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Spiral patterns have been observed experimentally, numerically, and theoretically in a variety
of systems. It is often believed that these spiral wave patterns can occur only in systems of
reaction—diffusion equations. We show, both theoretically (using Hopf bifurcation techniques)
and numerically (using both direct simulation and continuation of rotating waves) that spiral
wave patterns can appear in a single reaction—diffusion equation [in u(z, t)] on a disk, if one
assumes “spiral” boundary conditions (u, = mayg). Spiral boundary conditions are motivated
by assuming that a solution is infinitesimally an Archimedian spiral near the boundary. It
follows from a bifurcation analysis that for this form of spirals there are no singularities in the
spiral pattern (technically there is no spiral tip) and that at bifurcation there is a steep gradient

between the “red” and “blue” arms of the spiral.

1. Introduction

The Belousov—Zhabotinskii reaction is a widely
studied instance of pattern formation in a react-
ing chemical system: see for example Tyson [1976],
Vasiliev et al. [1987], Winfree [1990], and Zhabotin-
skii [1974]. It has been the subject of numerous ex-
periments, computer simulations, and analytic
investigations. The models employed range from
reaction—diffusion equations to cellular automata;
for recent references, see Barkley [1991a, 1991b,
1993, 1994], Barkley & Kevrekidis [1994]. More-

over, a wide range of ad hoc approximations have
been introduced in an effort to capture different as-
pects of the dynamics. The observed phenomena in-
clude circular waves (“target patterns”) and, most
strikingly, rotating spirals. The spirals appear to be
approximately Archimedean in form, that is, their
“width” — the gap between successive coils — is
asymptotically constant as the radius increases. In
three dimensions more exotic wave forms arise, in-
cluding “scroll rings”; see Winfree [1974a]. More-
over, very similar wave phenomena occur in
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excitable media; see Winfree [1990] for a survey and
an extensive list of references. The diversity of both
the observed phenomena and the theoretical view-
points adopted has created a large, hetercgeneous,
and sometimes controversial, literature. In order
to focus upon mathematical issues we postpone de-
tailed discussion to Sec. 7, at which point it also
becomes possible to relate our work to the existing
literature.

Although many aspects of the Belousov—
Zhabotinskii reaction are now well understood, the
basic mathematical mechanisms of pattern forma-
tion in reaction—diffusion equations (and others of
similar kind) remain somewhat mysterious. In par-
ticular, even though spirals are commonly observed
in experiments and simulations, their existence in
model equations has been proved only infrequently.
DeDimone et al. [1973] used what amounts to Hopf
bifurcation to prove the existence of spiral waves
in a particular reaction—diffusion equation in the
plane, for which the chemical kinetics has two de-
grees of freedom. The radial dependence of lin-
earized eigenfunctions involves Bessel functions
Jm(r) and Y, (r), and the Y, (r) term becomes in-
finite for 7 = 0 and thus creates a singularity at
the origin. Kopell & Howard [1973] proved the ex-
istence of plane wave solutions to reaction—diffusion
equations. Tyson ([1976], p. 99) emphasized the ro-
tating wave structure of spirals and suggested look-
ing for an asymptotic representation. Greenberg
[1976] used asymptotic methods to establish the ex-
istence of spiral waves in some cases. Auchmuty
[1984] proves the existence of rotating waves
resulting from Hopf bifurcation in systems of
reaction—diffusion equations (that is, with at least
two degrees of freedom for the local chemical kinet-
ics) posed on a two-dimensional circular disk with
Neumann boundary conditions.

The aim of this paper is to use the techniques
of equivariant bifurcation theory — whose empha-
sis on symmetry is especially well adapted to ques-
tions of pattern formation — to prove a rigorous
bifurcation theorem for spiral waves in a planar do-
main. For simplicity we work within the frame-
work of scalar reaction—diffusion equations, but it
will become obvious that the ideas are valid more
generally. The relation between these waves and
the patterns observed in the Belousov—Zhabotinskii
reaction itself is not entirely clear, and further work
is needed to resolve a number of key issues — again,
see Sec. 7. However, our results do establish a num-
ber of interesting theoretical points, among them

the following:

e Spiral waves can be created by Hopf bifurcation
in rotationally symmetric systems of reaction—
diffusion equations.

e Spiral waves can occur in scalar reaction—diffusion

equations.
This is perhaps surprising, because the occur-
rence of oscillatory kinetics in the local chemi-
cal reaction requires local state variables with at
least two degrees of freedom.

e The solutions obtained in this paper do not pos-
sess a singularity at the tip (or center) of the spi-
ral. On the contrary, the variable corresponding
to chemical concentration varies smoothly
throughout the domain. The same is true of the
linearized eigenfunctions at the Hopf bifurcation
point.

We qualify these remarks by adding that the
spiral waves obtained by using our approach are un-
stable — but “only just”. They have precisely one
positive Floquet exponent, which may be very close
to zero. In consequence, they persist over long peri-
ods of time in direct simulations of the PDEs. It is
reasonable to presume that the spiral waves that we
produce by Hopf bifurcation can be asymptotically
stable in system of reaction diffusion equations.

We also note at the outset that we are employ-
ing Hopf bifurcation as a technique for proving the
existence of solutions in a parametrized family of
equations. We are not asserting that in the corre-
sponding physical systems the usual experimental
scenarios necessarily involve Hopf bifurcation. In
fact, as can be seen in Kness et al. [1992], Barkley
[1994], and Barkley & Kevrekidis [1994], numerical
models of typical experimental scenarios reveal the
presence of an “infinite period” bifurcation in which
the spiral “comes in from infinity”, becoming more
tightly wound and with shorter period. There is no
direct correspondence between the way we explore
parameter space to prove the existence of spirals,
and the way an experiment would explore parame-
ter space.

By thinking about the problem within the
recently developed framework of equivariant bifur-
cation theory, much of the previous work can be un-
derstood and motivated in a straightforward fash-
jon, as follows. Spiral waves are time-periodic states
— so it is reasonable to suppose that spirals might
arise by Hopf bifurcation. Spirals are rotating
waves; that is, their time evolution is identical to
spatial rotation. Thus, spirals are most likely to



arise in models having rotational symmetry, so it
makes sense to pose the PDEs on a circular disk.
The motivation for using Neumann boundary con-
ditions has a different source: it comes from the
chemical experiments. These are often done in cir-
cular dishes, so that no-flux boundary conditions
seem appropriate.

Any reaction—diffusion model satisfying the
above conditions is symmetric under the orthogo-
nal group O(2) in the plane. The general theory
of symmetry-breaking Hopf bifurcations in systems
with O(2) symmetry is well known; see, for ex-
ample, Golubitsky et al. [1988], Chap. XVIL In
this case, the purely imaginary eigenvalues associ-
ated with the Hopf bifurcation are double. There
are two types of time-periodic solution — rotat-
ing waves and standing waves. Further, in these
systems there is a (nonlinear) competition between
these two states.

An important point, however, is that the lin-
earized operators obtained from reaction—diffusion
equations with Neumann boundary conditions are
self-adjoint. Thus, single equations must have real
eigenvalues, and Hopf bifurcation is not possible.
However, systems of reaction—diffusion equations
with O(2) symmetry can have purely imaginary
eigenvalues and can undergo Hopf bifurcation. In-
deed Auchmuty [1984] showed that for certain pa-
rameter ranges in the Brusselator model, a trivial
solution first loses stability via a Hopf bifurcation
(of the double eigenvalue variety), leading to a ro-
tating wave. Moreover, Auchmuty noted that a spi-
ral pattern can be seen in the level contours of the
solutions. The critical eigenfunctions are related to
Bessel functions, and spirals occur as contours.

In this paper, we take a somewhat different, al-
though related, approach. We try to find the spiral
pattern by choosing “spiral” boundary conditions.
We arrive at these slightly nonstandard boundary
conditions as follows. Suppose that we look for
Archimedean spirals. The assumption of equal spi-
ral widths implies that far from the center of the
spiral the function u that determines the spiral pro-
file is approzimately of the form

u(r, ) = v(mr +6).

Here, (r, 8) are polar coordinates and m is constant.
Suppose for the sake of motivation that near the
boundary the solution u has exactly this form. Then
infinitesimally we find the spiral boundary condition

U = mug on OBg, (1.1)
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where Bp, is a ball of radius R. Since mr+(6427) =
m(r + 2X) + 6, the number 2T is the asymptotic
wavelength of the spiral and may be interpreted as

the spiral width.

Remark 1.1. It is not necessary to interpret the cir-
cle 0BR as the boundary of the domain. The “spi-
ral boundary condition” can also be thought of as
a constraint imposed on some circle inside the do-
main, which forces a spiral structure — at least near
that circle. We discuss this point further in Sec. 7.

This approach is analogous to finding spatially
periodic solutions to reaction-diffusion systems
by assuming periodic boundary conditions. Spiral
boundary conditions (1.1) are SO(2)-symmetric
rather than O(2)-symmetric. Rotating waves (but
not standing waves) are to be expected in symmetry-
breaking Hopf bifurcations in systems with SO(2)
symmetry; see Golubitsky et al. [1988], p. 359.

We will adopt this approach to prove the exis-
tence of spiral waves via Hopf bifurcation. For sim-
plicity, consider a single scalar reaction—diffusion
equation

ut = Au+ Au+ f(u) in Bpg, (1.2)

satisfying spiral boundary conditions (1.1). Here, f
is a real-valued function with f(0) = 0 and ) is a
real parameter. We will show that there are time-
periodic solutions to (1.2) with contour lines having
the shape of spirals.

The reason that we are able to find points of
Hopf bifurcation in this setting is that the corre-
sponding linearized operator is no longer self-
adjoint, so that purely imaginary eigenvalues are
possible, Indeed, we will show that an infinite num-
ber of Hopf bifurcations from the trivial solution
occur in (1.2). All of these solutions are rotating
waves with spiral contours.

Since there is a steady state bifurcation in (1.2)
for A = 0, all of these Hopf bifurcations lead — at
least locally — to unstable rotating waves. How-
ever, we have carried out numerical simulations
which show that spiral waves persist for a very long
integration time. We explain this phenomenon by
computing the Floquet multipliers along the branch
of spirals. The results show that for increasing val-
ues of A there are “almost stable” spirals, in the
sense that just one Floquet multiplier is larger than
1 in absolute value, but only just larger.

The behavior at the center of the spiral has at-
tracted specific attention in the past. In fact, it is
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often suggested that a spiral wave exhibits a sin-
gularity at its center and, moreover, that the type
of this singularity is related to the spiraling behav-
ior. We examine this suggestion in Sec. 7. The
viewpoint of this paper is quite different: the spi-
rals studied here are considered to be as a result
of global constraints on the system (namely, spiral
“boundary” conditions). As already remarked, our
solutions — like those of several other authors listed
in Sec. 7 — have no singularity at the center of the
spiral (or elsewhere). Indeed, with the cubic nonlin-
earity chosen in Sec. 6 below, the solution is iden-
tically zero at the origin, and smooth throughout
the entire plane. Thus we consider the boundary
conditions to be more crucial than a hypothetical
central singularity.

A more detailed outline of the paper is as fol-
lows. In Sec. 2 we investigate the scaling and sym-
metry properties of (1.2). We show that we can
either set m = 1 and consider the radius R as a
parameter, or we can set R = 1 and consider the
constant m as a parameter. In Sec. 3 we use sep-
aration of variables to derive a nonlinear equation
involving complex Bessel functions, whose solutions
correspond to parameter values for Hopf bifurca-
tions from the trivial solution. Using an idea from
Renardy [1982] (see also Golubitsky et al. [1988]),
we show in Sec. 4 how the computation of Floquet
exponents for the rotating waves is simplified by the
SO(2) symmetry of the problem. Next we show by
numerical computation that the solutions emanat-
ing from the Hopf bifurcation points are spiral in
form, and that in numerical integrations they per-
sist for a long time.

2. Scaling and Symmetry Properties

Consider the boundary value problem

1 1 .
Ut = Urp + U+ FUgo + M+ f(u) in Bg,

on 0Bpg,
(2.1)

where m is nonzero and R is positive. This is a
reaction—diffusion equation in polar coordinate
form. If u(t, r, #) is a solution of (2.1) then u(t, r,
 + ) is a solution for each ¢ € [0, 27), so the
equation has SO(2) symmetry.

Upr = MUY

Remark 2.1. Let u, and u, denote the normal and
tangential derivatives of u. Then we can rewrite

(2.1) in the simple form

up = Au+ du+ f(u)

Up, = MRu

in By,
on OB R
We begin by investigating the scaling proper-

ties of (2.1). To do so we rescale the variables by
introducing:

T=/8ta p=Er, (p=,‘€9,

where 8 and ¢ are positive real numbers, and £ =
+1; and we define a new function

v = Au,

where A is a nonzero real number.
Substituting these rescaled variables into (2.1)
leads to the equivalent boundary value problem

'U‘r=§ (v,,p+%v,,+p1—2vw> +%v+%f (%v) in Ber,
v, =Mk, on 8B:r .
After setting
e2=p8 and A=)/8,
we are left with two possibilities:

(i) We set ¢ = mk which leads to the simplified
problem

1 1 3 A 1 )
vf:UPP+;UP+FU¢’V’+AU+mf <—A—'v> in Bjg,
Vo =y on 0By,
(2.2)
where R = |m|R.
(ii) We set ¢ = 1/R and obtain

. 1
'v,.='upp+-;—vp+%’u¢,¢+)\v+AR2f (ZU> in By,

on OB,
(2.3)

Vp =TV

where . = |m|R > 0.

Note that & is chosen so that R > 0 or 71 > 0.

The above scaling arguments show that, as ex-
pected, we may either set the spiral width equal to
unity and consider a radius (R) of appropriate size,
or we may set the radius of the disk to unity and
consider a spiral width (27/m) of appropriate size.



3. The Linearized Problem

For simplicity of notation, we henceforth omit the
tildes from A and 7 in (2.2,2.3). We also replace ¢
by 6. In this section, we show that the system (2.2)
possesses Hopf bifurcation points for positive values
of A\. By SO(2)-equivariance these bifurcations im-
ply the existence of nontrivial rotating waves, see
Golubitsky et al. [1988], p. 359. Hence, we want
to find this type of solution for suitable parameter
values in the linear boundary value problem.

The trivial solution w = 0 of (2.2) undergoes a
steady-state bifurcation at A = 0, with a constant
eigenfunction. This can be checked by linearizing
(2.2) at u = 0 as follows:

in BR,

on 9BpR.

Up = Upp + ! + , Uuge + A
o] —u —
t rr e 72 06 u (31)

Ur = Mg

We solve (3.1) by separation of variables, assuming
that u takes the form

u(r, 6, t) = e“te™u,(r). (3.2)
Substituting (3.2) into the PDE (3.1) leads to the
ODE

2

wn(r) = ol (r) + %u;(r) — Lt (r) & Munr).

Writing 4 = A — jw, this becomes

up(r) + —ul (r) + (1 - :—;) un(r) =0.

Introducing the complex variable z = VT, we ar-
rive at the complex version of Bessel's equation (see
Whittaker & Watson [1948] or Sneddon [1957)):

2

o!(2) + —v ! (2) + (1 - %) va(2) =0. (3.3)

Assuming that v,(0) is defined — that is, that there
is no singularity at the origin — solutions of (3.3)
are complex Bessel functions J,(z), so u, has the

form
= Ju(\/pr).

[Without this regularity assumption solutions
may also involve the Bessel function ¥,(z).] Finally,
we must take the boundary condition into account.
This leads to the equation

VETL(y/AR) = inmJo(\/iR),

Un(T)

(3.4)
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and using the identity

Tn(2) = Ju- 1(Z)——J (2),

we obtain

VBIwa(VER) —n (% + im) Jn(VER) =0.

According to (2.2) and (2.3) we now have two
possible ways to simplify this equation. We consider
either

VERAWER) = (5 +1) J(/ER) =0 (35)

VETn-1(y/) = n (1 +im) Ju(/B) = 0.

For w # 0, we expect each complex solution
A — 1w of this equation to correspond to a Hopf bi-
furcation to rotating waves of period 27/w in the
original nonlinear problem for the parameter value
A. -Of course, it is necessary to check the usual
nondegeneracy conditions, such as the eigenvalue
crossing condition, but these will be valid generi-
cally. Note that for n = 0 the Eq. (3.4) becomes

JH(«/AR) = ~(VER) =0,

which has only real solutions. These correspond to
steady-state bifurcations leading to target-like pat-
terns. In fact, the first steady-state bifurcation oc-
curs for A = 0 where spatially constant solutions
bifurcate, and the second such bifurcation is en-
countered at v AR = 3.83, right after the first Hopf
bifurcation (see Sec. 6). We will see that for n > 0
the eigenfunctions correspond to n armed spirals.

(3.6)

Remark 3.1. Equation (3.1) defines a Fredholm op-
erator of index 2 — 2m (see Hérmander [1976]). In
particular, we get index 0 for m = 1. Therefore,
a Liapunov—-Schmidt reduction along the lines of
Golubitsky & Schaeffer [1985], Chap. VIII, is pos-
sible, and Hopf bifurcation points are well defined.

For the computation of the solutions of the com-
plex nonlinear Eq. (3.5), we use Newton’s method
combined with a pathfollowing method, where ei-
ther the radius R or n is the parameter. (Of course,
only solutions where n is an integer are relevant.)
To obtain suitable initial guesses we have computed
the eigenvalues of the discretized linear operator
(see Sec. 5.1) for a fixed radius R.
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Figure 1 shows how the behavior of a branch
of solutions of (3.5) varies with R for n = 1. In
particular, both A and w tend to zero as R tends
to infinity. There is numerical evidence that this
behavior occurs for all values of n. In Fig. 2, we
show the dependence of the solution branch on n.
Here we can see that ) is a monotonically increasing
function of n. Finally, in Figs. 3—5, we show contour
plots of eigenfunctions for n = 0,1,2. Note that
when n = 0 we find a target-like pattern; for n =1
we find a standard one-armed spiral; and for n = 2
we find a two-armed spiral.

50 100 150 200

& 50 100 150 200

R
Fig. 1. Dependence of a solution of (3.5) on the radius R
when n = 1.

-0.1

-0.15}

0.2+

omega

-0.25

R 5 10 15 20 25 30 35 40 45
n

Fig. 2. Dependence of a solution of (3.5) on the magnitude

of n when R = 8.

Fig. 3. Eigenfunction for n =0, A = 0.6680, and R = 24.

Fig. 4. Eigenfunction for n = 1, A = 0.6598, R = 24, and
frequency w = 0.0767.

4. Floquet Theory

We now consider the stability of the spiral solution
(within the space of rotating waves — we do not
consider more general perturbations). By SO(2)-
symmetry, the periodic solutions emanating from



Fig. 5. Eigenfunction for n = 2, X = 1.3036, R = 24, and
frequency w = 0.0617.

the Hopf bifurcation points are rotating waves, that
is, they are solutions of the form

u(r, 8, t) = v(r, 0 + wt)

for some function v(r, 6).
derivative

Substituting the time

@
At 11—
of u at t = 0 into the differential Eq. (2.1), we

see that the wave form v satisfies the parameter-
dependent nonlinear equation

= wug(r, 9)

’U,.T-}-%1),.+;171)99—w1)9+)\1)+f('l)):0 in Bg,
on 6BR.
(4.1)

Ur = Mg

In the computation of the corresponding Floquet
exponents we again make use of the SO(2)-
equivariance of the evolution equation u; = F(u)
and the fact that the spiral is a rotating wave. It is
known that, in this case, the computations can be
simplified and we adapt the proof of Proposition 6.4
in Chap. XVI, Golubitsky et al. [1988]. To avoid
inconsistencies in notation we denote an element of
SO(2) that is usually written in the form ¢ € [0, 27)

by 7.
The variational equation is given by

2(r, 0, t) — DF (u(r, 6, t))z(r, 0,t) = 0.
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Writing z(r, 0, t) = Z(r, 6 + wt, t) we obtain

0= 2z(r, 6,t) — DF(u(r, 6, t))z(r, 6, t)
= wiy(r, 0+ wt, t) + Z(r, 6 + wt, t)
— DF(v(r, 6§ + wt))(r, 0 + wt, t)
= Yut|wZo(r, 0, t) + Z(r, 6, t)
— DF(v(r, 6))2(r, 0, t)].

Hence, z(r, 6, t) — DF(u(r, 6, t))z(r, 6, t) = 0 if
and only if

Z(r, 6, t) = DF(v(r, 0))2(r, 6, t) — wZg(r, 0, 1).

But this implies that

Z(r, 6, t) = exp [t <DF('U(’I“, 0)) — w%)] Z(r, 6, 0)

and using z(r, 0, 27/w) = Z(r, 0, 2n/w) and

z(r, 8, 0) = 2(r, 6, 0) we obtain
z(r, 0, 27 /w)

= exp [271' (%DF(v(r, ) — (%)J z(r, 8, 0) .

Thus, to obtain an estimate of the magnitude of
Floquet exponents we must compute the eigenval-
ues of the operator

0

) — 3 (4.2)

1
;DF(’U(T, 0

5. Numerical Computation of
Spirals

In this section, we employ numerical computations
to find parameter values at which the branches of
periodic solutions bifurcate supercritically from the
Hopf bifurcation points given by solutions of (3.5).
Since the trivial steady-state solution has already
lost its stability at A = 0, the bifurcating rotating
waves are locally unstable. However, our numerical
computations show that there is just one unstable
eigenvalue. Moreover, this eigenvalue tends to zero
from above for increasing values of \.

For the direct simulation of the time-dependent
system, we use the method of lines, combining a
finite difference scheme in space with an adaptive
extrapolation integrator in time.
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5.1. Discretization by finite

differences in space

For the spatial discretization of the partial differ-
ential operator we employ finite differences in polar
coordinates, using the formulation (2.2). We have
chosen a tensor product mesh defined by equidis-
tant partitions of the intervals [0, R] and [0, 2]
The derivatives with respect to r and § are approx-
imated by central differences, except for the radial
derivative u, at the boundary, where we use one-
sided differences.

Applying these schemes to the boundary con-
dition, we can express the values at the boundary
as a linear function of the values at the grid points
inside the disk. With this we obtain a discretization
of the operator including the (discretized) boundary
conditions.

5.2. Discretization in time

Using the methods of lines, we first discretize in
space as described in the previous subsection, and
then use a standard integrator to solve the result-
ing system of ODEs. Here, we employ the integra-
tion code EULSIM, based on the linearly implicit
Euler discretization, combined with extrapolation
and adaptive order and step-size control [Deuflhard,
1989].

5.3. Continuation of rotating waves

For the computation of the rotating wave solutions,
we use a predictor—corrector method for the
parameter-dependent nonlinear Eq. (4.1). Because
of the SO(2) symmetry this problem is underde-
termined, with w as implicit parameter. Hence, we
use a Gauss-Newton method as the corrector and
combine it with a tangential predictor. This ap-
proach is in the spirit of the methods proposed by
Deuflhard [1984] for computing periodic solutions.
The dominant eigenvalues of the rotating waves are
computed by a similar continuation process, using
a linear predictor and the inverse power method
as a corrector. In this way, we exploit the sparse
structure of the linear (but nonsymmetric) system.
Thus, the computation of the dominant eigenval-
ues requires less work than that of the rotating
wave solution. To verify the eigenvalue computa-
tions and to obtain appropriate initial values for the

continuation process, we use the full matrix eigen-
value solvers provided by LAPACK.

5.4. Numerical tools

The nonsymmetric linear systems that arise are
solved using Harwell’s sparse matrix package
MA28 written by Duff [1980], which is embedded
in a C++ sparse matrix package. For time integra-
tion and nonlinear solvers (Gauss—Newton method
and continuation) we employ the code++ package
[Hohmann, 1993].

6. Numerical Results

In our computations, we choose the nonlinearity f
in (2.2) to be f(v) = av®. The parameter o may be
scaled to +1 by suitable choice of A in (2.2). We
mainly consider the parameter values

R=8 and a=-1.

With this choice, the first Hopf bifurcation occurs
at A = 0.2200. In all the computations we choose
30 discretization points in the radial direction and
50 in the angular direction.

Figure 6 shows the branch of rotating wave so-
lutions that emanates from v = 0 when A = 0.2200.
The corresponding radial factor of the eigenfunc-
tion is related to the real or imaginary part of the
complex Bessel function J; [see (3.5)].

amplitude

lambda

Fig. 6. The branch of rotating wave solutions that emanates
when A = 0.2200.
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Next, we compute the Floquet exponents by  along this branch with largest real part are shown
calculating the eigenvalues of (4.2). Because of in Fig. 7. The positive eigenvalue approaches zero,
SO(2) symmetry, there is one zero eigenvalue along  while all other eigenvalues remain nonpositive. In
this branch. As noted in the Introduction, there is consequence, the spirals appear to be stable in di-
also one positive eigenvalue. The three eigenvalues  rect simulations for a very long integration time,

4 T T T T T T T =7 lambda = 2.986321

n w
n o ) o
T T

dominant eigenvalues
~A (5]
(=]
L

o
o
)
]
y—

-2
- 107
‘k._.---""""_._-_-— \ q'x'x._
0.5 3 } 5
's 1 2 3 4 5 6 7 8
lambda

Fig. 7. Dominant three eigenvalues along a branch of rotat- Fig. 9. Rotating wave for A\ = 2.986321, R — 8. and fre-

ing waves. quency w = 0.111.

lambda = 2.986320 lambda =7.999867

P,

Fig. 8. Rotating wave for A = 2.986321, R = 8, and fre- Fig. 10. Rotating wave for A = 7.999867. R = 8, and fre-
quency w = 0.111. quency w = 0.102.
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until the (weak) instability eventually takes over.
Moreover, this phenomenon becomes more pro-
nounced as A becomes larger.

Figures 8 and 10 show contour plots of two spi-
rals lying on this branch of rotating waves. At each
instant of time these spirals have a nontrivial sym-
metry: a rotation by 180 degrees combined with
the order two symmetry v — —u. This additional
symmetry is present because we have chosen the
nonlinearity to be an odd function (here, purely cu-
bic). Because of this, the symmetry of the problem
becomes SO(2) x Zy rather than just SO(2). The
width of the computed spirals pictured in Figs. 8-10
appears to be in good agreement with the theoret-
ical spiral width, which is 27/8 =~ 0.8. The compu-
tations show that the layer between the two parts
of the spiral becomes extremely steep with increas-
ing values of \. We illustrate this phenomenon in
Figs. 9 and 11.

Because of this steep gradient the numerical
computations are more difficult for larger values of
) and for larger spatial domains. In fact, in order
to obtain reliable numerical results for these values
of ) it would be necessary to increase the number of
discretization points substantially, preferably com-
bining this with some adaptive mesh selection. For
these reasons, we have not increased the size of the
domain beyond R = 8 in most of our computations.
However, Fig. 12 shows a rotating wave solution
computed for R = 12 by direct simulation. As for
R = 8, this solution appears to be unstable. Again,
we find good agreement with the theoretical spiral
width of 27/12 = 0.5.

lambda = 7.999867

Fig. 11. Rotating wave for A = 7.999867, R = 8, and fre-
quency w = 0.102.

lambda =10.0

Fig. 12. A spiral for A = 10.00.

lambda =10.0

Fig. 13. A spiral for A = 10.00, where a quadratic term has
been added.



Finally, in order to explore the effect of break-
ing the extra Z; symmetry introduced by the cu-
bic nonlinearity, we show one computation where
a quadratic term has been added to the equation.
See Fig. 13. Note that the spiral is no longer equally
spaced and that the red/blue transition is different
from the blue/red transition.

7. Relation to Previous Work

In this section, we relate our work to existing results
and hypotheses. Our discussion focuses on various
more or less relevant issues, but makes no preten-
sion to completeness.

We begin with a brief history of the Belousov—
Zhabotinskii reaction and its associated patterns.
Oscillating chemical reactions seem to have first
been reported by William Bray in 1921, in the de-
composition of hydrogen peroxide into water and
oxygen in the presence of an iodine catalyst. Unfor-
tunately, his results were widely disbelieved
because they were thought — wrongly — to con-
tradict the second law of thermodynamics. In con-
sequence, the topic stagnated until 1958, when B. P.
Belousov observed periodic oscillations in a mixture
of citric and sulfuric acid, potassium bromate, and
a cerium salt. In 1963, A. M. Zhabotinskii modified
Belousov’s recipe, replacing cerium salts with iron
salts, so that changes in ionic concentrations could
be visualized as a dramatic red/blue color change.
The recipe has been modified several times since, to
improve the ease of repetition of the experiment and
the robustness of the result: recipes may be found in
Winfree [1990], p. 301, and Cohen & Stewart [1994],
p. 461. The central feature of modern versions of
the reaction is the presence of bromate ions in an
acid solution, which oxidize some organic substrate.

In one common form of the experiment, the
chemicals are mixed in appropriate quantities, and
in a particular order, and stirred together in a dish.
The mixture is blue at first but rapidly turns red:
the color is homogeneous across the entire dish. If it
is left for a period of about 10-20 minutes, however,
blue spots form spontaneously. The spots grow, and
their centers turn red. Soon the dish contains sev-
eral independent “target patterns” of concentric red
and blue rings. These patterns merge in a charac-
teristic manner when they meet.

The formation of target patterns is an example
of spontaneous symmetry-breaking. The spatially
homogeneous state is unstable, and when it loses
stability through small random inhomogeneities the
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result is a state with circular symmetry about some
point. The translational symmetries (of an infinite
planar model) are broken. It is customary to hy-
pothesize some physical pointlike “seed” that causes
the symmetry to break in an experimental setting
— such as a bubble, an impurity, or a scratch on
the glass dish. Such “seeds” may perhaps relate to
singularities in the solution, but symmetry-breaking
may occur for reasons other than a pointlike singu-
larity. Since it is target patterns, not spirals, that
form spontaneously, it is not clear that a pointlike
singularity would be an appropriate physical seed
for spirals. In order to create spirals experimen-
tally, it is necessary to either tilt the dish slightly
and then restore it to the horizontal, or to insert a
hot wire (which is usually moved across the wave to
create some kind of curve singularity). The effect
is to produce a topological dislocation in the wave
pattern, and spiral forms result. They appear to
be stable, but this is not absolutely clear because
experiments usually continue for less than an hour.
After that period of time the reagents are used up:
the solution is actually a dynamical transient on the
way to a different — and uninteresting — equilib-
rium. However, it is normal to model the system as
if the reagents are constantly and uniformly replen-
ished — as indeed they are in some experiments —
and there are no good reasons to expect instability
of the spiral wave in such circumstances.

As noted earlier, the spirals seen in experiments
are approximately Archimedean in form — that is,
their width is roughly constant. The precise shape
of the spiral has been a topic of considerable re-
search. In early work, the “spiral” metaphor was
perhaps taken too literally, a tendency that was
exposed when Guckenheimer [1976] (and indepen-
dently S. Hastings and J. M. Greenberg in
unpublished work, see Winfree [1990], p. 309-310)
proved that concentration contours in a reaction—
diffusion equation cannot all be congruent concen-
tric spirals. (From the symmetry viewpoint such a
structure is, in any case, extremely unlikely, requir-
ing a connection between rotations in the domain
and changes in the value of a chemical concentra-
tion; moreover, it is far stronger than is required to
explain the observations.)

In 1946, Wiener & Rosenbliith [1946] had in-
troduced the idea of an “involute” wave form — a
spiral shaped like the involute of a circle — when ap-
proximating the shape of excitation waves on
the surface of a living heart. This idea was devel-
oped by Stibitz & Rytand [1968] in relation to
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experiments on animal hearts, and by Durston
[1973] to patterns in slime mould. Some authors
have modelled Belousov—Zhabotinskii spirals using
involutes. Winfree [1990], p. 245, onwards, exposed
the rather unreasonable assumptions involved in the
involute model. It is clear that both Archimedean
and involute spirals are just convenient geometri-
cal approximations; and it is arguable that a more
accurate description relates to the Bessel functions
that occur in both our linearized eigenfunctions and
those obtained earlier by DeDimone et al. [1973].
For large radii the width of the spiral becomes
asymptotically constant in all these geometric mod-
els. This is reasonable if we make the entirely plau-
sible assumption that there is a natural wavelength
for traveling plane waves and that the spiral waves
are asymptotically planar — that is, their curva-
ture becomes negligible. This assumption is used,
for example, in the work of Kopell & Howard [1973}.

Winfree [1990] pioneered a point of view on tar-
gets, spirals, and related patterns, which empha-
sized the phase of the local chemical oscillation at
each point in the medium. The underlying model is
that at each spatial location the system is oscillat-
ing around the same limit cycle in the local chemical
kinetics, and that diffusion acts as a small short-
range coupling which creates some kind of global
phase coherence. For example, the phase is constant
along the distinctive and sharp wavefront where a
blue region is invading a red one. This model leads
to topological restrictions on the pattern of phases,
and hence on the contours of appropriate chemical
concentrations; it also leads to the influential idea
that there must be a “phase singularity” at or near
the tip of the spiral — a point at which the phase
becomes ill-defined.

However, Winfree also noted that this phase
model involves approximations that are not always
appropriate. In particular, the state of the reac-
tion near the center of the spiral varies smoothly,
despite the phase singularity. This was shown for
non-oscillating excitable kinetics by Gul’ko &
Petrov [1972], Karfunkel [1975], and Winfree
[1974b]; and for nonexcitable oscillating kinetics by
Erneux & Herschkowitz-Kauffman [1977], Yamada
& Kuramoto [1976], and Cohen et al. [1978].

Winfree [1990], pp. 248-249, explains this
phenomenon in terms of the dimensionality of the
local kinetics, in effect observing that the appar-
ent topological restrictions imposed by the occur-
rence of a phase singularity do not conflict with
smoothness for a system of reaction—diffusion

equations in which the chemical kinetics involves
two or more variables. We concur with his discus-
sion, but would go one step further, because, as
our figures show, we also observe smoothly varying
concentrations in a scalar system. The reason, we
believe, lies not in the dimensionality of the local
kinetics, but in the modelling assumptions involved
in the phase approximation. Phase is not a uniquely
defined concept; it is only relative phase that has an
invariant meaning. The relative phase of two iden-
tical wave forms is a precise concept; but the phase
of a single wave form, or the relative phase of two
different wave forms, involve a more or less arbi-
trary choice. The phase of an arbitrary wave form
can of course be fixed by assuming that the maxi-
mum value of the wave form occurs at zero phase.
This provides a unique phase — at least it does so
generically, on the assumption that the wave form
does not have two equal maxima within a single pe-
riod. However, with this definition the phase need
not vary continuously with the wave form (imag-
ine an M-shaped wave whose maximum occurs at
the left-hand peak, and slowly deform the heights
of the two peaks so that the left-hand one moves
down until the right-hand one becomes the global
maximum). Once phase ceases to be a continuous
function of wave form, topological restrictions lose
much of their force. It appears possible to analyze
the movements of maxima using singularity theory:
this would presumably provide a rigorous founda-
tion for Winfree’s approach when the wave form re-
mains approximately constant, but it would lead to
different topological restrictions when it does not.

To be more precise: at each point x of the do-
main of the PDE, consider the solution u(z, t) with
fixed z. Winfree’s phase model assumes that for
all = the function u(z, t) is identical up to a phase
shift; that is, that u(z, t) = u(y, t + ¢(z, y)) for all
points z, y in the domain (except those for which
there is a phase singularity). Experiments (both
chemical and numerical) show this to be approxi-
mately true unless z or y are near the origin. Thus
the phase model is good for providing global restric-
tions on the geometry of waves far from the origin,
but breaks down near the origin. As is observed on
page 248 of Winfree [1990], “The ‘pivot’ is an ide-
alization ... which serves a purpose only when not
examined too closely.”

Kness et al. [1992] studied a one-dimensional
model of an excitable medium and derived an O(2)-
symmetric normal form, thereby introducing
explicit symmetry considerations. This approach



was extended in Barkley [1993, 1994] and Barkley &
Kevrekidis [1994]: the emphasis is on the Euclidean
group symmetry of the entire plane. This approach
has led to a considerably increased understanding
of the dynamics of spirals, including “meandering”
of the tip, and the infinite-period bifurcation asso-
ciated with the onset of spirals in numerical mod-
els related to particular experimental scenarios, dis-
cussed in the introduction.

Having described the context provided by pre-
vious work, we now discuss how the results of this
paper fit into it. On the positive side, we have es-
tablished several results which, apart from numeri-
cal calculations which in principle could be avoided
by making suitable estimates, are rigorously proved.
As noted in the introduction, they include the
following:

e Spiral waves can be created by Hopf bifurcation
in rotationally symmetric systems of reaction—
diffusion equations.

e Spiral waves can occur in scalar reaction—diffusion
equations.

e Spiral solutions need not possess a singularity at
the tip of the spiral (or anywhere else).

We repeat that we are not claiming that Hopf
bifurcation is the appropriate mechanism for repro-
ducing the behavior found in particular experiments
or numerical models. We are using Hopf bifurca-
tion as a technique for proving the existence of so-
lutions at suitable points in a mathematical param-
eter space.

The spirals observed experimentally exhibit a
very sharp transition where blue regions of the do-
main are expanding into the red — see, for
example, Fig. 5 on p. 313 of Winfree [1990], Tyson
[1976], p. 62, finds similarly sharp transitions in
the “oregonator” model of the chemical kinetics
of the Belousov—Zhabotinskii reaction, introduced
originally by Field & Noyes [1972]. The oscilla-
tions that he finds are “hard excitations”, that is,
they correspond to a limit cycle that coexists with
a stable equilibrium state — unlike the limit cycle
that appears near the bifurcation point in Hopf bi-
furcation. We must distinguish between the sharp
wave front in the Belousov—Zhabotinskii reaction
(indicating a limit cycle of large amplitude) and a
hard excitation (which coexists with a stable rest
state and is therefore necessarily of large ampli-
tude). Our numerical results show that in these
nonlinear reaction—diffusion equations a supercriti-
cal Hopf bifurcation can lead to a wave front that
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steepens progressively, and rapidly, past the bifur-
cation point. It is therefore not necessary to have
the “hard excitation” scenario in order to produce
a sharp wave front. Indeed, it is not even neces-
sary to have a subcritical Hopf bifurcation which
subsequently “turns round” and becomes stable —
a common way to produce a Jarge-amplitude limit
cycle via Hopf bifurcation.

The wave front that arises in our model pos-
sesses one awkward feature, however: the transition
is equally sharp when the red region propagates into
the blue. This is a consequence of the additional Zg
symmetry noted in Sec. 6, which is created by the
cubic nonlinearity. As seen in Fig. 13, an asymmet-
ric nonlinearity — for example, one with a further
quartic term, or maybe a quadratic one — produces
an asymmetric wave form. It seems plausible that a
suitable choice of nonlinearity could reproduce the
sharp blue/red transition while providing a gradual
red/blue transition.

Our results also show that it is not necessary for
the local chemical kinetics to possess a limit cycle
in order for the reaction-diffusion equation to pro-
duce this apparent hard excitation. (This calls the
“hard excitation” terminology into question since
there is no suitable phase space in which it applies.)
Our equation has a one-dimensional state space for
the kinetics, which cannot support a limit cycle.
Even though our solutions are (marginally) unsta-
ble, they establish this point clearly. The source of
the oscillatory behavior seems to be the ODE (3.3),
which is second order; this fact traces back ulti-
mately to the second order partial derivatives on
the spatial diffusion terms in the PDE (2.1). This
raises the question to what extent features of the
wave form have traditionally been attributed to the
local “reaction” dynamics, when in fact they are due
to diffusive coupling of the local dynamics across
some finite region. Perhaps it would be worth re-
examining the usual assumptions, bearing this in
mind.

Next, we make some remarks about the role of
the “spiral” boundary conditions. Figures 6 and
7 show “yin-yang” shaped patterns which do not
resemble those found in experiments, for two rea-
sons, both of which have been discussed previously.
The first reason is that our model equation has an
extra symmetry. The second reason is the assump-
tion that the boundary of the disk Br corresponds
to the boundary of a dish in which the reaction
takes place. To put it another way, the width of
the spiral is too large compared to the size of dish.
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As remarked already, this feature of our pictures is
largely an artifact of the parameter values chosen
for our numerical simulations, and would presum-
ably disappear if we were to solve the equations for
larger values of R. (As noted previously, this sim-
ulation will require substantially greater numerical
effort.) Figure 10 goes some way towards establish-
ing this point,.

However, there is another possible interpreta-
tion altogether which offers some advantages and
should certainly be borne in mind. Spiral bound-
ary conditions are a mathematical device for prov-
ing the occurrence of spiral patterns; they do not
correspond in any natural way to physical behay-
ior near the boundary of an actual container. They
can be viewed as a theoretical ansatz whose role is
to select, from the infinitely varied range of possi-
ble solutions, a small subset with the desired spiral
form. Spiral boundary conditions therefore repre-
sent a comstraint that the solution is required to
satisfy on some chosen circle; but there is no obli-
gation to interpret this circle as the boundary of
the container. For example, the container might be
a larger circular dish [to retain SO(2) symmetry]
and the circle 9B might be an arbitrary reference
circle some distance inside the container but con-
centric with it.

The approach adopted in this paper might per-
haps extend to more exotic wave forms. For exam-
ple, a similar kind of ansatz, imposing suitable “in-
finitesimal” conditions on a solution over the surface
of a torus in three-dimensional space, might perhaps
lead to a similarly rigorous proof of the existence of
scroll waves,

Finally, we note that the general viewpoint in-
troduced in this paper is not restricted to reaction—
diffusion equations, nor is it limited to scalar PDEs,
We have worked under these restrictions in order to
keep the calculations as simple as possible, but in
principle there should be no difficulty in relaxing
them. The crucial feature of the model that leads
to spiral waves is the SO(2) symmetry.
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