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THE BENARD PROBLEM, SYMMETRY AND THE LATTICE OF
ISOTROPY SUBGROUPS

INTRODUCTION

In this lecture I would like to describe some of the
effects that are forced on steady state bifurcation problems
by the existence of a group of symmetries. I shall discuss
this relationship between symmetry and bifurcation by de-
scribing several mathematical problems which are motivated
by the Bénard problem.

The Bénard problem in its simplest form Is the study of
the transition from pure conduction to convective motion in
a contalned fluid heated on (part of) its boundary. The
model equations which lie behind the analysls are the
Navier-Stokes equations in the Boussinesq approximation.

The purpose of this exposition is to Indicate the type of
information that can be obtained through the use of singu-
larlty theory and group theory. For this reason the exact
form of the Boussinesq equations is not needed and they will
not be presented. The interested reader can consult the
paper by Fauvre and Libchaber [1983] In this volume or the
ex;e?slve and very interesting work of Busse [1962, 1975,
1978].

The specific results outlined below rely for their
proofs on the machinery of group theory and singularity
theory plus very extensive calculations. What is remarkable
is that after thls effort has been expended the final answer
has a delightful and compelling organization based on the
lattice of lsotropy subgroups of the given group
representation. It is our intention to emphasize this
relationship throughout.

The paper is divided into four sections. The first
three sections concern specific realizations of the Bénard
problem while the last sectlon presents certain general
results concerning bifurcation with symmetry.
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A. The spherical Bénard problem:

The fluid is contained between two fixed concentric spheres
and is heated along the inner sphere. This is a model for
convection of the molten layer of the Earth contalned be-
tween the solid inner core and the mantle. Since the Earth
rotates this is a simplified model. The symmetry group for
this problem is 0(3).

B. The planar Bénard problem with non-symmetric boundary
conditions:

The fluid is contained between two parallel planes and is
heated from below. Moreover, the boundary conditions on the
upper plane are assumed to be different from those on the
lower plane. This is the situation found in Bénard's origi-
nal experiment as there one finds a free boundary on top and
a rigid boundary below. One should note that we consider an
infinite plane while all experiments are - of course -
performed on a finite plane. So the relationship between
the mathematics presented here and any given experiment is,
at best, arguable.

In addition, the fact that this form of the Bénard’
problem is posed on the infinite plane makes the mathemati-
cal analysis - even a local one near the pure conduction
solution - extremely difficult. A popular restriction
(Busse [1962], Sattinger [1978]) which alleviates some of
the technical difficulties is to look only for solutions
which are doubly periodic in the plane. There are, however,
several different types of double periodicity possible and
it is here that Bénard's experiment serves as a useful
guide. In his experiment, Bénard found that convection
patterns in the shape of hexagons occur and, moreover, that
these hexagons are arranged on the hexagonal lattice - at
least away from the boundary. Given this fact, it seems
reasonable to look first for solutions which are doubly
periodic with respect to the hexagonal lattice. We note,
however, that among the many patterns of convection found by
experiment there are some which are not doubly periodic with
respect to the hexagonal lattice. :

We now describe the symmetry group for this problem.
The Boussinesq equations have the symmetry of the Euclidean
group in the plane generated by rotations, reflections and
translations. The assumption of double periodicity implies
that the translations act perlodically; that is, the 2-torus
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12 is part of the group of symmetries. The assumption of
" double periodicity with respect to the hexagonal lattice
implies that the Boussinesq equations are left invariant
only by those rotations and reflections which preserve the
hexagonal lattice. Let Dg denote the dihedral group of
symmetries of the regular hexagon in the plane. Then the
ggoup of symmetries for this form of the Bénard problem is
+ Dg.

C. The planar Bénard problem with symmetric boundary condi-
tions:

This problem is posed like the preceding one with a single
exception. We assume that the boundary conditions on the
top plane are identical to those on the bottom. This is the
case found in experiments where the fluid is contained
between two bounding planes of the same type and, moreover,
such experiments are performed frequently.

For this form of the Bénard problem the symmetries in-
clude T + Dg as above and, in addition, a reflectional sym-
metry obtained by reflecting the fluid layer about it's
midplane. This reflection interchanges top and bottom and -
with the assumption on the boundary conditions - leaves the
Bgussinesq equations invariant. Thus the symmetry group is

+ Dg + Z7.

Each of the first three sections is devoted, in order,
to a description of the bifurcation behavior found in the
above problems. The exposition involves, in each case,
describing how one reduces these problems to the problem of
finding the zeroes of a mapping g: R" + R" depending on a
parameter where g commutes with (a given representation of)
the groups indicated above. Specifically we describe how
group theory restricts the form of g and how singularity
theory allows one to find the zero set of g. We shall de-
scribe, in each case, an a postiori relationship between the
bifurcation structure found and the lattice of isotropy sub-
groups of the group.

In the last section we present several general results
- some new - which indicate that it may be possible in the
future to obtain much of the structure of bifurcation prob-
lems directly from a knowledge of the group of symmetries of
the given problem. Such a result would give a good begin-
ning to the resolution of the problem of spontaneous symme-
try breaking - which is the ultimate mathematical goal of
this line of research.
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The specific results described in the sections below
have been obtained in collaboration with the following indivi-
duals: David Schaeffer, Ernesto Buzano, Jim Swift and Edgar
Knobloch, and Ian Stewart.

1. THE BENARD PROBLEM IN SPHERICAL GEOMETRY

The details of the results outlined in this section are
contained in Busse [1975], Chossat [1979], Golubitsky and
Schaeffer [1982] and the Thése D'Etat of Chossat [1982].

Given a fluid contained between two concentric spheres,
let t denote the temperature difference between the inner and
outer spheres. If T is increased there is a first Tty at which
point the pure conduction solution looses stability and con-
vective motion begins. In the mathematical formulation of
this problem t19 is the first value of T where the lineariza-
tion of the Boussinesq equations about the pure conduction
solution, L(t), has a zero eigenvalue. Let V = ker L(1g).
It is known that V is the space of spherical harmonics of
order p and that p depends on the aspect ratio n where n is
the ratio of the radius of the inner sphere to the radius of
the outer sphere. See Chossat [1979,1982].

In particular, if one views the spherical Bénard .problem
as a model for convection in the Earth's molten inner core
then .25 < n < .5 and V is either the spherical harmonics of
order.2 or 4. We consider here the case n ~ .3 and V = Y,
the spherical harmonics of order 2. So dim V = 5. Moreover
S0(3) acts irreducibly on Ys.

Let A=1-t9. The Liapunov-Schmidt procedure (or the im-
plicit function theorem) shows that finding all solutions to
the Boussinesq equations near the pure conduction solution and
A = 0 is equivalent to finding the zeroes of a C® mapping

g:V x R+ V; g(A,x) =0

which is defined on some neighborhood of (0,0) ¢ V x R and
satisfies

(i) g(0,X) = 0 where 0 € V corresponds to the pure
conduction solution

(ii) (dAg)O,O =0 (1.1)
(iii) g(y*A,X) = v * g(A,)) for all Y € 0(3).
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The important point here is that one is looking for the
zeroes of an equivariant mapping near a singular point. We
analyse such mappings first by group theory and then using
" singularity theory.

Another realization of the five dimensional irreducible
representation of 0(3) is as follows: Let V be the vector
space of all 3 x 3 symmetric trace O matrices. Note that
dimV = 5. Let y € 0(3) act on A € V by YA = YAy t Via this
linear action 0(3) acts irreducibly on V. We prefer using
this presentation of the representation as opposed to the
presentation on spherical harmonics.

Let E be the space of C equivariant (germs of)
mappings g:V x R + V; i.e. g satisfies (1.1)(iii) above.

Let I denote the ring of (germs of) invariant C~ functions

f:V xR + R; i.e., f(y*A,X) = f(A,X) for all vy € 0(3). Then E
is a module over I and one can describe this module structure
explicitly.

Proposition 1.1: (a) Let f be in I. Then there is a smooth
function p: R? + R such that

f(A,2) = p(u,v,})

where u = tr(A%) and v = det A.
(b) Let g be in E. Then there exist invariant functions p
and g such that

g(A,X) = p(u,v,A)A + q(u,v,l)(A2 - %-tr(Az)I).

For details see Golubitsky and Schaeffer [1982].

Remarks: (a) If g comes from a Liapunov-Schmidt reduction
then (1.1)(i) implies that p(0,0,0) = O.

(b) In the Bénard problem the pure conduction solution
looses stability at 19 (which we have identified in the
Liapunov-Schmidt reduction with A = 0). Observe that the
chain rule applied to (1.1)(iii) implies

(dg)Y,A’XY = Y(dg)A,A.
In particular (dg)0 AY = v(dg), , for all y. Now this repre-
? y

sentation of 0(3) on V is absolutely irreducible, the only
linear maps commuting with 0(3) are scalar multiples of the
identity. Thus
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(dglg = P(0,0,MI.

Since the stability of the pure conduction solution is
assumed to change at tgp as v is varied, it is reasonable to
assume - and may be computed for the Boussinesq equations -
that f,(0,0,0) # 0.

(c) In"general one might assume that q(0,0,0) # 0. Chossat
[1979] has shown that in one important case q(0,0,0) = 0 and
this is the basis for his analysis. More precisely, let B,
and By be the thermal conductivities of the materials in the
inner sphere and the outer shell respectively. Let p, and
pg denote the respective densities .of these materials. One
finds that the linearization L(XAg) of the Boussinesq
equations is self-adjoint if the constants B and p satisfy

Bi/Bo_= pi/Po (1.2)

The identity (1.2) defines the self-adjoint case. Chossat
shows that in the self-adjoint case q(0,0,0) = 0.

Using singularity theory one can analyse two questions.
(1) (Recognition Problem) When does one have enough informa-
tion about the Taylor expansion of g to ignore higher order
terms? e
(2) (Imperfect Bifurcation) Determine all possible
perturbations of the given bifurcation problem by finding
the universal unfolding.

~We give the answers to these questions in two cases.

Proposition 1.2: Let g € E satisfy p(0,0,0) = 0 and
pi10,0,0) # 0. Then

(a) if g(0,0,0) # O then g is 0(3)-equivalent to
h(A,A) = €10 + e, (A2 -.§ tr(A2)1)

where €} = sgn(pA(O,O,O)) aﬁd €y = sgn(q(0,0,0)).
(b) if q(0,0,0) = 0 and

(i) pu(0,0,0) 0

(i1) C PyG, - P 9y * 0 at (0,0,0)

(1ii) D P9y - PVA, # 0 at (0,0,0)
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then g is 0(3)-equivalent to
h(A,A\) = (equ + €2A)A + (eju + Dv)(AZ - % tr(A2)1).

where €] = sgn pu(0,0,0), €2 = sgn p,(0,0,0) and €3 =
€1 sgn C.
Moreover the universal unfolding of h is

H(A,X,a) = (equ+eaA)A + (esu+sDv+a) (A? - %-tr(Az)I).

Remark: Chossat [1979] has computed analytically €; and €,
showing, in particular, that e€ye; = -1. Chossat [1982] has
computed numerically the sign €3 about which we shall say
more later.

For a discussion of 0(3)-equivalence see Golubitsky and
Schaeffer [1979,1982]. The main attribute we use here is
the observation that 0(3)-equivalence does not change, in a
precise qualitative way, the zeroes of g.

We now present a schematic rendering of the bifurcation
diagrams, h(A,X) = 0, occurring in the normal forms of
Proposition 1.2. Note that the equivariance properties
imply that if h(A,X) = O then h(Y*A,X) = Yh(A,X) = 0. So h
is zero on orbits of the action of 0(3). We wish to
identify all solutions which are on the same orbit as one.
See Figure 1.1 for the unperturbed bifurcation diagrams.

We note that two pieces of information have been added
to the diagrams in Figure 1.1. The first is the stability
assignments. We have used the notation "s" for stable and
"u" for unstable. These stability assignments refer to
linearized orbital stability. To determine linearized
stability we ask, "what are the signs of the real parts of
the eigenvalues of dh along a given solution branch". Note,
however, that equivariance implies that at least one
eigenvalue of dh evaluated at a non-trivial solution to h =
0 will be zero. To determine linearized orbital stability
we must ask '"what are the signs of the real part of those
eigenvalues of dh which are not forced by symmetry
considerations to be zero?" Thus linearized orbital
stability is a kind of conditional stability.

Remarks: (a) In the first bifurcation diagram of Figure 1.1
none of the bifurcating solutions are stable. Thus, In this
situation, the non-self-adjoint case in the Bénard problem,
no physically reasonable information would be gained by a
local analysis.
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0(2)+1, 0(2)+Z,
u u
0(3)
) u
(a)
0(2)+Z, L 0(2)+,
u 0(2)+Z2 3 0(2)+Z2
" ; 0(3) - U o(3)
(b%) 5741, €1€p= -1 (b7) eq4=-1, €qep= -1 %

Flgure 1.1 Unperturbed blifurcation diagrams.

(b) Note that ln the self-adjolint case there Is a stable
solution which blfurcates from the pure conduction solution;
however, which solutlon branch ls stable depends on the
Information in the higher order term €3.

The second plece of extra Information which is glven on
the blfurcatlon dlagrams In Figure 1.1 is the isotropy sub-
group of solutlons on the glven branch. Let A be in V then

L, = {y € 0(3)|v*A = A}

A
1s the lsotropy subgroup corresponding to A. For a solution
A to h(A,A) = 0, L, Is the set of symmetries that the
solution A has and these symmetrles are usually observable.
For example If I, = 0(2) ® Z, then A has an axis of rotation
glven by the rotation group S0(2)C 0(2). Such solutions
are called axisymmetrlc.
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Remarks: (a) The only solutions which appear In the unper-
turbed normal forms of Proposlition 1.2 are axlsymmetric.

The lsotropy subgroups are preserved up to lsomorphism (In
fact, Lnner automorphlsm) by 0(3) equivalences.

(b) One of the maln polnts in Chossat's analysis ls that
there are two famllies of axlsymmetric solutions which
bifurcate supercritically in the self-adjoint case. One can
ask how these two famllles of solutlons differ physlcally.
Both represent flows with two cells as shown in Figure 1.2.
The difference Is that In one case the flow has upwelllng at
the poles (defined by the axis of symmetry) and downwelllng
at the equator with the reverse flow the sltuation for
solutions in the other family. (These descriptions are
obtained using spherical harmonics.)

Pole Pole

(b*) upwelling at poles (b-) downwelling at poles
Figure 1.2. Two cell axisymmetric solutions

(c) Both families of axlsymmetric solutions appear in the
non-self-adjoint case. One appears supercritically and one
subcritically, the choice depending on the sign of €je;.

Next we discuss the perturbed bifurcation diagrams as-
sociated with Figure 1.1(b*), the case (b~) is similar. The
analytic expression for these zero sets is given by the
universal unfolding H in Proposition 1.2 (b). These
dlagrams are presented in Figure 1.3.
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0(2)+Z2

Figure .1.3. Perturbations of Figure 1.1(bt).

Remarks: (a) When a < 0 there exists a new branch of
solutions ghose isotropy subgroup is the eight element
subgroup Z,; these solutions are non-axisymmetric.



THE BENARD PROBLEM 235

(b) Non-axisymmetric solutions may be stable depending on the
sign of D.

(c) In the unperturbed problem only axisymmetric solutions
exist and only one of the two families of axisymmetric

solutions are stable. In the perturbed case both families
may be stable, depending on the sign of the perturbation a.

(d) Physically the unfolding parameter a corresponds to
making the Bénard problem slightly non-self-adjoint, that is,
violating (1.2) by a small amount.

We end this section with a discussion of the lattice of
isotropy subgroups. The isotropy subgroups of 0(3) -
corresponding to the five dimensional irreducible
representation - are all isomorphic to 0(3) 0(2)+Zz,Z2 If
I} and I, are two isotropy subgroups we define I; < Ep if
some conjugate of I; is contained in I;. This definition of
< makes the set of isotropy subgroups a lattice. 1In Figure
1.4 we give this lattice structure, the arrows indicating
inclusion.

0(3)
+
0(2) + Zp
+
Z

Figure 1.4: Lattice of Isotropy Subgroups of 0(3).

Remarks: (a) The least degenerate bifurcation problem has
non-trivial solution branches whose isotropy subgroups are
maximal in the lattice of isotropy subgroups.

(b) The universal unfolding of the next degenerate
bifurcation problem has solution branches which have maximal
and submaximal isotropy subgroups. Since the lattice has
only three subgroups this includes all the isotropy
subgroups.

(c) Secondary bifurcation branches, see Figure 1.3,
correspond to submaximal isotropy subgroups and these
branches connect branches with maximal isotropy subgroups.
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2. THE PLANAR BENARD PROBLEM WITH NONSYMMETRIC BOUNDARY
CONDITIONS

The reader should recall from the Introductlion that we study
only solutlons toasthe Bousslinesq equatlons which are doubly
perlodic with respect to the hexagonal lattlce In the plane.
Moreover, the assumptlon that .the boundary condltlons on the
upper and lower planes are dlfferent lmglles that the group
of symmetrles for thls problem Is T = T° + Dg.

Busse [1962] has shown that ker L(tp), where L Is the
linearlization of the Boussinesq equatlions about the pure
conduction solutlon and 19 Is the flrst elgenvalue, ls six-
dimensional. The basic ldea iIs that the elgenfunctlons of
L(tg) are plane waves. Once one has one plane wave then
translation gives a second (e.g., slne and cosine). Rotation
by 120° and 240° ylelds four more Independent plane waves.
Thus dim L(tg) > 6 and in the case we consider, lt Is exactly
6. As above, set A = 1 - Tg.,

The Liapunov-Schmidt procedure lmplles that finding
solutlons to the Boussinesq equations (whlch are doubly
perlodic In the respect to the hexaggnal latt%ce) reduces to
finding the zeroes of a mapping g: RO x R+ R”; l.e., solving
g(x,X) = 0, where i

(1) (dxg)0,0 =0
(2) g(vyx,A) = yg(x,A) for all vy € T.

The descriptlon of the group theory and singularity
theory 1s much more complicated In this case than In the case
of Propositlons 1.1 and 1.2. The reader is referred to
Buzano and Golubltsky [1983] for detalls. Our interest
centers In the bifurcation dlagrams and the lattice of
lsotropy subgroups which we describe below.

We make several remarks about the structure of g as It
relates to the planar Bénard problem.

Remarks: (a) The actlon of T = T2 + Dg on R® is absolutely
irreducible. Therefore (dxg)O \ = p(A)I where I ls the 6x6

identity matrlx. The assumptlén that the pure conduction
solution looses stabllity at the bifurcation point indicates
that pA(O) # 0, which we assume.
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(b) Symmetry implies that only one quadratic term, the sum of
the squares of the coordinates which we denote by Q, can be
non-zero. For an ldeallzed Bousslnesq fluid (l.e., no
surface tension, no temperature dependent viscosity, etc.) Q
s, In fact, zero. See Busse [1962].

(c) After symmetry consideratlons there are two cublc terms
which are permitted to be non-zero. We denote the ratlo of
the coefficlents of these cubic terms by a. The value of a
will enter our discusslon later.

We now descrlbe part of the lattice of lisotropy
subgroups of T acting on R°. See Figure 2.1. This lattice
has two maxlmal subgroups and two submaxlmal subgroups. The
notatlon used is S' for the rotatlon group, D3 for the dlhe-
dral group of symmetries of the equilateral trlangle and Z;
for a reflectional symmetry.

T2+DG

AN

+ 22

T

> O
n

2
2

e e e > N
e o o 5> O

Figure 2.1: TEe lattice of lsotropy subgroups of T actling on
: R

Next we descrlbe what solutions with the varlous lso-
tropy subgroups look like when related to the planar Bénard
problem. Thls should give a better understanding of the
effects of the isotropy subgroups. The reader should beware
that the results are more complicated than one might think as
each lsotropy subgroug has several physlical réallizatlons.

The easiest case 1s T“ + Dg which correspond to the pure con-
duction solution; there is no convective motion. The next
simplest is the lsotropy subgroup sl 4 Z2 whlch corresponds
to rolls as pictured in Figure 2.2(a).

" The isotropy subgroup Dg has two physlcal reallzatlons.
In Figure 2.2(b) one sees a fluid flow which Is upwellling at
the center and downwelling along the edges of the hexagon.
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] [atlhse] [aaaqgiw)

(a) Rolls

(b) Hexagons
Flgure 2.2 Convective motlon patterns

- Of course the reverse flow with downwelling at the center is
possible; thls observation ls analogous to the existence of
two famllles of axlsymmetric solutions In the spherical
Bénard problem. Such solutlons are called hexagons. The
isotropy subgroups for these solutlons are easier to
visuallze If one lets ¥ be the vertical velocity component
of the (llnearized) flulid flow evaluated halfway between the
bounding planes and the graphs ¥ = 0. The results for rolls
and hexagons are glven In Flgure 2.3.

\ »

Rolls . | Hexagons

Figure 2.3 ¢ = 0 for Rolls and Hexagons.
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Note that the oval-like closed curve In Figure 2.3(b) is
really a smoothed-out hexagon with D¢ symmetry.

For D3, the triangles, the zero set of ¥ comes In two
types as shown In Figure 2.4, The flow corresponding to
triangles (a) has two reallzatlions elther upwelling or

(a) Triangles (b) Regular triangles
Figure 2.4: ¢ = 0 for D3 solutions.

downwelling at the center of the trlangle-like curve in the
figure. This Is analogous to the situation for hexagons. The
regular triangles have only one realization as the periodicity
implies that upwelling at the center of one triangle implies
downwelllng in the adjacent triangles.

There are four types of zero sets of y for solutions
with Z% lsotropy subgroups. They are pictured in Figure 2.5.
In the first case (a) the zero set of ¥ is a smoothed out
rectangle-like figure with L; symmetry. These solutions we
call false hexagons and they come with the two standard phys-
ical realizatlons given by upwelling or downwelling at the
center. As the false hexagons could easily be confused with
hexagons In an experimental sltuation. These rectanglar-
like flgures can grow untll they touch the sides of the hex-
agon (b) and break through the boundary (c). If (c) is con-
tinued periodically one gets a zero set for Vv which resembles
those of rolls Figure 2.3 (a) except for the periodic behav-
lor along the axis of the rolls; hence the term wavy rolls.
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@ &

(a) False hexagons (b) Transitlion
(c) Wavy rolls Patchwork qullt

- Figure 2.5 ¢ = 0 for Z% solutons.

Finally Patchwork quilt ls obtalned by letting the rectangle
like figure actually approach a rectangle. Thls case (d) is
analogous to the regular trlangles descrlbed above.

"Theorem 2.1"(a): If the quadratic term Q # 0 and certaln
non-degeneracy conditlions on the hlgher order terms hold
then the assoclated blfurcatlon dlagram for g ls glven In
Figure 2.6

(b) If Q = 0 and certaln non-degeneracy conditions on higher
order terms hold then the assoclated bifurcatlion dlagrams
for g depend on the cublc term a. There are four
possibllities two of which are glven In Flgure 2.7.

Typical perturbed blfurcatlon diagrams for the cases of
Figure 2.7 are given In Figure 2.8.

Remarks: (a) Busse [1962] has shown that for an ldeal
Boussinesq fluld a < -1. So the blfurcation diagram for the
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Flgure 2.6: Simplest bifurcation diagram with T2 &+ D¢
symmetry

1.2
S +Z2
S 2
Ly
u
Dg
u
u
D¢
S S 2
T +D6
a a < - 1

Figure 2.7: Some of the unperturbed bifurcation diagrams for

the second least degenerate bifurcation problem with T2

+ Dg
symmetry.
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(b) a < -1

Flgure 2.8: Perturbed bifurcatlon diagrams: Intersection of
branches only occur at black dots.

planar Bénard problem has a stable family of rolls
bifurcating supercritically. If the fluld Is slightly non-
idealized then one expects to see stable hexagon solutions
with a jump to rolls as the temperature gradient lIs
Increased.
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(b) For other convection situations stable hexagons may be
the ldealized case (as with a > -1/3). This lIs a mathemati-
cal possibility consistent with the symmetry. In such a
case one may observe stable triangles. The stability of the
solutions along the branch of triangle solutions has not
been rigorously established; there are indications - using
symmetry - that in the case given in Figure 2.8(b) they

will be stable.

(c) There are two branches of Dg solutions in each flgure;
they correspond to upwelling and downwelling at the center
of the hexagon. Which family occurs supercritically and
which subcritically depends on higher order terms. In
Figure 2.7 (b) elther branch could be stable depending on
higher order terms.

The most important point in this descriptlon is given
by comparing the solution branches which actually occur with
the lattice of lisotropy subgroups given in Flgure 2.1. Note
that only the maximal isotropy subgroups occur in the least
degenerate bifurcation problem while both the maximal and
submaximal isotropy subgroups appear In the unlversal
unfolding of the second least degenerate bifurcation
problems. Observe that when a submaximal iIsotropy subgroup
appears, the associated solution branch connects branches of
solutions corresponding to maximal isotropy subgroups
contalning that submaximal isotropy subgroup.

3. THE PLANAR BENARD PROBLEM WITH SYMMETRIC BOUNDARY
CONDITIONS

I shall describe here joint work with Jim Swift and Edgar
Knobloch. One changes the formulation of the planar Bénard
problem given in the last section by assuming that the
boundary conditions on the boundlng planes of the fluld are
the same. Typically one might assume that the fluid Is
contained between two identical surfaces - say glass - so
that rigid boundary conditions above and below are
reasonable. The effect of this change Is to add a symmetry
to the problem,

We shall still look for solutions to the Bousslinesq
equations near the pure conduction solutlon which are doubly
periodic with respect to the hexagonal lattlce, so that the
symmetry group includes T = T2 &+ Dg. The added assumption
on the boundary conditions implies that reflection about the
midplane (in the vertical direction) commutes with the
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Bousslnesq equatlons. Thus the symmetry group for this
problem Is I'' =T + Z,. Under the same assumptlon of the
six-dlmensional kernel of L(tg) as In Sectjon 2, one applies
the Llapunov-Schmidt method to obtain g: R® x R + R” such
that

(a) (dxg)0,0 =0
(b) gl(vx,A) = vg(x,2) for all Yy €T
(c) g('xrk) = -g(x,A),

the zeroes of g corresponding to solutlions to the Boussinesq
equatlons,

Remark: Thls new symmetry Implies that the reduced
bifurcatlon mapping g Is odd In x. See (c) above. It
follows that the quadratlc term Q of g descrlbed In Section
2 must be zero; one might be tempted to conclude that the
analysls outlined In "Theorem 2.1(b)" is applicable. One
should note however that the hypotheses In that theorem
Included "certaln non-degeneracy condltions on higher order
terms". These hypotheses fall when g lIs odd In x so that
the analysls of "Theorem 2.1(b)" is definltely not
appllcable. As we shall see below the Introduction of even
a single reflectional symmetry into a blfurcation problem
can alter quite substantlally the resulting bifurcation
pattern. :

The beglnning of the lattice of lLsotropy subgroups for
the actlon of T'' on R® Is glven In Flgure 3.1. Note
that even though we give only the maximal lsotropy subgroups
of T' that the lattlce structure Is quite different from
that of T glven In Figure 2.1. Thls difference will be made
more apparent In "Theorem 3.1" below.

12 & Dg + Zo
, 4 4
S+, Dg D3+ 1 I3

4 A 4 4

F%gure 3.1: The maxlmal lsotropy subgroups of T' acting on
R™.



THE BENARD PROBLEM 245

Before descrlbing the bilfurcation structure we Indicate
the physical structures of the convectlion solutlons
correspond{ng to each maxlmal lsotropy subgroup. The first
subgroup S correspondlng to rolls. Note that fllpplng
the rolls solutlon about the mlidplane and translating by one
cell perpendicular to the axls of. the rolls gives a symmetry
for rolls in T' whlch was not present in I'. See Flgure
2.2(a). This observatlion explains the extra factor of Zp
which appears in the lIsotropy subgroup for rolls In T'.
Reflection about the midplane for hexagon solutions, Dg,
takes a hexagon with upwelling at the center to a hexagon
with downwelling at the center. Thus there is only one type
of orbit of solutlons of hexagons in this formulatlon, that
Is, 1f upwelllng occurs as a solution so must downwelllng.
Note that the new symmetry Is not Included in the isotropy
subgroup for hexagons In T'.

The triangle solutlons, D3, Intertwine with the new
symmetry In a more complicated way. As in the case of
hexagons the non-regular triangles have both upwelling and
downwelling solutions which are ldentified by the new
symmetry. Moreover the isotropy subgroup for these
solutlons remalns the same D3 in I''. However for the
regular triangle solutions a new symmetry iIs added to the
Isotropy subgroup. This symmetry is obtained by flipping
about the midplane and translating from the center of one
triangular cell to the center of an adjacent triangular cell
as shown by the arrow in Figure 3.2(a). Thus the isotropy
subgroup for regular triangles is D3 + Z2 < Dg and we have a
new maximal Isotropy subgroug

The situatlon for the Z; solutions is similar to the
case of trlangles. For wavy rolls and false hexagons there
Is an ldentification made by upwellings and downwellings so
that the isotropy subgroup remains Z%. However, in the
single case of patchwork qullt (see Figure 2.5(d)) the new
symmetry does add a reflectional symmetry to the isotropy
subgroup. Thls symmetry Is obtained by flipping about the
midplane and then translating the cells as in the case of
regular triangles. See the arrow indicating a relevant
translatlon In Flgure 3.2(b). We clalm that the isotropy
subgroup Z obtained thlis way for patchwork quilt 1Is also a
maximal 1sotropy subgroup. Recall from Figure 2.1 that Z
1s contained (up to_conjugacy) in st 4 Z and Dg. As wlth
regular trlangles Z; £ Dg since a flip type symmetry has
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\

>

N

(a) Regular triangles (b) Patchwork qullt (c) Rolls
Figure 3.2. Convectlon patterns with extra symmetry

been added to the isotropy fubgrgup Since the lsotropy
subgroup for rolls is now S a fllp tgpe symmetry
having been added, one might questlon why Z; ls a maxlmal
lsotropy subgroup Is I''., The answer lles ln the direction
of the translatlon whlch appears In the flip-type symmetry
added to. the lsotropy subgroups of rolls and patchwork
qullt. For rolls the translation polnts from the center of
the basic hexagon In the hexagonal lattlice to one of the
vertices In that hexagon. See Flgure 3. 2(?) In the case
of patchwork qullt It does not. So 22 LS + Z2 and we have
the fourth maximal Lsotropy subgroup.

We now describe the simplest Elfurcatlon problem
commuting In the actlon of T' or R

"Theorem 3.1" Let g be the reduced blfurcatlon mapping
obtained by the Llapunov-Schmidt reductlion. Assuming
certain non-degeneracy assumptlons on g one flnds the
possibllities for the bifurcatlon diagrams as shown In
Figure 3.3. Recall that a ls the ratio of cublc terms.
Other possibilities with no stable blfurcating branches
exist for -1 < a < - 1/3.

Remarks: (a) The Interestlng observatlon here is the
mathematical possibllity of the existence of stable regular
trlangle solutlons.
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1.3
S S +ZZ
u DG
u D3+Z2
u Z3
2
S u 9
T +DG+Z2
a < -1
1,53
u S +Z2
S 06
u D3+Z2
u Zg
S u 5
1 T"4De+Z,
a> - 3 fifth order term > 0O
1 .3
S +Z2
u 06
3 DB+ZZ
Z3
2
S u 2
1 T +Dgt+i,
a > - T fifth order term < 0O

Flgure 3.3. Least degenerate bifurcation diagrams with
symmetric boundary condltions.

(b) Note once again that there Is a one to one correspon-
dence between maximal isotropy subgroups and branches of
bifurcating solutlons In the least degenerate symmetry
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preserving bilfurcation problem.
4. REMARKS CONCERNING MAXIMAL ISOTROPY SUBGROUPS

A number of people have consldered the problem of
spontaneous symmetry breaklng, yet there stlll does not
exlst a completely satlsfactory resolutlon of this problem.
There ls however one general result by L. Michel [1976] (as
described by D. Sattinger [1982]) whlch ls noteworthy. The
object of thls sectlon ls to explaln how thls result relates
to the examples glven In the prevlous section and to maximal
isotropy subgroups. Thls sectlon Is a continuation of a
dlscusslon of symmetry breaking glven in Golubltsky and
Schaeffer [1983].

Let T C 0(n) be a compact group acting linearly on R7.
For x € R, let T be the lsotropy subgroup of T corresponding
to x and let F be the subspace of R fixed by I; i.e.,

F={yeRYcys=y}.

Note that for x = 0, L =T since the actlon ls linear.
Moreover Lf T acts lrreducibly then I =T implies x = 0.
(Proof: £ = T Implles that F ls an lnvarlant subspace under
r. Irreducibllity Implles that elther F = RM or that F = {0}.
In the flirst case T € 0(n) ls just the group {I} since every
Yy € T fixes each y € R", In the second case one notes that
x € F and concludes that x = 0.)

Using F one has a simple conditlon describing when I is a
maximal isotropy subgroup.

Lemma 4.1: Assume that I' acts lrreduclbly on R" then I is a
maximal Lsotropy subgroup of T if dim F = 1,

Proof: Note that when x = O Irreduclbility Implies dim F = O.
So x # 0. Let = be the lsotropy subgroup corresponding to y
and assume that £ & . Since dim F = 1, elther y = O or y

Is a non-zero multlple of x. In the flirst case £ = I'. In the
second case = = I since the actlon ls llnear.

Note: The converse of Lemma 4.1 Is not true. As pointed out
to us by George Bergman the six-dimenslonal irreducible
representation of the permutation group Ss has the cycle group
Zs as a maxlmal lsotropy subgroup. For this example
dim F = 2. We shall give other examples below.

Michel and Sattlnger have used the condition dim F = 1
to good avall In studylng solutlion branches of bifurcation
problems. We describe thelr result. Let g: R" xR+ R" be a
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blfurcation problem equlvariant with respect to I', l.e.
g(yx,A) = vg(x,A) for all vy € T. The following lemma sum-
marizes some baslc results concerning the relatlonshlp
between g and lsotropy subgroups.

In the following lemma we use the notation IL(y) to
indicate the isotropy subgroup corresponding to y. Thus
I(x) = L.

Lemma 4.2: Let g: R x R + R" commute with T. Then

(a) T & L(g(x,A))
(b) g:F xR+ F

(c) Let N(I) be the normallzer of L in T. Then Y(F) = F for
all v € N(E).

(d) glF x R commutes with the group D = N(L)/IL.

Proof: (a) If yx = x then g(x,\) = g(yx,A) = yg(x,A). Thus
Yy € I(g(x,X)).

(b) Apply (a) to y € F to see that I(y)€& I(g(y,A)). Slnce
y € F It follows that L& Z(y). Hence g(y,X) € F.

(c) Let 8 be In T. Observe that
656-1 = £(6x). (4.1)

For if vx = x, then Gyd'l(ﬁx) = 6yx = 8x. So 676'1 €
L(8x). Now If & € N(L) then (4.1) Implies that I = I(6x).
Suppose y € F. Then L€ I(y). For § € N(I) one has

I = 658l sr(y)s-! = T(sy).

Thus L& L(d8y) and 6y € F. (Note that N(I) Is the largest
subgroup of T which leaves the subspace F lInvarlant.)

(d) Since g commutes with T one has that g|F x R commutes
with N(Z) using (c). But T acts as the ldentlity on F so D
acts on F and glF x R commutes with D.

The following proposition, due to Michel [1976], is the
first general result about the exlstence of bifurcating
branches corresponding to maximal isotropy subgroups. Flirst
note that if T acts absolutely irreducibly, (i.e., the only
matrices on R" which commute with T are multiples of the
identlity matrix), then (dg)o 3 = c(A)I since the chaln rule

’
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lmplles that (dg) j commutes with T. We shall say that

the trivlal solutlon x = 0 changes stablllty non degenerately
If c(0) = 0 and c'(0) # 0. Note that If I acts Ilrreducibly
then g(0,A) = 0 for all A and x = 0 Is a solutlon.

Proposltion 4.3: Let g commute with T'. Assume

(1) T acts absolutely Irreduclbly
(11) dim F = 1, so I ls a maxlmal lsotropy subgroup

(i11) the trivlial solution changes stability non-deger-
ately.

Then there exlsts a solutlon branch blfurcating from the
orlgin whose solutlons have lsotropy subgroup L.

Proof: By Lemma 4.2(b) g:F x R+ F. Let y be the single
coordinate In F. Then g(0,)X) = 0 slnce the trivlal solutlon
perslsts for all A. Slince g Is assumed to change stabllity
at (0,0) one sees that gy(O 0) = 0 and gyx(O 0) # 0.

Since ¢g(0,A) = 0 one may write, using Taylor's theorem,
g(y,A) = yh(y,r). The assumptlons gy(0,0) = 0 and y)‘(0 0) #
0 imply h(0,0) = 0 and h,(0,0) # 0. "Now one can solve the
equatlion h(y,A) = 0 by tKe Implicit functlon theorem for a
unlque smooth functlon A = A(y) so that A(0) = O and
h(y,A(y)) =2 0. The curve A = A(y) Is the desired branch of

solutlons.

Remarks: (a) From the polnt of vliew of blfurcation theory

the Information given by Propositlon 4.3 1s Insufflicient in
several ways. First of all no Informatlon Is glven about the
stabllity of the solutlons on the new branch. Michel's
lnterest In this problem came from assuming that g = Vf where
f: R" x R + R Is lnvarlant under T. Once one has a potential
functlon the problem of linearlzed stabllity Is easier.
Second, Propositlon 4.3 glves no Informatlon about how many
solutions y exlst for each A, For example, It ls possible,
though qulte improbable, that A(y) = 0. So all the new
solutions occur at A = 0, a rather unreasonable eventuality.
Third, no Information ls glven about the exlstence or non-
exlstence of other branches.-

(b) Sattinger [1982] has used thls proposition along with
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some standard though sophisticated techniques from group
representation theory to make statements about the exlistence
of solutlon branches for blfurcation problems commuting wlth
the hlgher (than five) dimenslional lrreduclble
representations of 0(3).

(c) All of the examples In the flrst three sectlons satisfy
the assumptlons of Proposition &4.3. In particular, all of
the maximal isotropy subgrups I have dim F = 1. Thus the
exlstence of each of the branches of solutlons corresponding
to maximal Isotropy subgroups is guaranteed by thls
proposition.

Michel [1976] claimed that a partlal converse to thls
theorem iIs also true. More precisely, Michel clalmed that
if a solution exists for every g satisfying (iii), T is
assumed to act absolutely irreducibly (i), then dim F = 1.
Dancer and Sattinger noted that an extra hypothesis ls
needed to prove this converse. One has:

Proposition 4.4: Assume that T acts absolutely Irreduclbly
on R, Let I be an isotropy subgroup. Assume

(1) The group D = N(L)/I is finite.

(il) For every g: R" x R + R® commuting with T' such that the
trivial solution changes stability non-degenerately there lis
a solution branch of g = 0 with lsotropy subgroup I
bifurcating from the origin.

‘Then dim F = 1.

Proof: See Sattinger [1982], §&4.

This proposition states, in a sense, that if one wants
to find a solution branch corresponding to I for every
bifurcation problem then one needs to know that dim F = 1.
Thls seems to us to be a misplaced emphasis. Perhaps one
really wants to know which conditions on L imply that for
almost every g there is a solution branch corresponding to
I. We suggest that the appropriate set of g's to Investl-
gate are those with (topological) T'-codimension equal to
zero, that is, those g's whose singularities are the
simplest possible consistent with T-equivariance. These g's
are the equivalent of Morse functions in the T'-equlvariant
bifurcation theory context. For these g's one might con-
jecture that there is a one to one correspondence between
maximal isotropy subgroups and solution branches. This
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conjecture ls not true as stated and will be reflned In the
discussion below.

We now return to the extra hypothesis to Proposition
b.,4, As observed In Lemma 4.2 the group D acts on F. We can
make a further observatlon about thls actlon. The followlng
observations were made jolntly with Ian Stewart.

Lemma 4.5: Assume that I ls a maximal lsotropy subgroup of T
and that T acts lrreducibly on R". Then the action of D on
F 1Is fixed polnt free.

Proof: Suppose the actlon of D on F 1Is not fixed point
free. Then there is ay # 0 in F and 8§ € N(Z) ~ I which
satlsfles 8y = y. It follows that I(y) , I slnce § g L. By

the maximallty of £ it follows that I(y) =T. Since T acts
Irreduclibly y = 0 contradlcting our assumptlon and the lemma
1s proved.

Proposition 4.6: Let T act irreducibly on R" and let L be a
maximal Isotropy subgroup of T'. .Let D% be the connected
component of the ldentlty of D = N(Z)/L. (D lIs compact
since T' Is assumed to be compact.) Then elther -

(a) 0° = {1},

or (b) B’ = s! and F_1s the direct pum of Irreduclble
subspaces under Do, @ C, where S" Is Identlffed with
the unlt complex numbers and the action of S° on C Is
given by complex multiplicatlon

or (c) DY = su(2) ang F 1s the direct sum of Irreduclble
subspaces under D", @ Q, where Q iIs the skew field of
quaternions, SU(2) 1is ldentlfleg with the unit
quaternions and the actlon of D on Q is given by
quaternlionlc multliplicatlion.

Definition 4.7: We call a maximal lsotropy subgroup of a
compact group ' acting Irreducibly on R" elther real,
complex, or quaternionic depending on whether D" Iis {1}, 51,
or SU(2).

Proof: The baslc observation is the one glven In Lemma 4.5
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that D and hence DY acts flxed point free. The result then
followlng from Theorem 8.5 In Bredon [1972]. We lInclude a
proof here as It Is short and it does not appear In the
blfurcaslon theory literature. Assume that dim p? > 1.
Since D° 1ls compact It has a maximal torus T%. We claim
that if £ > 2 then the action cannot be fixed polnt free.
First note that If S° acts on F flxed polnt free then it
acts fixed polnt free In each Irreducible subspace V.
Irreduciblility Implies that dim V = 1 or dim V = 2 and S!
cannot act in a fixed point free way on R. _Thus dim V = 2.
Moreover the Irreduclble actions of S on RZ = C are
enumerated by 8 + exp(m@l) for some positive Integer m. If
m > 1 then this actlon iIs not fixed polnt free, take 6
2n/m. So we may assume Ehat m = 1i

Now suppose that T° = I x s! acts on F. et V be an
irreducible subspace of F under thls action of T°. Agaln
irreduciblillty Impllies that dim V = 1 or 2 with dim V = 1
and a flxed point free action being Incompatlble. So we
ldentlfy V with C. The result above states that (6,0) acts
on C by (8,0) » exp(16) and (0,8) acts on C by (Oée) >
exp(16). It follows that the diagonal (923) of T acts on
C by exp(2i8). However the dliagonal of T® is s! and such an
actlon of the diagonal is not fixed point free. The clalm
Is proved.

Using the classlification theorem for compact,
connected Lie groups of positive dimension one sees that
there are_only three whose maximal torus_ls one dlmenslonal,
namely, sl, su(2), and SO(3). Suppose D% - S0(3). Then
write F as a sum of irreduclble subspaces. All of the
Irreduclible actlons of SO(3) are odd-dimensional. As a
rotation matrlx acting on an odd-dimensional space always
has an axls of rotation, Sufh actlons cannot be fixed point
free. So DY is elther 1, S° or SU(2).

As dlscussed above the irreducible decomposition of s!
acting on F Is as stated in the proposition. Finally one
checks that the only fixed point free, Irreduclble action of
SU(2) Is given by SU(2) acting as the unit quaternions on
the quaternions.

H

Remarks: (a) In the complex case dim F = 0 mod 2 and in the
quaternlionic case dim F = O mod 4. Here one can obtain more
examples of cases where dim F > 1 and I is a maximal
I1sotropy subgroup.

(b) Recall from Lemma 4.2(d) that gIF x R commutes with D.
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Suppose that D = s! and F Is two dlmenslonal. Identify F
with C and note that If g commutes with s! then g has the
form

g(z,\) = p(zZ,\)z + q(zZ,)\) 1z

where p and q are real valued. (Cf. Golubltsky and Langford
[1981]).) If g has a slngularity at the orlgln then p(0,0) =

= q(0,0). One can show easily that g = 0 reduces to z = 0
or :

p(zZ,)) = 0 = q(zZ,})

since z and 1z are lndependent if z # 0. Generally the
solutlon to a system of two equatlons In two unknowns is a
discrete set of points, so generlcally z = 0 iIs the only
solution. No branch of solutlion blfurcates In F x R from
the orlgin. (Aslde: If g depends on an extra parameter T
then one can obtaln a curve of solutlons. Thls happens in
Hopf blfurcation where T ls the perturbed perlod. See
Golubltsky and Langford [1981].)

A slmllar sltuatlon occurs when D = SU(2) and F =_Q
only there one needs to add three additlonal parameters‘ln
order to flnd a solutlon branch. I know of no interesting
situatlon (such as Hopf blfurcatlon) where this phenomenon
occurs. It ls an lnteresting question!

Proposition 4.6 puts the extra assumptlion in
Proposition 4.4 Into perspectlve. The remarks above suggest
the following:

Conjecture: Let T' act absolutely lrreduclbly on R". Let

g: R x R + R" commute with T, have a singularity at (0,0)
and have (topologlcal) codimension.0. (In partlcular, this
implies that there Is a non-degenerate change of stability
along the trlvial solutlon at A = 0.) Then each non-trivial
branch of solutlons to g = 0 corresponds to a real, maximal
isotropy subgroup. Moreover, each real maximal lsotropy
subgroup corresponds to a branch of solutlons to g = 0 for
some g with (topologlcal) codimenslon 0.

I feel confldent that thls conjecture Is true if all
of the real, maximal lsotropy subgroups also satlsfy dim F =
1. This 1s the case for the examples In the first three
sections. In fact, more ls true.

Recall that D acts flxed point free on F. If dimD =
1 then elther D = {1} or D = Z,. If D =12 then g:F xR + F
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is odd In y by Lemma 4.2(d). The simplest such b%furcatlons
for odd functions is the pitchfork bifurcatlon, y” % Ay,

See Golublitsky and Schaeffer [1979]. The following fact ls
true for the examples given in Figure 1.1(a), Figure 2.6 and
Figure 3.3. If D = Z; then the branch of solutions corre-
sponding to I is parabola-like as in the pitchfork. If

D = {1} then the branch of solutions is transcritical,
yz-ly, and has two components, one supercrltical and one
subcritical.

We are in the situation where by abstract techniques
one can recover much of the information in the bifurcation
diagrams associated to the simplest, least degenerate cases
of- the examples In the previous sections. Those results
were obtained by long, tedious calculations and to be able
to replace them by only group theoretic consideratlons would
be a major accomplishment. We are not there yet but the
project seems feasible. Finally we note that we havenot yet
consldered here, In a coherent way, the problem of
linearized orbital stability nor have we considered the
problem of submaximal lsotropy subgroups from an abstract
point of view. The examples in Sections 1 and 2, in
particular, show that such consideratlions are absolutely
necessary if the abstract theory is to be truely appllcable.

Martin Golubitsky, Department of Mathematlcs, Arlzona State
University, Tempe, Arizona 85287.
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