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Mathematical studies of drug induced geometric visual hallucinations
include three components: a model that abstracts the structure of the
primary visual cortex V1; a mathematical procedure for finding geo-
metric patterns as solutions to the cortical models; and a method for
interpreting these patterns as visual hallucinations. In this note we sur-
vey the symmetry based ways in which geometric visual hallucinations
have been modelled. Ermentrout and Cowan model the activity of neu-
rons in the primary visual cortex. Bressloff, Cowan, Golubitsky, Thomas,
and Wiener include the orientation tuning of neurons in V1 and assume
that lateral connections in V1 are anisotropic. Golubitsky, Shiau, and
Török assume that lateral connections are isotropic and then consider
the effect of perturbing the lateral couplings to be weakly anisotropic.

These models all have planar Euclidean E(2) symmetry. Solutions are
assumed to be spatially periodic and patterns are formed by symmetry-
breaking bifurcations from a spatially uniform state. In the Ermentrout-
Cowan model E(2) acts in its standard representation on R

2, whereas
in the Bressloff et al. model E(2) acts on R

2
× S

1 via the shift-twist

action. Isotropic coupling introduces an additional S
1 symmetry, and

weak anisotropy is then thought of as forced symmetry-breaking from
E(2)+̇S

1 to E(2) in its shift-twist action. We outline the way symmetry
appears in bifurcations in these different models.

1. Introduction to Geometric Visual Hallucinations

When describing drug induced geometric visual hallucinations Klüver [17]

states on p. 71: “We wish to stress merely one point, namely, that under di-

verse conditions the visual system responds in terms of a limited number of

form constants.” Klüver then classified geometric visual hallucinations into

four groups or form constants: honeycombs, cobwebs, funnels and tunnels,
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and spirals. See Figure 1.

(a) (b) (c) (d)

Fig. 1. (a) Honeycomb by marihuana; [8] (b) cobweb petroglyph; [20] (c) tunnel [21],
(d) spiral by LSD [21].

Ermentrout and Cowan [10] pioneered an approach to the mathematical

study of geometric patterns produced in drug induced hallucinations. They

assumed that the drug uniformly stimulates an inactive cortex and pro-

duces, by spontaneous symmetry-breaking, a patterned activity state. The

mind then interprets the pattern as a visual image — namely the visual im-

age that would produce the same pattern of activity on the primary visual

cortex V1.a The Ermentrout-Cowan analysis assumes that a differential

equation governs the symmetry-breaking transition from an inactive to an

active cortex and then studies abstractly the transition using standard pat-

tern formation arguments developed for reaction-diffusion equations. Their

cortical patterns are obtained by thresholding (points where the solution

is greater than some threshold are colored black, whereas all other points

are colored white). These cortical patterns are then transformed to retinal

patterns using the inverse of the retino-cortical map described in (4), and

these retinal patterns are similar to some of the geometric patterns of visual

hallucinations, namely, funnels and spirals.

In this note we survey recent work of Bressloff, Cowan, Golubitsky,

Thomas, and Wiener [4–6] and Golubitsky, Shiau, and Török [13] who re-

fine the Ermentrout-Cowan model to include more of the structure of V1.

Neurons in V1 are known to be sensitive to orientations in the visual fieldb

and it is mathematically reasonable to assign an orientation preference to

aThe primary visual cortex is the area of the visual cortex that receives electrical signals
directly from the retina.
bExperiments show that most V1 cells signal the local orientation of a contrast edge or
bar; these neurons are tuned to a particular local orientation. See [1,3,12,16] and [5] for
further discussion.
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each neuron in V1. Hubel and Wiesel [16] introduced the notion of a hyper-

column — a region in V1 containing for each orientation at a single point

in the visual field (a mathematical idealization) a neuron sensitive to that

orientation.

Bressloff et al. [5] studied the geometric patterns of drug induced halluci-

nations by including orientation sensitivity. As before, the drug stimulation

is assumed to induce spontaneous symmetry-breaking, and the analysis

is local in the sense of bifurcation theory. There is one major difference

between the approaches in [5] and [10]. Ignoring lateral boundaries Ermen-

trout and Cowan [10] idealize the cortex as a plane, whereas Bressloff et

al. [5] take into account the orientation tuning of cortical neurons and ide-

alize the cortex as R2 ×S1. This approach recovers thin line hallucinations

such as cobwebs and honeycombs, in addition to the threshold patterns

found in the Ermentrout-Cowan theory.

There are two types of connections between neurons in V1: local and

lateral. Experimental evidence suggests that neurons within a hypercolumn

are all-to-all connected, whereas neurons in different hypercolumns are con-

nected in a very structured way. This structured lateral coupling is called

anisotropic, and it is the bifurcation theory associated with anisotropic

coupling that is studied in Bressloff et al. [4, 5].

Golubitsky, Shiau, and Török [13] study generic bifurcations when lat-

eral coupling is weakly anisotropic. First, they study bifurcations in models

that are isotropic showing that these transitions lead naturally to a richer

set of planforms than is found in [4, 5] and, in particular, to time-periodic

states. (Isotropic models have an extra S1 symmetry and have been stud-

ied by Wolf and Geisel [24] as a model for the development of anisotropic

lateral coupling.) There are three types of time dependent solutions: slowly

rotating spiral and funnel shaped retinal images; tunneling images where

the retinal image appears to rush into or spiral into the center of the visual

field; and pulsating images where the spatial pattern of the solution changes

periodically in time. Movies of these states may be found in [13]. Such im-

ages have been reported in the psychophysics literature, see Klüver [17],

p. 24. (Note that near death experiences are sometimes described as trav-

eling down a tunnel toward a central area.) Second, they consider weak

anisotropy as forced symmetry breaking from isotropy.

The remainder of this note is divided into three sections. Section 2

discusses the basic structure of the continuum models of the visual cortex,

the symmetries of these models, and some of the resulting cortical patterns.

Section 3 outlines how Euclidean symmetry gives structure to the pattern
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forming bifurcations by constraining the form of the possible eigenfunctions.

Finally, in Section 4, we discuss the specific group actions and bifurcating

branches of solutions that occur in symmetry-breaking bifurcations in the

three different cortical models. We emphasize that the lists of solutions are

model-independent; they depend on the way that Euclidean symmetry is

present in the models and not on a specific set of differential equations.

2. Models, Symmetry, and Planforms

The Ermentrout and Cowan [10] model of V1 consists of neurons located at

each point x in R2. Their model equations, variants of the Wilson-Cowan

equations [23], are written in terms of a real-valued activity variable a(x),

where a represents, say, the voltage potential of the neuron at location x.

Bressloff et al. [5] incorporate the Hubel-Weisel hypercolumns [16] into

their model of V1 by assuming that there is a hypercolumn centered at each

location x. Here a hypercolumn denotes a region of cortex that contains

neurons sensitive to orientation ϕ for each direction ϕ. Their models, also

adaptations of the Wilson-Cowan equations [23], are written in terms of

a real-valued activity variable a(x, ϕ) where a represents, say, the voltage

potential of the neuron tuned to orientation ϕ in the hypercolumn centered

at location x. Note that angles ϕ and ϕ + π give the same orientation; so

a(x, ϕ + π) = a(x, ϕ).

The cortical planform associated to a(x, ϕ) is obtained in a way different

from the Ermentrout-Cowan approach. For each fixed x ∈ R2, a(x, ·) is a

function on the circle. The planform associated to a is obtained through a

winner-take-all strategy. The neuron that is most active in its hypercolumn

is presumed to suppress the activity of other neurons within that hypercol-

umn. The winner-take-all strategy chooses, for each x, the directions ϕ that

maximize a(x, ·), and results in a field of directions. The two approaches to

creating planforms can be combined by assigning directions only to those

locations x where the associated maximum of a(x, ·) is larger than a given

threshold. We will call these models the Ermentrout-Cowan model and the

Wiener-Cowan model.

Euclidean Symmetry

The Euclidean group E(2) is crucial to the analyses in both [10] and [5]

— but the way that group acts is different. In Ermentrout-Cowan the Eu-

clidean group acts on the plane by its standard action, whereas in Wiener-
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Cowan the Euclidean group acts on R2 × S1 by the so-called shift-twist

representation, as we now explain.

Bressloff et al. [5] argue that the lateral connections between neurons

in neighboring hypercolumns are anisotropic. Anisotropy means that the

strength of the connections between neurons in two neighboring hyper-

columns depends on the orientation tuning of both neurons and on the

relative locations of the two hypercolumns. Anisotropy is idealized to the

one illustrated in Figure 2 where only neurons with the same orientation

selectivity are connected and then only neurons that are oriented along the

direction of their cells preference are connected. In particular, the symme-

tries of V1 model equations are those that are consistent with the idealized

structure shown in Figure 2.

hypercolumn

lateral connections

local connections

Fig. 2. Illustration of isotropic local and anisotropic lateral connection patterns.

The Euclidean group E(2) is generated by translations, rotations, and

a reflection. The action of E(2) on R2 × S1 that preserves the structure

of lateral connections illustrated in Figure 2 is the shift-twist action. This

action is given by:

Ty(x, ϕ) ≡ (x + y, ϕ)

Rθ(x, ϕ) ≡ (Rθx, ϕ + θ)

Mκ(x, ϕ) ≡ (κx,−ϕ),

(1)

where (x, ϕ) ∈ R2 × S1, y ∈ R2, κ is the reflection (x1, x2) 7→ (x1,−x2),

and Rθ ∈ SO(2) is rotation of the plane counterclockwise through angle θ.
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Isotropy of Lateral Connections

The anisotropy in lateral connections pictured in Figure 2 can be small

in the sense that it is close to isotropic. We call the lateral connections

between hypercolumns isotropic, as is done in Wolf and Geisel [24], if the

strength of lateral connections between neurons in two neighboring hyper-

columns depends only on the difference between the angles of the neurons’

orientation sensitivity. Lateral connections in the isotropic model are illus-

trated in Figure 3. In this model, equations admit, in addition to Euclidean

symmetry, the following S1 symmetry:

Iϕ̂(x, ϕ) = (x, ϕ + ϕ̂). (2)

Note that ϕ̂ ∈ S1 commutes with y ∈ R2 and Rθ ∈ SO(2), but κϕ̂ =

(−ϕ̂)κ.

hypercolumn

lateral connections

local connections

Fig. 3. Illustration of isotropic local and isotropic lateral connection patterns.

The action of γ ∈ E(2)+̇S1 on the activity function a is given by

γa(x, ϕ) = a(γ−1(x, ϕ)).

For example, Rθ ∈ SO(2) acts by

(Rθa)(x, ϕ) = a(R−θx, ϕ − θ).

Symmetry-Breaking Bifurcations on Lattices

Spontaneous symmetry-breaking in the presence of a noncompact group

such as the Euclidean group is far from understood. The standard approach
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is to reduce the technical difficulties by looking only for solutions that are

spatially doubly periodic with respect to some planar lattice (see Golubitsky

and Stewart [14]); this is the approach taken in [5, 10,13].

The first step in such an analysis is to choose a lattice type; in this

paper we only describe transitions on square lattices. The second step is

to decide on the size of the lattice. Euclidean symmetry guarantees that at

bifurcation, critical eigenfunctions will have plane wave factors e2πik·x for

some critical dual wave vector k. See [4], Chapter 5 of [14], or Section 3.

Typically, the lattice size is chosen so that the critical wave vectors will

be vectors of shortest length in the dual lattice; that is, the lattice has the

smallest possible size that can support doubly periodic solutions.

By restricting the bifurcation problem to a lattice, the group of sym-

metries is transformed to a compact group. First, translations in E(2) act

modulo the spatial period as a 2-torus T2. Second, only those rotations and

reflections in E(2) that preserve the lattice (namely, the holohedry D4 for

the square lattice) are symmetries of the lattice restricted problem. Thus,

the symmetry group of the square lattice problem is Γ = D4+̇T2. Recall

that at bifurcation Γ acts on the kernel of the linearization, and a subgroup

of Γ is axial if its fixed-point subspace in that kernel is one-dimensional. So-

lutions are guaranteed by the Equivariant Branching Lemma (see [14, 15])

which states: generically there are branches of equilibria to the nonlinear

differential equation for every axial subgroup of Γ. The nonlinear analysis

in [4, 10,13] proceeds in this fashion.

Previous Results on the Square Lattice

In Ermentrout and Cowan [10] translation symmetry leads to eigenfunctions

that are linear combinations of plane waves, and, on the square lattice, to

two axial planforms: stripes and squares. See Figure 4.

In Bressloff et al. [4, 5] translation symmetry leads to critical eigen-

functions that are linear combinations of functions of the form u(ϕ)e2πik·x.

These eigenfunctions correspond to one of two types of representations of

E(2) (restricted to the lattice): scalar (u even in ϕ) and pseudoscalar (u

odd). The fact that two different representations of the Euclidean group

can appear in bifurcations was first noted by Bosch Vivancos, Chossat, and

Melbourne [2]. Bressloff et al. [5] also show that a trivial solution to the

Wilson-Cowan equation will lose stability via a scalar or a pseudoscalar bi-

furcation depending on the exact form of the lateral coupling. Thus, each of

these representations is, from a mathematical point of view, equally likely
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Fig. 4. Thresholding of eigenfunctions: (left) stripes, (right) squares.

to occur. On the square lattice, in [2,4] it is shown that there are two axial

planforms each in the scalar and pseudoscalar cases: stripes and squares.

To picture the planforms in these cases, we must specify the function

u(ϕ), and this can be accomplished by assuming that anisotropy is small.

When anisotropy is zero, the S1 symmetry in (2) forces u(ϕ) = cos(2mϕ) in

the scalar case and u(ϕ) = sin(2mϕ) in the pseudoscalar case. (This point

will be discussed in more detail when we review representation theory in

Section 4.) The assumptions in Bressloff et al. [5] imply that u is a small

perturbation of sine or cosine. Note that the Ermentrout-Cowan planforms

are recovered in the scalar case when m = 0 — in this case u is constant

and all directions are equally active. As often happens in single equation

models, the first instability of a trivial (spatially constant) solution is to

eigenfunctions with m small — and that is what occurs in certain models

based on the Wilson-Cowan equation (see [5]). Planforms for the scalar and

pseudoscalar planforms when m = 1 are shown in Figure 5.

stripes squares stripes squares

Fig. 5. Direction fields: scalar eigenfunctions (left) and pseudoscalar eigenfunctions
(right)
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New Planforms When Lateral Connections are Isotropic

In our analysis of the isotropic case (Γ̃ = Γ+̇S1 symmetry) we find four

axial subgroups (Σ1-Σ4) and one maximal isotropy subgroup Σ5 with a

two-dimensional fixed-point subspace. The axial subgroups lead to group

orbits of equilibria. This fact must be properly interpreted to understand

how the new planforms relate to the old. A phase shift of sin(2ϕ) yields

cos(2ϕ). Thus, the extra S1 symmetry based on isotropic lateral connec-

tions identifies scalar and pseudoscalar planforms; up to this new symme-

try the planforms are the same. Thus, the axial subgroup Σ3 corresponds

to stripes (both scalar and pseudoscalar) and the axial subgroup Σ1 cor-

responds to squares (both scalar and pseudoscalar). The axial subgroups

Σ2 and Σ4 correspond to new types of planforms. Finally, the maximal

isotropy subgroup Σ5 with its two-dimensional fixed-point subspace leads

to a time-periodic rotating wave whose frequency is zero at bifurcation.

The planforms associated with these new types of solutions are pictured in

Figure 6.

It is unusual for a steady-state bifurcation (eigenvalues of a linearization

moving through 0) to lead to time periodic states. It is well known that in

systems without symmetry, time periodic states will appear in unfoldings

of codimension two Takens-Bogdanov singularities (a double zero eigen-

value with a nilpotent normal form). It is less well known that codimension

one steady-state bifurcations with symmetry can also lead to time periodic

states. Field and Swift [11] were the first to find such a bifurcation (in a sys-

tem with finite symmetry). Melbourne [19] was the first to find an example

of a rotating wave in a steady-state bifurcation in a system with continuous

symmetry. Nevertheless, the documented cases where time periodic states

occur in codimension one steady-state bifurcations are relatively rare and

our work provides the first example where this mathematical phenomenon

appears in model equations.

Weak Anisotropy in Lateral Connections

Next, we discuss what happens to the bifurcating solutions to the isotropic

nonlinear equation when anisotropy is added as a small symmetry-breaking

parameter. As was noted in Bressloff et al. [5], the linear effect of anisotropy

is to split the eigenfunctions into scalar and pseudoscalar representations.

The effect on solutions to the nonlinear equation can also be established

using the methods of Lauterbach and Roberts [18]. This method is applied

independently to each branch of (group orbits of) solutions found in the
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Fig. 6. Direction fields of new planforms in isotropic model: (left) axial planform Σ2;
(center) axial planform Σ4; (right) rotating wave Σ5 (direction of movement is up and
to the left).

isotropic case. The results for square lattice solutions are easily described.

Generically, the dynamics on the Γ̃ group orbit of equilibria correspond-

ing to the axial subgroup Σ3 has two (smaller) Γ group orbits of equilibria:

scalar stripes and pseudoscalar stripes. There may be other equilibria com-

ing from the Γ̃ group orbit; but at the very least scalar and pseudoscalar

stripes always remain as solutions.

Similarly, the dynamics on the group orbit of equilibria corresponding

to the axial subgroup Σ1 generically have two equilibria corresponding to

scalar and pseudoscalar squares.

The dynamics on the group orbit of the axial subgroups Σ2 and Σ4

and the fifth maximal isotropy subgroup Σ5 do not change substantially

when anisotropy is added. These group orbits still remain as equilibria and

rotating waves.

Retinal Images

Finally, we discuss the geometric form of the cortical planforms in the visual

field, that is, we try to picture the corresponding visual hallucinations.

It is known that the density of neurons in the visual cortex is uniform,

whereas the density of neurons in the retina fall offs from the foveac at

a rate of 1/r2. Schwartz [22] observed that there is a unique conformal

map taking a disk with 1/r2 density to a rectangle with uniform density,

namely, the complex logarithm. This is also called the retino-cortical map.

It is thought that using the inverse of the retino-cortical map, the complex

exponential, to push forward the activity pattern from V1 to the retina is a

reasonable way to form the hallucination image — and this is the approach

cThe fovea is the small central area of the retina that gives the sharpest vision.
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used in Ermentrout and Cowan [10] and in Bressloff et al. [5,6]. Specifically,

the transformation from polar coordinates (r, θ) on the retina to cortical

coordinates (x, y) is given in Cowan [9] to be:

x = 1
ε ln

(
1
ω r

)

y = 1
εθ

(3)

where ω and ε are constants. See Bressloff et al. [6] for a discussion of the

values of these constants. The inverse of the retino-cortical map (3) is

r = ω exp(εx)

θ = εy
(4)

In our retinal images we take

ω =
30

e2π
and ε =

2π

nh

where nh is the number of hypercolumn widths in the cortex, which we take

to be 36.

The images of these cortical patterns in retinal coordinates, as well

as the discussion of additional issues concerning the construction of these

images, are given in [13].

3. A Brief Outline of Local Equivariant Steady-State

Bifurcation Theory

In finite dimensions steady-state bifurcation reduces to finding all zeros of

a parameterized map f : Rn × R → Rn near a known zero, which we can

take to be f(0, 0) = 0. In equivariant bifurcation theory we assume that f

commutes with the action of a compact Lie group Γ, that is, Γ ⊂ O(n) and

f(γx, λ) = γf(x, λ) (5)

for all γ ∈ Γ and that f has a trivial Γ-invariant solution for all λ, that is,

f(0, λ) = 0. It follows from (5) and the chain rule that the Jacobian at a

trivial solution also commutes with Γ, that is,

(df)0,λγ = γ(df)0,λ (6)

for all γ ∈ Γ.

A steady-state bifurcation occurs at λ = 0 when K ≡ ker L 6= 0, where

L = (df)0,0. It follows from (6) that K is Γ-invariant. Indeed, generically

K is an (absolutely) irreducible representation of Γ. Liapunov-Schmidt and

center manifold reductions can be performed in a way that preserves sym-

metry. In either case, finding the zeros of f reduces to finding the zeros of
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a map g : K × R → K near the trivial solution g(0, λ) = 0. Moreover, g

commutes with the action of Γ on the kernel K and (dg)0,0 = 0.

In general K can still be a large dimensional space and finding the

zeros of g can be a daunting task. However, the Equivariant Branching

Lemma [14,15] enables one to find many (though not all) of the zeros of g.

This lemma states that generically for each axial subgroup Σ of the action

of Γ on K, there exists a unique (local) branch of zeros of g whose solutions

have Σ symmetry. An axial subgroup is an isotropy subgroup whose fixed-

point subspace

Fix(Σ) = {x ∈ K : σx = x ∀σ ∈ Σ}

is one-dimensional.

It is important to note that the existence of axial solutions is model

independent. The existence of axial solutions does not depend (in any es-

sential way) on f — just on the form of the action of Γ on K. Detailed

statements and proofs can be found in Chapter 1 of [14].

Euclidean Symmetry and Eigenfunctions

Planar pattern formation arguments begin by assuming that a uniform

(Euclidean invariant) equilibrium for a Euclidean equivariant system of dif-

ferential equations loses stability as a parameter is varied. For hallucination

models we assume that the system of differential equations is defined on

the space R2 × Ω where Ω is a point in the Ermentrout-Cowan model and

Ω = S1 in the orientation tuning models. More precisely, the system of

(partial) differential equations should be viewed as an operator f on the

space of real-valued functions F defined on R2 × Ω.

There is a fundamental complication that appears when trying to apply

the outline of equivariant steady-state bifurcation theory to planar pattern

formation: K need not be finite-dimensional. To understand this difficulty,

and one way around it, we next discuss how Euclidean symmetry determines

the eigenfunctions of L.

Let k ∈ R2 and let

Wk = {u(ϕ)eik·x + c.c. : u : Ω → C}

Observe that translations act on Wk by

Ty(u(ϕ)eik·x) = u(ϕ)eik·(x+y) =
[
eik·yu(ϕ)

]
eik·x

It follows that L : Wk → Wk and that eigenfunctions of L have plane wave

factors. The vectors k are called dual wave vectors.
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Let ρ be the reflection such that ρk = k. Euclidean equivariance implies

ρ
(
u(ϕ)eik·x

)
= ρ(u(ϕ))eik·x

So ρ : Wk → Wk. It follows from ρ2 = 1 that

Wk = W+
k ⊕ W−

k

where ρ acts as +1 on W+
k and −1 on W−

k . Hence, eigenfunctions of L are

either even (W+
k ) or odd (W−

k ). When k = (1, 0)

u(−ϕ) =

{
u(ϕ) u ∈ W+

k

−u(ϕ) u ∈ W−
k

Finally, rotations act on the subspaces Wk by

Rθ

(
u(ϕ)eik·x

)
= Rθ(u(ϕ))eiRθ(k)·x

Therefore

Rθ(Wk) = WRθ(k)

Hence, for each eigenfunction in Wk, there is an independent eigenfunction

in WRθ(k) and kerL is ∞-dimensional. Standard reductions theorems then

fail.

Euclidean Equivariant Bifurcation Theory

A standard way around this difficulty is to look for solutions in the space

of double-periodic functions. Let L be a planar lattice and let

FL = {a : R2 × Ω → R : a(x + ℓ, ϕ) = h(x, ϕ) ∀ℓ ∈ L}

There are only a finite number of rotations that leave ker(L|FL) invariant,

namely, the rotations that preserve the lattice L. Thus, ker(L|FL) is gener-

ically finite-dimensional and we can choose the size of the lattice so that

the shortest dual wave vectors k are the critical eigenvectors.

Note that the symmetries that act on the function space FL are differ-

ent from those that act on the base space R2 ×Ω in two ways: translations

act on FL as a 2-torus T2 and only those rotations and reflections that

preserve the lattice L (often called the holohedry subgroup H) act on FL.

Thus the group of symmetries acting on the reduction to doubly-periodic

states is the compact group H+̇T2. For square lattices H = D4 and for

hexagonal lattices H = D6. We report here on the simpler square lat-

tice case. The symmetry group for the Ermentrout-Cowan model and the

anisotropic model is Γ = D4+̇T2; the symmetry group for the isotropic

model is Γ̃ = Γ+̇S1.
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4. Square Lattice Planforms

In this section we discuss the spatially doubly periodic solutions that must

emanate from the simplest bifurcations of Euclidean invariant differential

equations restricted to a square lattice. To do this we describe the simplest

kernel K, the representations of Γ and Γ̃ on K, and the axial subgroups of

these actions.

4.1. Representation Theory of Γ and Γ̃

Without loss of generality, we assume that the square lattice L consists of

squares of unit length. The action of Γ̃ on FL is the one induced from the

action of E(2)+̇S1 on R2 × S1 given in (1) and (2).

We expect the simplest square lattice bifurcations to be from equilibria

whose linearizations have kernels that are irreducible subspaces of FL and

we only consider bifurcations based on dual wave vectors of shortest (unit)

length. We write x = (x1, x2).

The eigenfunctions corresponding to Γ in the Ermentrout-Cowan models

have the form

a(x) = z1e
2πix1 + z2e

2πix2 + c.c.

where (z1, z2) ∈ C2.

The eigenfunctions corresponding to Γ in the Wiener-Cowan models

have the form

a(x, ϕ) = z1u(ϕ)e2πix1 + z2u(ϕ −
π

2
)e2πix2 + c.c.

where (z1, z2) ∈ C2 and u(ϕ) is π-periodic, real-valued, and either odd or

even. See [4].

The eigenfunctions corresponding to Γ̃ have the form

a(x, ϕ) =
(
z1e

2iϕ + w1e
−2iϕ

)
e2πik1·x+(

z2e
2i(ϕ−π/2) + w2e

−2i(ϕ−π/2)
)
e2πik2·x + c.c.

(7)

where (z1, w1, z2, w2) ∈ C4. See [13].

4.2. Group Actions on K and their Axial Subgroups

A calculation shows that the actions of Γ on C2 (in the scalar and pseu-

doscalar representations) and of Γ̃ on C4 (when m = 1) are as given in

Table 1.1.
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Table 1.1. For Ermentrout-Cowan and for u(ϕ) even, let ε = +1; for u(ϕ) odd,

let ε = −1.

D4 Action on C2 Isotropic Case Action on C4

1 (z1, z2) (z1, w1, z2, w2)

ξ (z2, z1) (w2, z2, z1, w1)

ξ2 (z1, z2) (w1, z1, w2, z2)

ξ3 (z2, z1) (z2, w2, w1, z1)
κ ε(z1, z2) (w1, z1, z2, w2)

κξ ε(z2, z1) (z2, w2, z1, w1)
κξ2 ε(z1, z2) (z1, w1, w2, z2)
κξ3 ε(z2, z1) (w2, z2, w1, z1)

[θ1, θ2] (e−2πiθ1z1, e−2πiθ2z2) (e2πiθ1z1, e2πiθ1w1, e2πiθ2z2, e2πiθ2w2)

[0, 0, ϕ̂] (e−2iϕ̂z1, e2iϕ̂w1, e−2iϕ̂z2, e2iϕ̂w2)

The axial subgroups of Γ acting on C2 are given in Table 1.2 and the

maximal isotropy subgroups of Γ̃ acting on C4 are given in Table 1.3. Ob-

serve that the action of Γ̃ on W1 has four axial subgroups Σ1-Σ4 and one

maximal isotropy subgroup with a two-dimensional fixed-point subspace

Σ5.

Table 1.2. Square lattice axial subgroups of Γ acting on C2.

ε = +1 ε = −1 Fixed Subspace

Σ1 = 〈ξ, κ〉 〈ξ, κ[ 1
2
, 1

2
]〉 R{(1, 1)}

Σ2 = 〈ξ2, κ, [0, θ2]〉 〈ξ2, κ[ 1
2
, 0], [0, θ2]〉 R{(1, 0)}

Table 1.3. Square lattice maximal isotropy sub-
groups of Γ̃ acting on C4; u ∈ C.

Isotropic case Fixed Subspace

Σ1 = 〈κ, ξ〉 R{(1, 1, 1, 1)}

Σ2 = 〈κ,
[
3

4
, 1

4
, π

4

]
ξ〉 R{(1, 1, 1,−1)}

Σ3 = 〈κ, ξ2, [0, θ2, 0]〉 R{(1, 1, 0, 0)}

Σ4 = 〈κξ2, [0, θ2, 0], [θ1, 0, πθ1]〉 R{(1, 0, 0, 0)}

Σ5 = 〈κξ, [θ1, θ1, πθ1]〉 {(u, 0, u, 0)}

The Effect of Weak Anisotropy We discuss how solutions correspond-

ing to Γ̃-bifurcations behave generically when the isotropy of the lateral con-

nections is broken, that is, when the Γ̃-equivariant vector field is perturbed

to a Γ-equivariant field. Detailed arguments in [13] show that equilibria cor-

responding to the axial subgroups Σ1 – Σ4 persist on symmetry-breaking

perturbations. More interesting, the maximal isotropy subgroup Σ5 with a
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two-dimensional fixed-point subspace in the isotropic case leads to circles

of equilibria and to periodic solutions on the breaking of Γ̃ symmetry to Γ

symmetry. Moreover the period of this periodic solution tends to ∞ at the

bifurcation point (λ = 0).

Concluding Remarks We note that pattern formation on the hexagonal

lattice is also treated in [5,6,13]. The calculations are more difficult and the

results more complicated but the basic ideas are the same. Note that tun-

nelling and pulsating periodic solutions occur only on a hexagonal lattice.

We expect pseudoscalar representations, as well as the usual scalar repre-

sentations to occur in a variety of pattern formation problems, particularly

those where the pattern produces a line-field rather than just a threshold

or level contour. Another example occurs in liquid crystals; see [7].
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