, and by equating the
(k + 1)st coordinate we verify the second identity. We do this similarly for the third and
fourth identities.

Lemma 2.10. Suppose that X ∈ S. Then the entries to the matrix ζ are

ζ11 =
∂AE

1

∂aE1
− ∂AE

2

∂aE1
, ζ12 =

∂AH
1

∂aE1
− ∂AH

2

∂aE1
, ζ13 =

∂BE
1

∂aE1
− ∂BE

2

∂aE1
, ζ14 =

∂BH
1

∂aE1
− ∂BH

2

∂aE1
,

ζ21 =
∂AE

1

∂aH1
− ∂AE

2

∂aH1
, ζ22 =

∂AH
1

∂aH1
− ∂AH

2

∂aH1
, ζ23 =

∂BE
1

∂aH1
− ∂BE

2

∂aH1
, ζ24 =

∂BH
1

∂aH1
− ∂BH

2

∂aH1
,

ζ31 =
∂AE

1

∂bE1
− ∂AE

2

∂bE1
, ζ32 =

∂AH
1

∂bE1
− ∂AH

2

∂bE1
, ζ33 =

∂BE
1

∂bE1
− ∂BE

2

∂bE1
, ζ34 =

∂BH
1

∂bE1
− ∂BH

2

∂bE1
,

ζ41 =
∂AE

1

∂bH1
− ∂AE

2

∂bH1
, ζ42 =

∂AH
1

∂bH1
− ∂AH

2

∂bH1
, ζ43 =

∂BE
1

∂bH1
− ∂BE

2

∂bH1
, ζ44 =

∂BH
1

∂bH1
− ∂BH

2

∂bH1
.

Proof. We compute ζij in the same way as we did for ξij. The invariant subspace V1
implies

J1
X(V1) =

(
(DAA)X (DAB)X
(DBA)X (DBB)X

)
(V1).

Order the A,B variables by

(A,B) = (aE1 , . . . , a
E
n−k, a

H
1 , . . . , a

H
n−k, b

E
1 , . . . , b

E
n−k, b

H
1 , . . . , b

H
n−k, ),

and order A,B similarly. Note that

J1
X =

⎛
⎜⎜⎝

(DAEAE)X (DAEAH)X (DAEBE)X (DAEBH)X
(DAHAE)X (DAHAH)X (DAHBE)X (DAHBH)X
(DBEAE)X (DBEAH)X (DBEBE)X (DBEBH)X
(DBHAE)X (DBHAH)X (DBHBE)X (DBHBH)X

⎞
⎟⎟⎠ .

Let v1 = (1,−1, 0, . . . , 0) ∈ R
n−k and vE1 = (v1, 0, 0, 0)

t ∈ R
4(n−k). Then

(2.11) J1
Xv

E
1 =

⎛
⎜⎜⎝

(DAEAE)Xv1
(DAHAE)Xv1
(DBEAE)Xv1
(DBHAE)Xv1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ζ11v1
ζ21v1
ζ31v1
ζ41v1

⎞
⎟⎟⎠ .

By equating coordinates in (2.11), we find ζ11, . . . , ζ4,1. A similar calculation yields ζij.



GENERALIZED RIVALRY NETWORK WITH TWO PATTERNS 1285

Explicit computation of ζ and ξ. Our next task is to calculate the entries of ζ and ξ
from the actual differential equations of the network in Figure 3 (left).

Lemma 2.11. Assume that X ∈ S. Then the entries of ξ and ζ are

ξ11 = −1

ε
(1 + wG′(zc)), ξ21 =

1

ε

{−G′(zc)g
}
, ξ22 = −1, ξ12 = 1,

ζ11 = −1

ε
(1 + wG′(za)), ζ12 = 1, ζ13 = −1

ε
βG′(zb), ζ14 = 0,

ζ21 = −1

ε
gG′(za), ζ22 = −1, ζ23 = 0, ζ24 = 0,

ζ31 = −1

ε
βG′(za), ζ32 = 0, ζ33 = −1

ε
(1 + wG′(zb)), ζ34 = 1,

ζ41 = 0, ζ42 = 0, ζ43 = −1

ε
gG′(zb), ζ44 = −1,

where

(2.12)

zc = I + w
{
(n− k)(aE + bE) + (k − 1)cE

}− gcH ,

za = I + w
{
(n− k − 1)aE + kcE

}− βbE − gaH ,

zb = I + w
{
(n− k − 1)bE + kcE

}− βaE − gbH ,

and aE, aH , bE , bH , cE , cH are the common values of aEi , a
H
i , bEi , b

H
i , c

E
i , c

H
i for all i.

Proof. The differential equations of the network in Figure 3 (left) have the form

(2.13)

ȧ1 = A1(a1, a2, . . . , an−k, b1, c1, . . . , ck)
...

...
...

ȧn−k = An−k(an−k, a1, . . . , an−k−1, bn−k, c1, . . . , ck)

ḃ1 = B1(b1, b2, . . . , bn−k, a1, c1, . . . , ck)
...

...
...

ḃn−k = Bn−k(bn−k, b1, . . . , bn−k−1, an−k, c1, . . . , ck)

ċ1 = C1(c1, c2, . . . , ck, a1, . . . , an−k, b1, . . . , bn−k)
...

...
...

ċk = Ck(ck, c1, . . . , ck−1, a1, . . . , an−k, b1, . . . , bn−k).

The overline indicates that the functions are independent of the ordering of the variables under
the line. Specifically,

A1(a1, a2, . . . , an−k, b1, c1, . . . , ck)

=

⎡
⎢⎣ 1

ε

{
−aE1 + G

(
I + w

{
n−k∑
s=2

aEs +

k∑
s=1

cEs

}
− βbE1 − gaH1

)}

aE1 − aH1

⎤
⎥⎦,
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B1(b1, b2, . . . , bn−k, a1, c1, . . . , ck)

=

⎡
⎢⎣ 1

ε

{
−bE1 + G

(
I + w

{
n−k∑
s=2

bEs +

k∑
s=1

cEs

}
− βaE1 − gbH1 )

)}

bE1 − bH1

⎤
⎥⎦,

C1(c1, c2, . . . , ck, a1, . . . , an−k, b1, . . . , bn−k)

=

⎡
⎢⎣ 1

ε

{
−cEs + G

(
I + w

{
n−k∑
s=1

(aEs + bEs ) +
k∑

s=2

cEs

}
− gcH1 )

)}

cE1 − cH1

⎤
⎥⎦ .

We compute the attraction to S at a point X = (a, . . . , a, b, . . . , b, c, . . . , c) ∈ S. Hence

C1(c1, c2, . . . , ck, a1, . . . , an−k, b1, . . . , bn−k) =

[ 1

ε

{−cE1 + G(zc1)
}

cE1 − cH1

]
,

C2(c2, c1, c3, . . . , ck, a1, . . . , an−k, b1, . . . , bn−k) =

[ 1

ε

{−cE2 + G(zc2)
}

cE2 − cH2

]
,

A1(a1, a2, . . . , an−k, b1, c1, . . . , ck) =

[ 1

ε

{−aE1 + G(za1)
}

aE1 − aH1

]
,

A2(a2, a1, a3, . . . , an−k, b2, c1, . . . , ck) =

[ 1

ε

{−aE2 + G(za2)
}

aE2 − aH2

]
,

B1(b1, b2, . . . , bn−k, a1, c1, . . . , ck) =

[ 1

ε

{−bE1 + G(zb1)
}

bE1 − bH1

]
,

B2(b2, b1, b3, . . . , bn−k, a2, c1, . . . , ck) =

[ 1

ε

{−bE2 + G(zb2)
}

bE2 − bH2

]
,

where

zc1 = I + w

⎧⎨
⎩

n−k∑
s=1

(aEs + bEs ) +

k∑
s 	=i

cEs

⎫⎬
⎭− gcH1 ,

zc2 = I + w

⎧⎨
⎩

n−k∑
s=1

(aEs + bEs ) +
k∑

s 	=2

cEs

⎫⎬
⎭− gcH2 ,

za1 = I + w

⎧⎨
⎩

n−k∑
s 	=1

aEs +
n∑

s=n−k+1

cEs

⎫⎬
⎭− βbE1 − gaH1 ,

za2 = I + w

⎧⎨
⎩

n−k∑
s 	=2

aEs +

n∑
s=n−k+1

cEs

⎫⎬
⎭− βbE2 − gaH2 ,
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zb1 = I + w

⎧⎨
⎩

n−k∑
s 	=1

bEs +
n∑

s=n−k+1

cEs

⎫⎬
⎭− βaE1 − gbH1 ,

zb2 = I + w

⎧⎨
⎩

n−k∑
s 	=2

bEs +

n∑
s=n−k+1

cEs

⎫⎬
⎭− βaE2 − gbH2 .

Note that for points in S, zc1 = zc2 = zc, za1 = za2 = za, zb1 = zb2 = zb. Otherwise, za, zb, zc
are arbitrary points in R. Lemmas 2.9 and 2.10 give the desired results for ξij and ζij.

Lemma 2.12. For all X ∈ S the eigenvalues of the 2× 2 matrix ξ have negative real part.
Proof. It follows from Lemma 2.11 that

tr (ξ) = ξ11 + ξ22 = −1

ε
(1 + wG′(zc))− 1

and

det(ξ) = ξ11ξ22 − ξ12ξ21 =
1

ε
(1 + wG′(zc) + G′(zc)g).

Since G′ ≥ 0, we have tr(ξ) < 0 and det(ξ) > 0.

2.5. Proof of Theorem 2.2. Lemma 2.7 states that Fix(Σ) is locally attracting only if the
eigenvalues of ξ and ζ have negative real part. Lemma 2.12 states that at each point X ∈ S,
the eigenvalues of ξ have negative real part. So we need only show that ζ has eigenvalues with
negative real part. By Lemma 2.11,

(2.14) ζ =
1

ε
ζ̂ ≡ 1

ε

⎛
⎜⎜⎝

−(1 + wG′(za)) ε −βG′(zb) 0
−gG′(za) −ε 0 0
−βG′(za) 0 −(1 + wG′(zb)) ε

0 0 −gG′(zb) −ε

⎞
⎟⎟⎠ .

Note that ζ has negative real part eigenvalues if and only if ζ̂ has negative real part eigenvalues.
Observe that when ε = 0, ζ̂ has two zero eigenvalues with eigenvectors v1 = (0, 1, 0, 0)t

and v2 = (0, 0, 0, 1)t . Rewrite ζ̂ in the basis {v1, v2, v3, v4}, where v3 = (1, 0, 0, 0)t and v4 =
(0, 0, 1, 0)t . In this basis, ζ̂ has the form

ζ̃ =

( −εI2 A
εI2 B

)
,

where

A =

( −gG′(za) 0
0 −gG′(zb)

)
and B =

( −(1 + wG′(za)) −βG′(zb)
−βG′(za) −(1 + wG′(zb))

)
.

So we need to discuss when the eigenvalues of ζ̃ all have negative real part.
Proof of part (a). If we assume that the eigenvalues of ζ̃ have negative real part for all

ε ≈ 0, then the eigenvalues of B must have negative real part. Note that tr(B) < 0; so the
eigenvalues of B have negative real part if and only if

(2.15) det(B) = 1 + w(G′(za) + G′(zb)) + (w2 − β2)G′(za)G′(zb) > 0.
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The inequality det(B) > 0 can be rewritten as

(2.16)

(
1

G′(za)
+w

)(
1

G′(zb)
+ w

)
> β2.

Since we evaluate the Jacobian at all points in S, the points za and zb are arbitrary. Hence,
the minimum of the left-hand side of (2.16) must be greater than β2, and that minimum is(

1

G′(zmax)
+ w

)2

> β2.

Upon taking square roots, we have

(2.17) β <
1

G′(zmax)
+ w.

So if all eigenvalues of ζ̃ have negative real part, then (2.1) must hold.
Proof of part (b). We assume (2.17) is valid. If ε > 0 and g = 0, then ζ̃ is block lower

triangular and all of its eigenvalues have negative real part. Continuity of eigenvalues implies
that the converse can fail only if there is a point in S for which ζ̃ has an eigenvalue on the
imaginary axis, that is, an eigenvalue of the form τi. We show that this is not possible. Let

P (λ) = λ4 + pλ3 + qλ2 + rλ+ s

be the characteristic polynomial of ζ̃, where

s = det(ζ̃) = ε2(det(B) + g(G′(za) + G′(zb)) + (g2 + 2gw)G′(za)G′(zb)) > 0

by (2.15). It follows that 0 is not an eigenvalue when (2.15) is satisfied.
If ζ̃ has an eigenvalue iτ , where τ �= 0, then

0 = P (iτ) = τ4 − pτ3i+ qτ2 + rτi+ s.

Equating real and imaginary parts yields τ2 = r/p and pqr − r2 − sp2 = 0. We show that

(2.18) pqr − r2 − sp2 > 0,

and hence ζ̃ does not have pure imaginary eigenvalues. Tedious calculations verified by Math-
ematica show that

P (λ) = λ4 +
(
2ε+ 2 + w(G′(za) + G′(zb)

)
λ3

+
(
det(B) + 4ε+ ε2 + (2w + g)ε(G′(za) + G′(zb))

)
λ2

+ ε
(
2 det(B) + 2ε+ (wε+ g(1 + ε))(G′(za) + G′(zb)) + 2wgG′(za)G′(zb)

)
λ

+ ε2(det(B) + g(G′(za) + G′(zb)) + (g2 + 2gw)G′(za)G′(zb))

and

pqr − r2 − sp2 = εγ2 det(B) + 2εγ1 [det(B) + ε (ε+ γ1)]
2 + ε2 (γ2(ε+ γ1) + γ3) ,
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where

γ1 = 2 + w(G′(za) + G′(zb)),
γ2 = 2g(1 + ε)2(G′(za) + G′(zb)) + gw(1 + 3ε)(G′(za)2 + G′(zb)2)

+ 2gw(1 + ε+ γ1)G′(za)G′(zb),

γ3 = g2
(G′ (za)− G′(zb

))2
(G′ (za)w + ε+ 1)(G′(zb

)
w + ε+ 1).

Since γ1, γ2, γ3 are all positive, condition (2.18) is satisfied whenever det(B) > 0.

3. Bifurcations from fusion. In this section we discuss steady-state and Hopf bifurcations
from synchronous equilibria for a smooth gain function, showing how symmetry-breaking TB
bifurcations and their universal unfoldings occur.

3.1. Bifurcations from fusion in two-cell reduction (1.2). We show that steady-state
(saddle-node) bifurcations to synchronous equilibria occur only when the synchronous state is
unstable and that steady-state (pitchfork) bifurcations to asynchronous equilibria can occur
from a stable synchronous equilibrium. We also see how bifurcation from synchronous and
asynchronous equilibria leads to rivalry and WTA regimes. These calculations are similar to
those in Curtu et al. (2008), but are needed to identify TB points.

Synchronous equilibria of the two-cell system (1.2). Recall that (1.2) has the coupled
system form

(3.1)
ȧ = A(a, b),

ḃ = A(b, a),

where a = (aE , aH) and b = (bE , bH). Moreover, systems (3.1) have the transpositional
symmetry

(3.2) τ(a, b) = (b, a).

Synchronous states satisfy b = a.
Specifically, equilibria of (1.2) satisfy aE = aH and bE = bH , and synchronous equilibria

also satisfy x ≡ aE = bE = aH = bH ≥ 0. It then follows from (1.2) that

(3.3) x = G (I + ρx) ,

where

(3.4) ρ ≡ α0 − β − g.

Lemma 3.1. Suppose G is conforming with threshold θ. If I > θ, then (3.3) has a unique
solution when ρ ≤ 0 and has one to three solutions when ρ > 0.

Proof. First note that when I + ρx ≤ θ, (3.3) has no solution. The reason is that, on
the one hand, x = G(I + ρx) = 0; whereas, on the other hand, when x = 0 and I > θ,
G(I + ρx) = G(I) > 0, which is a contradiction. So we can assume that I + ρx > θ.
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Observe that solving (3.3) is equivalent to solving

(3.5) ϕ(x) ≡ G(I + ρx)− x = 0

when x ≥ 0. Note that

(3.6) ϕ′(x) = ρG′(I + ρx)− 1 and ϕ′′(x) = ρ2G′′(I + ρx).

We claim that ϕ = 0 has at most three solutions. Suppose ϕ(x) = 0 has four solutions.
Then smoothness of G implies that ϕ′ has three zeros and ϕ′′ = ρ2G′′ has two zeros in the
range I + ρx > θ, which contradicts the assumption that G is conforming.

Finally, we show that (3.5) has a unique solution when ρ ≤ 0. When ρ = 0 the only
solution to (3.5) is x = G(I). Hence, we can assume ρ < 0. Note that (3.6) implies that
ϕ′(x) < 0 for all x and that ϕ is strictly decreasing. It follows that ϕ = 0 has at most one
solution. Since

ϕ(0) = G(I) > 0 and ϕ

(
−I − θ

ρ

)
= G(θ) + I − θ

ρ
=
I − θ

ρ
< 0,

it follows that (3.3) has a unique solution and that this solution is in (0,− I−θ
ρ ).

Let x0 be a solution to (3.3) and write

z0 = I + ρx0.

Then z0 is a solution of

(3.7) z0 = I + ρG(z0).

It then follows from the proof of Lemma 3.1 that

(3.8) z0 > θ

whenever x0 > 0 corresponds to a synchronous equilibrium, that is, a solution to (3.3).

Bifurcations from synchronous equilibria of (1.2). Next we discuss the Jacobian of (1.2)
at a synchronous equilibrium corresponding to a solution z0 of (3.7). It follows from symmetry
that the Jacobian of (3.1) at a synchronous equilibrium has the form

(3.9) J =

(
Λ Δ
Δ Λ

)
,

where Λ = (D1(A)(a, a) is the linearized internal dynamics and Δ = (D2A)(a, a) is the
linearized coupling. The eigenvalues of J are given by the eigenvalues of the 2 × 2 matrices
Λ±Δ. Note that the eigenvalues of Λ+Δ have synchronous eigenvectors (v, v)t. Furthermore,
saddle-node bifurcations typically occur when these eigenvalues pass through zero, whereas
the eigenvalues of Λ−Δ have asynchronous eigenvectors (v,−v)t, and, because of symmetry,
pitchfork bifurcations typically occur when these eigenvalues pass through zero.
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A calculation shows

Λ =
1

ε

(−1 + α0G′(z0) −gG′(z0)

ε −ε

)

and

Δ =
1

ε

(−βG′(z0) 0

0 0

)
.

Thus, the eigenvalues in the synchronous and asynchronous directions are the eigenvalues of
the matrices

(3.10) Λ±Δ =
1

ε

(−1 + (α0 ∓ β)G′(z0) −gG′(z0)
ε −ε

)
.

The traces and determinants of the above matrices in the synchronous and asynchronous
directions are

tr(Λ +Δ) =
−1− ε+ (α0 − β)G′(z0)

ε
,(3.11)

det(Λ +Δ) =
1− (α0 − β − g)G′(z0)

ε
,(3.12)

tr(Λ−Δ) =
−1− ε+ (α0 + β)G′(z0)

ε
,(3.13)

det(Λ−Δ) =
1− (α0 + β − g)G′(z0)

ε
.(3.14)

Remark 3.2. The stability of a synchronous equilibrium is determined by the signs of the
real parts of the eigenvalues in the asynchronous directions. To see this, use (3.11)–(3.14) to
compute

det(Λ−Δ) = det(Λ +Δ)− 2βG′(z0)
ε < det(Λ +Δ),

tr(Λ + Δ) = tr(Λ−Δ)− 2βG′(z0)
ε < tr(Λ−Δ)

since β > 0, G′(x) ≥ 0. Either the asynchronous directions are both stable or one is unstable.
If one is unstable, then the synchronous equilibrium is unstable. If they are both stable, then

0 < det(Λ−Δ) < det(Λ +Δ),
0 > tr(Λ−Δ) > tr(Λ + Δ)

and the eigenvalues in the synchronous directions are also stable.
Remark 3.3. It follows from Remark 3.2 that a synchrony-preserving steady-state bifurca-

tion (that is, det(Λ+Δ) = 0) can occur only from an unstable synchronous equilibrium since
det(Λ−Δ) < 0. Similarly, a synchrony-preserving Hopf bifurcation (that is, det(Λ + Δ) > 0
and tr(Λ + Δ) = 0) can also occur only from an unstable synchronous equilibrium since
tr(Λ−Δ) > 0. Thus, if these bifurcations exist, they must lead to unstable solutions.

In addition, a synchrony-breaking Hopf bifurcation can occur only from a stable synchro-
nous equilibrium. To see this, observe that the eigenvalues of Λ + Δ have negative real part,
since det(Λ +Δ) > det(Λ−Δ) > 0 and tr(Λ +Δ) < tr(Λ−Δ) = 0.
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To summarize, steady-state bifurcation from a stable synchronous equilibrium can occur
only via a synchrony-breaking bifurcation to a WTA state. Hopf bifurcation from a stable
synchronous equilibrium can occur only via a synchrony-breaking bifurcation to a rivalry state.
Conditions for these bifurcations are given by (3.7) and

steady-state branching (onset of WTA): 1− (α0 + β − g)G′(z0) = 0,(3.15)

Hopf bifurcation (onset of rivalry): −1− ε+ (α0 + β)G′(z0) = 0.(3.16)

3.2. Symmetry-breaking Takens–Bogdanov bifurcation. A TB bifurcation occurs when
then Jacobian has a double zero eigenvalue with a single null vector. In a coupled system of
the form (3.1) such a bifurcation can occur from a synchronous equilibrium either in the syn-
chronous or in the asynchronous directions. It follows from Remark 3.3 that a TB bifurcation
from a stable synchronous equilibrium can occur in (1.2) only in the asynchronous directions,
that is, when the trace and determinant of Λ − Δ are both zero. Note that such a TB bi-
furcation is symmetry-breaking and is not the standard codimension two bifurcation. This
symmetry-breaking bifurcation has been studied in Takens (1974); see also A TB bifurcation
occurs when then Jacobian has a double zero eigenvalue with a single null vector. In a coupled
system of the form (3.1) such a bifurcation can occur from a synchronous equilibrium either
in the synchronous or in the asynchronous directions. It follows from Remark 3.3 that a TB
bifurcation from a stable synchronous equilibrium can occur in (1.2) only in the asynchronous
directions, that is, when the trace and determinant of Λ −Δ are both zero. Note that such
a TB bifurcation is symmetry-breaking and is not the standard codimension two bifurcation.
This symmetry-breaking bifurcation has been studied in Takens (1974); see also section 7 of
Guckenheimer and Holmes (1983).

Note that the transposition symmetry τ in (3.2) acts on the center subspace (the asyn-
chronous directions) as −I2. It follows that the center manifold vector field associated to a
symmetry-breaking TB bifurcation is an odd function, which is not the case in standard TB
bifurcation. A (truncated) universal unfolding of a synchrony-breaking TB bifurcation has
the form

(3.17)
ẏ1 = y2,
ẏ2 = μ1y1 + μ2y2 + δy31 + ηy21y2.

(Note that the cubic monomials other than y31 and y
2
1y2 in the ẏ2 equation can be eliminated by

near-identity transformation.) Thus, near the TB bifurcation point and modulo higher order
terms, the four-dimensional system (1.2) may be reduced via center manifold reduction and
normal form derivation (Guckenheimer and Holmes (1983)) to a system of the form (3.17).

Solution types in unfoldings of Takens–Bogdanov singularities. The qualitative behavior
of solutions to (3.17) depends on the signs of δ and η as described in Guckenheimer and Holmes
(1983). Up to time reversal, there are two cases to consider: δ < 0, η < 0 and δ > 0, η < 0.
Figure 5 shows the μ1μ2 bifurcation diagrams for these two cases. In this section, we review
the case when δ < 0 and η < 0 (Figure 5 (left)) and show numerically that this is the case
related to our study.

We identify six connected regions where the behavior of the system is qualitatively the
same for parameters within each region and qualitatively different for parameters in different
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Figure 5. Bifurcation set for (3.17). Left: δ < 0, η < 0. Right: δ > 0, η < 0.

regions. When μ1 < 0, the only equilibrium is at the origin. In Region I (μ1 < 0, μ2 < 0) the
origin is a sink. A Hopf bifurcation takes place at μ1 < 0, μ2 = 0, producing a stable limit
cycle in Region II (μ1 < 0, μ2 > 0). When μ1 = 0, a pitchfork bifurcation occurs. When
μ2 > 0, this bifurcation leads to a saddle and two sources in Region III (surrounded by a
stable limit cycle) and when μ2 < 0, the bifurcation leads to a saddle and two sinks in Region
IV. On the ray Bh given by

μ2 =
η

δ
μ1 with μ1 > 0,

a subcritical Hopf bifurcation occurs, and two unstable limit cycles appear in Region V near
and below Bh. These unstable limit cycles are surrounded by a stable limit cycle. When
decreasing μ2, the two unstable limit cycles in Region V merge to an unstable limit cycle in
Region VI via a homoclinic (or glueing) bifurcation. Further decreasing of μ2 leads to the
disappearance of the unstable and stable limit cycles in a saddle-node of periodic solutions
bifurcation. The curve Bsc in Figure 5 (left) denotes homoclinic bifurcation points, and the
curve Bpo denotes points where saddle-nodes of periodic solutions occur. Note that in Regions
V and VI, stable WTA and rivalry coexist. See Figure 6.

3.3. Existence of Takens–Bogdanov points in two-cell reduction. Next we show that
TB singularities occur in the two-cell quotient network equations (1.2).

Proposition 3.4. A symmetry-breaking TB singularity occurs at the synchronous equilib-
rium associated to z∗ in the two-cell system equations (1.2) at positive parameter values
I∗, α∗

0 = (n− 1)w∗, β∗, g∗, ε∗ if z∗ satisfies

(3.18) z∗0 = I∗ + (α∗
0 − β∗ − g∗)G(z∗0)

and the other parameters satisfy

ε∗ =
g∗

α∗
0 + β∗ − g∗

,(3.19)

1− (α∗
0 + β∗ − g∗)G′(z∗0) = 0.(3.20)
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Figure 6. Phase portraits of regions V and VI in Figure 5 when δ < 0, η < 0.

We remark that (3.20) implies that

(3.21) ν∗ ≡ α∗
0 − g∗ =

1

G′(z∗0)
− β∗.

Proof. Such bifurcations are found by solving (3.7), (3.15), and (3.16) simultaneously.
Note that ε appears only in (3.16) and a calculation shows that we can replace (3.16) by
(3.19). If (3.21) is valid, then ε∗ > 0. It follows that there exists a double zero eigenvalue for
any combination of parameters for which there is a steady-state branching; that is, (3.7) (i.e.,
(3.18)) and (3.15) (i.e., (3.20)) are satisfied.

Note that the matrix in (3.10) is never identically zero. This implies that there is only
one eigenvector for a zero eigenvalue, and hence that Λ − Δ is nilpotent at the double zero
eigenvalue.

It remains to show that conditions for existence of a TB singularity given in Proposition 3.4
can be simultaneously satisfied. We verify this point by showing that in fact the TB points
in the two-cell case lie on a three-parameter surface (parameterized by z∗, β∗, g∗).

1. Choose z∗0 > θ, which is necessary by (3.8).
2. Choose

β∗ >
1

2

(
1

G′(z∗0)
− z∗0

G(z∗0)
)
.

3. Set

ν∗ =
1

G′(z∗0)
− β∗,

which is necessary by (3.21).
4. Choose

g∗ > max(0,−ν∗),
which is clearly positive.
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5. Set

ε∗ =
g∗

ν∗ + β∗
,

which is positive by step 3.
6. Set

α∗
0 = ν∗ + g∗,

which is positive by step 4.
7. Set

I∗ = z∗0 − (ν∗ − β∗)G(z∗0).
It remains only to show that I∗ > 0. Use step 3 to see that

z∗0 − (ν∗ − β∗)G(z∗0) = z∗ −
(

1

G′(z∗0)
− 2β∗

)
G(z∗0).

Observe that

z∗0 −
(

1

G′(z∗0)
− 2β∗

)
G(z∗0) > 0

if and only if step 2 is satisfied. Finally, observe that step 5 implies (3.19), step 7 implies
(3.18), and step 3 implies (3.20).

3.4. Existence of Takens–Bogdanov points in three-cell reduction. The three-cell quo-
tient network equations (1.4) have the form

(3.22)

ȧ = A(a, b, c),

ḃ = A(b, a, c),
ċ = C(c, a, b),

where C(c, a, b) = C(c, b, a). Specifically,

A(a, b, c) =

(
1
ε [−aE + G(I + (n − k − 1)waE + kwcE − βbE − gaH)]

aE − aH

)

and

C(c, a, b) =
(

1
ε [−cE + G(I + (k − 1)wcE + (n− k)w(aE + bE)− gcH)]

cE − cH

)
.

A synchronous equilibrium (a, a, c) satisfies x ≡ aE = bE = aH = bH and y ≡ cE = cH ,
where (x, y) is a solution to

(3.23)
x = G(I + ((n− k − 1)w − β − g)x + kwy),
y = G(I + ((k − 1)w − g)y + 2(n − k)wx).

For ease of notation, we set

(3.24)
z0 = I + ((n− k − 1)w − β − g)x + kwy,
u0 = I + ((k − 1)w − g)y + 2(n − k)wx.
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Using (3.24) it follows that (3.23) is equivalent to

(3.25)
z0 = I + ((n − k − 1)w − β − g)G(z0) + kwG(u0),
u0 = I + 2(n − k)wG(z0) + ((k − 1)w − g)G(u0).

Proposition 3.5. A symmetry-breaking TB singularity occurs at the synchronous equilib-
rium associated to z∗, u∗ in the three-cell quotient equations (1.4) at positive parameter values
I∗, w∗, β∗, g∗, ε∗ if z∗, u∗ satisfies

(3.26)
z∗0 = I∗ + ((n− k − 1)w∗ − β∗ − g∗)G(z∗0) + kw∗G(u∗0),
u∗0 = I∗ + 2(n − k)w∗G(z∗0) + ((k − 1)w∗ − g∗)G(u∗0),

where

ε∗ =
g∗

α∗
k + β∗ − g∗

,(3.27)

1− (α∗
k + β∗ − g∗)G′(z∗0) = 0.(3.28)

Proof. The quotient network has Z2 symmetry generated by τ . Then

Fix(τ) = {(a, a, c)} and Fix(τ)⊥ = {(a,−a, 0)}.

The Jacobian matrix of the system (3.22) at a synchronous equilibrium (a, a, c) = (x, x, x, x, y, y)
has the 2× 2 block form

J =

⎛
⎝ D1A D2A D3A

D2A D1A D3A
D2C D2C D1C

⎞
⎠

and

J |Fix(τ)⊥ = D1A−D2A.
Since

D1A =
1

ε

( −1 + αkG′(z0) −gG′(z0)
ε −ε

)

and

D2A =
1

ε

( −βG′(z0) 0
0 0

)
,

where

γ = kw, z0 = I + (αk − β − g)x+ γy,

we have that

(3.29) D1A−D2A =
1

ε

( −1 + (αk + β)G′(z0) −gG′(z0)
ε −ε

)
.
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Note that D1A−D2A is independent of γ and has the same expression as the two-cell quotient
network. Since a TB singularity will occur when the determinant and the trace of D1A−D2A
vanish, Proposition 3.5 follows from the two-cell case.

Remark 3.6. To determine existence and stability of the TB point in the three-cell system
we need to compute the eigenvalues of the Jacobian of three-cell quotient equations (1.4)
whose eigenvectors lie in Fix(τ). These eigenvalues are the eigenvalues of the matrix

J |Fix(τ) =
(
D1A+D2A D3A

2D2C D1C
)
.

The eigenvalues need to have nonzero real part in order to have existence of a TB point, and
the eigenvalues have to have negative real part for the TB point to be stable.

Illustrative example for Proposition 3.5. We provide numerical results that verify the
existence of TB points in the three-cell quotient network formed from a five-attribute system
with two active cells in common (n = 5, k = 2). We note that in these computations, for
convenience, we use the sigmoidal gain function (4.9), which does not satisfy the condition
G′(z) = 0 for z < 0 as required in Definition 1.1(c). Figure 7 shows a bifurcation diagram
computed with XPPAUT confirming a TB singularity at certain parameter values. This TB
point is stable in the Fix(τ) directions in the six-dimensional quotient, as the eigenvalues of
J |Fix(τ) evaluated at the TB point have negative real part.

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
0.5

0.7

0.9

1.1

1.3

1.5

g

ε

 

 

branch points
Hopf points (from synch. eq.)
Hopf points (from asynch. eq.)
Takens−Bogdanov point

Figure 7. Two-parameter bifurcation diagram indicating a TB singularity in the three-cell reduction (1.4)
at g = 1.123, ε = 1.281. In these computations we set w∗ = 0.25, β∗ = 1.5, and I∗ = 1 and calculate z∗ = 0.763
and u∗ = 0.934.

3.5. Transverse stability of subspace S at Takens–Bogdanov points. We have discussed
the existence of symmetry-breaking TB points in the two- and three-cell quotient networks.
Now we address the stability of these singularities in directions transverse to S in both the
two- and three-cell reductions.
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Theorem 3.7. Suppose that z∗0 (as in (3.7)) is associated to a symmetry-breaking TB point
X in either the two- or the three-cell quotient network. Then S is locally attracting at X.

Proof. Note that X ∈ Fix(τ). It follows from Proposition 2.8 that we must show that the
traces of the 2×2 matrices ξ and φ±ψ are negative and the determinants are positive, where

φ± ψ =

( − 1
ε∗ (1 + (w∗ ± β∗)G′(z∗0)) 1

− 1
ε∗ g

∗G′(z∗0) −1

)
.

By Lemma 2.12, ξ has eigenvalues with negative real part. So we need to prove that φ ± ψ
have eigenvalues with negative real part.

Since w∗, β∗, g∗,G′ ≥ 0,

tr(φ+ ψ) = −1− 1

ε∗
(1 + (w∗ + β∗)G′(z∗0)) < 0,

det(φ+ ψ) =
1

ε∗
(1 + (w∗ + β∗ + g∗)G′(z∗0)) + 1 > 0.

So the eigenvalues of φ+ ψ have negative real part at z∗0 .
Next, compute the trace and determinant of φ − ψ at a TB bifurcation point. Proposi-

tions 3.4 and 3.5 imply that in both two- and three-cell quotient networks the following two
equalities are valid at a TB point:

ε∗ =
g∗

α∗
k + β∗ − g∗

, G′(z∗0) =
1

α∗
k + β∗ − g∗

.

Hence,

tr (φ− ψ) = −1− 1

ε∗
(
1 + (w∗ − β∗)G′(z∗0)

)

=
1

ε∗
(−ε∗ − 1 + (β∗ − w∗)G′(z∗0))

=
1

ε∗

(
− g∗

α∗
k + β∗ − g∗

− 1 + (β∗ − w∗)
1

α∗
k + β∗ − g∗

)

=
1

ε∗

(
− α∗

k +w∗

α∗
k + β∗ − g∗

)

< 0.

The last inequality is valid because α∗
k + β∗ − g∗ > 0 at a TB point and all other parameters



GENERALIZED RIVALRY NETWORK WITH TWO PATTERNS 1299

are greater than zero. Similarly,

det(φ− ψ) =
1

ε∗
(1 + (g∗ + w∗ − β∗)G′(z∗0))

=
1

ε∗

(
1 + (g∗ + w∗ − β∗)

1

α∗
k + β∗ − g∗

)

=
1

ε∗

(
α∗
k +w∗

α∗
k + β∗ − g∗

)

> 0.

That is, the eigenvalues of φ± ψ have negative real part at z∗0 .

Lack of global validity of Takens–Bodganov unfolding. Curtu (2010) notes the existence
of mixed-mode oscillations in the two-cell system with sigmoidal gain. Near a Hopf bifurcation
from asynchronous equilibria (i.e., near where the system transitions from rivalry to WTA),
one can observe small oscillations around one of the asynchronous equilibria whose amplitudes
grow over time until the orbit jumps to near the other asynchronous equilibria, where the
process is repeated. Such mixed-mode oscillations cannot occur in the planar unfolding of the
TB singularity. Hence, the TB singularity is not an organizing center for the global dynamics.

4. Unfoldings in two- and three-cell reductions. In this section we study the quali-
tative behavior of solutions in the reduced system with the input I as a distinguished bi-
furcation parameter. We note that there is no unfolding theory for dynamic bifurcations
with a distinguished parameter, although such a theory does exist for zeros of a mapping
(Golubitsky and Schaeffer (1985)). Distinguished parameter bifurcation theory is equivalent
to the study of paths through the universal unfolding of a singularity without a distinguished
parameter (Chapter III, section 12 of Golubitsky and Schaeffer (1985); Montaldi (1994)). Nev-
ertheless, enough is known about paths through unfoldings to allow us to formally recover
many of the observations of Curtu et al. (2008) by considering a degenerate path through the
universal unfolding of the two-dimensional symmetry-breaking TB singularity. This observa-
tion leads to the prediction of other bifurcation scenarios whose existence we verify numerically
for specific parameter regimes in (1.2).

Relating system parameters αk, g to unfolding parameters μ1, μ2. Let z∗ be associated
to a TB singularity for the two-cell model, and let (z∗, u∗) be associated to a TB singularity
for the three-cell model at parameters α∗

k, β
∗, g∗, ε∗, I∗. Using the implicit function theorem,

solve (3.26) (or in the two-cell quotient solve (3.18)), which is independent of ε, for

z0 = ζ(I, αk, β, g)

with
ζ(I∗, α∗

k, β
∗, g∗) = z∗0 .

Now we relate the parameters α, β, g, ε, I near α∗, β∗, g∗, ε∗, I∗ in (1.2) to μ1, μ2. By (3.17) μ1
is minus the product of the critical eigenvalues of the Jacobian along the branch of synchronous
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equilibria, and μ2 is the sum of these eigenvalues. Hence, to first order (in the deviation of
the equilibrium from the TB singularity, that is, z − z∗),

(4.1)
μ1 ≈ − det(Ξ),
μ2 ≈ tr(Ξ),

where in the two-cell quotient (see (3.10))

Ξ = Λ−Δ =
1

ε

(−1 + (α0 + β)G′(z0) −gG′(z0)
ε −ε

)

and in the three-cell quotient (see (3.29))

Ξ = D1A−D2A =
1

ε

( −1 + (αk + β)G′(z0) −gG′(z0)
ε −ε

)
.

Hence, to first order,

(4.2)

μ1 =
−1 + (αk + β − g)G′(z)

ε
+ · · · ,

μ2 =
−1− ε+ (αk + β)G′(z)

ε
+ · · · .

Proposition 4.1. The parameters αk and g are universal unfolding parameters of a TB
singularity.

Proof. We begin by showing that

M =

(
μ1,r μ2,r
μ1,s μ2,s

)

is invertible at z∗0 , where r, s are two of the variables αk, β, g, ε and the second subscript
indicates partial differentiation.

It follows from (4.2) that to first order in z0 − z∗0 , μ1 and μ2 satisfy

(4.3) μ1 = Bμ2 +A,

where

A = 1− 1 + ε

ε

g

αk + β
=

1

ε(αk + β − g)

(
ε− g

αk + β − g

)
and B =

αk + β − g

αk + β
.

Differentiating both sides of (4.3) with respect to r yields

μ1,r = Bμ2,r +Ar

since μ1 = μ2 = 0 at the TB point. Let

D = det(M)
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with parameters set at the TB point. It follows that

(4.4) D = det

(
Ar μ2,r
As μ2,s

)
.

Next, we assume r = αk and s = g. Since μ2 does not depend explicitly on g and
G′′(z∗0) = 0, it follows that μ2,g = 0 at the bifurcation point. Thus, D in (4.4) reduces to

D = −Agμ2,αk
.

Calculations show that

Ag = −1 + ε∗

ε∗
1

α∗
k + β∗

�= 0 and μ2,αk
=

1

ε∗
G′(z∗0) �= 0.

It follows that D �= 0 and that αk and g are universal unfolding parameters.
Next we verify numerically that the dynamics of (1.2) includes a TB bifurcation point with

δ < 0, η < 0, as pictured in Figure 5. We choose parameters I∗ = 0.8006, α∗
0 = 1, β∗ = 1.5,

g∗ = 1, and ε∗ = 2/3. We set (α0, g) to trace a small circle around the TB bifurcation point,
namely,

(4.5) α0 = α∗
0 + 0.01 cos(2πλ) and g = g∗ + 0.01 sin(2πλ).

We then vary λ from 0.5 to 1.5 and obtain the bifurcation diagram in Figure 8 with bifurcation
parameter λ.
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a

1.08 1.1 1.12 1.14 1.16 1.18

l
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Hopf

homoclinic
fold

rivalry
WTA fusion

Figure 8. Bifurcation diagram generated by a circle in the αg plane surrounding the point (α∗
0, g

∗). A
portion of the left panel is blown up on the right.

From right to left (decreasing λ) in Figure 8, the following bifurcations occur in order:
supercritical symmetry-breaking Hopf, symmetry-breaking pitchfork, subcritical asymmetric
Hopf, homoclinic (to the fusion state, which is a saddle), and fold bifurcation (in the periodic
solutions). This is exactly what happens in Figure 5 (left) when the path starts in Region I
and wraps around the origin clockwise.



1302 C. DIEKMAN, M. GOLUBITSKY, T. MCMILLEN, AND Y. WANG

Singular variation of I. Numerical explorations of (1.2) and (1.4) lead to a symmetry-
breaking pitchfork bifurcation and a symmetry-breaking Hopf bifurcation for small I and
to another pair of these bifurcations for large I. See Figure 4 for the three-cell model and
Curtu et al. (2008) for the two-cell model. It is reasonable to imagine each of these pairs
of bifurcations coalescing into a TB bifurcation and to further imagine the two TB points
themselves coalescing. At such a degeneracy in the variation of I, the trajectory (μ1(I), μ2(I))
in the unfolding space of the TB singularity must come up to the TB point and turn around.
Hence, for some I∗ the curve satisfies (μ′1(I

∗), μ′2(I
∗)) = (0, 0). It follows from (4.2) that z∗0

must be at a point where G′′(z∗0) = 0.
We assume that G is sigmoidal. It follows that there is a unique point z∗0 = zmax such that

G′′(z∗0) = 0. Once z∗0 is chosen we can evaluate G(z∗0) and G′(z∗0). Then the equations obtained
from conditions for TB bifurcation (3.18)–(3.20) can be solved as follows. Fix α∗

k, β
∗ > 0 and

solve sequentially for

g∗ = α∗
k + β∗ − 1

G′(z∗0)
,(4.6)

I∗ = z∗0 +
(
2β∗ − 1

G′(z∗0)

)
G(z∗0),(4.7)

and

(4.8) ε∗ = (α∗
k + β∗)G′(z∗0)− 1.

For example, for the sigmoidal function

(4.9) G(x) = 0.8

1 + e−7.2(x−0.9)
,

G′′(0.9) = 0. We can choose α∗
k = 0.157, β∗ = 1. Then by (4.6), (4.7), and (4.8), we get

g∗ = 0.463, I∗ = 1.42, and ε∗ = 2
3 .

Paths in the μ1μ2 plane as I varies. Unfolding theory suggests that a curve in the
original parameter space corresponds to a curve in the μ1μ2 plane. We now consider the
case where all parameters except the input I are fixed, and we consider I as a distinguished
bifurcation parameter. It follows from (4.3) that the curve (μ1(I), μ2(I)) lies on the straight
line whose slope is

αk + β

αk + β − g
.

Moreover, we assume that the degeneracy condition G′′(z∗0) = 0 holds.
When we fix the other parameters at α∗

k, β
∗, g∗, ε∗, the curve (approximately) traces the

line and turns around at the origin; that is, μ1(I
∗) = μ2(I

∗) = 0 and μ1,I(I
∗) = μ2,I(I

∗) = 0.
This conclusion follows from G′′(z∗0) = 0; the degenerate path is illustrated as path 1 in
Figure 9. Suppose that we now fix the other parameters at values near their ∗ values; then
the path generated by varying I will be a perturbation of the degenerate path and could in
principle be any of those in Figure 9. Figure 10 gives examples where bifurcation diagrams
corresponding to these paths occur in the original system (1.2). Note that Figure 10 (lower
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III 
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V 

Figure 9. Sample paths in μ1μ2 plane as I varies: path 1 is the degenerate path with parameters set at
their ∗ values; paths 2, 3, 4 are possible perturbations of this path. Path 1: fusion state, path traces a line that
turns around at the origin. Path 2: states transition from fusion to rivalry. Path 3: fusion to rivalry, to states
where rivalry and WTA are both stable, to WTA. Path 4: fusion to WTA. The slopes of the curves separating
Regions III, V, VI, and IV depend on δ and η in the normal form (3.17).

left) corresponds to path 3 in Figure 9 and is similar, but not identical, to Figure 3 in Curtu
(2010). Consequently, we find regions in the input I with coexistence of a stable WTA and
a stable rivalry state. There are other differences with more complex dynamics occurring in
Curtu (2010).

5. Effect of recurrent excitation. In section 1 we noted that when one considers general-
ized rivalry, or rivalry between patterns, recurrent excitation arises naturally in the quotient
network from reciprocal excitation in the original network. In this section we explore the effect
recurrent excitation has on the dynamical states of the network. The amount of recurrent
excitation depends on both the number of attributes n and the number of cells in common
k. We show that if two patterns have no cells in common, then increasing the number of
attributes causes the fusion state (or synchronous equilibrium) to lose stability at lower input
signal strengths, leading to either rivalry or WTA. With a sufficiently large number of at-
tributes, this loss of stability will lead to WTA. Increasing the number of cells in common can
recover the transition from fusion to rivalry with a large number of attributes, and in general
causes the fusion state to lose stability at higher input signal strengths.

Increasing number of attributes: No cells in common. We claim that in networks with
no cells in common (k = 0) and with strong inhibition β, the fusion state is lost at lower
values of the input strength I as the number of attributes n increases. We fix parameter
values α0, β, g, ε and the sigmoidal gain function G in (1.2) and let Iu denote the minimum
value of I where the fusion state loses stability. Recall that in two-pattern networks with no
cells in common α0 = w(n− 1) is the amount of recurrent excitation in the quotient network,
where w is the strength of a single reciprocal excitatory connection in the original network.
Specifically, we write Iu as a function of α0 and prove the following proposition.



1304 C. DIEKMAN, M. GOLUBITSKY, T. MCMILLEN, AND Y. WANG

aE 

I 

fusion 

0.5 2.5 

0 

0.8 

aE 

I 

fusion fusion rivalry 

1.3 1.5 

0.3 

0.5 

5 5 5 5 55

rivalry rivalry 

aE 

I 

fusion fusion 
WTA 

1.3 1.5 

0.3 

0.5 

aE 

I 

fusion fusion WTA 

1.3 1.5 

0.3 

0.5 

Figure 10. Bifurcation diagrams in the original system (1.2) corresponding to the different paths through
the μ1μ2 plane shown in Figure 9. In all panels, I is varied while β = β∗ = 1 and ε = ε∗ = 2

3
. Top left:

α = α∗
0 = 0.157, g = g∗ = 0.463 (path 1). Top right: α = 1.1α∗

0, g = 1.05g∗ (path 2). Bottom left: α = 1.2α∗
0 ,

g = 1.05g∗ (path 3). Bottom right: α = α∗
0, g = 0.95g∗ (path 4).

Proposition 5.1. For sigmoidal G and no cells in common, if the inhibition β is greater
than the strength of self-adaptation g (that is, β > g), then Iu decreases as α0 increases.

Since inhibition is often assumed to be strong in these models, β > g is typically the case.
Our proof shows that both steady-state and Hopf bifurcation from the fusion state occur when
α0 is sufficiently large.

Proof. We need to show that dIu
dα0

< 0. Stable synchronous equilibria of (1.2), which
correspond to fusion, lose stability through either a steady-state branching to WTA or a Hopf
bifurcation to rivalry. Let z(Iu) be the corresponding solution to (3.7) where the bifurcation
takes place. Recall that the conditions for these bifurcations are given in (3.15) and (3.16),
and can be rewritten as

steady-state branching: G′(z(Iu)) =
1

α0 + β − g
,(5.1)

Hopf bifurcation: G′(z(Iu)) =
1 + ε

α0 + β
.(5.2)

Which of the two bifurcations occurs at a smaller value of I, and therefore is the one that leads
to loss of stability of the synchronous equilibrium, depends on whether ε is greater or lesser
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than the right-hand side of (3.19). It follows from Definition 1.1 that for sigmoidal functions
G, G′(z) has a maximum value at z = zmax, which is independent of parameters in the model,
and limz→±∞ G′(z) = 0. Hence, when α0 is sufficiently large, it follows from (5.1) that there
are exactly two values of I where steady-state bifurcation from the fusion state occurs and
from (5.2) that there are exactly two values of I where Hopf bifurcation from the fusion state
occurs.

First, we consider the case where

ε >
g

α0 + β − g
,

so stability of the synchronous equilibrium is lost due to steady-state branching, and we show
when dIu

dα0
< 0. Implicit differentiation of (5.1) yields

(5.3) G′′(z(Iu))
dz

dI
(Iu)

dIu
dα0

= − 1

(α0 + β − g)2
< 0.

Hence dIu
dα0

< 0 when

(5.4) G′′(z(Iu))
dz

dI
(Iu) > 0.

To verify (5.4), we show that G′′(z(Iu)) > 0 at the first instability, and then we show dz
dI (Iu) > 0

when α0 + β > g.
For a sigmoidal gain function, (5.1) will be satisfied at two different values of z(I), one

on each side of the zmax. The branching at the lower value of I is the one of interest here, as
it represents loss of stability of the synchronous equilibrium as I is increased from zero. On
this side of zmax, G′′(z) is positive. Thus, (5.4) holds if dz

dI is positive. From (5.1) and implicit
differentiation of (3.7), at the bifurcation point we have

(5.5)
dz

dI
=

1

1− (α0 − β − g)G′(z)
=
α0 + β − g

2β
.

So dz
dI > 0 as long as α0 + β > g, which follows from β > g.
The argument for the case

(5.6) ε <
g

α0 + β − g
,

where stability of the synchronous equilibrium is lost due to Hopf bifurcation, follows the
same logic as the case for steady-state branching. Implicit differentiation of (5.2) gives

(5.7) G′′(z(Iu))
dz

dI
(Iu)

dIu
dα0

= − 1 + ε

(α0 + β)2
< 0.

We again have that dIu
dα0

< 0 when (5.4) is satisfied. The argument that G′′(z) > 0 is valid
is identical to the argument given in the steady-state case. We complete the argument by
showing that dz

dI > 0 at the first bifurcation.
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From (5.5) and (5.2) we have that at the Hopf point

(5.8)
dz

dI
=

α0 + β

2β + g − ε(α0 − β − g)
.

On the one hand, we see from the denominator of (5.8) that dz
dI is positive when α0−β−g ≤ 0.

On the other hand, if α0 − β − g > 0, then dz
dI > 0 when

(5.9) ε <
2β + g

α0 − β − g
.

This condition is always satisfied when stability is lost due to Hopf bifurcation since

g

α0 + β − g
<

2β + g

α0 − β − g

when α0 − β − g > 0.
Remark 5.2. If the number of attributes is sufficiently large, then at Iu fusion will lose

stability to WTA and not rivalry. This can be seen by considering (5.6), the condition that
dictates when Hopf bifurcation from the synchronous equilibrium occurs before steady-state
branching. Keeping the other parameters fixed, as n and therefore α0 are increased, eventually
(5.6) will not hold and steady-state branching will occur first.

Increasing the number of cells in common. We showed that increasing the number of
attributes with no cells in common (k = 0) leads to the loss of stability of the fusion state at
lower values of I, and that for sufficiently large n the transition will be to WTA. This makes
sense intuitively. Suppose the number of attributes that are different between two patterns
is increased. Then, we expect the network to require less input to transition to a state in
which one pattern is chosen over the other. Here, we show that for fixed n, as the number of
attributes in common is increased the network requires more input to exhibit rivalry or WTA;
i.e., the fusion state loses stability at higher values of I.

Proposition 5.3. For a fixed number of attributes and sigmoidal G, if β > g, then Iu in-
creases as the number of cells in common increases.

Proof. We need to show that dIu
dk > 0. When k ≥ 1, we have the system (1.4) rather

than (1.2). Steady-state bifurcation from the stable equilibria occurs when the determinant
of D1A−D2A in (3.29) is zero, and Hopf bifurcation takes place when its trace is zero. That
is, the conditions for bifurcation from the stable equilibrium in (1.4) are

steady-state branching: G′(z(Iu)) =
1

αk + β − g
,(5.10)

Hopf bifurcation: G′(z(Iu)) =
1 + ε

αk + β
,(5.11)

where αk = w(n− k − 1). The relevant effect of increasing k is to decrease αk. Thus
dIu
dk has

the opposite sign of dIu
dαk

. Note that since (5.10) and (5.11) have the same form as (5.1) and
(5.2), the result follows from the proof of Proposition 5.1.

Remark 5.4. We noted previously that in networks with no cells in common, for sufficiently
large n the transition from fusion will be to WTA and not rivalry. Since increasing k has the
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Figure 11. Three patterns with no cells pairwise in common.

effect of decreasing αk, it can recover the possibility of transitions from fusion to rivalry in
such networks with large n. We can see this by again considering (5.6), the condition that
dictates when Hopf bifurcation from the synchronous equilibrium occurs before steady-state
branching.

6. Discussion and future directions. We are still far from a complete understanding of the
dynamics present in Wilson’s generalized rivalry model. A systematic comparison of the model
dynamics and experimental features of rivalry, such as Levelt’s propositions characterizing
perceptual dominance durations as a function of image contrasts (Levelt (1965)), would be
instructive. In this concluding section we comment on three mathematical issues: transverse
bifurcations, three learned patterns, and many learned patterns.

Transverse bifurcations. Our analysis does not preclude a bifurcation whose critical eigen-
vectors are transverse to S, at least when (2.1) fails. Preliminary calculations show that such
bifurcations cannot take place from a stable fusion state, but they may well occur from a
stable WTA state. It is surely the case that S is not always locally attracting on all of S.

Three learned patterns. Rivalry between two learned patterns is the simplest case of gen-
eralized rivalry. In this paper, we showed how the number of cells in common to two learned
patterns changes the (effective) recurrent excitation in associated quotient two- and three-cell
systems. Our methods can help analyze an arbitrary number of patterns; however, when there
are more than two learned patterns, the number of ways in which the structure of the con-
nections between the patterns can occur becomes large fast and each leads to a different type
of quotient network. For three learned patterns there are nine classes of quotient networks,
rather than the two in the two-pattern case. We note that Naber, Gruenhage, and Einhäuser
(2010) present evidence for rivalry among three patterns.

Wilson (2009) has considered three learned patterns and found parameter values that
exhibit rivalry among the three patterns. The simplest case is when the three learned patterns
have no cells in common, as in Figure 11, where nodes of the same color are active in the same
pattern. In this case, the quotient network is a three-cell bidirectional ring with reciprocal
inhibition between cells, apparent recurrent excitation in each cell, and S3 symmetry. We
believe that the existence of symmetry-breaking TB points will provide us with a way to
study the detailed dynamics in three-pattern quotient networks. In this case the bifurcation
of interest will be an S3 symmetry-breaking TB bifurcation—one that has not previously been
studied.

At the other extreme, the most complicated case of three learned patterns in a 5-attribute
3–intensity level system is illustrated in Figure 12, where the cells marked by the same line are
active in the same pattern. In this case, all patterns have the same intensity level in attribute
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Figure 12. Each pair of patterns has common active cells.

1, all patterns have different intensity levels in attribute 4, and the patterns have intensity
levels pairwise in common in attributes 2, 3, 5 (with different pairs). Also, in this case, the
quotient network and the network with inactive cells removed are identical, and each has 10
nodes. There are three nodes that correspond to the attribute with no cells in common; there
are six nodes that correspond to attributes that have two patterns having cells in common
(one node for each pair and one node for each singleton); and there is one node corresponding
to the attribute having all cells in common. For an n-attribute m–intensity level system, the
most complicated case with three learned patterns is similar to the 5 × 3 case. Although
the number of cells in each color may be greater than one, there is still a 10-cell quotient
network. Simulations show that cells of the same color are synchronous, and we expect that
the dynamics will reduce to the 10-cell quotient system.

How many patterns can a generalized network support?. Wilson raises the question that
titles this subsection. He finds in simulations that the number is rather small in the sense that
rivalry predominates in simulations when the system has learned four or five different patterns
in his 5-attribute 3–intensity level system. In principle, an n-attribute m–intensity level
system could learn mn different patterns (or 243 patterns in the working example). However,
it does seem likely that the resulting dynamics would settle into a rivalry with cycling between
different patterns should the network have learned all possible patterns. Although no reduction
is possible in this extreme case (all cells are active), it may still be a tractable analysis because
of the huge symmetry group, the wreath product group Sm � Sn with (m!)nn! elements (or
933120 symmetries in the working example). It is also known that wreath product symmetric
coupled cell systems often lead to heteroclinic cycles (or networks) on loss of stability of a
symmetric (fusion) state. Indeed, the first example of a symmetry generated heteroclinic
cycle (Guckenheimer and Holmes (1988)) has a wreath product symmetry group Z2 � Z3 (cf.
Dionne, Golubitsky, and Stewart (1996)).

Acknowledgments. The authors thank Hugh Wilson for introducing them to rivalry net-
works, and Pete Ashwin and Claire Postlethwaite for useful discussions.
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