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BIFURCATION INVOLVING
THE HEXAGONAL LATTICE

ERNESTO BUZANO' AND MARTIN GOLUBITSKY 2

1. Introduction. This article is an outline of the results obtained in our joint
paper [1] on the problem of pattern formation as it relates to bifurcation with
respect to the hexagonal lattice. The reader should refer to [1] for the details and
the proofs.

Our work is motivated by the very interesting ideas of D. H. Sattinger [5]
concerning a classical problem in fluid mechanics known as the planar Bénard
problem (which we describe below). We note however that our results like
Sattinger’s are proved for bifurcation problems involving the hexagonal lattice
only and thus may be useful in other areas where the hexagonal lattice appears.
See, for example, the study of visual hallucination patterns by Ermentrout and
Cowan [2].

Loosely stated, the planar Bénard problem is the study of thermal conduction
and convection for a fluid contained between two parallel infinite planes. The
convective motion is driven by a temperature gradient A between the upper and
lower planes. In experiments (performed in a finite box, of course) what is
observed is that for small A the fluid remains at rest while the heat is conducted
from one plane to the other. However as A is increased there is a certain critical
value A, after which the pure conduction solution looses stability and convective
motion begins. What makes this problem so interesting is that under different
experimental conditions the equilibrium motion can evolve into a variety of
spatial patterns. For example in Bénard’s original experiment the convective
motion splits into hexagonal cells, arranged on a hexagonal lattice, where the
motion is up-welling at the center of the hexagon and down-welling at the
boundaries. Another configuration often observed is rolls (see Figure 1). Other
possibilities are cross-rolls and wavy-rolls.
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FIGURE 1. Convective patterns

The mathematical analysis of the planar Bénard problem involves postulating
rules for the motion of the fluid and rules for the time evolution of the
temperature distribution. A well-accepted formulation for this problem is given
by the Navier-Stokes equations in the Boussinesq approximation. Our analysis
will not involve the explicit use of these equations; we make no attempt to
describe them here. We just note here that one of the reasons why the mathemati-
cal analysis of these equations is so difficult is that the associated operator
commutes with the full group of rigid motion of the plane and this group is not
compact. /

Sattinger’s analysis of the problem begins with the simplification that one
should first look for solutions which are doubly periodic. This simplification has
the effect of reducing the group of symmetries to a compact group, the transla-
tions being identified with the 2-torus 72. However, now one is forced to choose
the exact class of doubly periodic functions which one wants to study; that is, one
must choose a lattice in the plane to support the double periodicity. The most
natural choice, given the experimental results, is the hexagonal lattice for both
rolls and hexagons respect this lattice. (We note, however, that cross-rolls can be
found on a rectangular lattice but not on a hexagonal lattice, so this restriction
does have undesirable effects.)

Once one has restricted the Boussinesq equations to act on functions which are
doubly periodic with respect to the hexagonal lattice, then there is a well-known
classical method—called the Liapunov-Schmidt procedure—which allows one to
find equilibrium solutions to the Boussinesq equations near the pure conduction
solution by finding the zeroes of a mapping g between finite-dimensional spaces.
The explicit construction of this mapping is quite difficult as the Liapunov-Schmidt
procedure only identifies g implicitly. However, with some effort, it is possible in
certain cases to obtain the beginnings of the Taylor expansion of g. Moreover, it
can be shown [1] that g must commute with the symmetry group of the full
problem which in this case is T2 + Dy, Dy being the symmetry group of the
hexagon. Without formal justification we observe that (after making some nonde-
generacy assumptions) one can give the setting that the reduced mapping g must
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have. The idea is: suppose that the linearized Boussinesq equations have plane
waves solutions in a certain direction 8. Then the group action demands that there
exist plane waves in the directions 6 + 27 /3 and @ + 47 /3 as solutions. Since
each set of plane waves is two dimensional (sin and cos) one has a 6-dimensional
space which we can identify with C?. Moreover, no other solutions are forced by
the symmetry group. So generically there are just 6 independent solutions to the
Jinearized problem. One can then show that the reduced bifurcation equations
must have the form

g: CPXR-C

where the real parameter represents the temperature gradient A. Moreover,
g(z, \) must commute with 7% + Dj.

The remainder of the paper is structured as follows. In §2 we describe the
relevant group theory ending with a description of g. In §3 we describe the
singularity theory analysis of the bifurcations of g. Here we use the results of [3]
as a guide. Finally, in §4 we give an interpretation of our results for the Bénard
problem.
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2. The group theory. Consider the hexagon of Figure 2. The action of D on C*
is given by the standard action of Dy on the hexagon. For example, flipping the
hexagon about the horizontal axis leads to the group element (z,, z,. 23) =
(2, Z3, Z,). The action of the 2-torus is induced on C? by its action as translations
of plane waves and may be given explicitly by (s, )2y, 23 23) =
(e'z,, e 1z,, e'z;) where (s, 1) € T2

We now describe the ring of germs of smooth real-valued invariant functions
on C? X R, which we denote by &6(T? + D). Note that f is invariant if f(yz, A) =
flz,\)Vy € T? + D,

Let u; = z;Z; for j = 1,2,3, let 0, = u; + uy + Uy, 0, = wyy + gty T Uy,
0, = u Uy, and let ¢ = 2Re 2,2, z;.

LEMMA 1. Ler f be in &(T> + Dg). Then there exists a smooth function h:
R* X R - R such that

f(z,\) =h(o,q, 7).

e
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Define E(T? + Dg) to be the module of equivariant mappings g: C> X R - C3
over the ring &6(7 + D). So g € E(T? + Dq)if g(vz, \) = yg(z, \)Vy € T2 +
Dg. This module may be computed explicitly using:

LemMMA 2. E(T? + D) is a free module over &(T? + Dy) with generators

2 20 =
z 2 3 Uiz,z
z; Uz, Lo 2524 UZyZ4 14223
23 Uzzy ulz, 2123 Uyzi24 usz,z,
z Uy z Z 7
3 323 2 2z U3Z,2Zy o=
ujz, u3z,2,

It follows from the above lemma that the assumption of symmetry gives g a
very special form, namely

Hz + K,z,z,
(2.1) g(z,\) = | Hyz, + K,z z,
Hyz, + K,z,z,

where H; = h) + hyu, + hsu? and K; =k, + kgu; + kqu? for j=1, 2, 3 and
hy, hy, ks, ky, k, and k¢ are invariant functions. In fact (2.1) allows us to identify
g with the 6-tuple

gN(hla h3’ h55 k27 k4, k6)

One should observe that the only linear term in the Taylor expansion of g is h,(0)
and the only quadratic term in the Taylor expansion of g is k,(0). The Liapunov-
Schmidt procedure guarantees that hy(0) = 0 for the g coming from the Bénard
problem. A fact which depends on the explicit form of the Boussinesq equations
is that k,(0) =0 for the g of the standard Bénard problem. However, if one
changes the Bénard problem slightly to admit, say, a temperature dependent
viscosity term the k,(0) will be nonzero.

3. The singularity theory. Using the ideas of [3] one begins to classify bifurca-
tion problems in E(T? + Dg) by codimension. The equivalence we use here is
I-equivalence, an equivalent form of contact equivalence, which treats A as a
distinguished parameter. See [4).

Assume that #(0) = 0 as discussed in the last section.

THEOREM 3. (a) Suppose k,(0) # 0 and that other nondegeneracy conditions on
higher order terms (see [1] for details) hold. Then g is (T? + D,)-equivalent to
(—A,1,0,1,0,0) and codim g=0.

(b) Assume k,(0) = 0 and that certain nondegeneracy conditions hold ( see [1] for
details). Then g is (T + Dy)-equivalent to

(=A+ a0, +do?, 1,0, bo, + ¢q, 1,0)
wherea # -1, — 3, — 4, b+ -1 andc + 0.
The codimension of g is 5 and a universal unfolding is

(—7\ +ao, +de?, 1,0, bo, +c¢q— e, 1,0).
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By explicit calculation of the zero set for this normal form one can show that
the topological codimension is 1; that is, there are 4 modal parameters.

We note here that in both normal forms each coefficient which is +1 could just
as well have been —1 and vice-versa. We have made a single choice of signs to
reduce the complication in the statement of the theorem. In any physical
interpretation these signs will be important.

4. The interpretation of the singularity theory results. The first step in recover-
ing physically meaningful information from Theorem 3 is to have the ability to
graph the zero sets of the normal forms. This is nontrivial since the zero set sits in
C? % R. However, one can simplify the problem by noting that since g commutes
with T2 + D it must be zero on entire orbits. It is now possible using the explicit
presentation of g in (2.1) to find for each orbit of zeros a unique point on the
orbit. Moreover, one can classify the types of solutions to g = 0 which may occur
by listing the isotropy subgroup which corresponds to the given solution. The
results of these calculations yield:

PROPOSITION 4. There are T types of solutions given by:

Nomenclature Isotropy Subgroup

I Trivial Solution T? + Dg

11 Rolls S'+7Z,+1Z,
m*, I Hexagons Dy

1V Wavy-Rolls Z,+1Z,

v, False Hexagons Z,+17,

Vv False Hexagons Z,

VI Z,

VIl {1}

We arrived at the terminology in the following way. Each solution corresponds
to a superposition of plane waves defined on R?, the actual plane of the Bénard
problem. If one plots the zero set of the associated superposition of plane waves
one can see the isotropy subgroups arising (see Figure 3). The difference between
Hexagons and False Hexagons involves the symmetry of the “circlelike” figures in
the zero sets. For Hexagons they have Dg symmetry while for False Hexagons
they have either 4-sided or 2-sided symmetry, depending on the isotropy sub-
groups. We note that solution types VI and VII do not occur in the singularities
we consider in Theorem 3; they will however appear in more degenerate (higher
codimension) bifurcation problems.

Now how does this relate to the fluid flow in the Bénard problem? Roughly
speaking the superposition of plane waves we described above corresponds to (a
linearization of) the vertical component of the velocity field in the Bénard
problem. Observe that the negative flow is not necessarily the same physically as
the original flow. For example, in our discussion of the hexagonal solutions in

|
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Rolls

Wavy Rolls False Hexagons
FIGURE 3. Zeroes of the superposition of plane waves

Bénard's experiments we noted that up-welling occurs at the center of the
Hexagons. This is quite different physically from down-welling at the center
which would be represented by the negative flow. This is the reason that one finds
two types of Hexagonal solutions, I1I'* and III~ . On the other hand, reversing
the flow for rolls is equivalent to a phase shift and no new behavior is observed.

One more issue must be addressed before we can interpret the results of
Theorem 3. From a physical point of view no equilibrium solution can be
observed if it is a saddle or a source for the time-dependent problem. The way
that one computes the stability of a given solution is through the notion of
linearized stability; one computes the eigenvalues of d, g (the Jacobian of g in the
C? directions) and if they are in the correct half-plane for stability then the
solution represents a stable equilibrium. There are two remarks needed at this
time. First, if g commutes with the action of a continuous group, then d,g must
have zero eigenvalues. Thus the best one can hope for is a form of orbital stability
where all the eigenvalues of d,g which may be nonzero actually sit in the correct
half-plane for stability. Second, in general, contact equivalence does not preserve
the eigenvalues of d.g at solutions; however, in some cases I -equivalence does
preserve the half-plane in which the eigenvalues sit (see [4]). With regard to the
specific group discussed in the paper, one can prove

PROPOSITION 5. The signs of the real parts of the eigenvalues of d.g are
invariants of (T? + Dy )-equivalence at solutions of types 1, 11, and 111. Sufficient
information about solutions of type IV can be obtained to show that these solutions
are unstable for the bifurcation problems considered here.
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We give a schematic diagram of the zero set for the normal form of codimen-
sion zero bifurcation problem of Theorem 3 in Figure 4. Observe that both Rolls
and (both types of) Hexagons appear as solutions. Since this problem appears in
the universal unfolding of all degenerate bifurcation problems there is an indica-
tion that Rolls and Hexagons should be the most observed solutions. However,
each of these solutions is unstable, suggesting that this bifurcation problem
cannot describe by itself physically interesting phenomena. (One should observe
that different choices of signs in the normal form will interchange III" and 11~
as well as allow the possibility that solutions II occur for A <0 rather then
A>0)

m

FIGURE 4. The codimension 0 bifurcation problem

However, if one looks at the next degeneracy (case (b) of Theorem 3) one finds
much more interesting behavior. Moreover, this is the situation which must occur
for the Bénard problem. (The reason for this fact involves looking more carefully
at the Boussinesq equations.) There are many cases depending on the exact values
of the modal parameters. (The interested reader may look at [1] where all the
possibilities are discussed.) We give in Figure 5 the diagram which is perhaps the
most interesting physically.

e=0

1 1
-1 < - — g
1<ag b> 3 1<ag b> 3

FIGURE 5. The topological codimension 1 problem
Here we find stable Roll solutions in the unperturbed problem along with the

existence of (unstable) Wavy-Rolls solutions. When this problem is unfolded one
finds, in addition, stable Hexagons and unstable False Hexagons of two different

types.
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There is still substantial work to be done in relating these results to the original
Bénard problem. What is interesting here is that even with the restriction to the
hexagonal lattice one finds a solution structure which is more complicated than
might be suspected; moreover, one can classify all the likely cases in an organized
fashion. For example the case shown in Figure 6 admits the possibility that both
types of Hexagons are stable (for different ranges of A). An equilibrium theory
would predict a jump from hexagonal solutions of one type (I11*) to hexagonal
solutions of the other type (III ) as the temperature gradient is increased.
Admittedly this jump has not been observed; nevertheless it is intriguing that the
mathematical analysis admits this possibility as equally likely with the more
physical diagram in Figure 5.

.'J'.b>-;—‘,c>0

FIGURE 6. Another topological dimension | problem
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