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a b s t r a c t 

The internal state of a cell is affected by inputs from the extra-cellular environment such as external tem- 

perature. If some output, such as the concentration of a target protein, remains approximately constant 

as inputs vary, the system exhibits homeostasis. Special sub-networks called motifs are unusually com- 

mon in gene regulatory networks (GRNs), suggesting that they may have a significant biological function. 

Potentially, one such function is homeostasis. 

In support of this hypothesis, we show that the feed-forward loop GRN produces homeostasis. Here 

the inputs are subsumed into a single parameter that affects only the first node in the motif, and the 

output is the concentration of a target protein. The analysis uses the notion of infinitesimal homeostasis, 

which occurs when the input-output map has a critical point (zero derivative). In model equations such 

points can be located using implicit differentiation. If the second derivative of the input-output map also 

vanishes, the critical point is a chair : the output rises roughly linearly, then flattens out (the homeostasis 

region or plateau ), and then starts to rise again. Chair points are a common cause of homeostasis. In 

more complicated equations or networks, numerical exploration would have to augment analysis. Thus, 

in terms of finding chairs, this paper presents a proof of concept. 

We apply this method to a standard family of differential equations modeling the feed-forward loop 

GRN, and deduce that chair points occur. This function determines the production of a particular mRNA 

and the resulting chair points are found analytically. The same method can potentially be used to find 

homeostasis regions in other GRNs. In the discussion and conclusion section, we also discuss why home- 

ostasis in the motif may persist even when the rest of the network is taken into account. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Homeostasis occurs in a biological or chemical system when

ome output variable remains approximately constant as an input

arameter varies over some range. The notion of homeostasis is of-

en associated with regulating global physiological parameters like

emperature, hormone levels, or concentrations of molecules in the

loodstream in complex multicellular organisms. However, it also

an be applied to unicellular organisms, where the issue is how

ome internal cell state of interest (the copy number of an mRNA

ranscript or a protein expression level, for example) responds to

hanges in the intra-cellular or extra-cellular environment (such as

hanges in the expression level of an upstream transcription factor

r environmental factors, such as temperature). 
∗ Corresponding author. 
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.1. Infinitesimal homeostasis 

The biological notion of homeostasis can be defined in the con-

ext of systems of differential equations as follows. Assume that

he system depends on an input parameter I ∈ R 

˙ 
 = F (X, I) , (1.1)

here X ∈ R 

n represents internal variables such as chemical con-

entrations. Assume also that (1.1) has a stable equilibrium at X =
 0 when I = I 0 ; thus, 

 (X 0 , I 0 ) = 0 . 

he implicit function theorem coupled with stability implies that

here is a stable equilibrium X ( I ) of (1.1) near X 0 for each I near I 0 ;

hat is, 

 (X (I ) , I ) ≡ 0 . 

omeostasis means that a certain quantity Z that depends on the

amily of equilibria X(I) = (x 1 (I ) , . . . , x n (I )) is approximately con-

tant as I varies. Often Z(I) = x j (I) for some coordinate j . We call

https://doi.org/10.1016/j.jtbi.2018.02.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.02.026&domain=pdf
mailto:fernando.antoneli@unifesp.br
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Fig. 1. A feed-forward loop motif of yeast Saccharomyces cerevisiae involving genes 

SFP1, GZF3 and GAP1. SFP1 is a self-regulated motif embedded in the larger GRN 

motif. Arrows indicate coupling between two genes, but the information about the 

type of coupling (activation or repression) is not available ( Cipollina et al., 2008; Hu 

et al., 2007 ). Adapted from GDB ( Cherry et al., 2012 ). 

Fig. 2. A 3-gene 6-node feed-forward loop GRN motif. All arrows are different but 

for simplicity this is not made explicit in the figure. Circles stands for mRNA vari- 

ables and squares for protein variables. Solid lines indicate positive coupling and 

dashed lines indicate negative or positive coupling (depending on the form of the 

equations at that node). The general form of the system of differential equations as- 

sociated with this diagram is given in (1.3) . It is shown in Theorem 1.1 that home- 

ostasis occurs in z P . 
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Z ( I ) the input-output map . In general, it is not easy to find regions

of homeostasis. 

Recently, Golubitsky and Stewart (2017) introduced the notion

of infinitesimal homeostasis to enable the use of implicit differen-

tiation to find regions of homeostasis. Specifically, the idea is to

search for parameter values I 0 where 

Z I (I 0 ) = 0 , (1.2)

where the subscript I indicates partial differentiation with respect

to I . 

We make three remarks about (1.2) . First, although this a local

condition, in many biological examples it is likely to lead to ap-

proximate constancy on a wide range of I values. Second, it is usu-

ally easier to use implicit differentiation to find points of infinites-

imal homeostasis than it is to find intervals over which Z ( I ) is ap-

proximately constant. Finally, the existence of infinitesimal home-

ostasis requires that the model equations are nonlinear, which is

always the case in biological models. These issues are discussed in

detail in Reed et al. (2017) for a number of biochemical network

motifs. Similiar ideas (using a slightly different terminology) have

been discussed in Tang and McMillen (2016) . 

Nijhout et al. (2014) observe that homeostasis often appears in

three parts: first the output increases roughly linearly as a function

of the input, then it remains approximately constant, and then it

increases again. They call this type of homeostasis a chair , and the

first and third parts escape from homeostasis . An infinitesimal chair

point ( Golubitsky and Stewart, 2017 ) is a point I 0 where Z I (I 0 ) =
Z II (I 0 ) = 0 and Z III ( I 0 ) � = 0. Golubitsky and Stewart (2018a) also give

a mathematical justification for why infinitesimal chairs are impor-

tant when considering homeostasis. Specifically, chair points are

the simplest singularities that occur in a system that evolves to-

wards homeostasis. Mathematically, chair points are codimension 1

singularities. That is, they can occur robustly when, as one param-

eter is varied, the system goes from a region of non-homeostasis

to a region of homeostasis. 

1.2. Gene regulatory networks 

In this paper we use singularity theory to find infinitesimal

chairs in differential equation models for a specific type of gene

regulatory network (GRN), the feed-forward loop motif (FFL). Our re-

sults both suggest an explanation for the ubiquity of feed-forward

loop motifs among those GRN that are expected to display home-

ostasis and provide a proof of concept for finding homeostasis in

other network motifs. Fig. 1 gives an example of an FFL motif in

yeast. 

Each node in a GRN represents two related variables: the con-

centration of mRNA, and the concentration of the associated pro-

tein. In order to account for the internal structure, we follow

( Zak et al., 2005 ) and adopt a more refined way of drawing the

network diagram (see Fig. 2 ) that makes the two-variable structure

of the nodes explicit: 

1) Each node corresponds to a scalar variable, which can be an

mRNA concentration indicated by superscript R and represented

by a circle or a protein concentration indicated by superscript P

and represented by a square. 

2) A protein node (square) receives an input from exactly one

mRNA node (circle), and the effect of this coupling is always

positive and represented by a solid arrow (mRNA-protein cou-

pling). The equation of an mRNA node depends only on the

state variable for that node and the state variable of the tail

cell of the solid input arrows to that node. 

3) An mRNA node (circle) receives inputs only from protein nodes

(square). It can receive as many inputs as necessary, repre-

sented by dashed arrows (gene-gene coupling). The effect of
each dashed arrow into an mRNA node depends only on the

equation of that node. It can be repression (binding affinity

decreases when concentration increases) or activation (binding

affinity increases when concentration increases), depending on

the form of the input function at that node. 

Fig. 2 shows a diagram representing a general 3-gene 6-node

eed-forward loop, which includes the feed-forward loop shown in

ig. 1 as a particular case (the solid lines of Fig. 1 correspond to

he dashed lines of Fig. 2 ). The equations corresponding to the GRN

otif in Fig. 2 have the form: 

˙ 
 

R = f R (x R , x P ) + I 

˙ 
 

P = f P (x R , x P ) 

˙ 
 

R = g R (x P , y R ) 

˙ 
 

P = g P (y R , y P ) 

˙ 
 

R = h 

R (x P , y P , z R ) 

˙ 
 

P = h 

P (z R , z P ) 

(1.3)

he input parameter I represents the action of all other upstream

ranscription factors that affect the x gene and do not come from

he y and z genes. 
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.3. Homeostasis in a specific model 

In Section 2 Proposition 2.1 we derive general conditions for the

ccurrence of infinitesimal homeostasis points and chair points in

1.3) . These conditions are suitable for numerical solution; for an

xample, see Fig. 5 and the discussion at the end of Section 4 .

y choosing specific functions, analytic solutions can be derived in

pecial cases, such as: 

f R (x R , x P ) = −δx R + S(x P ) + I 

f P (x R , x P ) = −αx P + x R 

g R (x P , y R ) = −δy R + S(x P ) 

g P (y R , y P ) = −αy P + y R 

 

R (x P , y P , z R ) = −δz R + T (x P + y P ) 

h 

P (z R , z P ) = −αz P + z R 

(1.4) 

here S and T are positive decreasing sigmoid functions. This

orm is discussed in Section 3 . 

heorem 1.1. For each I > −1 the standard model (1.4) has a unique

quilibrium which is stable and has all coordinates positive. The equi-

ibrium has an infinitesimal chair point at I 0 if and only if x P is a

olution of the system 

S(x P ) = σ x P − I 

S ′ (x P ) = −σ

S ′′ (x P ) = 0 

 

′′′ (x P ) � = 0 

(1.5) 

here σ = αδ. 

The proof proceeds in several stages in Sections 2 and 3 . A spe-

ific example using this theorem is given in Section 4 . 

emark 1.2. The third equation in (1.5) implies that infinitesimal

hairs occur in the simplified standard model (1.4) only at points

f inflection of the sigmoid function S . 

.4. Remarks from singularity theory 

The universal unfoldings of chair points determined by (1.5) are

lso present in (1.4) . It follows that the chair points are structurally

table and hence occur in a larger family of models than those

n (1.4) . The determinacy conditions for a chair point ( z I = z II = 0 )

lso provide a numerical method for finding chairs when analytic

ethods fail. We return to these points in Section 4 . 

.5. Structure of the paper 

The feed-forward loop GRN that we study is discussed in

ection 2 . Specifically, Proposition 2.1 gives conditions for the

ccurrence of a chair in the output variable z P for the gen-

ral Eq. (1.3) . Here we discuss the use of implicit differentia-

ion to find points of infinitesimal homeostasis and infinitesimal

hairs. Section 3 introduces the standard model (3.2) that we use.

heorem 1.1 , which applies to a simplified version of the standard

odel, is also proved in this section. Couplings in GRNs are of-

en done through sigmoid functions, and Section 4 completes the

alculations for a specific choice of sigmoid functions. The cal-

ulations for other choices would be similar. We also show that

hese added assumptions can be relaxed if the calculations for

nding homeostasis points are performed numerically. The paper

nds with Section 5 on Discussions and Conclusions. 
. Feed-forward loop GRN motif 

Consider the GRN motif consisting of three genes shown in

ig. 2 , where solid lines represent mRNA-protein coupling and

ashed lines represent gene-gene coupling. Since experimental in-

ormation about the type of coupling is unavailable we are assum-

ng repression regulation for all mRNA nodes in the GRN motif. As

e shall see, this assumption implies that the system has a unique

table equilibrium for all admissible parameter values. It has been

xperimentally observed that repression regulation (more specifi-

ally, self-regulation by repression) provide stability, thereby lim-

ting the range over which the concentrations of network compo-

ents fluctuate ( Becksei and Serrano, 20 0 0 ). 

Our goal is to find regions of homeostasis in the steady-state

rotein concentration z P as a function of the input parameter I . The

teady state equations associated to (1.3) are 

f R (x R , x P ) + I = 0 

f P (x R , x P ) = 0 

g R (x P , y R ) = 0 

g P (y R , y P ) = 0 

h 

R (x P , y P , z R ) = 0 

h 

P (z R , z P ) = 0 

(2.1) 

The Jacobian of (1.3) is 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f R 
x R 

f R x P 
0 0 0 0 

f P 
x R 

f P 
x P 

0 0 0 0 

0 g R 
x P 

g R 
y R 

0 0 0 

0 0 g P 
y R 

g P 
y P 

0 0 

0 h 

R 
x P 

0 h 

R 
y P 

h 

R 
z R 

0 

0 0 0 0 h 

P 
z R 

h 

P 
z R 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2.2) 

ubscripts in (2.2) and in the following indicate partial derivatives.

he block-triangular form implies that an equilibrium of (1.3) is

table if and only if 

 

P 
z P < 0 h 

R 
z R < 0 g P y P < 0 g R y R < 0 tr (K) < 0 det (K) > 0 (2.3)

here 

 = 

[
f R 
x R 

f R x P 

f P 
x R 

f P 
x P 

]

y the implicit function theorem, if an equilibrium Y 0 at I 0 is stable

hen there exists a unique family of stable equilibria near Y ( I ) for I

ear I 0 . 

roposition 2.1. A stable equilibrium Y 0 = (x R , x P , y R , y P , z R , z P ) at I 0 
atisfies z P I (I 0 ) = 0 if and only if 

( I 0 ) ≡ g R y R g 
P 
y P h 

R 
x P + h 

R 
y P g 

P 
y R g 

R 
x P = 0 . (2.4) 

n infinitesimal chair point for output z P occurs if in addition 

dρ

dI 
(I 0 ) = 0 and 

d 2 ρ

dI 2 
(I 0 ) � = 0 . (2.5)

roof. Eq. (2.1) define x, y, z implicitly as functions of I . Implicit

ifferentiation of (2.1) with respect to I yields 

f R 
x R 

x R I + f R 
x P 

x P I = −1 

f P 
x R 

x R I + f P 
x P 

x P I = 0 

g R 
y R 

y R I + g R 
x P 

x P I = 0 

g P 
y R 

y R I + g P 
y P 

y P I = 0 

 

R 
z R 

z R I + h 

R 
x P 

x P I + h 

R 
y P 

y P I = 0 

h 

P 
z R 

z R I + h 

P 
z P 

z P I = 0 

(2.6) 
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The first two equations in (2.6) can be solved for x R 
I 

and x P 
I 
. We

assume f P 
x R 

� = 0 so that x P I � = 0 . Next we work backwards. By the

last equation in (2.6) , z P 
I 

= 0 implies z R 
I 

= 0 , so 

h 

R 
x P x 

P 
I + h 

R 
y P y 

P 
I = 0 

or 

y P I = − h 

R 
x P 

h 

R 
y P 

x P I . 

Substitute in the fourth equation in (2.6) to get 

h 

R 
y P g 

P 
y R y 

R 
I − g P y P h 

R 
x P x 

P 
I = 0 . 

Eliminating y R 
I 

from the third equation, 

−(g R y R g 
P 
y P h 

R 
x P + h 

R 
y P g 

P 
y R g 

R 
x P ) x 

P 
I = 0 

Since x P I � = 0 , (2.4) is satisfied. We have shown that infinitesimal

homeostasis occurs when (2.4) is satisfied. 

The equation ρ = 0 for infinitesimal homeostasis has a chair if

ρ has a double zero; that is, ρI = 0 . The nondegeneracy condition

states that the equation does not have a triple zero; that is, ρ II � = 0.

This completes the proof of (2.5) and of the proposition. �

3. Homeostasis in a standard model for the feed-forward loop 

It is common in deterministic modeling of transcription and

translation to assume that the equations are linear with constant

coefficients, called rate constants , except for x P and t J in the first

equation ( Kaern et al., 2005 ). Hence we arrive at the following

standard model : 

˙ x R = −δx x R + γ x ˜ f (x P , t J ) + I 

˙ x P = −αx x P + βx x R 
(3.1)

Here the function 

˜ f is an input function with range [0, 1] that gov-

erns transitions between the active and repressed states of the pro-

moter by converting protein concentrations x P and t J into binding

affinity. The parameter δx is the degradation rate of the mRNA, αx 

is the degradation rate of the protein, γ x is rate of mRNA syn-

thesis, and βx is the rate of protein synthesis. All of these quan-

tities are constants. We employ this unorthodox notation because

the superscript shows which variables the constants are associated

with. This is useful for (3.2) below. The parameter I acts on the

production rate of mRNA variable, which implies that 

sup 

(x P ,t J ) 

{ γ x ˜ f (x P , t J ) } + I = γ x + I � 0 . 

Next we show that the standard model (3.1) for the three gene

network in Fig. 2 has a family of stable equilibria, one for each

admissible value of the input parameter I . The general standard

model for this GRN motif is: 

f R (x R , x P ) = −δx x R + γ x ˜ f (x P ) + I 

f P (x R , x P ) = −αx x P + βx x R 

g R (x P , y R ) = −δy y R + γ y ˜ g (x P ) 

g P (y R , y P ) = −αy y P + βy y R 

h 

R (x P , y P , z R ) = −δz z R + γ z ˜ h (x P , y P ) 

h 

P (z R , z P ) = −αz z P + βz z R 

(3.2)

where δx , δy , δz , αx , αy , αz γ x , γ y , γ z , βx , βy , βz are positive con-

stants, and 

˜ f , ˜ g , ˜ h are input functions . More precisely, ˜ f and ˜ g are

non-negative and strictly decreasing (repression coupling) sigmoid

functions and 

˜ h is a two-dimensional generalization of a sigmoid

function of repression type ( Alon, 2007 ). 

In order to apply Proposition 2.1 to find an explicit infinitesimal

chair point of (3.2) , we introduce several simplifying assumptions: 
• The mRNA degradation constants have the same value for all

genes. 
• The protein degradation constants have the same value for all

genes. 
• The protein synthesis constants are the same for all genes. 
• Introducing dimensionless parameters and variables, we may

assume that the synthesis constants are normalized to 1. 
• The input functions ˜ f and ˜ g are equal and 

˜ h is a scalar func-

tion of x P + y P . This means that the concentrations x P and y P 

act independently and additively on gene z . 

These assumptions lead to the simplified model (1.3) given in

he Introduction: 

roof of Theorem 1.1. Since the maximum value of S is S(0) = 1 ,

e have I + 1 � 0 . We solve for the zeros of (3.2) as follows: 

x R = αx P 

y R = αy P 

z R = αz P 

y P = 

1 
σ S(x P ) 

z P = 

1 
σ T (x P + y P ) 

(x P ) = σ x P − I 

(3.3)

or all admissible values of I the last equation in (3.3) has a unique

olution x P > 0, since the left hand side is strictly decreasing in x P 

nd always positive and the right hand side is strictly increasing in

 

P . Hence the first equation in (1.5) is satisfied. 

Given x P the fourth equation in (3.3) yields y P ; the second equa-

ion yields y R ; the first equation yields x R ; the fifth equation yields

 

P ; and the third equation yields z R . Thus the equilibrium exists

nd is unique. In addition, y P > 0 implies that all other components

f the equilibrium are positive for the model Eq. (1.4) . 

Moreover, by (2.2) , the eigenvalues of the Jacobian at this equi-

ibrium are −α, −δ and the eigenvalues of the 2 × 2 matrix 

 = 

[
−δ S ′ 
1 −α

]

ince tr( K ) < 0 and det (K) > 0 , the eigenvalues of M both have neg-

tive real part and the equilibrium is stable. 

Next we use the specific form of (1.4) to calculate infinitesimal

omeostasis points by solving (2.4) . We calculate 

 

R 
y R g 

P 
y P h 

R 
x P + h 

R 
y P g 

P 
y R g 

R 
x P = [ −δ][ −α][ T ′ (x P + y P )] 

+ [ T ′ (x P + y P )][1][ S ′ (x P )] 

= T ′ (x P + y P )(σ + S ′ (x P )) 

= 0 . 

ince T ′ < 0 the second equation in (1.5) is satisfied. 

When two infinitesimal homeostasis points come together as a

arameter is varied, they do so at a value of I where ρ(I) = ρI (I) =
 . Therefore infinitesimal chair points occur when ρI = 0 , and they

re nondegenerate when ρ II � = 0. Differentiating 

(I) = T ′ (x P (I) + y P (I))(σ + S ′ (x P (I))) 

wice with respect to I , and evaluating at I 0 , yields the third and

ourth equations in (1.5) . This completes the derivation of (1.5) . �

. Explicit examples 

We now specialize the model further, making it possible to ob-

ain an explicit value of I 0 at which the infinitesimal chair point

ccurs. To do so, we assume that S is a normalized Hill function of

epression type ( Santillán, 2008 ), that is 

(x ) = 

1 

1 + x n 
. 
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i  

w  
he exponent n , called the Hill coefficient , measures the steepness

f the input function. Typically, input functions are moderately

teep with n between 1 and 3, see ( Alon, 2007 ). To obtain a func-

ion with an inflection point, which requires n > 1, we choose 

(x ) = 

1 

1 + x 2 
. (4.1) 

ow 

S ′ (x ) = − 2 x 

(1 + x 2 ) 2 

S ′′ (x ) = −2 

1 − 3 x 2 

(1 + x 2 ) 3 

 

′′′ (x ) = 24 x 
1 − x 2 

(1 + x 2 ) 4 

ote that S ′′ (x ) = 0 implies x P 0 = 

1 √ 

3 
since we are interested only

n positive roots of S ′′ . Therefore 

S(x P 0 ) = 

3 

4 

S ′ (x P 0 ) = −3 

√ 

3 

8 

 

′′′ (x P 0 ) > 0 

oreover, 

0 = −S ′ (x P 0 ) = 

3 

√ 

3 

8 

. (4.2)

 critical point of I occurs when 

 0 = σ0 x 
P 
0 − S(x P 0 ) = 

3 

√ 

3 

8 

x P 0 −
3 

4 

= −3 

8 

, 

hich is greater than −1 . Finally, the set point (the value about

hich homeostasis is approximately constant) is 

 

P (I 0 ) = 

1 

σ0 

T (x P 0 + y P 0 ) = 

1 

σ0 

T 
(
(1 + σ0 ) x 

P 
0 − I 0 

)

= 

8 

3 

√ 

3 

T 
(

1 √ 

3 

+ 

3 

4 

)

herefore the set point is determined by the choice of the function

 . 

We now consider the case where the synthesis constants γ and

are not normalized to 1. The parameter σ becomes σ = 

αδ
βγ

. The

quation for x P is S(x P ) = σ x P − I 
γ , the value of the input parame-

er I at which the infinitesimal chair point occurs is I 0 = 

3 
8 (1 − 2 γ )

since γ > 0 we always have I 0 + γ � 0 ) and the set point value is 

 

P (I 0 ) = 

8 

3 

√ 

3 

T 
(

1 √ 

3 

+ 

3 

4 

γ

)

evertheless, the corresponding rate constants for the three differ-

nt genes remain equal, and so do the two Hill functions. 

.1. Homeostasis as an FFL network phenomenon 

In this model x P and y P are never infinitesimally homeostatic

ith respect to variation of I (using (2.3) and (2.6) ) — but, as we

ee, z P can be. This suggests that the network topology of the feed-

orward loop is important in generating homeostasis. We empha-

ize this point by graphing x P ( I ), y P ( I ), z P ( I ) in Fig. 3 . 

First, x P ( I ) is obtained by solving S(x ) − σ0 x + I = 0 for x as

unction of I with σ 0 given by (4.2) . Then 

 

P (I) = 

1 

σ0 

S(x P (I)) 

z P (I) = 

1 

σ0 

S(x P (I) + y P (I)) . 

(4.3) 
or S given by (4.1) the equation S(x ) − σ0 x + I = 0 is a cubic

quation with exactly one real root for each I . Hence x P ( I ) is the

nique real root x of 

3 

√ 

3 

8 

x 3 + Ix 2 + 

3 

√ 

3 

8 

x − I = 0 . (4.4)

.2. Implications of singularity theory 

Now we can appeal to singularity theory as explained in

olubitsky and Stewart (2017) . Without loss of generality, we

ssume that I 0 = 0 , which can always be arranged by translat-

ng the coordinate I . Because the input-output function z ( I ) is

-dimensional we consider singularity types near 0 of a single-

ariable function. Such singularities are determined by the first

on-vanishing derivative d k z 
dI k 

(0) . Informally, the codimension of a

ingularity is the number of conditions on derivatives that deter-

ine it. This is also the minimum number of extra variables re-

uired to specify all small perturbations of the singularity, up to

uitable changes of coordinates. These perturbations can be orga-

ized into a family of maps called the universal unfolding , which

as that number of extra variables. The normal form , which is ob-

ained when the extra variables are set to zero, is the ‘simplest’

xpression for the function near 0, up to suitable changes of coor-

inates. Typically it is a polynomial. 

Using standard results of elementary catastrophe theory (see

olubitsky and Stewart, 2017 for details), it can be shown that the

ormal form of the input-output function for simple homeostasis is

(I) = ±I 2 and no unfolding parameter is required (codimension 0).

he normal form of the input-output function for an infinitesimal

hair is z(I) = ±I 3 , and its universal unfolding is ˜ z σ (I) = ±I 3 + σ I

codimension 1). Fig. 4 shows a numerical plot of z P against I for

hree values of σ : one at the infinitesimal chair point I 0 and one

n either side. The graphs have the same qualitative shape as the

unctions −I 3 + aI , −I 3 , and −I 3 − aI in the universal unfolding, for

ome a > 0. See Golubitsky and Stewart (2017) . 

The universality property implies that any small perturbation

f the input-output map induced by a small perturbation of the

quations is given, up to a change of coordinates, by a member of

he universal unfolding. In particular, taking the constant rates of

he three genes to be slightly different from each other is such a

mall perturbation of the input-output map. 

.3. Comments on numerics 

The specific analysis of system (1.5) in the proof of

heorem 1.1 is valid only for (a reasonable class of) special-

zed equations. However, this analysis paves the way for a more

xtensive numerical exploration of the more general system

3.2) or even the yet more general system (1.3) . We make two

oints. First, the analysis given here shows how to find chair points

umerically. For example, see Fig. 5 where a chair point is found

n the system (3.2) using numerics carried out for unequal δ’s

ased on the analytic methods given here. Second, although nu-

erical methods can be useful for finding chair points somewhat

utomatically, one still has to specify the model system. Thus, we

eave a full-scale numerical exploration for this feed-forward loop

otif (and other possible systems of interest) for future work. 

. Discussions and conclusions 

.1. Summary of results 

In this paper we studied a differential equation model (1.3) , and

n more detail the special case (1.4) , for a gene regulatory net-

ork motif called a feed-forward loop. This motif appears to be
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Fig. 3. Stable equilibrium in the feed-forward loop GRN motif (1.4) near z P -homeostasis. The horizontal coordinate on the three graphs is I and includes the infinitesimal 

homeostasis point I 0 = − 3 
8 

= −0 . 375 . The vertical coordinates are, respectively, (left) x P ( I ), (center) y P ( I ), (right) z P ( I ). See (4.3) and (4.4) . Neither x P nor y P exhibits homeosta- 

sis, whereas z P does. 

Fig. 4. Chair singularity and universal unfolding of the feedforward loop GRN motif (1.4) . The horizontal coordinate is I and includes the infinitesimal homeostasis point 

I 0 = − 3 
8 

= −0 . 375 . The vertical coordinate is z P ( I, σ ) with (left) σ = σ0 − 0 . 1 ≈ 0 . 55 , (center) σ = σ0 = 

3 
8 

√ 

3 ≈ 0 . 65 , (right) σ = σ0 + 0 . 1 ≈ 0 . 75 . Here, we obtain x P ( I, σ ) by 

solving S(x ) − σ x + I = 0 for x as function of I and σ , and use (4.3) to obtain y P ( I, σ ) and z P ( I, σ ). Consequently, σ is a universal unfolding parameter of this chair singularity 

( Golubitsky and Stewart, 2017 ). 

Fig. 5. Using numerical exploration starting at δx = 10 , δy = 1 , δz = 0 . 1 , αx = 0 . 4 , αy = 0 . 3 , αz = 0 . 2 , a chair singularity (3.2) was found by varying δy . The chair point occurs 

at I = 1 . 5593 and δy = 2 . 1651 . As δy decreases from 3 to 2.1651 to 1, the input-output graph ( I, z P ) changes from decreasing to chair to a minimum and a maximum. This is 

the behavior one expects from the structurally stable universal unfolding of a chair point. We thank Yangyang Wang for using XPP and Matlab to perform these calculations. 
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highly prevalent in single-cell organisms such as yeast. Here we

proved the existence of homeostasis in the output protein concen-

tration with respect to an input parameter I that represents the

collective influence of the other parts of the regulatory network.

Using infinitesimal homeostasis, we have shown that the feed-

forward loop can display a strong form of expression level home-

ostasis, called chair homeostasis ( Golubitsky and Stewart, 2017; Ni-

jhout et al., 2014 ). Moreover, it is clear that these techniques, usu-

ally in combination with numerical methods, can be used to search

for infinitesimal chairs in other gene regulatory networks. 

Homeostatic mechanisms in nature not only produce a steady-

state output that remains constant under variation of the input,

but this output even remains constant when parameters (such as

enzyme affinity or maximum activation rate) in the regulated sys-

tem change slightly. This notion of robust homeostasis has been

considered in the systems biology literature, more specifically to

c  
iological circuit design ( Ang and McMillen, 2013; Ma et al., 2009;

ontag, 2010 ). Tang and McMillen (2016) attempt to formalize the

otion of robust homeostasis in order to obtain an algorithm to

esign networks supporting robust homeostasis. However, being

ased on the theory of singularities ( Golubitsky and Stewart, 2017 ),

he notion of chair homeostasis is, in a natural way and without

he need of any additional assumptions, a form of robust home-

stasis. In fact, the stability of universal unfoldings of elementary

atastrophes ensures that chair homeostasis is robust in a very

trict sense. 

.2. Discussion of other issues 

.2.1. Embedding of motifs in large networks 

Small sub-network patterns that appear with high frequency in

omplex large networks, called network motifs, have played an in-
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reasingly important role in biology and systems biology. However,

 deep and natural question is less frequently addressed. Since mo-

ifs in biological networks do not exist in isolation, but are embed-

ed in much larger networks, we may ask under what conditions

he imbedded motif operates in the same way as the isolated mo-

if. The notion of homeostasis provides the simplest context where

his question might be addressed rigorously. 

A partial answer can be given provided suitable modeling as-

umptions are valid. Suppose that the remainder of the network

nputs only to the first node (here x R ). Then whatever the dynam-

cs of the whole network may be, its effect on the motif is the

ame as varying I dynamically. It can be proved ( Golubitsky and

tewart, 2018b ) that if I varies slowly, and equilibrium states in

he motif are sufficiently strongly attracting, then the output re-

ains homeostatic for the full network as long as I remains within

he homeostasis region of the motif (or perhaps a slightly smaller

egion). In short: Under these conditions, homeostasis in the mo-

if implies homeostasis in the full network, for the same output

ariable. Similar remarks apply in the presence of stochastic noise,

rovided fluctuations are sufficiently small. Additional inputs to

he motif also do not destroy homeostasis if they are sufficiently

eak, but this issue is more delicate. 

.2.2. Multiple inputs 

An important issue is: how do other parts of the regulatory net-

ork influences a motif? A partial answer was given above, when

he other parts of the network affects only one node of the mo-

if. That is, we have considered motifs that generate homeostasis

n one output variable as a function of one input variable. But one

ight be interested also in homeostasis as a function of several

nput parameters affecting different nodes of the GRN motif. See

olubitsky and Stewart (2018a) . For example, in the case of the FFL

otif, one could consider a second input parameter I 2 affecting the

 

R -node in Fig. 2 . 

.2.3. Experimental findings of homeostasis 

Finally: Can one experimentally observe expression level home-

stasis in some gene? In fact, there are some experiments reported

n the literature that could be interpreted as direct observation of

xpression level homeostasis in a housekeeping gene. Recall that a

ousekeeping gene is a constitutive gene that is required to main-

ain basic cellular function, and is expressed under normal and

athological conditions. It has been observed that some house-

eeping genes are transcribed at a ‘relatively constant rate’ in most

on-pathological situations ( Kozera and Rapacz, 2013 ), and these

enes are a candidate for homeostasis. 

Cankorur-Cetinkaya et al. (2012) seek to identify certain house-

eeping genes in yeast that are used as reference genes to mea-

ure the response to glucose or ammonium limitations. The idea

s that a reference gene will not change its expression level

hen the amount of glucose or ammonium is varied, whereas

he target genes will change their expression levels. Thus the au-

hors are trying to show that there is homeostasis in the refer-

nce gene with respect to variation in the target gene. Moreover,
ost of these candidate reference genes reported in Cankorur-

etinkaya et al. (2012) appear as the last gene in a feed-forward

oop ( Cherry et al., 2012 ). 
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