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HOPF BIFURCATION IN THE PRESENCE OF SYMMETRY,
CENTER MANIFOLD AND LIAPUNOV-SCHM[DT REDUCTION

Pascal Chossat

Martin Golubitsky

ABSTRACT: Assume that the linear part of a vector field X is semisimple
and has eigenvalues at + wi. We show that if the quadratic terms of X
vanish when restricted to the center subspace, then to third order the
Liapunov-Schmidt reduction for finding periodic solutions of X is
identical to a center manifold reduction of X followed by putting the
reduction in normal form. Several examples of systems with symmetry that
satisfy this hypothesis are discussed.

[. INTRODUCTION

Local bifurcation theory, as developed through the Liapunov-5Schmidt
decomposition method [9], provides a simple and efficient way for computing
zeroes of families of nonlinear maps near singularities. However, when
applied to evolution equations (ODE's or PDE’s) this method does not, in
general, give information on the dynamics close to the bifurcated solutions,
except in situations where certain exchange of stability principles are valid,
such as at simple eigenvalues [9]. The "natural" setting for the study of
dynamics close to a bifurcation is a combination of a center manifold
reduction along with a normal form analysis [11]. The relationship between
the Liapunov-5chmidt decomposition and the stability of bifurcated solutions
has been studied, from a general point of view, in [10). Our purpose is
different. We shall show that if a simple condition is realized (no quadratic
terms for the Taylor expansion of the equation on the center manifold), the
Liapunov— Schmidt method for Hopf bifurcation leads to an equation which is
identical to the normal form equation on the center manifold, up to cubic
order (assuming semisimple critical eigenvalues). Tnis can be interesting in
problems invariant under a symmetry group, because symmetry can force the
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quadratic terms to be identically zero, as we shall see in Section 111, We
now recall the Liapunov-Schmidt method and the center manifold reduction
process.

Let f(u,x) be a CK msp (kzl) from R'x#® to & such that £(0,0) =
0 and L = D,f(0,0) is not invertible. Let V be the kernel of L and let
P,0 be projections in &' such that Im P =V and Ker Q = ranage L. We
note that, if 0 is a semisimple eigenvalue of L one can choose P = (.
Now set u = xty where x ¢ V and vy ¢ ker P; then the equation f(u,a) =0

splits as follows

0 (1.1}
] (1.2}

QF (x+y,A)
(1=Q)F (x+y, 50

Notice that we can write egquation (1.2) as follows:

(1=QlLy = (1-Q)N(x+y,h) (1.3)
where

N{UQ!\) = F{U!*) - Lu.
1t 1s easy to check that the operator (1-Q)L restricted to a complement of V

in # |s invertible. Hence the implicit Function theorem applies to (1.3) and
gives v = y(x,A) of class X in & neighborhood of (0,0). Replacing y by

yixsA) in (1.1) leads to the "bifurcation equation":
alxeA) = QNIx+y(x,A)42) = 0 (1.4)

This method has proved to be powerful. For example, the Hopf bifurcation
theorem can be proved by looking for the zeroes of a functional equation,
within & class of pericdic functions. Other methods are possible, but the
Liapunov=5chmidt method has the advantaae of providing a simple and systematic
rule for computing the Taylor expansion of the solution just by matching
powers In (1.3) and (1.4).

On the other hand, let X; be a smooth (CX) vector fiela in &', and let
0 be a singular point for Xg, i.e., Xg(0) = 0. [t is well-known that if no
eigenvalues of A = DKU{UJ have zero real part, then the dynamics of the Flow
of Kg in @ neightorhood of O is determined by the eigenvalues of A. In
particular, if all of the elgenvalues have negative real part, then 0 is an
attractor or sink of X,. If, however, some eigenvalues lie on the imaginary
axls, then the dynamics of the flow near 0O will be determined by hiagher

order terms in the Taylor expansion of Xg;. More precisely, let Vj be the
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(generalized) eigenspace of A associated to eigenvalues with real part equal
to zero , and iet PO pe the projection onto VO such that APqy = POA. Then
there exists a CK map on &

$g:Vg — (I—PO)EO,

such that ¢U(O) = D¢0(U) = 0 and whose graph is a center manifoid My» i.e.

My 1s & locally invariant manifold for the flow defined by Xg f11]. 1f, in
addition, the remaining eigenvalues of A are in the left-half plane, then M
is also an attractor for the flow. We can therefore restrict the study of the
flow to its action on Mgy. [n the case of a family X, of vector fields
(AeBP), there exists a map é:VoxRP — (1-P)R" such that ¢(.,0) = ¢g. The
Taylor expansion of ¢(x,%) can be computed by a matching rule, slightly more
compl icated than the rule for y(x,X) in the Liapunov-Schmidt method. Also,
the study of the dynamics generally requires the vector field on MA to be in
"normal form" (the normal form is a k-th order Taylor expansion obtained from
X5 by near identity changes of variables and which is as simple as possible

(8l).
11. STATEMENT AND PROOF OF THE MAIN RESULT

Let us consider the equation
9 = Fu, @.1)

where F:Dx® — E of class ck*tl (k23) in a neighborhood of (0,0), F(0,0) =
0, E is a real Banach space and D = E s the domain of the 1inear operator
A = D F(0,0). We assume that standard hypotheses are valid for A and F, so
that the center manifold theorem applies to (2.1) at (u,r) = (0,0) (I1]. We
also assume that A has semisimple eigenvaliues tiwg of finite multiplicity,
and that the rest of the spectrum lies in the half-space {zel: Reg<E<0}. We
denote the invariant subspace associated with eigenvalues tiwo by VO , and

let E = Voéw, where W is such that A(W 0 D) = W. Finally we let

X = Pou and y = (l—PO)u

where PO is the projection on VO associated to the foregoing decomposition
of E. From the center manifold theorem, equation (2.1) is reduced to the

equation:

G = G(x,A) (2.2)

e
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where
GixsA) = PoF Gety (%:3) 5 4)

and y(x,») Is the ck solution of

G = (1-Pg)F(xty,d).
We now write

Glx,A) = Lx + R(x,})

where L is the |inear part of G. The remainder term R has the form
= P
Rix.h) pgq A qu(x)
ptqgz2

where Rp'q(xj is a polynomial homogeneous of degree q in x.

Theorem 2.1: If Rpz = 0, then the normal form of (2.2) and the Taylor
expansion of the Liapunov-Schmidt bifurcation equation are identical at order

OCIAIIxT + Ixt3),

Remark 2.2: The simplest way to check that Rpgz = 0 s as follows. Let

piE = V5 be a projection and let G:VgaR + Vp be o composed with the
restiction of F to VAR, If the auadratic terms of G are all zero, then
Rgz @also vanishes. That is, if the restiction of (2.1) to its center
subspace has no quadratic terms, then the Liapunov-Schmidt reduction gives the
same equations as reduction to the center manifold coupled with changes of

coordinates to normal form.

We split the proof of Theorem 2.1 into two lemmas. In the following we
consider the action of the circle group $! defined on Vg by
(6.x) — e¥/U0 x for all  ¢es!, xev.
For every vector field X in V, we set

p(X)[x] = wy/2n fﬁ“’“” e~/uo x(eL/uy x)ap.

The operator p s a projection onto the space of 5]—equivariant vector
fields.
Lemma 2.3: The normal form eguation for (2.2) with Ryz = 0 takes the form

g% = Lx + Ap(Rp ) (x) + o(Rgz) (x) + 0CiMZixr + 1atixl3 + 1xi4y.

Proof: According to the Normal Form process (8], we look for a near
Identity change of variables with Taylor expansion

X — X =x 4+ Ahy(x) + Pa(x,x) +... .
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where hp is symmetric and p-linear. Then, the new vector field has the

following Taylor expansion up to order [Afixl and Ix'3:

ﬁn(.“} = R]}I'.;() - BdL{hl){;ﬂj

Rpz(x) = Rg3(x) - ad| (h3) (x)
where
ad, (X) (x) = DX(x)Lx = LX(x).

Denoting by #, (G,) the space of vector fields in Vg whose components are
homogeneous polynomials of dearee Kk (S]-equlvariant such vector fFields), we
know [5] that iy = Im ad_ @ G+ the corresponding projection being precisely
p. Hence Ry, =p(Rj;) and Roz = o(Rg3)- 2

We now recall the Lispunov-Schmidt decomposition for equation (Z.2). By

the change of scale s = wyt, equation (2.2) is rewritten as
dx = RxA) = (w-wg) $E (2.3)
where o is the unknown frequency and J = wy dfds - L. We look for a

function =x(s) in C'(SI.VO) where sl = B/2nZ. Let {cj} pe an orthonormal

basis of the eigenspace associated to the eigenvalue wgi. Then, in CU{S'.VUJ

is = . .—is
ker J = (I (xie'2g; + X °T;): x &€},
37 J J J J

Far
x(s) = § (xjls)gy + X;(s)T5)
we define
(P)(s) = § (ajei®c; + @ge o7y (2.4)
where

3 .\2“ _i5
o = 45 [g xytsre” %as.
This projection on ker J satisfies the properties reauired for decomposing
(2.3) according to the Liapunov-Schmidt method: set

(Px)(s) = x(s) and y = (1-P)x;

Thus, x = x + y and we obtain

(1-P 37 [RGy ) - (wog)

(a) Y
(2.5)

(b} O

1]

PR(xtysN) = (w-ug) 3%

where J-! is the inverse of J defined on ([~P}CD(SI'VUJ. Equation (Z2.5a)
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is solved for y = y(Q.m.A} and then equation (2.5b) aives the bifurcation

equation on ker J.

Lemma 2.4: Let fiVg— Vg and x € ker J. Then

PLF(x(s)] = p(f)(x(s)}.

Proof: Note that we can write

for some ;BEVU' We now set f = H Figge Then
- A2 - = =
PLEGx] = § &5 (]g F(et/m0 xgreTt (E2laryc

VA | P a o3 ‘
= %_ f (t+s)L/w -it
= ol ‘0 {§ FJ{E 0 Ku)e ('J}dt

where t = t-s

Ve _§ ; - - .
= b5 [ e %0 Fett/o xisnat = pif)xs)], o

We can now write the expansion of the bifurcation equation to thirg order

in x and A. Since Rgz = 0 and gé = wo"]L %, It is easy Lo check that

w 38 = Lx + MRy ) (x) + o(Rgz) () # vuu &

We therefore obtain the same equation as in Lemma 2.1, which proves Theorem

2.1 upon substituting x for x. o

Remark .5: (1) We would obtain the same result by applying the Liapunov-
Schmidt reduction directly to (2.1) instead of to (2.2). In this case, the
projection P on ker J has to be replaced by the projection P’=PP0 of
Cuiﬁl.EJ onto ker J. Then everything else works as above.

(2} We obtain the same result if L has an additional zero eigenvalue or
two pairs of imaginary eigenvalues. Such & situation occurs in multiparameter
bifurcation of the Couette-Taylor system considered in Example 3.4 below. In
the first case, for example, Vg is the eigenspace associated to the

eigenvalues 0 and * wi,

xls) = § (xjlsicy + X;(8)T)) + E Yic ke

where (E,} 1Is an orthonormal basis of ker L, and
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(Px)(s) = (aje’Scy + aje™'5T)) + § By
with

JE2TT
B = 47 I, Yk(s)os.
The proof of Theorem 2.1 given above then applies to this case.

111. APPLICATIONS OF THEOREM I

Assume there exits a group T acting on E such that (2.1) lIs Invariant
under this action, that is, we assume
Flyu,h) = YF(u,A)y 9y & T and (u,A) & DxRP
(F is T-equivariant). It is well known that the invariance properties carry
over to the bifurcation equation [14], which we now write as:
g(x,2) =0, xe& Vg, A e &,
We assume VO = V&Y, where V Is I-invariant and T acts diagonally on V&V

(see [14] for a discussion of this point).
Lemma 3.1: Let PZ(F.V) (Py(I,Vg)) be the space of TI-equivariant quadratic
maps of V — V tvu —3 Vc). Then:
dim PZIF.VO) = o dim PZ(F.V].
Proof: Let Ff:V# — VeV be I-equivariant. We write f = (f,f,) where
Fj:V@V — V is I-equivariant. We need only show that
dim Pztr.VéV.V) = 3 dim PZ(P.V)

where PZ(F.Vav.V) is the space of quadratic I—equivariant maps V& — V,

Now, define 6:{Py(I\V)}3 = P,(I,VéV,V) by
$(a,b,C) (VW) = alvayv) + DV W) + Clw,w), Y (v,W) € V&V,

where 5. 5. ¢ are the symmetric bilinear forms associated with the quadratic

mappings a,b,c respectively. We claim that ¢ is a )linear isomorphism, as

We Nnow prove.

(i) ¢ is l:1. Evaluating separately at w=0 and at wv=0 shows that
$(a,b,c) = 0 = a=b=c=0.

(ii) ¢ is onto. Let A be in PZ(F.V%V.V). then

Alviw) = ﬂ(v.v) + Zi(v.w) + Alwaw)

where A Is the symmetric bilinear form associated with A. Hence, A =
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$(A,2A,A)., Clearly ¢ itself is I'-equivariant; hence we have proved the

claim.

Corollary 3.2: PZ(F.V$V) is nonzero & PZ(F,V) is nonzero.
This corollary gives a simple way to characterize the vanishing of the

quadratic part due to symmetry. We now turn to some examples.

Example 3.3: Hopf bifurcation with 0(2) or Dn symmetry (n 2 4). Assume
that equation (2.1) is invariant under a representation of the group T = 0(2)
or D, such that its restriction to V 1is irreducible and 2-dimensional.
Then there exists & basis of V such that the 0(2) action in V is

generated by the matrices

{ cos ¢

-sin ¢ 1 o
R¢ = |
Lsin ¢ cos ¢ |

and S = | I
10 1)

where either ¢ ¢ S0(2) or ¢ = 2n/n ¢ Dn- This corresponds to the case of
critical eigenvalues tiwg which are semisimple and double; the assumption of
irreducibility of V s, in some sense, generic (see (137). This problem was
studied in [5] and [6]), where the stability of bifurcated solutions was
analysed by means of normal form. The stability conditions involve only terms
up to cubic order in equation (2.2). There is no quadratic term in (2.2) if

I =0(2) or T =D, with n > 4 (this can be easily checked). Therefore,
using Corollary 3.2 and Theorem 2.1, we conclude that the stability conditions
in [5} and [6] are directly obtained from the Liapunov-Schmidt bifurcation
equation. The case T = D3 should provide an example where the Liapunov-—

Schmidt method does not give the correct stability assignments for

bifurcating branches of periodic solutions.

Example 3.4: The Couette-Taylor problem. This is the problem of the onset of
vortex flow in a fluid between two coaxial cylinders which rotate at
independent constant speeds. When the cylinders are counterrotating, the

following critical situations can occur:
(l) one pair of eigenvalues ting,
(2) one 0O eigenvalue and one pair iimo eigenvalues,
(3) two pairs of eigenvalues Hlwp, 2wy, wy # wo .

Case | was studied in (4], case 2 (in a theoretical framework) in [7], and

case 3 in [2]. The symmetries are the following: $0(2) (rotation around the
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axis of cylinders) and 0(2) (translations and reflections along the axis of
cylinders). The 0(2) symmetry comes from the assumption of infinite
cylinders and periodicity of the flow in the axial direction (translations are
then equivalent to rotations). The eigenvalues are double as a consequence of
the reflectional symmetry and hence the dimension of equation (2.2) can be 4,6
or 8. In cases | and 3, the analysis in [4] and [2] was done directly on
equation (2.2). We remark that equation (2.2) is already in normal form in
this problem (for analysis of period}c bifurcations), because the rotational
symmetry acts identically with the sl action required for the normal form.
Here again, one can easily check that, because of symmetry, gquadratic terms
vanish in (2.2), hence stability conditions are obtained directly from the
bifurcation equation (see Remark 2.5 (2) in case 2; an equivalent remark could

be qiven for case 3).

Example 3.5: Onset of convection for a fluid in a rotating self-gravitating
spherical shell (1]. When the shell does not rotate, bifurcation cccurs at a
zero eigenvalue with multiplicity 2%+1, where & is the "degree" of the

associated irreducible representation of the group of rotations S0(3) (under

which the problem is invariant). If the system is now slowly rotating, the O

eigenvalue splits in one real eigenvalue and & pairs of complex eigenvalues,
leading to a complex diagram of Hopf bifurcations and interactions. In this
problem, quadratic terms can be zero due to the S0(3) symmetry if & s odd
(see [14]) or, if & is even. because of some physical condition in the
problem (see {1]). In such a case, the stability analysis reduces to the
bifurcation eguations in the (2%+1)-dimensional invariant subspace of the

nonrotating 1imit case. Numerical applications are given in (3].
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