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PREFACE 

This book aims to present to first and second year graduate students a 
beautiful and relatively accessible field of mathematics-the theory of singu­
larities of stable differentiable mappings. 

The study of stable singularities is based on the now classical theories of 
Hassler Whitney, who determined the generic singularities (or lack of them) 
for mappings of Rn ~ Rm (m ~ 2n - 1) and R2 ~ R2, and Marston Morse, 
who studied these singularities for Rn ~ R. It was Rene Thorn who noticed 
(in the late '50's) that all of these results could be incorporated into one 
theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42]) 
gave the first general exposition of this theory. However, these notes preceded 
the work of Bernard Malgrange [23] on what is now known as the Malgrange 
Preparation Theorem-which allows the relatively easy computation of 
normal forms of stable singularities as well as the proof of the main theorem 
in the subject-and the definitive work of John Mather. More recently, two 
survey articles have appeared, by Arnold [4] and Wall [53], which have done 
much to codify the new material; still there is no totally accessible description 
of this subject for the beginning student. We hope that these notes will 
partially fill this gap. In writing this manuscript, we have repeatedly cribbed 
from the sources mentioned above-in particular, the Thom-Levine notes 
and the six basic papers by Mather. This is one of those cases where the 
hackneyed phrase "if it were not for the efforts of ... , this work would not 
have been possible" applies without qualification. 

A few words about our approach to this material: We have avoided 
(although our students may not always have believed us) doing proofs in the 
greatest generality possible. For example, we assume in many places that 
certain manifolds are compact and that, in general, manifolds have no 
boundaries, in 0rder to reduce the technical details. Also, we have tried to 
give an abundance of low-dimensional examples, particularly in the later 
chapters. For those topics that we do cover, we have attempted to "fill in 
all the details," realizing, as our personal experiences have shown, that this 
phrase has a different interpretation from author to author, from chapter to 
chapter, and-as we strongly suspect-from authors to readers. Finally, we 
are aware that there are blocks of material which have been incluaed for 
completeness' sake and which only a diehard perfectionist would slog through 
-especially on the first reading although probably on the last as well. Con­
versely, there are sections which we consider to be right at the •• heart of the 
matter." These considerations have led us to include a Reader's Guide to 
the various sections. 

Chapter I: This is elementary manifold theory. The more sophisticated reader 
will have seen most of this material already but is advised to glance through 
it in order to become familiar with the notational conventions used elsewhere 
in the book. For the reader who has had some manifold theory before, 
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Chapter I can be used as a source of standard facts which he may have 
forgotten. 

Chapter II: The main results on stability proved in the later chapters depend 
on two deep theorems from analysis: Sard's theorem and the Malgrange 
preparation theorem. This chapter deals with Sard's theorem in its various 
forms. In §l is proved the classical Sard's theorem. Sections 2-4 give a 
reformulation of it which is particularly convenient for applications to 
differentiable maps: the Thom transversality theorem. These sections are 
essential for what follows, but there are technical details that the reader is 
well-advised to skip on the first reading. We suggest that the reader absorb 
the notion of k-jets in §2, look over the first part of §3 (through Proposition 
3.5) but assume, without going through the proofs, the material in the last 
half of this section. (The results in the second half of §3 would be easier to 
prove if the domain X were a compact manifold. Unfortunately, even if we 
were only to work with compact domains, the stability problem leads us to 
consider certain noncompact domains like X x X - LiX.) In §4, the reader 
should probably skip the details of the proof of the multijet transversality 
theorem (Theorem 4.13). It is here that the difficulties with X x X - LiX 
make their first appearance. 

Sections 5 and 6 include typical applications of the transversality theorem. 
The tubular neighborhood theorem, §7, is a technical result inserted here 
because it is easy to deduce from the Whitney embedding theorem in §5. 

Chapter III: We recommend this chapter be read carefully, as it contains 
in embryo the main ideas of the stability theory. The first section gives an 
incorrect but heuristically useful "proof" of the Mather stability theorem: 
the equivalence of stability and infinitesimal stability. (The theorem is 
actually proved in Chapter V.) For motivational reasons we discuss some 
facts about infinite dimensional manifolds. These facts are used nowhere in 
the subsequent chapters, so the reader should not be disturbed that they are 
only sketchily developed. In the remaining three sections, we give all the 
elementary examples of stable mappings. The proofs depend on the material 
in Chapter II and the yet to be proved Mather criterion for stability. 

Chapter IV gives the second main result from analysis needed for the stability 
theory: the Malgrange preparation theorem. Like Chapter II, this chapter is 
a little technical. We have provided a way for the reader to get through it 
without getting bogged down in details: in the first section, we discuss the 
classical Weierstrass preparation theorem-the holomorphic version of the 
Malgrange theorem. The proof given is fairly easy to understand, and has 
the virtue that the adaptation of it to a proof of the Malgrange preparation 
theorem requires only one additional fact, namely, the Nirenberg extension 
lemma (Proposition 2.4). The proof of this lemma can probably be skipped 
by the reader on a first reading as it is hard and technical. 

In the third section, the form of the preparation theorem we will be using 
in subsequent chapters is given. The reader should take some pains to under-
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stand it (particularly if his background in algebra is a little shaky, as it is 
couched in the language of rings and modules). 

Chapter V contains the proof of Mather's fundamental theorem on stability. 
The chapter is divided into two halves; §§ 1-4 contain the proof that infinitesi­
mal stability implies stability and §§5 and 6 give the converse. In the process 
of proving the equivalence between these two forms of stability we prove 
their equivalence with other types of stability as well. For the reader who is 
confused by the maze of implications we provide in §7 a short summary of 
our line of argument. 

It should be noted that in these arguments we assume the domain X is 
compact and without boundary. These assumptions could be weakened but 
at the expense of making the proof more complicated. One pleasant feature 
of the proof given here is that it avoids Banach manifolds and the global 
Mather division theorem. 

Chapters VI and VII provide two classification schemes for stable singularities. 
The one discussed in Chapter VI is due to Thom [46] and Boardman [6]. The 
second scheme, due to Mather and presented in the last chapter, is based on 
the" local ring" of a map. One of the main results of these two chapters is a 
complete classification of all equidimensional stable maps and their singu­
larities in dimensions :s; 4. (See VII, §6.) The reader should be warned that the 
derivation of the "normal forms" for some stable singularities (VII, §§4 and 5) 
tend to be tedious and repetitive. 

Finally, the Appendix contains, for completeness, a proof of all the facts 
about Lie groups needed for the proofs of Theorems in Chapters V and VI. 

This book is intended for first and second year graduate students who 
have limited-or no-experience dealing with manifolds. We have assumed 
throughout that the reader has a reasonable background in undergraduate 
linear algebra, advanced calculus, point set topology, and algebra, and some 
knowledge of the theory of functions of one complex variable and ordinary 
differential equations. Our implementation of this assumption-i.e., the 
decisions on which details to include in the text and which to omit-varied 
according to which undergraduate courses we happened to be teaching, the 
time of day, the tides, and possibly the economy. On the other hand, we are 
reasonably confident that this type of background will be sufficient for 
someone to read through the volume. Of course, we realize that a healthy 
dose of that cure-all called "mathematical sophistication" and a previous 
exposure to the general theory of manifolds would do wonders in helping the 
reader through the preliminaries and into the more interesting material of the 
later chapters. 

Finally, we note that we have made no attempt to create an encyclopedia 
of known facts about stable mappings and their singularities, but rather to 
present what we consider to be basic to understanding the volumes of 
material that have been produced on the subject by many authors in the past 
few years. For the reader who is interested in more advanced material, we 
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recommend perusing the volumes of the" Proceedings of Liverpool Singu­
larities" [42,43], Thorn's basic philosophical work, "Stabilite Structurelle 
et Morphogenese" [47], Tougeron's work, "Ideaux de Fonctions Differenti­
abies" [50], Mather's forthcoming book, and the articles referred to above. 

There were many people who were involved in one way or another with 
the writing of this book. The person to whom we are most indebted is John 
Mather, whose papers [26-31] contain almost all the fundamental results of 
stability theory, and with whom we were fortunately able to consult fre­
quently. We are also indebted to Harold Levine for having introduced us to 
Mather's work, and, for support and inspiration, to Shlomo Sternberg, Dave 
Schaeffer, Rob Kirby, and John Guckenheimer. For help with the editing of 
the manuscript we are grateful to Fred Kochman and Jim Damon. For 
help with some of the figures we thank Molly Scheffe. Finally, our thanks 
to Marni E1ci, Phyllis Ruby, and Kathy Ramos for typing the manuscript 
and, in particular, to Marni for helping to correct our execrable prose. 

Cambridge, Mass. 
August, 1973 

Martin Golubitsky 
Victor W. Guillemin 
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Chapter I 

Preliminaries on Manifolds 

§1. Manifolds 

Let R denote the real numbers and Rn denote n-dimensional Euclidean 
space. Points of Rn will be denoted by n-tuples of real numbers (Xl' ... , xn) 
and Rn will always be topologized in the standard way. 

Let U be subset of Rn. Then denote by V the closure of U, and by lnt (U) 
the interior of U. 

Let U be an open set, f: U -l> R, and X E U. Denote by (8ff8xi)(X) the 
partial derivative of f with respect to the ith variable Xi at x. To denote a 
higher order mixed partial derivative, we will use multi-indices, i.e., let 
a = (a l , ..• , an) be an n-tuple of non-negative integers. Then 

81al 81al 
c;af = 8 ct 8 ct 8 ct f where lal = al + ... + an uX Xl 1 X2 2· •• Xn n 

andf: U -l> R is k-times differentiable (or of class C", or C k ) if (8 Ict IJf8x ct)(x) 
exists and is continuous for every n-tuple of non-negative integers a with 
lal ~ k. (Note that when a = (0, ... ,0), 8ctff8x ct is defined to be f.) f is real 
analytic on U if the Taylor series off about each point in U converges to fin a 
neighbourhood (nbhd) of that point. 

Suppose <p: U -l> Rm where U is an open subset of Rn and f is some real­
valued function defined in the range of <p; then <p * f == f • <p (where· denotes 
composition of mappings) is called the pull-back function off by <p. 

Definition 1.1. Let <p: U -l> Rm, U an open subset ofRn. 

(a) <p is differentiable of class C k if the pull-back by <p of any k-times 
differentiable real-valued function defined on the range of <p is k-times differ­
entiable. 

(b) <p is smooth (or differentiable of class cro) if for every non-negative 
integer k, 1> is differentiable of class C k • 

(c) 1> is real analytic if the pull-back by 1> of any real analytic real-valued 
function defined on the range of 1> is real analytic. 

Let <p: U -l> Rm be C l differentiable in U and Xo a point in U. Then by 
Taylor's theorem there exists a unique linear map (d1»xo: Rn -l> Rm and a 
function p: U -l> Rm such that 

f(x) = f(xo) + (d<p)xo(x - xo) + p(x) 

for every X in a nbhd V of xo, where 

Lim I p(x) I = O. 
X~Xo Ix - xol 

1 



2 Preliminaries on Manifolds 

Note that we will use Ixl to denote the Euclidean norm (L: x j 2)l/2. Let 
(d4»xo: Rn -+- Rm be the Jacobian of 4> at Xo; it is given with respect to the 
coordinates Xl> ••. , Xn on Rn and Yl, ... , Ym on Rm by the m x n matrix 

where 4>i : Rm -+- R(l :$ i :$ m) are the m coordinate functions defining 4>. 
The chain rule holds, of course. That is, if 4>: U -+- Rm and if;: V-+- RP are 

both C1 differentiable where U c Rn and V c Rm are open and V:::::> 4>(U), 
then d(if;·4»xo = (dif;)",(xo)·(d4»xo for every Xo in U. 

Theorem 1.2. (Inverse Function Theorem). Let U c Rn be open and p be a 
point in U. Let 4>: U -+- Rn be a C" differentiable mapping. Assume that 
(d4»p: Rn -+- Rn is invertible. Then there exists an open set V in Rn contained in 
the range of 4> and a mapping if;: V-+- U, differentiable of class C", such that 
4>.if;(x) = xfor every x in V, and if;.4>(x) = xfor every x in if;(V). 

Proof See appendix of Sternberg; or Lang. 0 

Definition 1.3. A local homeomorphism of Rn is a homeomorphism of 
some open subset ofRn onto another. (So the domain of a local homeomorphism 
need not be all ofRn.) 

Let 4> be a mapping. Denote by dom 4> the domain of 4>. Also, if U c dom 4> 
denote by 4> I U the restriction of 4> to U. If X is a set, then id x : X -+- X denotes 
the identity mapping on X. 

Definition 1.4. A pseudogroup on Rn is a collection r of local homeo­
morphisms on Rn with the following properties: 

(a) idR n is in r, 
(b) if 4> and if; are in r with dom if; = range of 4> then if;.4> is in r, i.e., r is 

closed under composition for all pairs of elements for which this operation makes 
sense. 

( c) if 4> is in r, then 4> -1 is in r (where 4> -1 denotes the inverse function of 4» 
(d) if 4> is in rand U is an open subset of dom 4>, then 4>1 U is in r, and 
(e) if {UoJaEI (I some index set) is a collection of open subsets ofRn, 4> is a 

local homeomorphism ofRn defined on U = UaEI Ua, and 4>1 Ua is in r for every 
ex in I, then 4> is in r. 

Some examples of pseudogroups are: 

(a) (diff)" = the set of all local homeomorphisms on Rn (n fixed) which are 
differentiable of class C". 

(b) (diff)CO = the set oflocal homeomorphisms ofRn (n fixed) which are 
smooth. 

(c) (diff)W = the set of all local homeomorphisms of Rn (n fixed) which 
are real analytic. 
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To show that (a) and (b) satisfy the conditions of the definition you need 
to use only the chain rule, the inverse function theorem, and the local charac­
ter of differentiability. For (c) you need the strengthened versions of the 
above theorems for analytic functions. 

A more general class of pseudogroups can be given as follows: 

(d) Let G be a group of linear mappings of Rn -»- Rn. Then the pseudo­
group r Gk is the set 

{c/> E (diff)k I Vx E dom C/>, (dc/»x E G} 

(i) G = all linear maps on Rn with positive determinant. Then r Gk = 

(diff)~ consists of orientation preserving C k mappings. 
(ii) G = all linear maps on Rn with determinant equal to 1. Then r Gk 

consists of all volume preserving Ck mappings. 
(iii) Let ( , ) be an inner product on Rn. Let G be the group of orthogonal 

matrices relative to ( , ); namely, A E G iff (x, y) = (Ax, Ay) for every x, y 
in Rn. Then r Gk consists of all Ck isometries in Rn. 

Definition 1.5. Let r be a pseudogroup on Rn and X a Hausdorff topo­
logical space which satisfies the second axiom of countability. Let A be a subset 
of all local homeomorphisms of X into Rn, i.e., homeomorphisms which are 
defined on an open subset of X and whose range is an open subset ofRn. Then 

(i) A is a r-atlas on X if 

(a) X = Ut>eA dom c/> 
(b) if c/>,.j; are in A, then .j;.c/>-Ilc/>(dom c/> n dom.j;) is in r. 

(ii) The elements of A are called charts on X. 
(iii) Two r-atlases Al and A2 on X are compatible if .j;.c/>-Ilc/>(dom c/> n 

dom .j;) is in r whenever c/> is in Al and.j; is in A 2. 
(iv) A Hausdorff space X together with an equivalence class of compatible 

r -atlases is called a r -structure on X. 

Note. If Xhas a r-structure, then Xis locally compact, since it is locally 
Euclidean. 

Definition 1.6. Let X have a r-structure. 

(a) Ifr = (diff)kandk > O,thenXisadifferentiablemanifoldofclassCk. 
(b) If r = (diff)D, then X is a topological manifold. 
(c) If r = (diff) 00, then X is a smooth manifold or a manifold of class COO. 
(d) If r = (diff)W, then X is a real analytic manifold. 
(e) Ifr = (diff)~ and k > ° then X is an oriented Ck differentiable mani­

fold. Any differentiable manifold which has a (diff)6 structure in which the 
charts are elements of the original (diff)1 structure is orientable. 

Examples 

(1) sn-I = {x = (xI, ... ,Xn)ERn L~ Xi2 = I}. 
Let N = (1,0, ... ,0) and S = (-1,0, ... ,0). 
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Let ~N: {sn-1 - {N}} -+ Rn-1 be stereo graphic projection via N, i.e., 
~N(X1"'" xn) = (1/(1 - X1))(X2, ... , xn) and ~s: {sn-1 - {S}} -+ Rn-1 be 
stereographic projection via S, i.e., ~S(X1' ... , xn) = (1/(1 + Xl)) (X2' ... , xn)· 
Then ~S'~N -1: Rn-1 - {O} -+ Rn-1 - {O} is given by y -+ y/lyl2 for all Y in 
Rn-1 - {O}. Since (~S'~N -l)'(~S'~N -1) = id we see that det (d~S'~N -l)y = 
± 1. Evaluate at Y = (1,0, ... ,0) to see that, in fact, det (d~S'~N -1) = -1. 
To show that sn-1 is an oriented analytic manifold we can change the last 
coordinate of ~N to - xn/(1 - Xl) thus changing the determinant to + 1. 

(2) pn = real projective n-space. 

To define pn we introduce the equivalence relation ~ on Rn+1 - {O}: 
(xo, ... , xn) ~ (x~, ... , x~) iff there is a real constant e such that X, = ex; 

for all i. 
pn = Rn + 1 - {O}/ ~ is the set of these equivalence classes. 
Let 7r: Rn+1 - {O} -+ pn be the canonical projection. pn is given the 

standard decomposition space topology and note that with this topology 
7r is an open mapping. To show that pn has a manifold structure it is necessary 
to produce local homeomorphisms of pn into Rn which overlap properly. 

Let Vi = Rn+1 - {hyperplane Xi = O} for 0 .:0; i .:0; n. Vi is open in 
Rn+1 - {O}, hence 7r(Vi) = Ui is open in pn. Clearly pn = U1 u· .. U Un. 
Define ~i: Ui -+ Rn by 

(-IY A 

~i(P) = -- (Xo, ... , X;, ... , xn) where P = 7T(XO' ... , Xn) 
Xi 

and A indicates that coordinate is to be omitted. Using the equivalence rela­
tion defining pn and the fact that p is in U;, one sees that ~i is a well-defined 
homeomorphism onto Rn. 

~i( Ui n Uj ) = Rn - {hyperplane Yi = O} 

~l Ui n Uj) = Rn - {hyperplane Yj + 1 = O} 

(i > j) 

(i .:0; j) 

where we assume 11, ... , Yn are the coordinates on Rn. So for i < j 

~i'~j -1: Rn - {hyperplane Yi+1 = O} -+ Rn - {hyperplane Yj = O}. 

A computation yields for i < j 
-1 (_I)i+j 

~i'~j (Y1,···, Yn) = (11,···, Yi> Yi+2,···, Yj' I, Yj+l>"" Yn) 
Yi+1 

which is a real analytic mapping so pn becomes a real analytic manifold. 
Another computation yields 

det (d~ .• ~.-l) = ( __ I_)n+\ _lyn-1li+(n+1lj 
, J (Yl, .. ·,Ynl Yi+1 

from which we see that real projective space in any odd dimension 
(p2n+1, n ~ 0) is orientable. It can be proved that p2n is not orientable. 

(3) G/c,n = Grassmannian space of k-planes through the origin in 
Rn. 

= set of all k-dimensional subspaces of Euclidean n-space. 
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Note that Gl,n + 1 = pn. 
We will give Gk,n a decomposition space topology. Let W = all ordered 

k-tuples P = (Pl , ... , Pk) of k linearly independent vectors in Rn. W is an 
open subset of 

Rn Efj ... Efj Rn. 
'-----v---' 

k-times 

Define an equivalence relation ~ on Was follows: 

span the same k-dimensional subspace of Rn. 
Clearly G",n can be identified with WI ~ as sets so we may give G",n the 

topology induced by this identification. We now give G",n an analytic struc­
ture. Equip Rn with an inner product ( , ). Then given a subspace V of Rn, 
there is an orthogonal projection TTV of Rn onto V. Suppose V is a k-dimen­
sional subspace of Rn. Let 7Tu,V = restriction of TTV to U. Let Wv = 
{U E G",n I 7Tu,V is a bijection onto V}. 

Let Vl. = the orthogonal complement of V in Rn. Define 

Pv: Wv -?- Hom (V, Vl.) 

as follows: Let UE Wv. Thenpv(U) = 7TU,Vl.·7Tu,ly EHom (V, Vl.). We leave 
it to the reader to check that Pv is a homeomorphism. Now make the identi­
fication Hom (V, Vl.) ~ Rk(n-"l, to get a chart <Pv: Wv -?- Rk(n-"). Again 
it is left to the reader to check that Pv' PV' -1: R"(n-k) -+ Rk(n-") is real analytic. 
Hence Gk,n is a real analytic manifold of dimension ken - k). Note that for 
k = 1 this is the same atlas that we constructed for pn-l. 

Definition 1.7. Let X and Y be C" differentiable manifolds of dimension 
nand m, respectively. Then X x Y can be made into a C" differentiable mani­
fold of dimension n + m in the following natural way. Let Ax and Ay be atlases 
on X and Y. Let <p E Ax, .p E Ay. Then <p x .p: dom <p x dom.p -?- Rn x Rm = 
Rm+n is given by <p x .p(x, y) = (<p(x), .p(y» x E X, Y E Y. <p x .p is clearly 
a local homeomorphism of X x Y -?- Rn+m. Then Ax x y = {<p x .p I <p E Ax, 
.p E Ay} is an atlas for X x Y. 

Applications 
(1) The r-Torus, 

S1 X ... X S1 
'-----v---' 

r-times 

is a smooth manifold of dimension r. 
(2) If X and Yare oriented manifolds, then so is X x Y. 

Definition 1.S. Let X be a topological n-manifold, and p a point in X. A 
set of local coordinates on X based at p is a collection of n real-valued func­
tions {<Pl' ... , <Pn} defined on an open nbhd U of p, (i.e., <Pi: U -?- R) so that 
<p;(p) = 0 (1 :::; i :::; n) and <p: U -?- Rn defined by <p(q) = (<P1(q), ... , <PnCq» is a 
chart in the manifold structure on X. 
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Clearly if cP is a chart of X based at p (i.e., cP is defined on a nbhd of p and 
cP(p) = 0) then the coordinate functions of cP define a system of local co­
ordinates on X based at p. 

The common domain of a set of local coordinates based at p is a coordinate 
nbhd ofp. 

§2o Differentiable Mappings and Submanifolds 

Definition 2.1. Let Y be a Ck-differentiable manifold of dimension m. 

(a) Let f: Y ~ R be a function. f is Ck-differentiable if for every chart 
cP: dom cP ~ Rm, f·cP- 1: range cP ~ R is a Ck-differentiable mapping. f is 
smooth iff is Ck-differentiable for every k. 

(b) Let X be a Ck-differentiable manifold. Then cP: X ~ Y is Ck-differ­
entiable if for every Ck-differentiable function f: Y ~ R, the pullback f°cP is 
Ck-differentiable. cP is smooth if cP is Ck-differentiable for every k. 

(c) We will use differentiable to mean Ck-differentiable for k at least 1. 

Remark. SupposethatcP: X~ Yis a mappingwithp in Xandq = cP(p) 
in Y. Let U and V be coordinate nbhds of X and Y based at p and q respec­
tively, and assume that cP(U) c V. Suppose p: V ~ Rm and T: U ~ Rn are 
charts. Then cP is Ck-differentiable iff p·cP·T-1: range TeRn ~ Rm is Ck_ 
differentiable. This shows that differentiability of a function between mani­
folds is a local question and is independent of the particular local representa­
tion used. 

Definition 2.2. Let X and Y be differentiable manifolds of dimension n 
and m, respectively. Let cP: X ~ Y be differentiable. Let p be in X, p a chart 
on X with p in dom p, and T a chart on Y with cP( dom p) c dom T. 

Then (dT-cP·p-1)P(P): Rn ~ Rm is a linear mapping. Define rank of cP at p 
to be rank (dT·cP·p-1)P(P)' 

Note. The definition of rank does not depend on which charts are se­
lected. Let p', T' be charts with the above properties. Then on a nbhd of p 
and f(p) , 

rank (dT'·cP·(p')-l)p'(P) = rank (dT'.T- 1.T·cP·p-1. p.(p')-1)p'(p) 

= rank (dT°cP·p-1)P(P) 

by the chain rule and the fact that T'· T -1 and p. (p') -1 are in (diff)l. 

Definition 2.3. Let X and Y be differentiable manifolds. Let cP : X ~ Y 
be a differentiable mapping. Suppose that at the point p in X, cP has the maximum 
possible rank. Then 

(a) if dim X :s; dim Y, cP is an immersion at p, 
(b) if dim X ;;::: dim Y, cP is a submersion at p, 
(c) if for every p in X, cP is an immersion (submersion) at p, then cP is an 

immersion (submersion). 
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(d) if dim X = dim Y = n, </> is bijective, and the rank of </> is n at every 
point of X, then </> is a diffeomorphism. 

(e) if </> : X ---0>- Y is an immersion and a homeomorphism (into), then it is an 
embedding. 

(f) if there exists a diffeomorphism of X ---0>- Y, then X and Yare diffeo­
morphic. 

Note. If</>: X ---0>- Y is a diffeomorphism, then </> -1: Y ---0>- X is well-defined 
and is as differentiable as </> is by the inverse function theorem (Theorem 1.2.) 

We will show that locally immersions" look like" linear injections, sub­
mersions "look like" projections, and diffeomorphisms "look like" the 
identity mapping. (The notion of "looks like" will be made precise in 2.5 
and 2.6.) To do this we need the implicit function theorem. 

Let Vl c Rk and V2 c Rl be open sets. Let </>: Vl x V 2 ---0>- Rl be differ­
entiable. Define (dy</»(xo.yo) == (d</>xo)YO where Xo in Vb Yo in V2 and </>xo : V2 ---o>­

Rl is given by </>xo(Y) = </>(xo, y) for all y in V2. 

Theorem 2.4. (Implicit Function Theorem). Suppose </>: Vl x V2 ---0>- Rl is 
CS-differentiable and </>(xo, Yo) = Yo. If (dy</»(xo.yo) is of rank I, then there exist 
open sets V{ c Vl and V~ c V2, with Xo in V{ and Yo in V~, and a CS-differ­
entiable function .f: V{ x V~ ---0>- V2 such that </>(x, .f(x, y)) = y for every x in 
V{ and y in V~. Moreover .f can be chosen so that .f(xo, Yo) = Yo. 

Proof Define $: V l x V2 -)- Rk X Rl to be the graph of </>, i.e., $(x, y) = 
(x, </>(x, y)) for all x E Vl , Y E V2. In the standard coordinates xI. ... , Xk on 
Rk andy!, .. ',Yl on Rl 

where I}e is the k x k identity matrix. The assumption on (dy</»(xo.yo) implies 
that the rank of (d$)(xo.yo) is k + I, i.e., (d$)(xO'yo) is invertible. Apply the 
inverse function theorem to find V{, V~ so that ~ = $-1 I V{ x V~ is CS_ 
differentiable. Let ~(x, y) = (.fl(X, y), .f2(X, y)) be in Rk x Rl. Since $.~ = 
idu{ x U2' we have that 

(x, y) = $(~(x, y)) = (.fl(X, y), </>(.f1(X, y), .f2(X, y))) 

Hence .fl(X, y) = x and y = </>(x, .f2(X, y)). Take .f = .f2' 0 

Corollary 2.5. Let VeRn be open, Xo in V, and </>: V ---0>- Rm an immer­
sion at Xo. Then there exists an open set V' in V with Xo in V', an open set V in 
Rm with </>(V') c V, and a map T: V ---0>- Rm which is a diffeomorphism onto its 
image so that A = T'</> is the standard injection of Rn ---0>- Rn x Rm-n re­
stricted to V. (Thus by a change of coordinates in the range, </> can be linearized 
locally.) 
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Proof Since (do/)xo has rank n, there is an n x n minor which is non­
singular. Let 0/1> ... , o/m be the coordinate functions defined by 0/. Then 

C 
00/1 Of) OX1 OX2 OXm 

(do/)xo = 
Oo/m Oo/m °o/m 
OX1 OX2 OXm 

The appropriate minor is determined by n columns i1> ... , in. 
Let T1 be a linear isomorphism of Rm which maps BiJ f--+ Bj (1 :::; j :::; n) 

where Bj is the unit vector along the jth coordinate. Then T1·0/ has the 
property that (dT1 ·o/)xo has rank n and the appropriate n x n minor which is 
nonsingular is given by the first n-columns. By including T1 in the definition of 
T we assume that 0/ has this property. 

Write Rm = Rn x Rl where I = m - nand Rn is given by the first 
n-coordinates Xl, ... , xn and Rl by the last I-coordinates Y1>···, Yl. 
0/: V --+ Rn x Rl is given by 0/ = 0/1 + 0/2 where 0/1 : V --+ Rn, 0/2: V --+ Rl, 
and (do/lLo has rank n. 

Since V is in Rn, we may construct f,: V x Rl --+ Rn x Rl given by 
(x, y) f--+ o/(x) + (0, y) where x is in V and y is in Rl. 

Then 

which has rank n. By the inverse function theorem, there exists a differentiable 
inverse T to f, on a nbhd of (xo, 0). Let A(X) = T"f,(x, 0) = (x, 0). Then 
A: Rn --+ Rn x Rl = Rm is given by A(X) = (x, 0) which is a linear map of 
rank n. 0 

Corollary 2.6. Let VeRn be open, Xo a point in V, and 0/: V --+ Rm a 
submersion at Xo. Then there exists a nbhd V' of Xo in V, a diffeomorphism 
a: V' --+ Rn (onto its image), and A a linear mapping of rank m so that 0/ = A·a 
on V'. (Infact, A can be taken to be the standard projection ofRm x Rn-m--+ 
Rm. Thus by a change of coordinates in the domain, 0/ can be linearized.) 

Proof Let Rn = Rm x Rl with coordinates Xl, ... , Xm on Rm and 
Y1, ... , Yl on Rl. By an appropriate choice of bases on Rn, this decomposition 
can be done so that (dxo/)xo has rank m. 

Define f,: V --+ Rm x Rl by f,(x, y) = (o/(x), y). Then 
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which has rank n. By the inverse function theorem ~ is locally a diffeomor­
phism. Let a = ~ and '\: Rm x R! ~ Rm be given by '\(x, y) = x. Then 
'\·~(x, y) = '\(</>(x), y) = </>(x). 0 

Definition 2.7. Let X be a Ck-manifold of dimension n. Let Y be a subset 
of X. Then Y is a submanifold of X of dimension m if for every point p in Y, 
there exists a chart </> : dom </> ~ Rn of the differentiable structure on X so that 
</>-l(V) = Y n dom </> where 

V = {(Xl' ... , xn) E Rn I Xm+1 = ... = Xn = O} 

and Xl, ... , Xn are the canonical coordinates on Rn. 

Note. If Y is a submanifold of a Ck-differentiable manifold, then it 
itself is a Ck-differentiable manifold. Give Y the induced topology from X. 
(Warning: There are weaker definitions of submanifold in which Y does not 
bear the subspace topology. See Definition 2.9.) For each p in Y, let </>P be 
the chart on X, given in the definition of submanifold. Y n dom </> is an open 
set of Yand </>pl Y: Y n dom </> ~ Rm is a local homeomorphism. The set of 
mappings {</>pl Y}PEY give Ya Ck-differentiable structure of dimension m. 

Theorem 2.8. Let X and Y be Ck-differentiable manifolds of dimensions 
nand m respectively with n > m. Let </> : X ~ Y be a Ck-mapping. Then 

(1) If </> is a submersion, then </>(X) is an open subset of Y. In fact,</> is an 
open mapping. 

(2) Let Z be a submanifold of Y. If</> is a submersion at each point in </> -l(Z), 
then </>-l(Z) is a Ck submanifold of X with codim </>-l(Z) = codim Z where 
codim Z = dim Y - dim Z. 

Proof 
(1) Let U be an open set in X and Van open set in Y with </>( U) c V and 

Yo in V. Let.p: U ~ Rn and p: V ~ Rm be charts. Choose Xo in Un </>-l(yO)' 
All of this is possible since </> is continuous. 

Now p.</> • .p-1: U' ~ Rm is a submersion where U' = .p(U) is open in 
Rn. By Corollary 2.6 there exists a nbhd U" of .p(xo) in U' and a diffeomor­
phism a: U" ~ a(U") c Rn and a linear mapping ,\ of rank m so that 
p.</> • .p-1 = '\.a on U". Let .p' = a • .p . .p is a chart on X with Xo in dom.p' 
and p.</>.(.p')-l = ,\. Since'\: Rn ~ Rm has rank m, it maps open sets to open 
sets. Choose Wan open nbhd of Xo in X so that .p'(W) c U". Then '\(f(W)) 
is open in Rm and p-1(,\(.p'(W))) = </>(W) is open in Y. So </>(X) is open in Y. 

(2) Note that ,\ : Rn x Rn-m ~ Rm can be given by '\(x, y) = x. Let p be 
a chart which makes Z into a submanifold, i.e., one for which p(Z n dom p) 
is a hyperplane in Rm. Now ,\ . .p'(dom .p' n </> -l(Z)) c p.</>.</> -1(Z) c p(Z) = 
hyperplane by the choice of p. Thus .p'(</>-l(Z) n dom .p') c ,\-l(hyperplane) 
= hyperplane, since ,\ is linear. Thus .p' is a chart near Xo making </>-l(Z) 
into a Ck-submanifold of codimension = codim Z. 0 

Example. Let </>: Rn ~ R be given by </>(xb .•. , xn) = X12 + ... + xn2 • 

This is a submersion on sn-1 = </>-1(1). Thus sn-1 is an n - 1 dimensional 
submanifold of Rn. 
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Note. Let X be a differentiable manifold, Y a set, and f: X -+ Y a 
bijection. Then there is a natural way to make Y into a differentiable mani­
fold. First declare that the topology on Y is the one which makes f a homeo­
morphism. Then define the charts on Y, to be the pull-backs viaf- 1 of the 
charts on X. 

Definition 2.9. The image of a 1-1 immersion, made into a manifold in the 
manner just described, is an immersed submanifold. (Warning: this definition 
of immersed submanifold is not the same, in general, as that of a submanifold. 
In particular, the topology of the immersed submanifold need not be the same 
as the induced topology from the range.) 

Proposition 2.10. Let </>: X -+ Y be an immersion. Thenfor every p in X, 
there exists a nbhd U of p in X such that 

(1) </>\ U: U -+ </>(U) is a homeomorphism where </>(U) is given the induced 
topology from Yand 

(2) </>( U) is a submanifold of Y. 

Proof Given p in X, there exist open nbhds U of p in X and V of </>(p) in 
Y with </>( U) c V, charts p: U -+ Rn and 7: V -+ Rm, and a linear map 
'\: Rn -+ Rm of rank n so that the diagram 

commutes. This is possible by Corollary 2.5. 
Now (1) follows since ,\ : Rn -+ Rm is a homeomorphism onto its image. 

For 7(</>(U)) is homeomorphic to </>(U) with the induced topology since 7 is a 
local homeomorphism defined on V. 7(</>(U)) c Im'\ since the diagram com­
mutes, thus ,\ -1( 7(</>( U))) is homeomorphic to </>( U) with the induced topology 
from Y. Finally p -1(,\ -1(7(</>( U)))) = </> -1</>( U) = U is homeomorphic to 
</>( U) with the induced topology from Y. 

To see that </>(U) is a submanifold, use the chart 7. Decompose Rm into 
'\(Rn) x Rm-n. Then 7\</>(U): </>(U) -+ Rn x {O}. 0 

Notes. (1) Proposition 2.10 is only a local result since not every immer­
sion is 1 :1. For instance, the mapping of R -+ R2 given pictorially by 

is an immersion (when drawn smoothly enough!). 
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(2) The image of an immersion need not be a submanifold even if the 
immersion is 1: 1. For example, consider 

o 
P 

where P = Lim t --+ oo 4>(t). The induced topology on 4>(R) from R2 is not the 
same (near P) as the induced manifold topology on 4>(R). The following 
corollary is left as an exercise. 

Corollary 2.11. Let 4> : X --0>- Y be an immersion. Then 

(1) For every yin Y, 4>-l(y) is a discrete subset of X. 
(2) 4>(X) is a submanifold of Y if.! the topology induced on 4>(X) from its 

inclusion in Y is the same as its topology as an immersed sub manifold. 

Clearly, in the second example above, open nbhds of 4>(P) in the two 
relevant topologies on 4>(R) are different. 

Definition 2.12. Let X and Y be topological spaces with 4>: X --0>- Y 
continuous. Then 4> is proper if for every compact subset K in Y, 4> -l(K) is a 
compact subset of X. 

Theorem 2.13. Let 4> : X --0>- Y be a 1: 1 proper immersion. Then 4>(X) is a 
submanifold of Y. 

Proof Using Corollary 2.11 (2) we see that 4>(X) is a submanifold iff 
4> : X --0>- 4>(X) is a homeomorphism where 4>(X) is given the topology induced 
from Y. Clearly 4> : X --0>- 4>(X) is continuous and bijective, so we need only 
show that 4> -1 is continuous. Let 11, Y2, ... be a sequence in 4>(X) converging 
to y in 4>(X). Let Xi = 4>-l(Yi) and X = 4>-l(y). It is enough to show that 
Limi--+ 00 Xi = x. Let K be a compact nbhd of yin Y. Since 4>(X) has the topol­
ogy induced from Y, K II 4>(X) is a nbhd of y in 4>(X) and we may assume, 
without loss of generality, that each Yi is in K. Since 4> is proper, 4> -l(K) is 
compact and 4>14>-l(K): 4>-l(K) --0>- 4>(X) II K is a homeomorphism. Thus 
Limi--+ oo Xi = X by the continuity of 4>- l l4>(X) II K. D 

Note. A I: I immersion can be a submanifold even if the immersion is 
not proper. Consider the spiral of R + --0>- R2 given pictorially by 

and analytically by fer) = (r cos (1/r), r sin (1/r)). Clearly,Jis a 1-1 immer­
sion andfis not proper sincef-1(B1) = [1,00) where B1 is the closed disk of 
radius I centered at the origin. But the two possible topologies onf(R +) are 
the same so feR +) is a submanifold of R2. 
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Exercises: 

(1) Letf: Rn _ R2 be defined by 

(Xh ... ,Xn)I-+(XI2 + ... + Xn2,X12 - (X22 + ... + xn2)) 

(a) For which x in Rn isfa submersion at x? 
(b) Let fl and f2 be the coordinate functions of f For which r, s in 

R is fl -1(r) nf2 -1(S) a smooth submanifold of Rn. 
(2) Let Mn be the set ofn x n real matrices. Let Mnk be the set of matrices 

in Mn of rank k. Prove that Mnk is a submanifold of Mn and compute its 

dimension. (Hint: Let S = (~ ~) be in Mn where A E Mkk. Show that 

SEMnk iff D - CA-IB = 0.) 

§3. Tangent Spaces 

Definition 3.1. Let X be a differentiable n-manifold. 

(1) Let c: R - X be differentiable with c(O) = p. Then c is a curve on X 
based atp. 

(2) Let Cl and C2 be curves on X based at p. Then Cl is tangent to C2 at p if 
for every chart c/> on X with p in dom C/>, 

(*) (dc/>·Cl)O = (dc/>.C2)O' 

This makes sense since c/>.Cl and c/>.C2 are mappings of open nbhds of 0 
in R into Rn.) 

Lemma 3.2. If (*) holds for one chart C/>, then it holds for every chart. 
Proof Let ifi be another chart defined near p. Then 

(difi·Cl)O = (dific/>-Ic/>.C1)O 

= (difi·c/>-I),p(p)(dc/>.Cl)O 

= (d!fo.c/>-I),p(p)(dc/>.C2)O = (difi·C2)O o 
Definition 3.3. Let SpX denote the set of all curves on X based at p, p a 

point in X. Let Ch C2 E SpX. Cl ~ C2 if Cl is tangent to C2 at p. ~ is clearly an 
equivalence relation. The set TpX == SpX/ ~ is called the tangent space to X at 
p. If Cl is in SpX, let c1 denote the equivalence class of C1 in TpX. 

Let c/> be a chart on X with pin dom c/>. Note that cv(t) = c/> -l(c/>(p) + tv) is a 
curve on X based at p where v is some vector in Rn. Define A,pP: Rn _ TpX by 
A,pP(V) = cV' 

Lemma 3.4. Let X be a differentiable n-manifold, p a point in X. Let c/> be 
a chart on X near p. Then A,pP: Rn _ TpX is bijective. 

Proof 
(a) A,pP is 1: 1. Let VI> V2 ERn and A,pP(Vl) = A,pP(V2)' Then CUI and CV2 are 

tangent at p; i.e., (dc/>.cv)o = (dc/>.cV2)o. Now 

(dc/>.cV1)o = (dc/>.c/>-I(c/>(p) + tVl))O = (d(c/>(p) + tVl))O 
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but t 1-+ 4>(p) + tV1 has derivative at t = 0 equal to v1. Similarly for v2, so 
V1 = V2' 

(b) Aq,P is onto. Let ct be in TpX. Let c be a curve representing the equiva­
lence class ct. Let v = (d4>'c)o be a vector in Rn. By the calculation in part (a), 
(d4>,cJo = v so (d4>.cv)o = (d4>'c)o which implies that c and Cv are tangent at 
p. Stated differently, Aq,P(V) = Cv = e = ct. 0 

Proposition 3.5. There exists a unique vector space structure on TpX such 
that for every chart 4> on X with p in dom 4>, the mapping A",P : Rn -i>- TpX is a 
linear isomorphism. 

Proof Let 4>, if be charts with p in dom 4> n dom if. Then 

(*) 

Assuming this formula, it is clear that if A",P is linear for some chart 4>, then 
AI// is linear for any other chart if. Let the vector space structure on TpX be 
the one induced by A",P from Rn, i.e., if ct and f3 are in TpX, then 

ct + f3 = A",P[(A",P)-l(ct) + (A",P)-l(f3)] 

We now prove the formula (*). Let v be in Rn and let A = (dif·4>-l)tf;(p). 
Then 

(d4>·cv)o = (d4>(p) + tv)o = v 

= A -1 Av = (d4»p .d(if-1(if(p) + tAv))o 

Therefore Atf;P(V) = A,l(Av), which is what was to be shown. 0 

Definition 3.6. Let f: X -i>- Y be a differentiable mapping with p in X 
and q = f(p). Then f induces a linear map (df)p: TpX -i>- TqY called the 
Jacobian off at p as follows: Let c be in SpX; then f· c is in Sq Y. To induce a 
map from TpX -i>- Tq Y we need to know that if C1 ::: C2 in SpX, thenf,c1 ::: f,c2 
in Sq Y. Let 4> be a chart on X near p and if a chart on Y near q. Then C1 ::: C2 

implies that (d4>'c1)o = (d4>·c2)o. Hence 

(dif·f·c1)o = (dif·f·4>-1)tf;(pM4>·c1)o 

= (dif·f·4>-1)tf;(p)(d4>'C2)O = (dif·f·C2)O 

using the chain rule. So by definition, f,c1 ::: f'C2' This defines (df)p: TpX-i>­
Tq Y. To check that (df)p is linear, we have the following formula: 

(**) (df)p = Al/fq(dif·f·4>-l)",(plAtf;P)-l 

Let e be in TpX. Then we may take c(t) = 4>-l(4)(p) + tv) for some v in Rn. 
Now 

Al/fq(dif·f·4> -l)q,(p)(Atf;P) -le = Al/fq(dif·f·4> -l)tf;(plv) 

which is equal to the equivalence class of the curve 

c1(t) = if-1(if(q) + t(dif·f·4>-l)tf;(p)(v)). 

Thus (dfMe) is the equivalence class of the curve 

c2(t) = f·4>-l(4)(p) + tv). 
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To see that CI and C2 are tangent at q, we compute 

and 

Remark. Using (**) and the fact that lIl/fq and II tPP are isomorphisms we 
have that f is an immersion at p if rank (df)p = dim X and that f is a sub­
mersion at p if rank (df)p = dim Y. 

Definition 3.7. Let X be a differentiable manifold. Then 

TX = U TpX = tangent bundle to X 
peX 

Let n: TX -+ X denote the natural projection. 

Proposition 3.8. Let X be a Ck-differentiable n-manifold (k > 0). Then 
TX has, in a natural way, the structure of a Ck-I manifold of dimension 2n. 

Proof Let p be a point in X, U an open nbhd of p in X, and 1> a chart 
with domain U. Let TuX=n-I(U). Define .f:TuX-+1>(U)xRn by 
.f(a) = (1)'n(a),(v,(a))-I(a)) for every a in TuX. .f is bijective. We claim that 
if {1>a} is an atlas on X, then TX can be topologized so that {.fa} is an atlas on 
TX. Note that 

.f.~-I(a, v) = (1) • .p-I(a), (IItPq)-IIll/fq(V)) 

= (1) • .p-I(a), (d1> • .p-IMv)) 

where q = .p-I(a), by using the formula (*) in Proposition 3.5. Now 
1> . .p-I: Rn -+ Rn is Ck-differentiable and (d.p'1>-I): U x Rn -+ U x Rn is 
C k -I-differentiable since it is given by a matrix whose coefficients are first 
partial derivatives of .p'1>-1 on U. Define the topology on TX so that all the 
.fa are homeomorphisms. Then TX has the structure of Ck-I-differentiable 
manifold. 0 

Notes. (1) Let V be a (finite dimensional) vector space with p in V. 
It is obvious that there is a canonical identification of V with Tp V given by 
v 1->- c where c(t) = p + tv. 

(2) Let V be a vector space and let G(k, V) be the Grassmann manifold of 
k-dimensional subspaces of V. Let W be in G(k, V). (We shall view W both 
as a point in G(k, V) and a subspace of v.) We show that there is a canonical 
identification of T wG(k, V) with Hom (W, V j W). Choose a complementary 
subspace S to W in V. Let C(t) be a curve in G(k, V) based at W. Define 
At: W -+ VjWby At(w) = neSt) where n: V -+ VjWis the obvious projection 
and 11' = St + Ct where Ct EO C(t) and St EO S. (Note that for t small, writing 
11' = St + Ct is always possible.) First show that if C(t) and e'(t) are two 
curves on G(k, V) tangent at W, then 

dA t (11') I = dA; (11') I 
dt t~o dt t~O 
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as mappings of W -+ V j W. Thus we have a linear mapping ,p : T wG(k, V)-+ 
Hom (W, VjW) given by 

dC (0) f-+ dAt (w) I 
dt dt t=o 

Next show that ,p is, in fact, an isomorphism. Finally show that ,p is indepen­
dent of the choice S. Hint: Let S' be another complementary subspace to W 
in V. Then St - s; = c; - Ct is in C(t). Thus there is an at in C(t) such that 
St - s; = tat. Now show that 

d(At - A;) (w) I = o· 
dt t=o 

§4. Partitions of Unity 

Manifolds are geometric objects that locally "look like" Euclidean space. 
It would then be convenient to be able to do whatever analysis or calculus 
that we have to do locally; i.e., in Euclidean space. The use of partitions of 
unity is the technique to accomplish this goal. 

Definition 4.1. Let X be a topological space. 
(1) {V"}"EI (I some index set) is a covering of X if each V" is contained in 

X and X = UaEI Va. 
(2) Let {VaLEI and {Vp}pEJ be coverings of X. Then {Vp}PEJ is a refinement of 

{V"LEI if for every 13 in J, there is an a in I so that Vp eVa. 
(3) Let {Vp}pEJ be a covering of X. Then {Vp}PEJ is locally finite iffor every 

p in X, there is a nbhd V of p in X so that V n Vp = 0 for all but a finite 
number of 13' s in J. 

(4) X is paracompact if every open covering of X has a locally finite refine­
ment. 

Proposition 4.2. Let X be a topological space which is locally compact 
and satisfies the second axiom of countability. Then X is paracompact. In 
particular, all manifolds are paracompact. (Recall that X satisfies the second 
axiom of countability if the topology on X has a countable base.) 

Proof We first construct a sequence of compact sets Kb K2 , ••• such 
that 

(1) Ki c Int (Ki+ 1) for all i, and 
00 

(2) X= U Ki· 
i= 1 

Since X is locally compact and second countable, we may choose a se­
quence of open sets Nb N 2 , .•• each of which has compact closure and such 
that the N;'s cover X. Let MIc = U~=l Ni • Let Kl = M 1 • Since Kl is compact 
there exists Mil' ... , MiT so that Kl eMil U· .. U MiT' Let K2 = Mil u· .. 
U MiT' Thus K2 is compact and Kl c Int (K2)' Proceed inductively. 
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Now let {Wa}aEI be an open covering of X. We construct a locally finite 
refinement, For each i, let Wa/, .... , W~k' be a finite subcovering of the 
compact subset Ki - Int (Ki- l ). Let V/ = Wa/ (\ lnt (Ki+ l - Ki- 2). Then 
the collection {V/} is a locally finite refinement of the covering {Wa}. 0 

Corollary 4.3. Let X be a differentiable manifold and let {Ua}aEI be an 
open covering of X. Then there is a locally finite refinement {Vp}pEJ of {Ua}aEI 
such that 

(a) for every f3 in J, there is a chart <Po: Vp --+ B3 which is onto, and 
(b) the sets V/ = <Po -1(BI ) form an open covering of X, where Br = 

{x E Rn I Ixl < r}. 

Proof Choose KI , K2 , ••• as in the proof of Proposition 4.2. For each 
pin Ki - Int (Kl - I ) choose an open nbhd Vpi of p so that 

(i) Vpi c Int (Ki+ l - Ki- 2 ) (\ UP where UP is some open set in the 
covering {U,,}aEI containing p, and 

(ii) vpt is the domain of a chart <ppi: Vpi --+ B3 which is onto and satisfies 
<ppi(p) = O. Let Wpi = (<ppi)-I(BI). These sets cover X, - Int (Ki- l ). Choose 
a finite subcover WP1i, .. . , W~k'. Then the sets {Vp/H~}~~ give the r~quired 
locally finite covet. 0 

Definition 4.4. 
(1) Let X be a topological space and let f: X --+ R be continuous. Then the 

support off denoted supp (I) = closure of the set {x E X I f(x) =F O}. 
(2) Let X be a Ck-differentiable manifold. Then a Ck-partition of unity on 

X is a collection {fa} aEI (I some index set) of C k-differentiable functions mapping 
X into R such that 

(a) {supp (f")}"EI is a locally finite covering of X, 
(b) fip) ~ 0 for every ex E I and p E X, and 
(c) 2..aEdip) == 1 for every p E X. Note that condition (a) ensures that 

this is a finite sum. 
(3) A partition of unity {fa}aEI on X is subordinate to a covering {Up}pEJ if 

for every ex in I, there exists a f3 in J for which supp (fa) cUp. 

Lemma 4.5. Let B be an open ball of radius r centered at Xo in Rn. Then 
there exists a smooth function positive on B and zero off B. 

Proof It is enough to show that there exists a smooth function 
y: R --+ R such that yes) = 0 for s ~ 1 and yes) > 0 for s < 1. If y exists, 
then consider p: Rn --+ R defined by p(x) = y(lx - xoI 2 jr2). Clearly p is 
smooth and has the desired properties. Now just define 

if s ~ 1 

if s < 1 

We leave it to the reader to check that y is indeed smooth. 0 
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Theorem 4.6. Let X be a Ck differentiable manifold and let {Ua}aeI be an 
open covering of X. Then there exists a partition of unity {Po}oeJ on X subordinate 
to the covering {Ua}ae]' Moreover, if I is countable, then we may let J = I and 
assume that supp Pa C Ua for all (X in I. 

Proof Let {Vo}oeJ be the locally finite refinement of {Ua}ae] whose exis­
tence is guaranteed by Corollary 4.4. Define go: X ~ R by 

( ) _ {Y(4)oCP)) go p - o 
ifp E V 
otherwise 

where y: Rn ~ R is a smooth function which is positive on B2 and zero off 
B2 (using Lemma 4.5). Let h(p) = LoeJ goCp). Then h is well-defined (i.e., 
the sum is finite), and Ck since {VoheJ is a locally finite covering for X. Also 
h(p) > 0 for all p. Let pp = (l/h)go. Then {PoheJ is a partition of unity sub­
ordinate to the cover {U,,}ae]' For the moreover part, let Ul> U2 , ••• be the 
covering and let j; = Loe]! Po where f3 is in Ji if supp Po C Ui and supp 
Po ¢ Uj for j < i. 0 

Corollary 4.7. Let X be a C k differentiable manifold. Let U and V be open 
subsets of X with [J c V. Then there is a Ck differentiable functionf: X ~ R 
such that 

f(x) = 0 {
I 

o ~ f(x) ~ 1 

ifxE U 
ifx¢V 
otherwise. 

Proof Let {f1,f2} be a partition of unity subordinate to the cover 
{V, X - [J} given by Theorem 4.6. Take f = fl' Certainly supp f c V and 
f == 1 on U since f2 == 0 on U. 0 

We present the following Proposition just to indicate the great number of 
smooth functions which exist (as compared to, say, analytic functions). 

Proposition 4.8. Let C be a closed subset ofRn; then there exists a smooth 
functionf: Rn ~ R such that f;:: 0 everywhere and C = f-1(0). 

Proof Cover Rn - C by a countable sequence of open balls Bb B2, ... 
each contained in Rn - C. Let j; be a smooth function zero off B! and posi­
tive on B!. (Use Lemma 4.5.) Let 

( ola~) MI = sup ---;} . 
lal:<:1 ox 

(M! is well-defined since each ola~/oxa is compactly supported.) Let 

00 j; 
f="2-' . 

1=12!MI 

The choice of the M;'s guarantees that for each (X the series 

~ _l_ola~ 
1=1 2iM! OXa 
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converges uniformly. Using a standard theorem from advanced calculus (see 
Dieudonne, Foundations of Modern Analysis, 8.6.3, p. 157), 81"1j18x" exists 
and is continuous for each a, so that f is smooth. Thus f is the desired 
function. 0 

Exercise: 

Let X be a smooth compact manifold. Show that there exists a 1: 1 
immersion of X into some Euclidean space, and thus conclude that any 
compact manifold can be realized as a submanifold of RN for some large N. 

§5o Vector Bundles 

Definition 5.1. 
(l) Let E and X be smooth manifolds and 7T : E -+ X a submersion. Let 

Eu = 7T- 1(U)for any subset U of X. Then E is a family of vector spaces over 
X of dimension k if for every p in X, Ep is a real vector space of dimension k 
whose operations (addition and scalar multiplication) are compatible with the 
topology on Ep induced from E. Let k be denoted by dimx E. 

(2) A section of E is a smooth mapping s: X -+ E such that 7T. s = idx . 
C"'(E) denotes the space of smooth sections of E. 

(3) Let 7TE: E -+ X and TTF : F -+ X be families of vector spaces over X. 
Then cfo : E -+ F is a homomorphism from E to F if 

(a) 7TF°cfo = 7TE 

(b) cfo is smooth 
(c) For every p E X, cfo: Ep -+ Fp is a linear map. 

cfo is an isomorphism if cfo is a diffeomorphism and a homomorphism. 

Example. Let V be a vector space (finite dimensional), X a smooth 
manifold, and E = X x V. Let 7T : E -+ X be a projection on the first factor. 
Then E ~ X is a family of vector spaces known as a product family. A 
family of vector spaces F over X is trivial if it is isomorphic to some product 
family. 

Definition 5.2. Let E ~ X be a family of vector spaces over X. E is a 
vector bundle over X is every point p in X has an open nbhd Up so that the 
family of vector spaces Eu" is trivial (i.e., a vector bundle is a locally trivial 
family of vector spaces). Note that dim E = dim X + dimx E. 

Example. Let X be a smooth manifold. Then TX (the tangent bundle 
over X) is a vector bundle with dimx TX = dim X. The charts that were 
constructed in Proposition 3.8 to show that TX is a manifold also show that 
it is a locally trivial family of vector spaces. 

When working with a vector space V, it is often useful to consider certain 
associated spaces such as the dual space V*, the space S2(V*) of symmetric 
bilinear forms on V, etc. In a similar fashion, when given a vector bundle E 
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over X, it is sometimes useful to construct associated vector bundles over X. 
For instance, one should be able to replace Ep by E: (the dual space to Ep) 
for each p in X and make the new set into a vector bundle. One could also 
replace Ep by S2(Et) (the space of symmetric bilinear forms on Ep), etc. The 
following will show how to formalize such a process to yield new vector 
bundles. 

Let T be a covariant functor which takes (finite dimensional) vector 
spaces into (finite dimensional) vector spaces, (i.e., T: Vector spaces --+ Vector 
spaces and if V and Ware vector spaces, then 

T: Hom (V, W) --+ Hom (T(V), T(W». 

This latter map has the property that if J: V --+ Wand g: W --+ Z, then 
T(g.J) = T(g).T(f). Note that Hom (V, W) denotes the set of linear 
mappings from V to Wand is vector space isomorphic to Rmon where n =. 
dim V and m = dim W.) 

Definition 5.3. T is smooth if Jor every pair oj vector spaces V and W, 
the mapping 

T: Hom (V, W) --+ Hom (T(V), T(W» 

is smooth. (Note that the above isomorphism oj Hom (V, W) with Rm'n gives 
Hom (V, W) the structure oj a smooth manifold.) 

Proposition 5.4. Let E be a vector bundle over X and T be a smooth 
covariant Junctor defined on (finite dimensional) vector spaces. Then T(E) = 
Upex T(Ep) (disjoint union) has the structure oj a vector bundle over X. 

Proof Let E be a set, X a smooth manifold, and 1T: E --+ X a map. 
Assume that Ep is a vector space for each p in X. To put a vector bundle 
structure on E is to make E into a smooth manifold so that E becomes vector 
bundle over X with projection map 7T. Suppose F is a vector bundle and 
cfo: E --+ Fis a bijection which is linear on the fibers and for which 7T = 1TF·cfo. 
Then there is a unique way to put a manifold structure on E so that E becomes 
a vector bundle and cfo an isomorphism. 

(1) We note that if cfo: E --+ F is a homomorphism, then there is a map 
T(cfo) : T(E) --+ T(F) which is linear on fibers. T(cfo)(e) = T(cfop)(e) where 
cfop = cfolEp: Ep --+ Fpforp E Xande E Ep.tSoT(cfo): UPEX T(Ep) --+ UpeX T(Fp). 

(2) Suppose that E = X x V is a product family where V is some vector 
space. Then T(E) = UPEX T(V) = X x T(V), the last equality being an 
obvious bijection. Give T(E) a vector bundle structure by making this 
identification an isomorphism. 

(3) Next assume that E is a trivial bundle. Then there exists an iso­
morphism cfo: E --+ X x V = F. As noted in (1), T(cfo) : T(E) --+ T(F). Since 
T(F) is a vector bundle (by (2», we can give T(E) a vector bundle structure so 
that T(cfo) is an isomorphism. 

It is necessary to check that this vector bundle structure is independent 
of the choice of cfo. So let !ft : E --+ G be an isomorphism where G = X x W. 
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Then <f;. <p - 1 : X x V -+ X x W is an isomorphism and can be identified 
with '\: X -+ Hom (V, W) given by '\(p) = <f;'<p- 1 !(p x V): V -+ W. Then 
T(<f;'<p- 1): X x T(V) -+ X x T(W) can be identified with T·'\. Since 
<f;. <p -1 is smooth, ,\ is smooth and since T is a smooth functor T·'\ is smooth. 
Hence T( <f;. <p -1) is smooth and an isomorphism. The diagram 

T(E) 

T(E) 

T(<p) 
---+> T(F) 

1 T(<f;'<p- 1 ) 

T(<f;) ) T(G) 

commutes and implies that the identity map on T(E) is smooth as a map 
between the two possible vector bundle structures. Thus the two structures 
are the same. 

(4) Let E be an arbitrary vector bundle. For each p in X, there is an 
open nbhd Up so that Eup is a trivial bundle. By (3), T(Eup ) has a unique 
structure as a vector bundle. Suppose Up n Uq =P 0. Then T(Eupnup) has 
two structures as a vector bundle, namely T(Eup)upnuq and T(Euq)upnuq. The 
uniqueness of the structures on T(Ep) and T(Eq) gives that these two struc­
tures are the same. So we have a unique way of making T(E) into a vector 
bundle. 0 

Note. A similar proposition clearly holds when T is contravariant or 
when T is a functor of several variables, some covariant and some contra­
variant. 

Examples. 
(1) T(V) = V*-the dual vector space to V. T: Hom (V, W)-+ 

Hom (W*, V*) is given by A f-+ A*-the adjoint of A. T is a continuous 
linear map and hence smooth. So E* = T(E) is a vector bundle. In particular, 
if E = TX, then T(E) is denoted T* X and is the cotangent bundle of X. 

(2) T( Vb V2) = VI EB V2. 

T: Hom (Vb WI) x Hom (V2' W2) -+ Hom (VI EB V2, WI EB W2) 

is given by T(f, g) -+ f EB g. T is continuous and bilinear, hence T is smooth. 
Given two vector bundles E and F over X, T(E, F) is denoted by E EB F 
and is called the Whitney sum of E and F. Note that (E EB F)p = Ep EB Fp 
for every p E X. Hence dimx (E EB F) = dimx E + dimx F. 

(3) T(V) = S2(V*)-the vector space of symmetric bilinear forms on V. 
T: Hom (V, W)-+ Hom (S2(W*), S2(V*» is defined as follows. Let 
A E Hom (V, W), BE S2(W*), and VI, V2 E V. Then T(A)(B) is a symmetric 
bilinear form on V given by T(A)(B)(Vl' V2) = B(AvI' Av2). T is continuous 
and linear, hence T is smooth. If E is a vector bundle over X, then T(E) = 
S2(E*) is a vector bundle over X. dimx S2(E*) = n(n + 1)/2 where n = 
dimx E. 
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(4) There is one more vector bundle which we shall need later. Let G/c,n 
be the Grassmann manifold of k-planes in n-space. Let p be in G/c,n and let Ep 
be the k-dimensional subspace of Rn associated with p. Then E = UPEGk,n Ep 
is a vector bundle over G/c,n called the canonical bundle. Let p be the obvious 
projection. Recall from Example (3) after Definition 1.6 the chart nbhds 
Wp of G/c,n; i.e., Wp = {q E G/c,n I 'TTEq,Ep is a bijection onto Ep} where 'TTEq,Ep 

is given by the restriction to Eq of orthogonal projection of Rn --+ Ep. The 
mappings tPP: Ewp --+ Wp x Ep defined by v f-+ (p(v), 'TTEp<V),Ep(V)) give the 
vector bundle structure to E. Check the details. 

It is customary to give sections of certain vector bundles special names. 

Definition 5.5. Let X be a smooth manifold. 

(1) A section ofTX is called a vector field. 
(2) A section of T* X is called a I-form. 
(3) A section s: X --+ S2(E*) is a metric on E if s(p) is a positive definite, 

symmetric, bilinear form for each p in X. 
(4) A metric on TX is called a Riemannian metric. 

Locally the above sections have standard coordinates representations. 
Let U be a coordinate nbhd on X with ep10 ... , epn the system of coordinates 
and ep: U --+ Rn the corresponding chart. Equipping Rn with the standard 
coordinates Xl, ... , X n , we may define 

8~t Ip = (dep-1)(b(P)(8~Jp(J 
where (8/8xt)lq is the unit vector in the x;-direction based at q. (Thus 8/8x! 
can be viewed as a vector field on Rn.) Then (8/8ept)lp E TpX and 8/8ept: U--+T uX 
is a locally defined section on X. The vectors 

are linearly independent at each p in U; so if s is a vector field on U, then 

n 81 s(p) = i~ at(p) 8ep, p' 

We note that s: U --+ TX is smooth iff at: U --+ R is smooth for 1:::; i :::; n. 
So locally a vector field is a linear combination (over smooth functions) of the 
coordinate vector fields 8/8ep1, ... , 8/8epn. 

If {dep1' ... , depn} is the dual basis to 8/8ep1o ... , 8/8epn at each point of U, 
then every I-form s can be written locally as s = Lf= 1 at dept. Also, s: U --+ T* X 
is smooth iff at: U --+ R (l :::; i :::; n) is smooth. Finally, if s is a Riemannian 
metric, then locally s = Lf,j=l aiJ dept depj' i.e., if g, 7] E TpX, then 

n 

sp(g,7]) = 2: aiip)(dept)ig)(depj)i7]). 
i,;=l 

Here again s: U --+ S2(T* X) is smooth iff atj: U --+ R is smooth for 1 :::; i,j :::; n. 
Note that since s is symmetric aiJ = ajt for all i,j and that since s is positive 
det (aiip)) i: 0 for each pin U. 
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Proposition 5.6. Every vector bundle 7T : E -?> X has a metric. 

Proof Let E = X x V be a product bundle. Then S2(E*) = 
X x S2(V*) is also a product bundle. Now let B be any positive definite 
symmetric bilinear form on V. Then define s: X -?> X X S2(V*) by s(p) = 
(p, B). s is smooth and a metric on S2(E*). If E is a trivial bundle then there 
exists an isomorphism 4>: E -?> X X V (for some product bundle X x V). 
4> induces an isomorphism 4>(2) : S2«X x V)*) -?> S2(E*). If s is a metric on 
X x V, !hen 4>(2)·S is a metric on E. 

Finally, let E be an arbitrary vector bundle. For each P in X, choose an 
open nbhd Up of p so that Eu is trivial. Let {Vi}i~l be a countable locally 
finite refinement of {Up}PEX' Let {Pih~ 1 be a partition of unity subordinate to 
the cover {Vi}i~l of X. (See Theorem 4.5.) Let Si be a metric on Ev;. Define 
Si: X -?> S2(E*) by 

_ ( ) _ {Pi(P )Si(P) 
Si P - 0 

for all P E Vi 
otherwise; 

then Si is a smooth section. Let S = L.i~ 1 Si' This sum makes sense since for 
each P in X, only finitely many Pt(p) are not zero. Let v E Epo Then 

s(p)(v, v) = L Pi(P)Si(P)(V, v) > Pt(p)St(p)(v, v) 

where i is chosen so that Pi(P) > O. Thus s(p) is positive definite 
since Si(P)(V, v) #0, and S is a metric on E. 0 

Given a Riemannian metric s: X -?> S2(T* X) where X is a connected 
manifold, then there is a natural way to define a metric d: X x X -?> R so 
that (X, d) is a metric space. (There is, unfortunately, no way to change the 
fact that the word "metric" has two different though related meanings!) 
We show how to define d. 

Let P and q be points in X and c : R -?> X a (continuous, piecewise smooth) 
curve with c(O) = P and c(l) = q. By piecewise smooth, we mean that the 
curve is infinitely differentiable except at a finite number of points. Let 
(dldt)lto be the tangent vector in TtoR defined by the curve t f-+ to + t of 
R -?> R. Then t -?> (dldt)lt is the canonical vector field on R. DefineJ: R -?> R 
by 

Jis a piecewise smooth function and c = f~J(t) dt makes sense. Note that c 
is just the arc-length of the curve c relative to the Riemannian metric s. 
Define d(p, q) to be the infimum of c where c ranges over all piecewise smooth 
curves connecting P to q. 

It should be noted that d(p, q) is always defined and finite. Define an 
equivalence relation", on X by P '" q if there exists a piecewise smooth curve 
of finite length connecting P to q. Since X is locally Euclidean, the equivalence 
classes are open. Since X is connected there is only one nonempty equiva­
lence class. All steps in showing that d is a metric are easy except showing that 
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if d(p, q) = 0, then p = q. This will be proved later. In any case, d is a 
pseudo metric. 

Example. Let Xl, ... , Xn be the standard coordinates ofRn. s = Lf=l dX.2 
is a metric and induces the standard metric on Rn. Let c : R -+ Rn be a curve 
with c(t) = (c 1(t), ... , cnU». Note that 

(dC)t( d I) = ~ OCi~ .. 
dt t .=1 ot OX, 

Hence 

So 

c = f J ( 0;; ) 2 + ... + (0;;) 2 dt 

which is just the standard arc-length in Rn. As is known from Euclidean 
geometry of Rn the shortest distance between two points is the straight line 
distance, so this metric on Rn is just the standard one. 

Lemma 5.7. Let s = Lf,j=l aijdxidxj be a Riemannian metric on Rn. Let 
d be the induced pseudo-metric on Rn. Then on a given compact set K there 
exist positive constants Land M so that Md(p, q) ;:::: d(p, q) ;:::: Ld(p, q) for 
every p and q in K where d is the standard metric on Rn. 

Proof Let c : R -+ Rn be a curve. As noted above 

( d I) ~ OCI 0 (dc)t - = L --. 
dt t i=l dt OXi 

Thus 

St( (dC)i(~ I} (dC)t(~ It)) = i'~l ati ~t ~i' 
Let v = (oc110t, ... , ocnlot) and A = (aij). Then s = vtAv where vt is 

the transpose of v. Now t 1-+ IA(t)1 is a continuous function and hence is 
bounded above by a constant M on the compact set K. 

Thus s = vl(Av) ::s; IAlvlv ::s; Mvlv = Mlvl 2 • Thus c ::s; (length of c in 
the standard metric) x M which implies that d(p, q) ::s; Md(p, q). Since A 
is a positive definite, symmetric matrix at each point we also have that 
vlAv ;:::: Llvl 2 and the rest of the proof follows as above. 0 

We can now prove the following: 

Proposition 5.8. Let s be a Riemannian metric on a connected manifold X. 
Let d be the corresponding pseudo-metric on X. Then d is a metric and the 
topology induced by d on X is the same as the original topology on X. 

Proof Fix p in X. For this proof we will call an open set in the topology 
induced by d on X, d-open. Then, it is sufficient to prove that every open nbhd 
of p contains ad-open nbhd of p and, conversely, that every d-open nbhd of 
p contains an open nbhd of p. 
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Let V be an open nbhd of p. Choose V', also an open nbhd of p, so that 

(a) The closure of V' is compact and is contained in V, and 
(b) S2(T* X)I V' is locally trivial. 

Hence there exists a chart </> : V' ---7- Rn and a bundle homomorphism </> so 
that the diagram 

S2(T* X)I V' 
f> </>( V') x S2(Rn) ------>-

1 1 
v' <P </>(V') 

commutes, where n = dim X. Let B be an open ball in </>(V') of radius r 
centered at </>(p). (Note B is open in Rn.) Let c: R ---7- X be a curve centered 
atp, i.e., c(O) = p. Suppose that c([O, 1]) does not lie entirely within </>-l(B). 
We claim that this curve has length at least N for some constant N not de­
pending on c. If this last statement is true, then B(p, N) = {q E XI d(p, q) < 
N} is contained in V'. Also this statement completes the proof that d is a 
metric. For if p, q E X and p i= q, then take V' small enough so that p E V' 
and q 1= V'. Then the length of any curve connecting p to q is greater than N 
and d(p, q) i= 0. 

To prove the claim, we note that C- 1(</>-1(B)) is open in R, so that there 
exists a smallest t in (0,1) for which c(t) 1= </>-l(B). c = length of c is ;:::: 
length of c([O, t]). Let s' = f>. s· </> -1. Then s' is a Riemannian metric on 
</>(V') c Rn and the length of c([O, tn under the metric s is the same as the 
length of (</>.c)([O, t]) under the metric s'. Using Lemma 5.7, we see that for 
some constant L the length of (</>.c)([O, t]) under s' is ;:::: L x length of 
(</>.c)([O, t]) using the standard metric on Rn, since </>( V') is compact. 

Now we note that since X is Hausdorff c(t) is in V'. For if c(t) 1= V', then 
there exists an open subset V of X such that c(t) E V and V n </>-l(B) = 0. 
Also c- 1(V) is open and contains t. Hence c-1(V) n C- 1(</>-1(B)) i= 0, a 
contradiction. Thus </>. c[O, t] is a curve connecting p with some point outside 
of B. Hence the length of </>·c[O, t] is ;::::r, but length of </>.c[O, t) = length of 
</>.c[O, t]. Thus length of cis ;::::L-r = N. 

For the converse we suppose that V is some d-open nbhd of p. Make the 
same construction as above for V', </>, f>, s', r, and B. Let </>(q) E B. Then the 
straight line, c, from </>(p) to </>(q) has length < r. By Lemma 5.7, the length of 
c in the metric s' is :0; Mr where M is a constant depending only on </>(V'). 
Thus the length of </> -1. c, a curve connecting p to q in X is < M· rand 
q E B(p, Mr) = the ball in X of radius Mr about p. By choosing r small 
enough B(p, Mr) c V since V is d-open and B(p, Mr) is a basic d-open set. 
But the above says that </>-l(B) c B(p, Mr) and </>-l(B) is an open nbhd of 
p. 0 

Lemma 5.9. Any differentiable manifold is metrizable. 
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Proof Let Xl, X 2 , ••• be the components of X and let di be a metric on 
XI making Xi into a metric space. (Use Proposition 5.8.) Define d: X x X ~ 
R by 

if X,YE Xm 
if x E Xi> Y E Xi, and i of j. 

Then d is a metric on X compatible with the original topology. 0 

We need the following two results to show that X can be made into a 
complete metric space. 

Lemma 5.10. Let (X, d) be a metric space andf: X ~ R be a continuous 
proper function. Then d': X x X ~ R defined by d'(p, q) = d(p, q) + 
If{p) - f(q) I for every p, q in X is a complete metric on X which is compatible 
with the given topology on x. 

Proof That d' is a metric is clear. Let T be the topology on X induced by 
d and T' the topology induced by d'. Since d' is continuous in the topology T, 
we have that T' c T. Conversely, let U be in T and let p be in U. Choose e 
so that B'(p, e) = {x E X I d'(x, p) < e} c B{p, e) c U. Thus U is in T' 
and T = T. Finally we show that d' is complete. Let {Xn}:'=l be a Cauchy 
sequence in the d' metric. Thus there exists a constant L > 0 so that 
d'{Xh xn) < L for all positive integers n. Hence If(xl ) - f(xn) I < L for all n, 
and 

{Xn}:'=l c f-I(Lf(xl) - L,f(xl) + L]). 

Sincefis proper this later set is compact and the sequence {Xn}:'=l has a limit 
point in X and thus converges. 0 

Proposition 5.11. There always exists a smooth proper function on a 
smooth manifold X. In particular, any differentiable manifold can be made into 
a complete metric space. 

Proof Let Kl, K2 , ••• be a sequence of compact subsets of X such that 
KI c Int (Ki + l ) for i = 1,2, ... and X = Ur;l K1• Let LI = KI - Int (Kt - l) 
with Ll = Kl . Then Ut"~ 1 LI = Ut;, 1 Ki = X. Define smooth functions 
Pi : X ~ R such that 

{
I 

p. = 0 
, O:S;p:s;1 

onLI 
on K I _ 2 U (X - Ki+1) 
onX. 

Then letf = L:1";1 ipl' This sum is locally finite and hence is a smooth func­
tion. We claim thatfis, in fact, proper. First note that if p E Lj, then i :s; f(P) 
:s; 3i since f(p) = (i - I)Pi-I(P) + ipi(P) + (i + I)Pi+l(P). Then to show 
thatfis proper we need only show thatf-I([A, B]) is compact where A, BE R. 
Given a p in Li such that f{p) E [A, B), we have the inequalities i :s; Band 
3i ~ A, or that i E [AJ3, B). Thus f-I[A, B) c Ui LI where i E [AJ3, B] and 
is then a closed subset of a compact set and hence compact. 

The last assertion of the proposition follows immediately from Lemma 
3.2. 0 
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We now define what we mean by subbundles of a vector bundle and give 
one way to construct them. 

Definition 5.12. Let E be a vector bundle over X with projection 'fT. F is a 
subbundle of E ifF is a smooth submanifold of E and 'fTIF: F -7 X is a vector 
bundle where, for each x in X, Fx has the vector space structure induced from 
Ex. 

Definition 5.13. Let E -7 X and F -7 Y be vector bundles. cP: E -7 F is a 
homomorphism if 

(1) there exists a smooth function f: X -7 Y called the base mapping, so 
that 

1 1 
l X -----'----+ Y 

commutes. 
(2) cP is smooth. 
(3) cPp: Ep -7 Ff(p) is linear where cPP = cP I Ep. 

Example. Let f: X -7 Y be a smooth mapping. The Jacobian off is a 
map (df)p: TpX -7 Tf(p) Y for each p E X. So (df): TX -7 TY defined by 
(df)ITpX = (df)p is a mapping which is linear on the fibers. Locally, TX and 
TY are trivial and via trivializations are just U x Rn and V x Rm where 
n = dim X, m = dim Y and U eRn, V c Rm are open. (df): U x Rn-7 
V x Rm is given by (p, v) H>- (f(p), (dfp)v) which is a smooth mapping. So 
(df) is smooth and with this extended definition of a homomorphism be­
tween vector bundles, (df) is a homomorphism. 

Proposition 5.14. Let E ~ X and F -7 Y be vector bundles and cP : E ~ F 
be a homomorphism with base mapping f Suppose cPP has constant rank for all 
p in X. Then Ker cP = UPEX Ker cPP is a subbundle of E. 

Proof The problem of showing that Ker cP is a smooth manifold is a 
local one. By using trivializations we may assume that U c Rn and V c Rm 
are open subset with f: U ~ V, cP: U x RS ~ V X Rt and with the appro­
priate diagram commuting where s = dimx E and t = dimy F. Fix p in U 
and choose W, a vector space complement to Ker cPP in RS. Note that 
cPp: W -7 f(p) X Rt is 1 : 1. Since cP is continuous and dim (Ker cPq) is constant 
throughout U, there exists an open nbhd U' of p on which cPq: q x W ~ 
f(q) X Rt is 1: 1 for all q in U', i.e., W is a vector space complement to Ker cPq, 
for all q in U'. Let W be a vector space complement to cPp(W) c f(p) X Rt. 
We can then restrict U' to U", also an open nbhd of p on which W is a vector 
space complement to cPiW) in Rt for all q in U". Let a: V x Rt -7 Rt be 
projection on the second factor and T: RI -7 Z = Rt I W be the natural 
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projection. Then g = T.a.¢: U' x RS --';>- Z is a smooth mapping. Note that 
T'a.¢(q, v) = T'a(f(q), ¢iv)) = T(¢iv)) and that T(¢iv)) = 0 iff ¢q(v) = 0 
iff (q, v) E Ker ¢q. So g-l(O) = Ker (¢I U"). 

Ifwe show that g is a submersion, then by Theorem 2.8 Ker ¢ n (U" x RS) 
is a submanifold of U" x RS and thus a submanifold of E. To show that g 
is a submersion, it is sufficient to show that if (q, v) in U" x RS, r = g(q, v), 
and c: R --';>- Z is a (smooth) curve based at r, then there is a (smooth) curve 
c: R --';>- U" x RS based at (q, v) with g·c = c. Let c be such a curve. Note that 
T: ¢iW) --';>- Z, a :f(q) x ¢q(W) --';>- ¢q(W), and ¢q: W --';>- ¢q(W) are iso­
morphisms so that ¢q-l'a-1'T-1.C: R--,;>-q x Wis a smooth curve. Define 
c by 

c(t) = (T.a'¢q)-l.c(t) + V - (T.a'¢q)-l.c(O) 

c:R--,;>-q x We U" x Wisasmoothcurvebasedat(q,v)andg·c=c. D 

Proposition 5.15. Let F be a subbundle of E. Then there exists another 
subbundle G of E }vith FEB G = E. G is called a complementary subbundle to 
F. 

Proof Choose a metric s: X --';>- F as given by Proposition 5.6. Let 
7Ts: E --';>- E be given by orthogonal projection onto Fusing s, i.e., on each 
fiber (7Ts)p: Ep --';>- Fp is orthogonal projection. 7Ts is a homomorphism and 
G = Ker 7Ts is a subbundle of Eby Proposition 5.11. At eachp in X, Fp EB Gp 
= Ep so E = FEB G. D 

§6. Integration of Vector Fields 

There is a close relationship between vector fields and smoothly param­
etrized families of curves which we shall explore now. 

Definition 6.1. A one parameter group on X is a smooth mapping 
¢: X x R --';>- X satisfying ¢o = idx and ¢s+t = ¢s'¢t for all s, t in R where 
¢t(x) = ¢(x, t). 

Notes. (1) Let ¢ be a one-parameter group on X. Then ¢t is a diffeo­
morphism on X for each t. Tn fact, ¢-t = (¢t)-l. 

(2) Let ~p be the tangent vector at t = 0 to the curve p f--7 ¢t(p). Then the 
mapping p f--7 ~p defines a vector field on X called the infinitesimal generator 
of ¢. (The joint smoothness of ¢ in p and t guarantees that ~ is a smooth 
section.) We call a curve c: Ie --';>- X an integral curve for ~ if (dc)rC(d/dt)lr) = 
~c(r) for all r. The following lemma shows that the infinitesimal generator of ¢ 
.is the vector field for which the curves t f--7 ¢t(p) are integral curves. (Note 
Ie = (-e, e) e R.) 

Lemma 6.2. Let ~ be a vector field on a manifold X with p in X. Then 
there is a nbhd U of p in X, an e > 0, and a unique smooth function 
¢: U x Ie --';>- X satisfying; 

(a) The curves t f--7 ¢t(q) are integral curves of ~for all q in U; 
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(b) <Ps'<Pt = <Ps+t on the domain <Pt(V) n V whenever lsi, Itl, and Is + tl 
are < B; and 

(c) <Po == idu· 

Proof This is, in reality, a theorem about first order systems of ordinary 
differential equations. First we transport the problem to Rn. Let V be a chart 
nbhd of p with chart h: V -7- Rn. Choose another nbhd V of p with D compact 
and contained in V. Let'YJ = h*GI V); i.e., 'YJq = (dhh -'(q)(~h-'(q»). 'YJ is a vector 
field defined on an open set in Rn and can be written in the form 'YJ = 

Lf=1 'YJi(8j8xj) where 'YJi are smooth functions on h(V). Let V' = h(D). Then 
for every x in V', we can consider the differential equations 

(*) 1/ = 'YJi(Y) with initial conditions 

yeO) = (Y1(0), ... , Yn(O)) = X. 

By standard theorems on the existence and uniqueness of solutions to a 
system of o.d.e. [see, for example, Hurewicz, Lectures on Differential Equa­
tions, p. 28], there exists a smooth function .p: V' x (- e, e) -7- Rn given by 
.p(x, t) = yet) where Y is the solution to (*) at x. If B is chosen sufficiently 
small, we can assume that 1m y c h(V). Note that .p(x, 0) = yeO) = x so 
that.po = idu'. Next we claim that .pt·.ps = .pt+s when both sides are defined. 
For .pt +s and if1t·.ps are both solutions to dyjdt = 'YJ(y) with initial values 
.pix) when t = O. By the uniqueness theorem for the initial value problem 
these must be identical. 

Finally let <Pt = h -1 ·.pt· h. Then <p: V x (- e, e) -7- X is well-defined and 
satisfies (b) and (c). The uniqueness of <P follows from the local uniqueness of 
.p once (a) has been satisfied. To prove that ~ is the infinitesimal generator of 
<P we apply the following lemma. 0 

Lemma 6.3. Let h : X -7- Y be a diffeomorphism and <Pt a one parameter 
group on X with infinitesimal generator ~. Then h*~ is the infinitesimal generator 
of the one parameter group.pt = h,<pt·h-1. 

Proof For each q in Y, (h*Oq = (dh)h-'(q)Gh-'(qJ. Now t H> <pt(h- 1(q)) 
is a curve representing ~h-l(q) so that t H> h'<ptCh- 1(q)) is a curve representing 
(dh)h-'(q)Gh-'(q»)· 0 

Theorem 6.4. Let ~ be a compactly supported vector field on a manifold X; 
i.e., ~ is zero outside of some compact subset of X. Then there exists a unique 
one parameter group <P for which ~ is the infinitesimal generator. 

Proof Let V be an open subset of X with D compact such that ~ == 0 
off V. Applying Lemma 6.3 we can find for each point p in D an open nbhd 
V p of p, a real number Bp > 0, and a unique smooth function <pp: Vp x 
(-ep , Bp) -7- X satisfying (a), (b), and (c) of the last lemma. Choose a finite 
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for all p in UP1 
Ie 

for allp in X - U UP1 
j=l 

<Pt is well-defined and unique by the uniqueness part of Lemma 3.2. Note that 
<Po = idx. 

Finally, define <P : X x R -+ X by <Pt = (<PWn»n where n is an integer large 
enough so that It/nl < B. This is well-defined for if m is another such integer, 
then 

(<Ptlm)m = «<Ptlmn)n)m = (<Ptlmn)n.m = «<Ptlmn)n)m = (<Ptln)n. 

It is now easy to check that <P is a one parameter group whose infinitesimal 
generator is~. 0 

Notes. (1) On a compact manifold there is a 1: 1 correspondence be­
tween vector fields and one parameter groups. 

(2) For p in X, ~P = 0 iff <Pt(p) = p for all t. Clearly if <Pt(P) = p for all t, 
then ~P = (d<ptfdt)(p)lt=o = O. Conversely, assume that ~P = O. If we can 
show that <Pt(p) = p for all t in some nbhd of 0, then by the arguments in 
Theorem 6.4 we see that <Pt(p) = P for all t. Thus this question is a local one 
and we may assume that X is an open nbhd of 0 in Rn and that p = O. Now 
as in Lemma 6.2 <Pt(O) = yet) where yet) = (Y1(t), ••• , Yn(t» is the solution 
to the system of ordinary differential equations dytfdt = 'l'}1(y) with initial 
condition YI(O) = 0 where ~ = Lf=l 'l'}1(8/8xl)' Since ~o = 0, 'I'},(O) = O. Thus 
YI(t) == 0 is a solution to this system of equations. The uniqueness of such a 
solution guarantees that <Pt(O) = 0 for small t. 

Corollary 6.5. Let X be a manifold and let ~ and 'I'} be two vector fields on 
X. Suppose that ~ is compactly supported and that 'I'} is the infinitesimal genera­
tor of a one parameter group. Then ~ + 'I'} is the infinitesimal generator of a one 
parameter group. 

Note. By taking 'I'} = 0 we see that this Corollary is a slight generaliza­
tion of the last Theorem. 

Proof The proof is essentially the same as that of the last theorem. The 
only difference is in the definition of <p. Let ,p be the one parameter group 
associated with 'I'} and define 

for all p in UP1 
Ie 

for p in X - U UP1 
1=1 

The rest of the proof proceeds as before. 0 
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Transversality 

§1. Sard's Theorem 

In order to state and prove Sard's Theorem we need to know some ele­
mentary (Lebesgue) measure theory. 

Let a = (a1, ... , an) and b = (bb ... , bn) be points of Rn with al < bi 

(1 :s; i :s; n). Denote by C(a, b) the open cube 

{(t1' ... , tn) ERn I al < tl < bi> 1 :s; i :s; n}. 

Define the volume of C(a, b) to be 

vol [C(a, b)] = (b1 - a1)· ... • (bn - an) 

Definition 1.1. 

(1) Let S be a subset of Rn. Then S has measure zero if for every e > 0, 
there is a covering of S by a countable number of open cubes C1, C2 , ••• so 
that Lf= 1 vol [Ca < e. 

(2) Let X be a differentiable n-manifold and let S be a subset of X. Then S 
is of measure zero if there exists a countable open covering U1, U2 , ••• of S 
and charts CPI: UI -+ Rn so that CPI(U n S) is of measure zero in Rn. 

To see that "measure zero" is well-defined on a manifold, we need the 
following two results: 

Lemma 1.2. A countable union of sets of measure zero in Rn is of measure 
zero. 

Proof Let Sl, S2, ... be sets of measure zero in Rn. Given e <0, cover 
each SI by open cubes whose total volume is less than (e/21+ 1). Then the 
union of all of these cubes covers S = Uf= 1 SI and has total volume less 
than e. 0 

Recall that if A : Rn -+ Rn is a linear map, then 

IAI = sup IAvl. 
veRn_{O) Ivl 

Also, if lx,y denotes the line between two points x and y in Rn, then for any 
C 1-differentiable functionf: Rn -+ Rm 

If(x) - f(y)1 :s; Ix - yl sup I(df)pl· 
PElx •y 

(This is just a corollary to the Mean Value Theorem.) 

Proposition 1.3. Let f: Rn -+ Rn be C 1-differentiable and let S be a 
measure zero subset ofRn. Thenf(S) has measure zero. 

30 
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Proof Without loss of generality, S can be assumed to be contained in 
some large open cube. On this cube I (df)p I is bounded by some constant K, so 
that if x, YES, then If(x) - f(y) I < Klx - yl. Given e > 0, cover S by 
open cubes Ci whose total volume is less than e/( Yn K)n. We note that 

f(Ci) is contained in a cube whose volume is (Yn K)n vol (C) using the 
above inequality. (To see this assume Cj has equal length sides with length a. 
Let p be the center of Ci • Then f(Ci) is contained in the sphere of radius 

(KYn/2)a centered atf(p) which is, in turn, contained in a cube centered at 

f(p) all of whose sides have length KYn.a.) Thus the total volume of cubes 
containing f(S) is less than e. 0 

This generalizes immediately to a statement of manifolds. 

Corollary 1.4. Let X and Y be differentiable n-manifolds, let f: X ---i> Y 
be a C1-differentiable, and let Z be a measure zero subset of X. Thenf(Z) has 
measure zero in Y. 

Proof Let", be a chart on Y with domain V. Cover f-1( V) by a count­
able open covering Ub U2 , • .• each of which is the domain for a chart 
~,: Ui ---i> Rn and for whichf(Ui) is contained in V. Since Z is of measure zero 
in Rn, ~i(Z II Ui) has measure zero in Rn. Now ""f'~' -1 is C 1 on its domain 
in Rn. By Proposition 1.3 ""f'~i-1'~i(Z II U,) = "'(f(Z) II Ui) has measure 
zero in Rn. Hence U~ 1 "'(f( Z II Ui )) = "'(f( Z) II V) is of measure zero in 
Rn. So feZ) has measure zero in Y. 0 

Lemma 1.5. Let X be an n-dimensional submanifold of a differentiable 
m-manifold Y with n < m. Then X is of measure zero in Y. 

Proof We first claim that an n-dimensional plane, Rn, in Rm is of measure 
zero. Rn can be subdivided into a countable number of unit n-cubes so it is 
sufficient to show that the unit n-cube in Rm is of measure zero. Let e > ° be 
given. The unit n-cube can be covered by (2/e)n cubes each of volume em. 
Then the total volume of the cubes is em(2/e)n = 2nem- n which converges to 
zero as e f---+ 0 since m > n. Since X is a submanifold of Y, there exists a 
countable covering Ub U2 , • •. of Y with charts "'i: Ui ---i> Rm such that 
"'i(Ui II X) is contained in a fixed n-plane in Rm. Hence ",;CUi II X) has 
measure zero in Rm and X has measure zero in Y. 0 

Proposition 1.6. Let X and Y be differentiable manifolds of dimensions n 
and m respectively with n < m. Let f: X ---i> Y be C1-differentiable, then f(X) 
has measure zero in Y. 

Proof Let s = m - n. Define l: X x RS ---i> Y by l(p, a) = f(p) for 
every p in X and a in RS. X x {O} is a submanifold of X x RS and, by Lemma 
1.5, has measure zero in X x RS. By Corollary 1.4 l(X x {O}) = f(X) has 
measure zero in Y. 0 

We need one more result before coming to Sard's Theorem, namely 
Fubini's Theorem for measure zero sets. 
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Let ia: Rn-l -+ R x Rn-l = Rn be the embedding given by ia(x) = 
(a, x) where a is in R. 

Theorem 1.7. Let A be a compact subset of Rn. Suppose that for every 
a E R, ia -leA) has measure zero in Rn -1. Then A is of measure zero in 
Rn. 

Let I be a closed interval in R. Suppose I is covered by subintervals 
[alo bl], ... , [am' bm]. Then the cover is minimal if the covering minus anyone 
element of the covering is no longer a covering. 

Lemma 1.8. Let I = [a, b] be a closed interval in R. Then the sum of 
the lengths of any minimal covering of I (by closed intervals in 1) is less 
than 2(b-a). 

Proof Order the intervals of a minimal covering [ai' bd, ... , [am' bm] 
so that al ~ a2 ~ ... ~ am' Then the minimality implies that bl ~ b2 ~ ... 
~ bm. Moreover, [ak, bk] n [ak+2, bk+2] = 0 for 1 ~ k ~ m - 2. Other­
wise ak+2 ~ bk and [ak+1o bk+d c [ak' bk] U [ak+2, bk+2] since ak ~ ak+l 
and bk+l ~ bk+2. Hence the sum of the lengths of [alo bl], [a3' ba], [a5, b5], . . : 
is less than b - a. Similarly for [a2' b2], [a4' b4], • • •• 0 

Lemma 1.9. Suppose the set ia -leA) is covered by open sets {Ul> ... , Uk} 
ofRn-l. Then there exists an open intervalla about a such that {Ul , ... , Uk} 
covers it -leA) for every t in Ia. 

Proof If there were no such interval, then there would exist a sequence 
{ta~l of real numbers with Liml .... "" tl = a and a point XI E itt-leA) such that 
XI is in the complement of Ul u· .. U Uk' Since (tlo XI) is in A and A is com­
pact, there exists a subsequence of the x/s which converges to some point 
x in Rn-l and for which (a, x) is in A. Since U~=l UI is open, x ¢:. U~=l Ui • 

But (a, x) E A implies that x E ia -leA) and the fact that {Ul , ... , Uk} covers 
ia -leA) gives a contradiction. 0 

Proof of Theorem 1.7. Since A is compact and hence bounded, there is a 
closed interval I such that A c I x Rn-l. By hypothesis ia -leA) has measure 
zero for each a in I. Thus, given e > 0, there is a cover of ia -leA) by open 
cubes in Rn-\ {Cia, ... , CN"a} such that Lf!l vol (Cia) < e. By Lemma 1;9, 
there exists an open interval Ia in I about a so that Cia, ... , CN"a covers 
it -leA) for every tin Ia. Hence the collection of open sets {Ia x Cia} covers A. 
Thus there is a finite subcover {Ia x C,an:J:S N" where B is some finite set. 

Let Ja = i a. The finite collection {Ja}aeB covers I and can be assumed to 
form a minimal covering of I. Then Lf!l vol [Ja x Cia] ~ e vol [Ja]. Hence 

N" L: L: vol [Ja x Cia] ~ e L: length (Ja) < 2e length (I). 
aeB '=1 aeB 

Since vol [Ia x Cia] = vol [Ja X Cia], the total volume of the covering of A 
by {Ia X C,an:J:SN" can be made arbitrarily small, A has measure zero in 
Rn. 0 
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Since all of the results given in this section have been about measure zero 
sets, it is instructive, perhaps, to show at this time the following obvious but 
surprisingly complicated result. 

Proposition 1.10. Let S be a nonempty open subset of Rn. Then S is not 
of measure zero. 

Proof Every open set S contains a nonempty open cube C whose 
closure is contained in S. Let {C!}~ 1 be an open covering of S by open cubes. 
Since C is compact in Rn, there is a finite subcover of C by Cb ••• , Cm. We 
claim that vol [C] ::; I~=l vol [Cal. If this is true then we are done since 
I~l vol [Cd;::: II"=l vol [Ci] ;::: vol [C] > O. So the sums of the volumes 
of cubes in a covering of S are bounded away from zero and S does not have 
measure zero. To prove the claim, let Na = number of integer lattice points 
of Rn (Le., points of Rn all of whose coordinates are integers) which are con­
tained in Ca. Now Ca = C(aa, bIZ) where aa, ba ERn. Let aa = (ala, ... , ana) 
and ba = (b1 a, ... , bn a). Then for each j there are at most bt" - at" + 1 and 
at least It" = max {bt" - at" - 1, O} integers in [at", bt"]. Hence 

n n 

TI It" ::; Na ::; TI (bt" - at" + 1). 
j=l j=l 

Similarly let N = number of integer lattice points in C = C(a, b) and 
obtain similar bounds on N. Certainly N ::; II"=l Ni since {Ca}~=l covers C. 
Hence 

n m n 

TI Ij::; L: TI (bt" - at" + 1). 
j=l a=lj=l 

For A in R sufficiently large, let CA = C(Aa, Ab) and CaA(Aaa, Aba). Apply the 
above argument to CA and Ca A to obtain 

n m n 

TI (Ab j - Aaj - 1) ::; L: TI CAbt" - Aat" + 1) 
j=l «=lj=l 

Hence 

TI bj - aj - - ::; L: TI bt" - at" + - . n ( 1) m n ( 1) 
j=l A a=l f=l A 

Taking the limits of both sides as A -+ <X) we get 

n m n m 

vol [C] = TI (b j - af) ::; L: TI (bt" - at") = L: vol [Cal. 0 
j=l a=l f=l a=l 

Definition 1.11. Let X and Y be differentiable manifolds and f: X -+ Y 
a C1-mapping. Then 

(1) corank (df)p = min (dim X, dim Y) - rank (df)p. 
(2) a point p E X is a critical point of f if corank (df)p > O. Denote by 

C[f], the set of critical points of! 
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(3) a point q E Y is a critical value off if q E f( C [f]). 
(4) a point p E X is a regular point offifp rt C[f]. 

Transversality 

(5) a point q E Y is a regular value off if it is not a critical value off. So, 
in particular, a point not in Image f is a regular value. 

Theorem 1.12. (Sard's Theorem.) Let X and Y be smooth manifolds. 
Let f: X -»- Y be a smooth mapping. Then the set of critical values off has 
measure zero in Y. 

Notes. (1) Sard's Theorem can be generalized as follows: Assume that 
k > max (dim Y - dim X,O). Iff is a Ck-differentiable mapping, then the 
measure of the set of critical values is zero. Since we will be using only smooth 
mappings in later chapters we will prove only the more restricted version 
here. 

(2) If dim X < dim Y then Sard's Theorem follows directly from 
Proposition 1.6 and the fact that the image of a subset of measure zero has 
measure zero. 

Sard's Theorem is in reality a local theorem and follows from: 

Proposition 1.13. Letf: U -»- Rm be smooth where U is an open set in Rn. 
Then the set of critical values off is of measure zero in Rm. 

The proof of Theorem 1.12 proceeds from Proposition 1.13 precisely as 
the proof of Corollary 1.4 proceeded from Proposition 1.3. The details are 
left for the reader. 

The proof of Proposition 1.13 will be done by induction on n. Start the 
induction at n = O. RO is, by convention, just a point and the proposition is 
trivial in this case. 

By induction, we assume that Sard's Theorem holds for all smooth 
mappings of Rn-l -»- Rm, where m is arbitrary. 

Lemma A. Let f: U -»- Rm be smooth, where U is an open subset of Rn. 
Let fh ... , fm: U -»- R be the coordinate functions given by f. Assume that 
fl(Xb ... , xn) = Xl for all (Xl' ... , xn) E U. Let C = critical point set off. 
Thenf(C) has measure zero in Rm. 

Proof. The proposition is trivial for n = 1, so we may assume n > 1. 
GivenaER, recall thalia: Rn-l-»-Rn by ia(x) = (a, .\')where.\' = (X2,"" xn). 
Define gaCx) = (f2(a, x), ... ,Jm(a, x)). Then the following diagram com­
mutes. 

u l . ) 

where Ua = ia -l( U). 
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Note that 

Hence rank (df)(a,x) = rank (dga)x + 1; i.e., x is a critical point of ga iff 
(a, x) is a critical point off So the critical point set of ga is ia -l(C). 

By the induction hypothesis gaCia -l(C)) is of measure zero in Rm-l. 
Since ia -l(f(C)) = gaCia -l(C)) we may conclude by Theorem 1.7 thatf(C) 
has measure zero. (Note that C is a closed set, which is a countable union of 
compact sets. Thus f(C) is a countable union of compact sets so that 1.7 
applies.) D 

Let f: U -+ Rm be smooth. Let C = C[f] be the critical point set of f 
Denote by 

C; = {p E C I ~;~fz(p) = 0 whenever 0 < lal :::; i and 1:::; I :::; m}­
(i=I,2,oo.) 

The outline of the rest of the proof of Sard's Theorem is: 

Lemma B. fCC - Cl ) has measure zero. 

Lemma C. f( C; - Ci + 1) has measure zero for i ~ 1. 

Lemma D. For some i, f( C;) has measure zero. 

Proof of Lemma B. Let P be in C - Cl . Then there exists some partial 
derivative of fat P which is not zero. Assume that (8flj8xl)(p) i= O. Let 
h: U -+ Rn be defined by hex!> ... , Xn) = (fl(X1 , ••• , Xn), X2 , ..• , xn). Then 
atp 

which is invertible. By the Inverse Function Theorem, there exists open sets 
U' c U and VeRn so that h: U' -+ V is a diffeomorphism. Let g: V -+ Rm 
be given by g = f·h-1, thenf(C[f] (J U') = g(C[g]). Now gl(Yb"" Yn) = 

fl·h-l(Yl,' .. , Yn) = YI. So we can apply Lemma A to g, and get that 
g( C[g]) has measure zero in Rm. D 

Proof of Lemma C. On Ci - Ci + 1 all ith partial derivatives vanish but 
not some (i + l)st partial derivative. We may assume that g is an appropriate 
ith partial derivative so that (8gj8xl)(P) i= O. Let h: U -+ Rn be defined by 
hex) = (g(x), X2 , ••• , xn). Then (dh)p is non-singular, so that It restricted to 
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u~ c U is a diffeomorphism, where U~ is an open nbhd of p. Let V = h(U;). 
By definition g(Ci) = 0, so h(Ci n U;) c {O} X Rn-l in Rn. Let k: Rn-l--+­
Rm be defined by f·h- 1 restricted to V n ({O} x Rn-l). 

Finally we note that f(Ci n U;) c k(C[kD and that by the induction 
hypothesis k(C[k]) has measure zero. Hence for eachp in Ci - Ci+1 , there is 
a nbhd U; of p for which f(C! n U;) has measure zero. We can choose a 
countable number of the U;'s to cover Ci - Ci+l' So f(Ci - Ci+l) has 
measure zero in Rm. 

Proof of Lemma D. Without loss of generality, we may assume that U 
is an open cube with sides of length b, since U may be covered by a countable 
union of such sets, and thatfis defined on a nbhd of V. By Taylor's Theorem, 
if x E Ck, and y E U, then (*) !f(y) - f(x)! :;:; K!x - y!k+l where K is some 
constant independent of y. Let r be a large integer. Subdivide U into subcubes 
with sides oflength blr denoted by Bb ... , BN where N = rn. Nowf(Ck nBs) 
is contained in a ball D of radius K(blr)k+l using (*), so the circumscribed 
cube has volume (2K(blr)k+l)m. Thus f(Ck) is contained in the union of 
cubes whose volume is 

m (~) m(k +1) _ (2K)mbm(k + 1) • 

N(2K) - mk+m n r r 

When k > (nlm) - 1, mk + m - n > O. Therefore, as r --+- 00, the volume 
of the cubes containing f( C,J --+- O. So f( Ck ) has measure zero in Rm. 0 

CO/'ollary 1.14. (Brown). The set of regular values of a smooth mapping 
f: X--+- Y is dense in Y. (Recall from 1.11 that a point in Y which is not in 
Imf is a regular value off) 

Proof Points of Yare either critical values or regular values for f If the 
set of regular values is not dense, then there is a nonempty open set in Y 
consisting entirely of critical values. We have shown in Proposition 1.10 an 
open set of Rn does not have measure zero; this clearly extends to nonempty 
open subsets of Y, by using charts. Thus the set of critical values off does not 
have measure zero, a contradiction to Sard's Theorem. Hence the regular 
values off are dense in Y. 0 

Exercises 

(1) Let f: X--+- Rm be a 1: 1 immersion and let n = dim X. Let v i= 0 
be in Rm and let 7Tv : Rm --+- Rm-l be the orthogonal projection whose kernel 
is the subspace (v). Show that if m > 2n + 1, then there exists a vector v so 
that 7Tv ·f: X--+- Rm-l is a 1: 1 immersion. Hint: Consider the composite 
mapping g defined by 

TX - {O-section} (dt) TRm = Rm x Rm ~ Rm _ {O} ~ pm-l 

where 71"2 is projection on 2nd factor and if1 is the standard projection of Rm 
onto projective (m - I)-space. Show thatg is well-defined; i.e., 0 rf= 1m 7T2·(df) 
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and that 7rv·f is an immersion iff v rt 1m g where v is the point in pm-l 
corresponding to the subspace (v) in Rm. Next consider the composite map­
ping h defined by 

x x X - ~X ~ Rm - {O} --+ pm-l 

where/(p, q) = f(p) - f(q). Show that trv 0 fis 1: 1 iff v rt 1m h. 
(2) Use Exercise (1) above and the Exercise of I, §4 to conclude that any 

compact n-manifold can be realized as a submanifold of R2n+l. 
(3) Observe that the immersion part of the proof of Exercise 1 is valid 

when m > 2n. Thus show that there exists an immersion of any compact 
n-manifold into R2n. 

(4) Does there exist a smooth functionf: Rn --7 Rn such thatf-l(a) is an 
uncountable set for each a in Rn? 

§2. Jet Bundles 

Definition 2.1. Let X and Y be smooth manifolds, and p in X. Suppose 
f, g: X --7 Yare smooth maps withf(p) = g(p) = q. 

(1) f has first order contact with g at p if (d!)p = (dg)p as mapping of 
TpX --7 TqY. 

(2) f has kth order contact with g at p if (d!) : TX --7 TY has (k - l)st 
order contact with (dg) at ,every point in TpX. This is written as f ~ Ie g at p. 
(k is a positive integer.) 

(3) Let JIe(X, y)p,q denote the set of equivalence classes under "~Ie at p" of 
mappings f:X --7 Y where f(p) = q. 

(4) Let JIe(X, Y) = U(P,q)EXXYJIc(X, Y)p,q (disjoint union). An element a 

in JIe(X, Y) is called a k-jet of mappings (or just a k-jet) from X to Y. 
(5) Let a be a k-jet, then there exist p in X and q in Y for which a is in 

JIc(X, Y)p,q. p is called the source of a and q is called the target of a. The 
mapping a: JIc(X, Y) --7 X given by a f-+ (source of a) is the source map and 
the mapping f3: JIe(X, Y) --7 Y given by a f-+ (target of a) is the target map. 

Note that given a smooth mapping f: X --7 Y there is a canonically 
defined mappingjlcf: X --7 JIc(X, Y) called the k-jet off defined by j'1(p) = 

equivalence class offin JIc(X, Y)p.f(P) for every p in X. We will also show that 
j1cf(p) is just an invariant way of describing the Taylor expansion off at p 
up to order k and that Pi is a smooth mapping. 

Note thatJO(X, Y) = X x Y, sofhas ~o contact withg atp ifff(P) = 

g(p), andjOf(p) = (p,j(p)) is just the graph off 

Lemma 2.2 Let U be an open subset of Rn and p be a point in U. Let 
f, g: U --7 Rm be smooth mappings. Then f ~ Ie g at p iff 
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for every multi-index a with lal :::; k and 1 :::; i :::; m where j; and gi are the 
coordinate functions determined by f and g, respectively and Xl> ••• , Xn are 
coordinates on U. 

Proof We proceed by induction on k. For k = 1'/"'1 g iff (df)p = (dg)p 
iff the first partial derivatives of f at p are identical with the first partial 
derivatives of g at p. 

Assume the Lemma is true for k - 1. Let Yl> •.• , Yn be the coordinates of 
Rn in U x Rn = TU. Then (df): U x Rn -+ Rm x Rm = TRm is given by 

(x, y) r-+ (f(X),]l(Y), ... ,]m(Y)) 

where 

- ~ oj; 
j;(x, y) = L.. ox (x)YJ. 

j=l j 

Similarly for (dg). 
By assumption (df) '" k-1 (dg) at every point (p, v) E {p} X Rn. By induc­

tion, the partial derivatives of (df) at points (p, v) E {p} X Rn are equal to 
the partial derivatives of (dg) at these same points. Let a be an n-tuple of 
non-negative integers with lal :::; k - 1, then 

olay; olalg, 
oxa (p, v) = oxa (p, v). 

Evaluate at v = (0, ... , 1, ... , 0) with the 1 in the jth coordinate. Then we 
have that 

Olal oj; olal Ogi 
OXaOXj (p) = Oxa OXj (p). 

Clearly all partial derivatives off and g of order :::; k are obtained this way. 
To obtain the converse, just note that the partial derivatives of (df) of order :::; 
k - 1 are determined by knowing the partial derivatives off of order :::; k. 0 

Corollary 2.3. f and g: U -+ Rm have kth order contact at p iff the Taylor 
expansions off and g up to (and including) order k are identical at p. 

Lemma 2.4. Let U be an open subset ofRn and Van open subset ofRm. 
Let f1'};: U -+ V and gl, g2: V -+ Rl be smooth mappings so that gl·f1 and 
g2 ·f2 are defined. Let p E U and suppose that f1 '" kf2 at P and gl '" k g2 at 
q = f1(P) = f2(P)' Then gl ·f1 '" k g2 ·f2 at p. 

Proof Again proceed by induction. For k = 1, this is just the chain 
rule, i.e., 

d(gl·f1)P = (dg1MdfI)p = (dg2)q(df2)p = d(g2·f2)p. 

Assume true for k - 1. Then again apply the chain rule, using the inductive 
assumption that 

at all (p, v) in {p} x Rn. 0 

Proposition 2.5. Let X, Y, Z, and W be smooth manifolds. 
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(1) Let h: Y --+ Z be smooth; then h induces a mapping h* : J"(X, Y)--+ 
J"(X, Z) defined as follows; Let 0' be in Jk(X, Y)P.q and letf: X --+ Y represent 
o'. Then h*(O') = the equivalence class of h·f in Jk(X, Y)P,h(q)' 

(2) Let a:Z--+W be smooth. Then a*·h*=(a·h)* as mappings of 
J"(X, Y) --+ Jk(X, W) and (idy)* = idJk(x,y). Thus if h is a diffeomorphism, 
h* is a bijection. 

(3) Let g: Z --+ X be a smooth diffeomorphism; then g induces a mapping 
g* : J"(X, Y) --+ J"(Z, Y) defined as follows: let T be in J"(X, Y)p,q and let 
f: X --+' Y represent T. Then g*( T) = equivalence class off· g in Jk( X, Z)g -l(p),q' 

(4) Let a: W --+ Z be a smooth diffeomorphism. Then a*g* = (g.a)* as 
mappings of Jk(X, Y) --+ J"(W, Y) and (idx)* = idJk(x,y) so that g* is a bijec­
tion. 

Proof A simple application of Lemma 2.4 shows that h* and g* are 
well-defined mappings. The rest of the proposition is equally easy. 0 

Let An" be the vector space of polynomials in n-variables of degree :s; k 
which have their constant term equal to zero. Choose as coordinates for An" 
the coefficients of the polynomials. Then An" is isomorphic to some Euclidean 
space and is, in this way, a smooth manifold. Let B~,m = 81;"=1 An". B~,m is 
also a smooth manifold. 

Let Ube an open set in Rn andf: U --+ R be smooth. Define T"f: U --+ An" 
by T,,(f)(xo) is the polynomial of degree k given by the first k terms of the 
Taylor series off at Xo after the constant term. 

Let V be an open subset of Rm. Then there is a canonical bijection 
Tu,v:J"(U, V)--+ U x V x B~,m given by 

Tu,v(O') = (xo,Yo, T"fl(XO)' ... , Tdm(xo» 
where 

and 

Xo = a(O') = source of 0', 

Yo = fi(O') = target of 0', 

f: U --+ V is smooth and represents 0', 

It: U --+ R (1 :s; i :s; m) are the coordinate functions associated to f 

By Corollary 2.3, T u.v is well-defined; i.e., independent of the choice off, 
and injective. That T u, v is onto is clear. 0 

Lemma 2.6. Let U and U' be open subsets ofRn and let Vand V' be open 
subsets of Rm. Suppose h: V --+ V' and g: U --+ U' are smooth mappings with 
g a diffeomorphism. Then 

Tu'.v,(g-l)*h*Tij}: U x V x B~,m --+ U' X V' x B~,m 

is a smooth mapping. 

Proof Let D = (xo, YO,fl(X), . . . ,fm(x» with It E An" (1:s; i :s; m). 
Define f: U --+ Rm by f(x) = Yo + (fl(X - xo), ... ,fm(X - Xo». Thenf(xo) = 
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Yo and let a = equivalence class of fin Jk(U, V)(xo.Yo)' Tu.v(a) = D. Now 
(g-l)*h*(a) = r(h.f.g-l)(xo). 

So 

Tu'.v,(g-l)*h*Tu}(D) = TU'.V·(jk(h·f·g-l)(XO» 

= (g(xo), h(yo), Tk((h·f·g- 1)1)(g(XO»,"" Ti(h·f·g-l)m)(g(x») 

where (h·f·g-l)i: U' -7 R are the coordinate functions of h·f·g-l: U' -7Rm. 

To show that this mapping is smooth we need only show that the mapping of 
U x V x B~.m -7 Ank given by D f--7>- Tk((h·f·g-1)i)(g(xo» is smooth. 

Let c{> = h·f·g-1. Then 

To show that D f--7>- Tk(c{>i)(g(XO» is smooth it is enough to show that D f--7>­

(olalC{>doxa)(g(xo» mapping U x V x B~,m -7 R is smooth for each multi­
index a for which lal ~ k. This is done by the chain rule and induction on· 
I = lal. 

In fact, one can show by induction that (olalC{>doxlX)(g(xo» is sums and 
products of terms of the form 

of. (0) 
ox; , 

a -1 

~~. (g(xo» 
J 

where Yb ... , Ym are coordinates on Rm and hb gi are the coordinate functions 
determined by hand g respectively. Each of these terms vary smoothly with 
D; hence (olalC{>dox")(g(xo» varies smoothly with D. 0 

Theorem 2.7. Let X and Y be smooth manifolds with n = dim X and 
m = dim Y. Then 

(1) ]k(X, Y) is a smooth manifold with 

dim Jk(X, Y) = m + n + dim (B~,m)' 

(2) a: Jk(X, Y) -7 X, f3 : Jk(X, Y) -7 Y, and a X f3: ]k(X, Y) -7 X X Y 
are submersions, 

(3) If h: Y -7 Z is smooth, then h*: JI'(X, Y) -7 Jk(X, Z) is smooth. 
If g : X -7 Y is a diffeomorphism, then g* : Jk( Y, Z) -7 ]k(X, Z) is a diffeo­
morphism. 

(4) If g : X -7 Y is smooth, then rg : X -7 Jk(X, Y) is smooth. 

Proof 
(1) Let U be the domain for a chart c{> on X and V be the domain for a 

chart f on Y. Let U' = c{>(U) and V' = f(V). Then (c{>-l)*f*: ]k(U, V)-7 
]k(U', V') and TU,V == TU',V,·(c{>-l)*f*: ]k(U, V) -7 U' X V' x B~,m' Give 
Jk(X, Y) the manifold structure induced by declaring that TU.V is a chart. 
To see that this structure is well-defined we need only check to see what hap-
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pens on overlaps. Let ,pl, .p1> U1> V l , U~, V~ be the data for another chart 
TU1,Vl' Then note that 

TU1,Vl .( TU,V) -1 = T U1',V1-C,pl-l)*(.pl)*(.p*) -l,p*Tu'!v' 

= TU1',V1-C,pl-l·,p)*·(.pl·.p-l)*Tu,!v' 

since lower *'s and upper *'s commute. This last mapping is smooth by 
Lemma 2.6. 

(2) In local coordinates a has the form 

,p.a'Tij.\r(D) = ,p.a.(.p*)-l.,p*Tu'!v.(D) = ,p.a·r(.p-l·f·,p)·,p-l(xo) 

wherefis defined in Lemma 2.6. Thus ,p.a'Tij.\r(D) = Xo since a.peg = idx 
for any mapping g. So a is a smooth mapping and a submersion. Similarly 

.p'{3'Tij.\r(D) = .p·{3·r(.p-l·f·,p)·,p-l(xo) 

= .p • .p-l·f·,p·,p-l(XO) = f(xo) = Yo 

since {3 ·rg = g for any mapping g. Thus {3 is also a smooth mapping and a 
submersion. Since T(p,qlX x Y) ~ TpX E8 Tq Y, a X {3: Jk(X, Y) -+ X X Y 
is a submersion. 

(3) is obvious from the calculations in (1). 
(4) rg: X -+Jk(X, Y). Suppose g: Rn -+ Rm. Thenrg: Rn -+Jk(Rn, Rm) 

= Rn x Rm x B~.m and is given by 

jkg(XO) = (xo, g(xo), (Tkgl)(XO), ... , (Tkgm)(XO)) 

where gl, ... , gm are the coordinate functions of g. Now Tkgj is a smooth 
function being only the sum of partial derivatives of the gt's. So in the local 
situation rg is a smooth function. With the standard use of the charts given 
above, one can see that rg is smooth as a mapping of X -+ ]k(X, Y). D 

Remarks. 
(1) Jk(X, Y) is, in general, not a vector bundle since there is no natural 

addition in]k(X, Y)p,q' However, if Y = Rm, then Jk(X, Y) is a vector bundle 
over X x Rm where the addition of jets in]k(X, Rm)p,q is given by the addition 
of functions representing these jets. 

(2) ]leX, Y) is canonically isomorphic to Hom (TX, TY) where the iso­
morphism .p is given as follows: Let a be a I-jet with source p and target q, 
and letf: X -+ Y represent a. Then .p(a) = (df)p in Hom (TpX, TqY). As an 
exercise show that .p is well-defined and a diffeomorphism. Also note that 
a X {3 = 7T'.p where 7T is the projection which makes Hom (TX, TY) into a 
vector bundle over X x Y. Using this identification we can think of ]leX, Y) 
as a vector bundle over X x Y. 

(3) Although ]k(X, Y) is not a vector bundle, .it does have more structure 
than just the fact that it is a manifold would indicate, We isolate that struc­
ture with the following Definition. 

Definition 2.B. Let E, X, and F be smooth manifolds and let 7T : E -+ X 
be a submersion. Then E is a fiber bundle over X with fiber F and projection 7T 
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if for every p in X, there exists a nbhd U of p and a diffeomorphism CPu : Eu --+ 
U x F where Eu = 'IT-I(U) such that the diagram commutes 

CPu Eu ----+ U x F 

u 
where 'lTu is the obvious projection. 

Notes. (1) Ep is diffeomorphic (under CPu) with F for all p in X. 
(2) Clearly every vector bundle of dimension n over X is a fiber bundle 

with fiber F = Rn. But not every fiber bundle with a Euclidean space as 
fiber is a vector bundle. (Consider Jk(X, Y) --+ X x Y!) 

Exercises 

(1) There is an obvious canonical projection 'lTk.!: Jk(X, Y) --+JZ(X, Y) 
for k > I defined by forgetting the jet information of order > I. Show that 
Jk(X, Y) is a fiber bundle over JZ(X, Y) with projection 'lTk.! and identify the 
fiber. 

(2) Let P(X, Rh.o be the set of alII-jets whose target is O. 

(a) Show that P(X, Rh.o is a vector bundle over X whose projection 
is the source mapping. 

(b) Show that P(X, Rh.o is canonically isomorphic (as vector 
bundles) with T* X. 

§3. The Whitney Coo Topology 

Definition 3.1. Let X and Y be smooth manifolds. 

(i) Denote by C "'(X, Y), the set of smooth mappings from X to Y. 
(ii) Fix a non-negative integer k. Let U be a subset of Jk(X, Y). Then 

denote by M(U) the set 

{fE C"'(X, Y) I rf(X) c U}. 

Note that M(U) n M(V) = M(U n V). 
(iii) Thefamily of sets {M(U)} where U is an open subset of Jk(X, Y)form 

a basis for a topology on COO(X, Y). This topology is called the Whitney Ck 
topology. Denote by Wk the set of open subsets of C 00 (X, Y) in the Whitney Ck 
topology. 

(iv) The Whitney COO topology on COO(X, Y) is the topology whose basis is 
W = Uk'=o Wk' This is a well-defined basis since Wk c Wz whenever k ::;; I. 
To see this use the canonical mapping 'lTk! : JZ(X, Y) --+ Jk(X, Y) which assigns 
to a in JZ(X, Y) the equivalence class off in Jk(X, Y) where f represents a. 
Then M(U) = M«'lTk!)-I(U))for every open set U in Jk(X, Y). 
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In order to develop a feeling for these topologies we will describe a nbhd 
basis in the Whitney C k topology for a function f in C "'(X, Y). Choose a 
metric don Jk(X, Y) compatible with its topology. This is possible since all 
manifolds are metrizable by (1,5.9). Define 

BoCf) == {g E C"'(X, Y) I Vx EX, d(jkf(x),jkg(x)) < o(x)} 

where 0: X ~ R + is a continuous mapping. We claim that BoCf) is an open 
set for every such O. For consider the continuous mapping,:l: Jk(X, Y) ~ R 
defined by a 1---+ o(a(a)) - d(jkf(a(a)), a). Let U = ,:l-l(O, 00). Then Uis open 
in Jk(X, Y)andBoC/) = M(U).Nowlet Wbean open nbhd of lin C"'(X, Y), 
let V be an open set in Jk(X, Y) so that fE M(V) c W, and let m(x) = 

imf {d(a,jkl(x)) I a E a-lex) n (Jk(X, Y) - V)}. Note that m(x) = 00 if 
a-lex) c V. Let 0: X ~ R+ be any continuous function such that o(x) <m(x) 
for every x in X. It is possible to choose such a 0 since m is bounded below on 
any compact subset in X by a positive constant. Then, by using a partition of 
unity argument, one may construct a 0 globally. With this 0, BoCf) c W. 
Finally, let y and 0 be continuous functions mapping X into R +. Define 
T)(x) = min {a(x), o(x)} and note that T): X ~ R + is continuous and that 
BnCf) = BoCf) n Blf). Thus the collection {BoC/)} forms a nbhd basis of lin 
the Whitney Ck topology on C"'(X, Y). We may think of BoCf) as those 
smooth mappings of X ~ Yall of whose first k partial derivatives are o-close 
tof 

On a compact manifold, we may find a countable nbhd basis off by taking 
Bn(f) = B6n(f) where oix) = lin for all x in X. Clearly this is a nbhd basis 
since if 0 : X ~ R + is continuous and X is compact, then 0 is bounded below 
by lin for some large n. So C"'(X, Y) satisfies the first axiom of countability 
if X is compact. From the above, one may prove easily that a sequence of 
functions In in C"'(X, Y) converges to I (in the Whitney Ck topology) iff 
jkln converges uniformly to jkf Thus, in the local situation, fn and all of the 
partial derivatives offn of order ~ k converge uniformly to f 

On noncom pact manifolds, convergence of fn 1---+ I is a concept stronger 
even than uniform convergence, since one has as much" control at infinity" 
as is wanted. Said precisely, the sequence of mappings fn converge to I 
(in the Whitney Ck topology) iff there is a compact subset K of X such that 
jkfn converges uniformly to jkf on K and all but a finite number of the In's 
equal I off K. The" only if" part is clear, and we shall prove the" if" part by 
contradiction. Assume fn converges to f and that there does not exist a 
compact set K with the above property. Let Kl , K2 , • •• be a sequence of 
compact subsets of X such that Ki c lnt (Ki+l) and X = Ui"=l K j • We now 
define 0 : X ~ R + so that infinitely many fn are not in B6(f). There is a func­
tion fzl in the sequence such that fzl =I f Thus there is an Xl such that 
d(jkfzJXl)' f'i(xl)) = al > O. Choose ml so that Xl is in Kml and let 0 = al 
on K m1 . Assume inductively that we have chosen functions fz1, ... ,.fzs with 
II < ... < Is; a compact set Kms; a continuous positive-valued function 0 
defined on Km s ; and points Xl> ... , Xs in Kms so that for every i ~ s 

d(rfz,(Xi),jkf(Xi)) > o(xj ). 
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Now choosefzs+l where IS+1 > Is so thatfzs+l =1= f off Km,,+l' Let Xs+I be a 
point not in Kms +1 where d{Jkfzs+/xs+ I),rf(xs +1)) = as+1 > O. Then choose 
ms+1 so that Xs+I is in KmS + 1 ' Extend 8 to be a continuous positive-valued 
function on KmS+l which is =as+1 on KmS+l - Kms +l ' In this way we construct 
a subsequencefz1 ,fz2 , ••• and a continuous positive-valued function 8 defined 
on X so that for every j,fzJ rf= Blf). Thus fn does not converge to f and we 
have a contradiction. Finally we note that for a noncom pact manifold X, 
C 00 (X, Y) in the Whitney C k topology does not satisfy the first axiom of 
countability. To see this, let WI. W2 , ••• be a countable nbhd basis off in 
C 00 (X, Y). Then choose for each m a continuous function 8m : X-+- R + so 
that Blim(f) C Wm and a sequence of points Xl, X 2, ... with no limit point. 
Now construct a continuous function 8 so that 8(xm) < 8m(xm) for every m. 
Since WI' W2 , ••• is a nbhd basis off, there is an m such that Wm C Bo(f) 
which implies that Bom(f) C BIi(f) which is a contradiction. 

Thus we see that there is a great qualitative difference in the Whitney C k 

topology on C"'(X, Y) depending on whether or not the domain X is com­
pact. If X is compact then we get a standard type of topology. If, on the other 
hand, X is not compact we have defined a very fine topology on Coo(X, y), 
one with many open sets. In either case, though, a theorem which asserts that 
a given set is dense in C 00 (X, Y) is saying that this set is indeed quite large and 
is a rather strong result. 

Definition 3.2. Let F be a topological space. Then 

(a) A subset G of F is residual if it is the countable intersection of open 
dense subsets of F. 

(b) F is a Baire space if every residual set is dense. 

Proposition 3.3. Let X and Y be smooth manifolds. Then Coo(X, Y) is a 
Baire space in the Whitney Coo topology. 

Proof For each integer k choose a metric dk on Jk(X, Y) which makes 
Jk(X, Y) into a complete metric space. 

Let UI , U2 , ••• be a countable sequence of open dense subsets of C 00 (X, Y) 
and let V be another open subset of Coo(X, Y). We must show that 
V n n~l Ui =1= 0. Since V is open in the Whitney COO topology, there is an 
open subset Win Jko(X, Y) such that M(W) C V and M(W) =1= 0. It is 
clearly enough to show that M (W) n n~ I Ui =1= 0. 

To do this we inductively choose a sequence of functions fl,12, ... in 
Coo(X, Y); a sequence of integers kI. k 2 , ••• ; and for each i an open subset 
Wi in Jkt(X, Y) satisfying: 

(Ai) j; E M(W) n nj:i M(Wj) n Ui' 
(Bi) M(Wi) s:; Ui andj; E M(W1) 

(Ci) (i > 1) ds{J"f.(x);j"f.-I(x)) < 1/2i for all X in X and 1 :s; s :s; i. 

We first show that by choosing the above data we can prove the theorem. 
Define gS(x) = Limi_ooj"f.(x). This makes sense since ds is a complete metric 
and for each X the sequence j'fl(x),Pf2(X), . .. is a Cauchy sequence in 
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]s(X, Y) by (e). Note that jDj;(x) = (x,};(x», so we can define g: X ~ Y 
with gO(x) = (x, g(x». We claim that g is smooth. If so, we are done. 
Indeed, each}; is in M(W) by (A) and thus g = Limi --+ oo }; is in M(W). 
Now, by (B), Ws was chosen so that M(Ws) C Us and by (A) each}; for i > s 
was chosen to be in M(Ws)' Thus g = Limi --+ oo }; is in M(Ws)' Since s is 
arbitrary g E M(W) II nS"'.:l Us and we are done. 

We will now show that g is smooth. This is a local question, so choose x 
in X and compact nbhds K of x and L of g(x) with g(K) C L. By choosing K 
and L small enough we may assume that they are contained in chart nbhds 
and then via these charts that K and L are subsets of Rn and Rm respectively. 
Since the metric ds is compatible with the topology on ]s(X, Y), conditions 
(C) translate, in the local situation, to the fact thatj~ converge uniformly to 
gS on K. Using local coordinates we see that the coordinate functions of 
Ph are just 8liJ l};/8x iJ for /,8/ :s; s. Thus locally 8liJ l};/8xiJ converges uniformly 
on K. Using a classical theorem (Dieudonne 8.6.3, p. 157), 

81iJig 
8xiJ on K for all /,8/ :s; s. 

Since s is arbitrary all partial derivatives of g exist at x, in fact gS(x) = pg(x) 
and g is smooth. 

Finally we will show that one can choose the};, ki' and TV; inductively 
satisfying (Ai), (Bi ), and (Ci). Choose/l in M(W) II Ul . This is possible since 
M(W) is open and nonempty while Ul is dense. Thus (Al) is satisfied. Since 
Ul is open and/is in Ul we may choose kl and an open set Wl in J k l(X, Y) 
so that/l E M(WI) and M(WI) CUI' Thus (BI) is satisfied. (el) is vacuous. 
Now assume inductively that the data is chosen for all j :s; i-I. We will 
choose}; satisfying (Ai) and (ei) and then we can easily choose Wi and ki 
so that (Bi) holds. Consider the set 

D, = {gE eOO(X, Y) / ds(j"g(X),j~_l(X» < ~ 

for 1:s; s :s; i and for all x in X}. 
If Di is open, then Ei = M(W) II n}-:i M(Wj) II D; is open. It is easy to 
check that};_l is in E; using the inductive hypotheses (Ai-I) and (Ei - l) and 
the definition of D i • Since Ui is dense and E; is open and nonempty we may 
choose}; in Ui II Ei • By the definition of E{, (Ai) is satisfied, and by the defi­
nition of D;, (ei) is satisfied. So the proof of the Theorem reduces to showing 
that Di is open in eOO(X, Y). Let 

Fs = {g E COO(X, Y) / ds(j"g(X),j~_l(X» < ~ Vx EX}-

Since D; = Fl II· .. II F;, it is enough to show that Fs is open in eOO(X, Y). 
Now define Ex = a-lex) II E(1/2i,j~_l(X» where a: ]s(X, Y) ~ X is the 
source mapping and 

B(~,j~_l(X») = {UE]S(X, Y) / ds(U,j~-l(X» <~}-
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Let G = UxEX Bx. It is easy to see that Fs = M(G), so that we need only show 
that G is an open subset of ]s(X, Y). Let a be a point in G and x = a(a). 
Note that the mapping 'Y: X --+ R defined by q H> ds{j"j;-l(q),j"j;-l(X» is 
continuous. Thus H = a- llY-l(-812, (12) is an open subset of ]s(X, Y) 
where 8 = 1/2i - d.(a,j"j;_l(x». (Note that 8 > 0 since a is in G.) Clearly 
H n B(812, a) is open and contains a so that if H n B(812, a) c G, we are 
done. Let T E H n B(812, a). To show that T E G, we need to show that 
ds(T,j"j;_l(a(T») < 1/2i. But 

d.(T,j"j;_l(a(T») ::; dsCT, a) + ds(a,j"j;_l(x) 

+ ds(j"j;_l(X),j"j;_l(a(a») < ~ + (~ - 8) + ~ =~. 0 

Proposition 3.4. Let X and Y be smooth manifolds. The mapping 
jk: C"'(X, Y) --+ C"'(X, Jk(X, Y» defined by fH> jkf is continuous in the 
Whitney C'" topology. 

Proof Let V be an open subset of Jl(X, Jk(X, Y». Then M(V) is a 
basic open set in C"'(X, Jk(X, Y». It is sufficient to show that (r)-l(M(V)) 
is an open subset of C"'(X, Y). First we define a mapping 

ak,l: Jk+I(X, Y) --+Jl(X, Jk(X, Y» 

as follows: let a be a (k + I)-jet in Jk+I(X, Y) with source x and letf: X --+ Y 
represent a. By Theorem 2.6 (4), jkf: X --+Jk(X, Y) is a smooth mapping. 
Define ak,zCa) = PV'f)(x). That ak'l(a) is well-defined, i.e., does not depend 
on the choice of representative f, can be seen from Corollary 2.3, and the 
fact that p(rf)(x) depends only on the partial derivative of f at x of order 
::; k + I. For the same reasons, it is clear that ak,l is a smooth mapping. 
(In fact, it is an embedding.) 

Thus ak}(V) is an open subset of Jk+I(X, Y). We claim that 
M(ak.t(V») = (r)-l(M(V» and thus (jk)-l(M(V» is an open subset of 
C "'(X, Y). The claim follows trivially from the fact that ak,l·r + If = P ·rf 
as mappings of X --+Jl(Jk(X, Y». 0 

Proposition 3.5. Let X, Y, and Z be smooth manifolds. Let <p: Y --+ Z be 
smooth. Then the mapping <p*: C"'(X, Y) --+ C"'(X, Z) given by fH> <p·f is a 
continuous mapping in the Whitney C'" topology. 

Proof Let V be an open set in Jk(X, Z). M( V) is then a basic open set of 
C"'(X, Z). Recall from Theorem 2.6 that there is a differentiable mapping 
4>*: Jk(X, Y) --+Jk(X, Z) defined by a = jkj(x) H> r(4)·f)(x). Thus <p* -l(V) 
is an open set in Jk( X, Y). It is easy to check that <p* -l(M (V» --+ M (4)* -l( V» 
so that 4>* is continuous. 0 

We shall now investigate the properties of C"'(X, R) which is a vector 
space over R. It would be nice if C "'(X, R) were a topological vector space, 
but alas, scalar multiplication viewed as a mapping of R x C"'(X, R)--+ 
C "'(X, R) is not continuous unless X is compact. For if X is not compact and 
f: X --+ R is a smooth function with noncompact support, then y!: R--+ 
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Coo(X, R) defined by r H>- rf would be continuous. Thus Limn~'" fin = O. 
But this cannot happen unless there is some compact set K off of which each 
function fin is zero which contradicts the assumption on the support of f 
Addition and multiplication of functions fare better. 

Proposition 3.6. Let X, Y, and Z be smooth manifolds. Then C "'(X, Y) x 
Coo(X, Z) is homeomorphic (in the COO topology) with Coo(X, Y x Z) by using 
the standard identification U; g) H>- f x g where f x g(x) = (I(x), g(x». 

To prove this proposition we need the following Lemma on topological 
spaces. 

Lemma 3.7. Let A, B, and P be Hausdorff spaces. Suppose that P is 
locally compact and paracompact. Let 7T A : A --0>- P and TTB : B --0>- P be continuous. 
Set 

A x p B = {(a, b) E A x B I7TA(a) = 7Tib)} 

and give A x p B the topology induced from A x B. Let K c A and L c B be 
subsets such that 7TAIK and 7TBIL are proper. Let U be an open nbhd of K x p L 
in A x p B. Then there exists a nbhd V of K in A and a nbhd W of L in B such 
that V x p W S; U. 

Proof First note that if X and Yare Hausdorff spaces with Y locally 
compact and iff: X --0>- Y is continuous and proper, thenfis a closed mapping. 
For let Z be a closed subset of X and y be a point inf(Z). Let Yb Y2, ... 
be a sequence of points inf(Z) with Limi~oo Yi = y. Since Y is locally com­
pact, there is a compact nbhd V of y. We may assume that Yi in V for all i. 
Choose Xb X2, ... so that f(Xi) = Yi' Since f is proper f-l(V) is compact. 
Thus by restriction to a subsequence we may assume that the sequence 
Xl, X2, . .. converges. Suppose Limi~ ro Xi = x. Then X is in Z since Z is 
closed and by the continuity ofJ,f(x) = y. So Y is inf(Z) andf(Z) is closed. 

Now consider 7T A X 7TB: A x B --0>- P X P. Note that /:::..p, the diagonal of 
P x P, is closed and that A x p B = (7TA x 7TB)-l(/:::..p). So E = A x B -
A x p B is open. For eachp inP, letKp = K () (7T A)-l(p) andLp = L () (7TB)-l(p). 
Note that Kp x Lp = Kp xpLp c U and that Uu E is open in A x B. 
Since 7T AIK and 7TBI L are proper, Kp and Lp are compact. Thus there is an 
open nbhd Vp of Kp in A and Wp of Lp in B such that Vp x Wp c U u E. 
To see this, choose for each (k, 1) in Kp x Lp open nbhds Vk,! of k in A and 
Wk,! of 1 in B such that Vic,! x Wk,! C U u E. For a fixed k, the collection 
{Wk'!heLp is an open covering of Lpo Since Lp is compact, there is a finite 
subcovering Wk'!l, ... , Wk'!m. Set Vk = Vk'!l () ... () Vk'!m and Wk = 
Wk'!l u· .. U Wk'!m and note that Vk x Wk C U u E. The collection 
{VkheKp is an open covering of Kpo So, by compactness, there is a finite 
sub covering V"l, ... , V"n. Set Wp = Wkl () ... () W"n and Vp = Vkl u· .. 
U Vkn • 

To continue with the proof of the lemma, note that 7TAIK and 7TBI L satisfy 
the hypotheses of the first paragraph; thus 7TA(K - Vp) and 7TB(L - Wp) are 
closed in P and Pp = P - 7TA(K - Vp) - 7TiL - Wp) is open. Moreover, 
p is in Pp. Thus the collection {Pp}pep is an open covering of P and since P is 
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paracompact there is a locally finite refinement {PIX}' For each cx choose cx(p), 
a point in P, so that PIX c p"(P). Let V" = V,,(P) U TTA -l(P - PIX) and W" = 

W,,(P) U TTB -l(P - Pa). Let V = nIX Va and W = nIX W". To complete the 
proof, we need to show that K c V, LeW, V and Ware open, and 
VxpWc U. 

(a) K c V. It is clearly enough to show that K c V" for each cx. So assum­
ing that k is in K, we must show that k E V"(P) or k E TTA -l(P - PIX)' But this is 
trivial, since if k rf= V"(P)' then 7TA(k) rf= p"(P)· 

(b) LeW. Just the same as (a). 
(c) V is open. Let v be a point in V. Since {P ,,} is locally finite, there exists 

a nbhd V of 7TA(V) and finitely many PIX'S; namely, P"l'" "P"r' for which 
Vnp", # 0. Let V' = 7TA- 1(V) n V"l n···n V"r and note that V' is an 
open nbhd of v. If V n PIX = 0, then V' c 7T- 1(P - PIX) c V". If V n PIX # 
0, then cx = CXi for some i and V' c V". So V' c V and V is open. 

(d) W is open. Just the same as (c). 
(e) V x p We V. Choose (v, w) E V X p Wand set p = 7Tiv) = 7Tiw). 

Choose an cx such that p is in PIX' Thus v E V" - TTA -l(P - PIX) c V"(P). 
Similarly w is in W,,(P)' Hence (v, w) E V,,(P) X W,,(P) c VuE. Since 7TA(V) == 
7Tiw) (u, v) ~ E, thus V x pW c V. 0 

Proof of Proposition 3.6. The projections 7Ty: Y x Z -+ Y and 
7TZ: Y x Z -+ Z induce continuous mappings (7Ty)*: C"'(X, Y x Z)-+ 
C "'(X, Y) and (7TZ)*: C "'(X, Y x Z) -+ C "'(X, Z) by Proposition 3.5. 
Since the identification of C"'(X, Y x Z) with C"'(X, Y) x C"'(X, Z) is 
given by (7Ty)* x (7Tz)*, it is continuous. To show that the identification is a 
homeomorphism we need only show that it is an open mapping. 

To do this we let (I, g) be in C"'(X, Y x Z). Choose an open set Win 
Jk(X, Y x Z) so that (I, g) is in M(W). Now notice that 

J"(X, Y x Z) = Jk(X, Y) X x J"(X, Z) 

where A = P(X, Y), B = P(X, Z), P = X, and 7TA: P(X, Y) -+ X and 
7TB: Jk(X, Z) -+ X are the respective source mappings. Applying Lemma 3.7, 
there are open sets V in Jk(X, Y) and V in Jk(X, Z) such that V x x V c W. 
Finally we note that M(V) x M(V) c (7Tyh x (7Tz)*(M(W)), so that this 
identification is an open mapping. 0 

Corollary 3.8. Addition and multiplication of smooth functions are 
continuous operations in the C'" topology, i.e., C"'(X, R) x C"'(X, R)-+ 
C"'(X, R) given by (I, g) 1-+ f + g or (I, g) -+ f·g is continuous. 

Proof +: R x R -+ R given by (x, y) 1-+ X + y is continuous so 
(+)*: C"'(X, R x R) -+ C"'(X, R) is continuous by Proposition 3.5. Thus 
via the homeomorphism of C"'(X, R x R) with C"'(X, R) x C"'(X, R) 
given by Proposition 3.6 (I, g) 1-+ f + g is continuous. The proof for multi­
plication is similar. 0 

For completeness sake, we make some further remarks about the Whitney 
C'" topology on C"'(X, Y). 
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Proposition 3.9. Let X, Y, and Z be smooth manifolds with X compact. 
Then the mapping of Coo(X, Y) x COO(Y, Z) ---J>- COO(X, Z) given by (J, g) f---7> 

g·f is continuous. 

Remark. This proposition is not true if X is not compact although if we 
replace COO(X, Y) by the open subset of proper mappings of X into Y, then 
the conclusion is still valid. 

Proof Let D be the fiber product Jk(X, Y) xyJk(Y, Z) described in 
Lemma 3.7, where A = Jk(X, Y), B = Jk(Y, Z), P = Y,7I'A = {3 (the 
target mapping), and 71'B = a (the source mapping). The mapping 
y: D ---J>-Jk(X, Z) defined by (a, T) f---7> T'a is continuous. (Note Toa = 
jk(g.f)(a(a)) wherefrepresents a in Jk(X, Y) and g represents Tin Jk(Y, Z)). 
To prove the proposition it is enough to show that iff is in C "'(X, Y), if g 
is in C"'(Y, Z), and if S s Jk(X, Z) is open with g·fin M(S), then there are 
open sets V c Jk(X, Y) and We Jk(Y, Z) with y(V Xy W) c S. Then 
iff' is in M(V) and if g' is in M(W), g'.f' will be in M(S). Thus composition 
will be a continuous mapping in the Whitney Ck topology for arbitrary k 
and thus continuous in the Coo topology. 

First we note thatr(g·f)(X) = yUkf(X) xyrg(Y)) 

i.e., 

We now apply Lemma 3.7 with K = jkf(X), L = jkg( Y), and U = y-l(S) 
to show the existence of the desired Vand W. That Lemma 3.7 is applicable 
follows from the facts that U is open (since y is continuous), 71'A!K is compact 
(since X and thus K are compact), and 71'B! L is proper (since 71'B·jkg = idy ). 0 

Notes. (1) Let f: X ---J>- Y be smooth; then 71' induces f* : COO( Y, Z)---J>­
COO(X, Z) given by g f---7> g·f The Remark after this last proposition shows 
that if f is not a proper mapping then this" nice" functorially defined map­
ping is not continuous. In particular, if X is an open subset of Y and f is 
just given by inclusion then 71'* is not continuous; i.e., the restriction mapping 
of COO(Y, Z) ---J>- C"'(X, Z) given by g f---7>g!X is not continuous. 

(2) An easy consequence of the proof of Proposition 3.9 is that f* is 
continuous iff is proper. The only use that was made of the compactness of 
X was to show that 71' A! K is proper; this statement is still true if f is proper. 

For future reference we make one last comment about the continuity of 
these types of functorial mappings. If X is a set, let Xl = X X ... x X. 

Proposition 3.10. Let X and Y be smooth manifolds. The mappings 
i)l: COO(X, YY ---J>- COO(X I , yl) given by (fl>'" ,/z) f---7> fl x ... x fz where 
(fl x··· X /z)(Xl>"" Xl) = (fl(Xl), .. . ,fz(xl)) is continuous. 

Proof We assume that I = 2 as the proof for general I is essentially the 
same. First we claim that the mapping y : Jk(X, Y) x Jk(X, Y) ---J>- Jk(X2, y2) 
given by (a, T) ---J>- a X T (where a(a X T) = (a(a), a( T)), fi(a X T) = ({3(a), (3( T)), 
and if f represents a and if g represents T, thenf x g represents a X T) is con­
tinuous. To see that this claim is sufficient, let Wbe an open nbhd inJk(X2, y2) 
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withf x gin M(W). Since y-l(W) is open in Jk(X, Y)2 and containsi1(X) 
x jkg(X), there exist open sets U and V in Jk(X, Y) so thatj'1(X) x PCg(X) 
c U x V C y-l(W). Thus f x g E M(U) x M(V) C 82 -l(M(W)) and 82 

is continuous. 
To see that y is continuous (in fact, a smooth embedding), look in local 

coordinates. In these coordinates for fixed sources and targets y is just a 
linear injection which varies smoothly with X x X x Y x Y. 0 

§4. Transversality 

Definition 4.1. Let X and Y be smooth manifolds and f: X --7 Y be a 
smooth mapping. Let W be a submanifold of Y and x a point in X. Then f 
intersects W transversally at x (denoted by Fm W at x) if either 

(a) f(x) rJ W, or 
(b) f(X)E Wand T[(x)Y = Tf(x)W + (df)xCTxX). If A is a subset of X, 

thenfintersects W transversally on A (denoted by fm Won A) iffm W at x 
for all x E A. Finally, f intersects W transversally (denoted by fm W) if 
fm Won X. 

Examples. 
(1) Let X = R = W, Y = R2, and f(x) = (x, x 2). Then fm W at all 

nonzero x. 

Y 

W 

Notice that f can be perturbed ever so slightly to be transversal to W; e.g., 

-------------+------------- W 
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) 
----------~~+-~----------- W 

(2) Suppose that X, Y, Ware as in (1) and thatfis given by the graph 

Then f does not intersect W transversally on the segments within the brackets 
and does elsewhere. 

(3) If X = R = Wand Y = R3 , then iffis any mapping of X --+ Y, it is 
transversal to Wonly if f(X) n W = 0. Notice that here too a nontrans­
versal mapping can be approximated closely by a transversal mapping, since 
in 3-spacefcan avoid Wby just "going around" it. Moreover,fdoesn't have 
to move far to accomplish this task. This will be made precise shortly. 

In any case, it becomes apparent quickly that the relative dimensions of 
X, Y, and W play an important part in determining what transversality 
means in a particular instance. Also, for any trio X, Y, and W, the set of 
transversal mappings is quite large. In fact, the Thorn Transversality Theorem 
is just this observation formalized. 

Before discussing this theorem, we will give some consequences of the 
property that a mapping is transversal. 

Proposition 4.2. Let X and Y be smooth manifolds, W c Ya submanifold. 
Suppose dim W + dim X < dim Y (i.e., dim X < codim W). Let f: X --+ Y 
be smooth and suppose that fm w. Then f(X) n W = 0. 

Proof Suppose f(x) E W. Then 

dim (Tf(x)W + (df)xCTxX)) ::::; dim Tf(x)W + dim TxX 
= dim W + dim X < dim Y = dim Tf(x)Y' 



52 Transversality 

So it is impossible for Tf(x) W + (df)iTxX) = Tf(x) Y. Hence if F m Wat x, 
f(x) f/= w. 0 

Lemma 4.3. Let X, Y be smooth manifolds, W c Y a submanifold, and 
f: X --+ Y smooth. Let p E X andf(p) E W. Suppose there is a nbhd U off(p) 
in Yand a submersion rp: U --+ Rk(k = codim W) such that W n U = rp-1(0). 
Then fm W at p iff rp·f is a submersion at p. 

Remark. Such a nbhd U always exists. For there exists a chart nbhd U 
of f(p), a chart a: U --+ Rm (m = dim Y) and a decomposition of Rm = 
Rk X Rm-k so that W n U = a- 1(0 X Rm-k). Let TT: Rm --+ Rk be projection 
on the first factor, then let rp = TT·a. 

Proof. One can show easily that Ker (drp)f(P) = Tf(p) W. So fm W at p 

iff Tf(p) Y = Tf(p) W + (dfMTpX) 
iff Tf(p) Y = Ker (drp)f(P) + (dfMTpX) 

Since (drp)f(P) is onto we see that (drp .f)p is onto iff this last equality holds. 
Thus rp·f is a submersion at p iff fm W at p. 0 

Theorem 4.4. Let X and Y be smooth manifolds, W a submanifold of Y. 
Letf: X --+ Y be smooth and assume thatfm W. Thenf-1(W) is a submanifold 
of X. Also codimf-1( W) = codim W. In particular, if dim X = codim W, 
then f-1( W) consists only of isolated points. 

Proof. It is sufficient to show that for every point p Ef- 1(W), there 
exists an open nbhd V of p in X so that V n f- 1(W) is a submanifold. Choose 
U and rp as in Lemma 4.3. Choose Va nbhd of p so thatf( V) c U. By Lemma 
4.3 rp·fis a submersion at p. Thus, by contracting V if necessary, we assume 
that rp·f is a submersion on V. Thus f-1(W) n V = (rp·(fl V»-l(O) is a 
submanifold, by (1,2.8). 0 

Proposition 4.5. Let X and Y be smooth manifolds with Wa submanifold 
of Y. Let Tw = {fE COO(X, Y) Ifm W}. Then Tw is an open subset of 
COO(X, Y) (in the Whitney Ct, and thus, Coo, topology) if W is a closed sub­
manifold of Y. 

Proof. Define a subset U of P(X, Y) as follows: let 0' be a I-jet with 
source x and target y and let f: X --+ Y represent 0'. Then 0' E U iff either 
(i) y ¢ Wor (ii) y E Wand TyY = TyW + (dfMTxX). Recall that M(U) = 
{fE COO(X, Y) I Cj1f)(X) c U}. It is clear that Tw = M(U), so that if we can 
show that U is open, then so is T w. 

We show that V = P(X, Y) - U is closed. Let 0'1, 0'2, ... be a convergent 
sequence of I-jets with O'j in V for all i. Let 0' = Limj_ 00 0'1> we will show that 
0' is in V. Let p = source 0' and q = target of 0'. Since the targets of O'j are in 
W for all i and W is closed, q is in W. Let f: X --+ Y represent 0'. Choose 
coordinate nbhds U of p in X and V of q in Y so thatf(U) c V. Assume that 
the chart defined on V takes W onto a subspace of dimension k. Via these 
charts we may assume that X = Rn, x = 0, Y = Rm, and W = Rk C Rm. 
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Let cp: Rm --+ RmjRk = Rm-k be projection. By applying Lemma 4.3 we see 
thatfm Wat 0 iff cp·fis a submersion at 0 iff cp.(df)o rf: F where 

F = {A E Hom (R", Rm-k) I rank A < m - k}. 

Consider the mapping 

R" x W x Hom (R", Rm) c P(R", Rm) -4- Hom (R", Rm-k) 

given by (x, w, B) 1--+ cp.B. Since F is closed and TJ is continuous TJ-1(F) is 
closed in R" x W x Hom (R", Rm) which, in turn, is a closed subset of 
P(R", Rm). Now V = TJ-1(F) since T = (x, y, (dg)x) is in V iff y is in Wand 
g does not intersect W transversally at 0 iff TJ( T) is in F. Since V is closed in 
this local situation u is in V. 0 

Note that Proposition 4.5 does not hold if W is not assumed to be closed. 
As an example take X = S1, Y = R3, and W = {(t, 0, 0) I 0 < t < I}. 
Transversality in these dimensions means thatf(X) n W = 0. Letf: S1--+ 
R3 be given by f(x, y) = (x + 1, y, 0) where S1 c R2 is thought of as the 
unit circle centered at the origin. Thenfm W but arbitrarily small perturba­
tions off given by J.(x, y) = (x + 1 - e, y, 0) intersect Wand are thus not 
transversal to W. 

Lemma 4.6. Let X, B, and Z be smooth manifolds with W a submanifold 
of z. Let j: B --+ C "'(X, Y) be a mapping (not necessarily continuous) and 
define <I> : X x B --+ Y by <I>(x, b) = j(b)(x). Assume that <I> is smooth and that 
<I> m w. Then the set {b E B I j(b) m W} is dense in B. 

Proof Let W<1) = <I>-1(W). Since <I> m W, W<1) is a submanifold of 
X x B. (Apply Theorem 4.4.) Let 7T be the restriction to W<1) of the projection 
of X x B --+ B. First note that if b rf: 1m 7T, then j(b)(X) n W = 0 so 
j(b) m W. Now if dim W<1) < dim B, then 7T(W<1) has measure zero in B by 
Proposition 1.6 and for a dense set of b in B; namely B - 1m 7T, j(b) m w. 
Thus, in this case, the Lemma is true and we may assume that dim W<1) ~ 
dim B. We claim that if b is a regular value for 7T, thenj(b) m W. If this claim 
is true, then the lemma is proved for we may apply Sard's Theorem (actually 
Corollary 1.14) to 7T. 

To prove the claim let b be a regular value for 7T and let x be in X. If 
(x, b) ¢ W<1), thenj(b)(x) rf: Wandj(b) m Wat x. So we may assume that (x, b) 
is in W<1)' Since b is a regular value for 7T and dim W<1) ~ dim B, we have that 
T(X.b)X x B = T(x,b)W<1) + T(x,b)X x {b}. Apply (d<l»(x,b) to both sides and 
obtain 

(d<l»(x,b)T(x,b)X X B = Tj(b)(X)W + (dj(b)MTxX). 

Now we assumed that <I> m W so 

T<1)(x,b) Y = T<1)(X,b) W + (d<l»(X,b,(T(x,b)X X B). 

Combining these two equalities we have that 

Tf(b)(X)Y = Tj(b)(X)W + (dj(b»iTxX). 

Thus f(b) (h Wat x. n 



54 Transversality 

Remark. If we let G: X x B -» Y be a B-parameter family of mappings 
of X -» Y where Gb(x) = G(x, b) and we let j: B -» COO(X, Y) be given by 
j(b) = Gb, then <l> = G. Assume G rh W, then the set {b E B \ Gb rh W} is 
dense in B. This remark is the basic fact about transversality; that is, if a 
parametrized family of mapping intersects a given submanifold transversely, 
then for a dense set of parameters the individual mappings also intersect this 
sub manifold transversely. 

In the same spirit, we have the following: 

Corollary 4.7. Let G: X x B -» Y be a smooth mapping. Let <l>(x, b) = 
j"Gb(x) Assume that <l> rh W where W is a submanifold of Jk(X, Y). Then the 
set {b E B \ jkGb rh W} is dense in B. 

Proof. Define j: B -» C 00 (X, Jk(X, Y)) by b 1-+ jkGb and apply Lemma 
4.6. 0 

Definition 4.8. Let X and Y be smooth manifolds withf: X -» Y a smooth 
mapping. Let W be a submanifold of Y with W' a subset of W. Thenfrh Won 
w' iffor every x in X withf(x) in W',frh Wat x. 

Theorem 4.9. (Thom Transversality Theorem). Let X and Y be smooth 
manifolds and Wa submanifold of Jk(X, Y). Let 

Tw = {fE COO(X, Y) \j'1"rh W}. 

Then T w is a residual subset of C 00 (X, Y) in the Coo topology. 

Proof. We need to show that T w is the countable intersection of open 
dense subsets. To construct the sets which will go into this countable inter­
section, we first choose a countable covering of Wby open subsets WI, W 2 , • •• 

such that each Wr satisfies 
(a) the closure of Wr in Jk(X, Y) is contained in W, 
(b) Wr is compact, 
(c) there exist coordinate nbhds Ur in X and Vr in Y such that 7T(Wr) C 

Ur X Vr where 7T: Jk(X, Y) -» X x Y is the projection mapping, and 
(d) Dr is compact. 

This choice is possible since around each point w in W, we may choose an 
open set Ww satisfying (a), (b), (c), and (d), since W is a submanifold of 
Jk(X, Y). Since W is second countable we may extract a countable sub­
covering from {WW}WEW' Let 

TWr = {fE COO(X, Y) \frh Won Wr}. 

It is clear that T w = n,:"= I T WT ' Thus the proof reduces to showing that each 
TWr is open and dense in COO(X, Y). 

Define Tr = {g E COO(X, Jk(X, Y)) \ g rh Won Wr}. The proof of Propo­
sition 4.5 can be easily adapted to show that Tr is open since Wr is closed and 
contained in W. Since P': COO(X, Y) -» COO(X, Jk(X, Y)) is continuous (by 
Proposition 3.4), T Wr = (P') -1(Tr) is open. 

We now continue with the harder part of the Theorem, that is, to show 
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that T w, is dense. Choose charts ¢;: UT --+ Rn and Tj : VT --+ Rm and smooth 
functions p: Rn --+ [0, 1] c Rand p': Rm --+ [0, 1] c R such that 

p = {~ 
and 

, {I p = o 

on a nbhd of ¢;.a(Wr) 

off ¢;(Ur) 

on a nbhd of Tj.f3(WT) 

off Tj(Vr) 

where n = dim X, m = dim Y, a is the source map, and f3 is the target 
mapping. The choice of p and p' are possible since Wr is compact. 

We will use Corollary 4.8 to show thatf can be perturbed slightly to be 
transversal to Wr • The perturbation will be accomplished locally using the 
data defined in the previous paragraph. Let B' be the space of polynomial 
mappings of Rn --+ Rm of degree k. For b in B', define gb : X --+ Y by 

{ f(X) if x ¢ UT or f(x) ¢ Vr 
gb(X) = Tj-l(p(¢;(x))p'(rd(x))b(¢;(x)) + Tjf(x)) otherwise. 

The choice of p and p' guarantees that gb is a smooth function from X to Y 
and is just a polynomial perturbation off done locally and smoothed out so 
that it is equal to f off the domain of interest. Define G: X x B' --+ Y by 
G(x, b) = gb(X). By inspection of the formula defining gb, one sees that Gis 
smooth. 

Define <D(x, b) = f'gb(X). In order to apply Corollary 4.8, we need to 
know that <D m Won Wr- Now it is not necessarily true that the transversality 
condition holds on all of X x B', but we will find an open nbhd B of 0 in B' 
so that <D : X x B --+ Jk(X, Y) will m Won some nbhd of Wr • We can then 
apply the Corollary on X x B rather than X x 8'. Assuming that this 
transversality condition holds, then given f: X --+ Y we can find a sequence 
bb b2, ... in B converging to 0 so that jkgbi m W on Wr- Since go = f and 
gb = foff Un Limi~oo gb, = fin COO(X, Y) and Tw, is dense in COO(X, Y). 

Let e = 1- min {d(supp p', Rm - Tj(VT)), d(Tjf3(Wr), (p')-l[O, 1)). Set B = 

{b E B' I Ib¢;(x) I < e Vx E supp p}. So B is an open nbhd of 0 in B'. Suppose 
that (x, b) is in X x B and that <D(x, b) is in Wn then we will show that 
<D : X x B --+ Jk(X, Y) is locally a diffeomorphism. If true, <D would 
satisfy any transversality condition. Since <D(x, b) E Wn we have that 
x E a(Wr) and gb(X) E f3(Wr). Then s = d(Tjf(x), Tjgb(X)) < e since 

So 

Tjgb(X) = p(¢;(x))p'(YJf(x))b(¢;(x)) + Tjf(x). 

s = I p¢;(x)p'Tj!(x)b¢;(x) I {:: ~¢;(x)1 < e 
if ¢;(x) E supp p 
if ¢;(x) ¢ supp p. 

Using the definition of e we observe that Tjf(x) is in Int (p')-l(l) since gb(X) 
is in f3(Wr). Recall that p == 1 on a nbhd of Tja(Wr ) so that Tjgb(X) = b¢;(x) + 
Tjf(x) and that gb(X') = Tj -l(b¢; + Tjf)(x') for all x' in a nbhd of x. Clearly 
this argument also holds for all b' in some nbhd of b in B. It now follows that 
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<1> : X x B -'r Jk(X, Y) is locally a diffeomorphism near (x, b). For let a 
be in Jk(X, Y) near <1>(x, b), let x' = a(a), and let b' be the unique poly­
nomial mapping of degree ::;, k such that a = i'(T)(b'.if; + T) ·f))(x'). Then 
a 1-+ (b ' , x') is a smooth mapping and is the inverse of <1>. 0 

Corollary 4.10. For each integer i, let Wi be a submanifold of Jk!(X, Y). 
Then the set of smooth mappings f: X -'r Y for which j k1m Wi is dense in 
cro(X, Y). If the number of W;'s isfinite and each Wi is closed, then this set is 
open as well. 

Proof Follows immediately from Theorem 4.9 and the fact that 
cro(X, Y) is a Baire space. 0 

Corollary 4.11. Let X and Y be smooth manifolds and Wa submanifold 
of Jk(X, Y) such that a(W) is contained in an open subset U of X. Letf: X -'r Y 
be a smooth mapping and Van open nbhd offin cro(X, Y). Then there exists a 
smooth mapping g in V such that i'g m Wand g = f off u. 

Proof This is really a corollary to the proof of the Thorn Transversality 
Theorem. Under the assumptions of the corollary it is clear that for each Wn 
a(Wr) C U. Thus we can choose Ur so that Ur C U. Then note that the per­
turbation gb = f off Un and thus off U, for each b in B. So the constructed 
transversal mapping does in fact equal f off U. 0 

Corollary 4.12. (Elementary Transversality Theorem). Let X and Y be 
smooth manifolds with Wa submanifold of Y. Then 

(a) the set of smooth mappings of X to Y which intersect W transversally is 
dense in cro(X, Y) and if W is closed, then this set is also open. 

(b) let UI and U2 be open subsets of X with VI C U2 • Letfbe in cro(X, Y) 
and V be an open nbhd off in cro(X, Y). Then there is a smooth mapping 
g: X -'r Y in V such that g = f on UI and g m W off U2 • 

Proof 
(a) Note that JO(X, Y) = X x Y and rf(x) = (x,J(x)). The projection 

[3: X x Y -'r Y is a submersion so [3-I(W) is a submanifold of X x Y. If 
rfm [3-I(W) at x, thenfm Wat x. For eitherjOf(xH [3-I(W) in which case 
f(x) ¢ W or jOf(x) E [3-I(W) and 

T(x.[(X»[3-I(W) + (djOf)xTxX = T(x.[(x))(X x Y). 

Apply (d[3)(x.[(X)) to each side to obtain 

Tf(x) W + (df)x(TxX) = Tf(x) Y. 

Thusfm Wat x. Since the set of transversal mappings to W contains the set 
{fE cro(X, Y) I jOfm [3-I(W)} which is dense by Theorem 4.9, we are done. 
Note that the last part of (a) is just Proposition 4.5. 

For (b) note that W' = [3-I(W) n (X x Y - a- I(V2)) is a submanifold 
of X x Y since X x Y - a- I(V2) is an open subset of X x Y. Also a(W') 
is contained in the open set X - VI so by Corollary 4.11, there exists 
g: X -i>. Y in V such that g = f on UI and jOg m W'. This latter condition is 
the same as jOg m [3-I(W) off U2 • Thus g m Woff U2 as in (a). 0 
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We now present a generalization of transversality in jet spaces to trans­
versality in multijet spaces which is useful for studying the injectivity, or 
alternately, the self-intersections of smooth mappings. 

Let X and Y be smooth manifolds. Define 

XS = X x ... x X (s-times) and 
X<S) = {(Xl, ... , xs) E XS I Xi i= Xj for 1 ~ i < j ~ s}. 

Let a: Jk(X, Y) -+ X be the source map. Define as: Jk(X, Y)" -+ XS in the 
obvious fashion. Then J/(X, Y) = (as)-l(X<S) is the s-fold k-jet bundle. A 
multijet bundle is some s-fold k-jet bundle. X<s) is a manifold since it is an 
open subset of XS. Thus J/(X, Y) is an open subset of Jk(X, y)S and is also 
a smooth manifold. Now let f: X -+ Y be smooth. Then we can define 
j/f: X<S) -+Jsk(X, Y) in the natural way; i.e., 

j/f(Xl, ... , xs) = (rf(xl ), ... , rf(xs»' 

Theorem 4.13. (Multijet Transuersality Theorem). Let X and Y be smooth 
manifolds with Wa submanifold of Jsk(X, Y). Let 

T w = {IE C 00 (X, Y) UN(h W}. 

Then Tw is a residual subset ofCOO(X, Y). Moreover if W is compact, then Tw 
is open. 

First we need a lemma. 

Lemma 4.14. Let W be a submanifold of J/(X, Y) with W' a compact 
subsetofW. Then T w' = {IE Coo(X, Y) Ij/ f(h Won W'} is open in COO(X, Y). 

Proof Let X = (XI. ... , xs) be in X<s). Choose disjoint open nbhds Ui 
of Xi in X. Then choose open nbhds Vi of Xi with Vi CUi' Let ux = Xf=l Ui 
and VX = Xf=l Vi' Note that VX is a closed subset of XS. Let Tx = 
{IE COO(X, Y) I j/ f(h W on W' n (as)-l(VX)} where a: Jk(X, Y) -+ X is 
the source map. Suppose Tx is an open subset of COO(X, Y). Since the collec­
tion {lnt VX} where X is in a<S)(W') is an open covering of a<S)(W') ahd 
a<S)( W') is compact, we may extract a finite subcover indexed by xl, ... , Xl. 

Noting that T w' = nl=l Txt we see that TW' is open. 
To show that Tx is open we consider the mapping A: COO(X, Y)-+ 

C 00 (XS, Jk( X, Y)") defined by (rf)s and the set 

T = {g E COO(XS, Jk(X, YY) I g (h Won W' n (as)-l(VX)}. 

Since VX is bounded away from the generalized diagonal in XS by UX we see 
that j/f(h W on W' n (a<S»-l(VX) iff (rf)S (h W on W' n (as)-l(VX). 
Thus Tx = A -leT) and it is sufficient to show that T is open and that A is 
continuous. Since W' = (as)-l(VX) is closed we may apply Proposition 4.5 
(or more precisely the adaptation of this Proposition mentioned in Theorem 
4.9) to conclude that T is open. Next we observe that A = 8s·r where 
8s : COO(X, Y) -+ Coo(XS, YS) is given by ff-+ /". Now r is continuous by 
Pronosition 3.4 and 8. is continuous bv Pronosition 3.10. so A is con tinuou~_ n 
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Remark. If W is a submanifold of Js"(X, Y) such that (X(S)(W) is a com­
pact subset of XIS), then Tw is open in C"'(X, Y). 

Proof of Theorem 4.13. The moreover part follows immediately from 
Lemma 4.14. The idea of the main part of this Theorem is the same as that 
for the Thorn Transversality Theorem. Thus we shall just indicate what 
changes need to be made in the proof of Theorem 4.9 in order to prove this 
Theorem. 

Choose open sets Wr in W satisfying (a), (b), and in place of (c) and (d) 
(c') there exist coordinate patches Ur,b ... , Ur,s in X and Vr,l, ... , Vr,s in Y 
such that {Ur,;}f=l are mutually disjoint and 1TsCWr) C Ur,l X ... X Ur,s X 

Vr,l X •.. X Vr,s where 1T. : J/(X, Y) --+ XIs) X ys (not Y(S») is the obvious 
projection, and 
(d') Ur ,; is compact for 1 ::::; i ::::; s. 

Let 

TWr = {IE C"'(X, Y) Ifm Won Wr}· 

Since T w = n:,: 1 T Wr' the proof reduces to showing that each T Wr is open and" 
dense. Since Wr is compact we apply Lemma 4.14 to show that TWr is open. 

To prove the density of T W r' we wish to make a polynomial perturbation 
on each Ur ,; which is smoothed to equal f off of Ur ,;. The only technical 
point is that these perturbations be done simultaneously. Choose charts 
ifi;: Ur,i --+ Rn and TJi: Vr,i --+ Rm and smooth functions Pi: Rn --+ [0, 1] and 
P; : Rm --+ [0, 1] such that 

P = {~ 
and 

P' = {~ 

on a nbhd of ifii' (Xi( Wr) 
off ifii(Ur,i) 

on a nbhd of TJi' f3i( Wr) 
off TJi(Vr,i) 

where (Xi and f3i are the source and target maps onto the ith component of X 
and Yin XIs) and YS, respectively. Let b = (bb ... , bs) E (B')". Then define 
gb: X --+ Yby 

if x E Ur.i andf(x) E Vr,i 

Again gb is a smooth function. Let 

ei = t min {d(supp p;, Rm - TJi( Vr,;)) , d(TJif3i( Wr), (p;) -1[0, 1)) 

Set Bi = {b E B'llbifi(x)1 < ei Vx E SUpp Pi} and set B = B1 X ... x Bs. Define 
G(x, b) = gb(X). Then G: X x B --+ Y is a smooth mapping. Since Ur,i was 
chosen so that {Ur,i}f = 1 is disjoint we can show that H: X(S) x B --+ J/(X, Y) 
is locally a diffeomorphism where H(x, b) = j."gb(X). This is similar to the 
proof in Theorem 4.9. 

To complete the proof we invoke the following Lemma. 
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Lemma 4.15. Let X, Y, and B be smooth manifolds. Let W be a sub­
manifold of J/,(X, Y). Let W' be an open subset of W such that W' c W. Let 
G: X x B --+ Y be a smooth mapping. Define H: X(s) x B --+ J/,(X, Y) by 
H(x, b) = j/,(Gb)(x) and assume that H ffi Won W'. Then the set 

{b E B I j/'Gb ffi Won W'} 

is dense in B. 

Proof Let X = X(s>, Z = J/,(X, Y) and j: B --+ coo(xs,Jsk(X, Y)) be 
given by j(b) = j/,Gb. Apply Lemma 4.6. 0 

Exercises 

(1) (a) Let X and Y be smooth manifolds with W a submanifold of Y. 
Assume that dim X = codim W. Let p be in X and letf: X --+ Y be smooth. 
Assume thatf(p) in W andfffi W at p. Then there exists a nbhd N of fin 
COO(X, Y) (in the Cl topology) and an open nbhd U of p in X such that if g 
is in N, then g-l(W) ('\ U consists of one point q and g ffi W at q. (Hint: 
Use Lemma 4.3 and note the similarity with Theorem 4.4.) 

(b) Assume that Xis compact. Letj':X--+ Yffi W. Showthatthereis 
an open nbhd N of fin COO(X, Y) such that the number of points inf-l(W) 
is equal to the number of points in g-l( W)" for any g in N. 

(2) Let f: X --+ X be smooth with p in X a fixed point for f 
Definition: p is a non-degenerative fixed point iff (df)p : TpX --+ TpX does 

not have 1 as an eigenvalue. 
Let Diff (X) be the group of smooth diffeomorphisms on X and give 

Diff (X) the relative topology as a subset of COO(X, X). 
(a) Show that {IE Diff (X) I fixed points off are nondegenerate} is 

open and dense in Diff (X), and 
(b) Show that nondegenerate fixed points are isolated. 

Hint: Consider what it means for rfffi ~x at p in X where ~X is the 
diagonal in X x X = JO(X, X). 

(3) Let {Wa}aeI be a family of submanifolds of Jk(X, Y) where I is some 
index set. Let 

Tw = {IE COO(X, Y) I Va E I,jkjffi Wa}. 

Suppose that UaeI Wa is closed in Jk(X, Y). Then show that T w is an open 
subset of COO(X, Y). 

§5. The Whitney Embedding Theorem 

Let X and Y be smooth manifolds. We want to show that if dim Y is 
large enough relative to dim X, then the set of immersions of X into Y is 
dense in COO(X, Y). The idea of this proof of the Whitney Immersion Theo­
rem will be to translate the fact thatfis an immersion into (a finite number of) 
transversality conditions. 
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Let a be in P(X, Y); then a defines a unique linear mapping of TpX---+ 
Tq Y where p is the source of a and q is the target of a. Letfbe a representative 
of a in COO(X, Y). Then (df)p is that linear mapping. Define rank a = 

rank (df)p and corank a = q - rank a where q = min (dim X, dim Y). Let 

Sr = {a E P(X, Y) I co rank a = r}. 

We will show that Sr is a submanifold of P(X, Y). The significance of the 
submanifolds Sr is illustrated by the following obvious lemma. 

Lemma 5.1. f: X ---+ Y is an immersion iffPf(X) n (Un'o Sr) = 0. 

One also observes the following: 

Lemma 5.2. Let S be an m x n matrix where S = (~ ~) where A is 

a k x k invertible square matrix. Then rank S = k iff D - CA -1 B = O. 

Proof The matrix 

is an m x m invertible matrix. So 

rank S = rank TS = rank (~ D _ ~A -1 B) . 

Clearly this latter matrix has rank = k iff D - CA -1 B = O. 0 

Let V and W be vector spaces of dimension nand m respectively. Let 
q = min {n, m}. Let S: V ---+ W be linear, then define corank (S) = q -
rank (S). Define V(V, W) = {S E Hom (V, W) I corank S = r}. 

Proposition 5.3. V(V, W) is a submanifold of Hom (V, W) with 
codimV(V, W) = (m - q + r)(n - q + r). 

Proof Let S be in Lr( V, W) and let k = q - r = rank (S). Choose 

bases of V and W so that the matrix of S = (~ ~) where A is a k x k 

invertible matrix. Choose an open nbhd U of S in Hom (V, W) so that if S' 

is in U and S' = (~', ~,) then A' is a k x k invertible matrix. Consider 

the smooth mapping f: U ---+ Hom (Rn-k, Rm-k) given by f(S') = D' -
C'(A')-lB'.fis a submersion since if we fix A, B, C, then 

g: Hom (Rn-I<:, Rm-k) ---+ Hom (Rn-I<:, Rm-k) 

given by g(D) = f (~ ~) = D - CA -1 B is a diffeomorphism. (In particu­

lar (dg)v = identity, so (df)s is surjective.) By Lemma 5.2f-1(0) = V(V, W) 
n U which is a submanifold since fis a submersion. Moreover 

codim V(V, W) = dim Hom (Rn-k, Rm-k) = (n - k)(m - k). 0 
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Theorem 5.4. Sr is a submanifold of Jl(X, Y) with co dim Sr = 

(n - q + r)(m - q + r). In fact, Sr is a sub fiber-bundle of Jl(X, Y) with 
fiber Lr(Rn, Rm). 

Proof Let U c X and V c Y be coordinate charts. Then Jl(X, Y)u x v 
~ U x V x Hom (Rn, Rm) and under this isomorphism Sr ~ U X V x 
veRn, Rm). Applying Proposition 5.3, Sr is then a submanifold. 0 

Let 1m (X, Y) be the subset of immersions in C<X)(X, Y). 

Lemma 5.5. 1m (X, Y) is an open subset of C <X) (X, Y). 

Proof So is an open subset of Jl(X, Y). M(So) = 1m (X, Y) by Lemma 
5.1. 0 

Theorem 5.6. (Whitney Immersion Theorem). Let X and Y be smooth 
manifolds with dim Y ~ 2·dim X. Then 1m (X, Y) is an open dense subset oj 
C<X)(X, Y) (in the Whitney C<X) topology). 

Proof Codim Sr = (n - q + r)(m - q + r) where m = dim Y, n = 

dim X, and q = min (m, n) = n. Thus if r ~ 1 

codim Sr = rem - n + r) ~ r(n + r) ;::: n + 1. 

For these relative dimensions i'flt Sr iff jkf(X) n Sr = 0 when r ~ 1. Thus 
the Thorn Transversality Theorem (4.8) and Lemma 5.1 imply the result. 0 

Theorem 5.7. (Whitney 1: 1 Immersion Theorem). Let X and Y be smooth 
manifolds. Assume that dim Y ~ 2 dim X + 1. Then the set of 1 : 1 immersions 
of X into Y is a residual set and hence dense in C<X)(X, Y). 

Proof Since the set of immersions is open and dense, we need only 
show that the set of 1 : 1 mappings of X into Y is a residual set. First note that 
f: X --+ Y is 1: 1 iff hOf: X(~) --+J20(X, Y) does not intersect W where 
W = (f3~)-1(1l Y). Note that W is a submanifold since f3~: J20(X, Y) --+ y2 
is a submersion. Since codim W = codimllY = dim Y> 2·dim X = 

dim X(2) we have that j2°flt W iff j2°f(X(2» n W = 0. So f is 1: 1 iff 
j2°flt Wand the result follows from the multijet transversality theorem. 0 

Proposition 5.8. Let X and Y be smooth manifolds with X compact. Then 
the set of 1: 1 immersions is open in C<X)(X, Y). 

Lemma A. Let f: X --+ Y be smooth and an immersion at p in X. Then 
there is a nbhd Up ofp in X and a nbhd of Wf offin C<X)(X, Y) so that if g is in 
Wf' then gl Up is a 1: 1 immersion. 

Proof Let U be a nbhd of p and 4>: U --+ Rn a chart. Assume that U is 
small enough so that there exists a chart nbhd V off(p) with chart if;: V --+ Rm 
such that f( U) c Vand if; ·f· 4> -1 is a linear injection. This is possible since f 
is an immersion at p. Choose an open nbhd Up of p so that Up is compact 
and contained in U. Suppose that g: X --+ Y so that g(Up ) c V. Then define 
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g = ifIogocp-l: cp«(]p) ---+ Rm. Let p' = cp(p) and let M = infIX\;l l(dj)p,(x)l. 
Note that M > 0 since (dJ)p' is 1: 1. Let 

WI = {g E C"'(X, Y) I g(Up ) C V and 

I (dj)p' - (dg)xl < ~ 'r/x E cp(Up)}-

WI is an open nbhd in C"'(X, Y) since the first condition is a Co open one 
and the second one is (:'1 open. Using the triangle inequality in Rm we have 
that 

l(dj)p,(Xl) - (dj)P,(X2) I ::; Ig(Xl) - g(X2) I 
+ I «dj)p' - g)(xl) - «dj)p' - g)(x2)1. 

Now if g is in W" then 

I «dj)p' - g)(Xl) - «dj)p - g)(X2)I 

::; (d«dj)p' - g))xl IXl - x21 ::; ~ IXl - x21 

where the first inequality is given by the Mean Value Theorem for some x in 
cp(Up). Thus for g in W" 

Ig(Xl) - g(X2) I ~ Mlxl - x21 - ~ IXl - x21 = ~ IXl - x21 

and g is 1: 1. Since the set of immersions of X into Y is open we are done. 0 

Proof of Proposition 5.B. Let f: X ---+ Y be a 1: 1 immersion. First we 
show that there is a nbhd Z of t::..x in X x X and an open nbhd W' off in 
C"'(X, Y) such that for every g in W' g is an immersion and g2(Z - t::..X) n 
t::.. Y = 0 where g2 : X2 ---+ y2 is given by g x g. For every p in X, choose Up 
and W/ as guaranteed by Lemma A. Since X is compact we can choose 
Pl> ... ,ps so that UPl'· .. ' Ups cover X. Let W' = nf=l Wl' and Z = 
Uf=l (Up, x Up,). Let g be in W'. Then glUp, is an immersion for each i, 
so g is an immersion. Also if (p, q) is in Z - t::..X then (p, q) E Up, X Up, 
for some i and thus g(p) =F g(q) since gl Up, is 1: 1. 

Now suppose that there does not exist an open nbhd off consisting entirely 
of 1 : 1 immersions. Since the set of immersions is open, there does not exist 
a nbhd off consisting of 1: 1 mappings. Since X is compact and C "'(X, Y) 
satisfies the first axiom of countability, there is a sequence of functions fn 
converging to f each of which is not 1: 1. We may assume that each fn is in 
W'. Let (Pn, qn) be in X x X - t::..X such that fn(Pn) = fnCqn). The pair 
(Pn, qn) exists since fn is not 1: 1. By the choice of W', (Pm qn) is not in Z. 
X x X - Z is compact so we may assume that Limn _", (Pm qn) exists and is 
(p,q). Since (p,q) rtz,P =F q. Also Limn_",fn(Pn) =f(p) and Limn_",fn(qn) 
= f(q). Since with an appropriate choice of metric on Y fn converges uni­
formly to J, f(p) = f(q) contradicting the fact thatfis 1: 1. 0 

Proposition 509. (Whitney Embedding Theorem). Let X be a smooth mani­
fold of dimension n. Then there exists an embedding f of X into R2n+l. 
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Proof By Theorem 5.7 the set of 1: 1 immersions of X -+ R2n + 1 is 
dense. We showed in the first paragraph of Lemma 3.7 that the image under a 
continuous proper mapping is closed. Thus if there is a 1 : 1 proper immersion 
of X -+ R2n+1, the result is proyed. The following lemma is thus sufficient. 

Lemma 5.10. Let X be a smooth manifold. Then the space of smooth 
proper mappings of X -+ Rm is nonempty and open in COO(X, Rm) (in the Co 
topology). 

Proof By 1,5.11 there exists a proper mapping of X -+ R. Compose this 
mapping with any linear injection of R -+ Rm to obtain a proper mapping of 
X -+ Rm. To show that the set of proper mappings is open, let f: X -+ Rm 
be proper and let Vx = {y E Rm I d(y,f(x» < I}. Let V = UXEX Vx in 
JO(X, Rm) = X x Rm. The continuity of f guarantees that V is open and 
clearly fis in M(V). Now let g be in M(V), then g is proper for g-l(BrCy» c 

f-1(B r +1(y». Sincefis proper g-l(Br(Y» is a closed subset of a compact set 
and thus compact. 0 

§6. Morse Theory 

In the last section we used transyersality to analyze what" most" map­
pings of a manifold X into some high dimensional manifold Y look like. 
We now use the same technique to analyze the other extreme: that is, to 
determine the structure of most mappings of X into R. In particular, the 
Whitney Theorem shows that a generic mapping is as nice as possible in the 
differentiable sense, namely, the Jacobian always has the maximum rank 
possible. With Morse Theory we will show that, in general, the Jacobian is 
not of maximal rank; in other words, the mapping has singularities, but these 
singularities must be of a particular type. 

Since the dimension of R is 1, the only non-empty submanifolds of 
]leX, R) of the type Sr (see §5) are So and Sl. Thus p in X is a singularity 
(or critical point) for f: X -+ Riff Pf(p) is in Sl. 

Definition 6.1. 
(a) Let p be a Singularity off: X -+ R. pis nondegenerate ifPfffi Sl at p. 
(b) f is a Morse function if all of the singularities off are nondegenerate. 

Theorem 6.2. Let X be a smooth manifold. Then the set of Morse func­
tions is an open dense subset of C 00 (X, R). 

Proof Apply the Thorn Transyersality Theorem. 0 

Proposition 6.3. Letf: X -+ R be a smooth function with a nondegenerate 
critical point p. Then there exists a nbhd V of p in X such that no other critical 
points off are in V, i.e., nondegenerate critical points are isolated. 

Proof Note that codim Sl = dim X (see 5.4) and apply Theorem 4.4 
(or, more precisely, Exercise (I)(a) of S4t n 
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Now that we know that nondegenerate critical points are isolated and 
that they represent a generic situation for functions, we wish to analyze 
their character locally. 

Proposition 6.4. Let U be an open subset ofRn andf: U -+ R be smooth. 
Then f has a nondegenerate critical point at p iff the Hessian of f at p = 
«fPf/oxi OXj)(p)) is nonsingular. 

Proof P(U, R) ~ U x R x Hom (Rn, R). Note that the projection 
7T: P(U, R) -+ Hom (Rn, R) is a submersion and 7T- 1(O) = S1' Now apply 
Lemma 4.3; that is, jIfffi S1 at p iff 7T·jIfis a submersion at p. But 7T·jlJ at x 
is 

( Of of) (df)x = OX1 (x), ... , OXn (x) 

in the standard coordinates on Hom (Rn, R). Thus 7T·jIfis a submersion at p 
iff the mapping of Rn -+ Rn given by 

X-+ (:~ (x), ... , o~ (X)) 

is a submersion at p iff «o2J/oxl OXj)(p)) is nonsingular. 0 

We shall now give an invariant definition for the Hessian of a function at 
a critical point. To do so we need the concept of intrinsic derivative. 

Let E be a vector bundle over X. E always has a distinguished global 
section called the zero section io : X -+ E which is defined by io(p) = 0 in Ep. 
Let 7T : E -+ X be the projection mapping. Then it is clear that 

Ker (d7T)io(P) n (dioMTpX) = {O} 

and that Tio(p)Ep = Ker (d7T)io(P) so that Tio(p)E ~ Tio(p)Ep EB TpX. Now 
T.o(p)Ep ~ Ep in a canonical way since Ep is a vector space. Finally let 
a : Tio(p)E -+ Ep be the obvious projection. 

Definition 6.5. 
(a) Let.p: X -+ E be a section such that .p(p) = O. Then define (D.p)p: TpX 

-+ Ep by (D.p)iv) = a·(d.p)iv). (D.pp is called the intrinsic derivative of.p at 
the zero p. 

(b) Let f: X -+ R be smooth with a critical point at p. The I-form 
df: X -+ T* X has a zero at p. Define (d2fMv, w) = «D(df))pv, w) where 
v, WE TpX. Then (d2J)p is a bilinear form on TpX called the Hessian off at the 
critical point p. 

We leave the following two Lemmas as exercises. 

(A) Let U be an open subset of Rn and f: U -+ R be smooth with a 
critical point at p. Then with the standard identifications 

2 (0 I 0 I) 02J (d 'f)p OXi p' OXj p = OXi OXj (p). 
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(B) Let 4> : X --+ Y and f: Y --+ R be smooth. Suppose that q is a critical 
point forfandp E 4>-I(q). Thenp is a critical point for 4> * fand (d 24> *f)p = 

(rp * (d 2f))p where rp * (d 2fMv, w) = (d 2fM(drp)pv, (d4»pw) Vv, WE TpX. 
(Hint: Compute both lemmas by using local coordinates.) 

Proposition 6.6. Let f: X --+ R be smooth with a critical point at p. 
Then (d 2f)p is a symmetric bilinear form on TpX and is nondegenerate iff p is a 
nondegenerate critical point off. 

Proof. Let U be a nbhd of p in X and rp: U --+ Rn a chart centered at p. 
Let U' = rp(U) and g = f·rp-I. By Lemma (B) above 0 is a critical point of. 
g and (d 2f)p = (d 2rp * g)p = rp * (d 2g)o. By Lemma (A), (d 2g)o is symmetric. 
Hence (d 2f)p is symmetric. By Proposition 6.4, 0 is a nondegenerate critical 
point of g iff (d 2g)o is a nondegenerate bilinear form iff (d 2f)p is a non degen­
erate bilinear form since (drp)p: TpX --+ ToRn is an isomorphism. Finally the 
diagram 

Jl(U, R) 
(rp*)-l 

, ]leU', R) 

Pfl 
4> 

I jIg 

U ' U' 

commutes and rp * (SI n ]leU', R)) = SI n ]leU, R) so that jIg m Sl at 0 
iff jIfm SI at p. Thus 0 is a nondegenerate critical point of g iff p is a non­
degenerate critical point off. 0 

We recall the following proposition from Linear Algebra. 

Proposition 6.7. Let B be a symmetric, nondegenerate, bilinear form on a 
real vector space V of dimension n. Then there is an integer k :s: n and a basis 
VI, ... , Vn of V such that B(v;, v)) = SiDt) where 

k is called the index of B. 

ifi :s: k 
ifi > k. 

Definition 6.S. Let p be a nondegenerate critical point off: X --+ R. Then 
the index off at p is the index of (d 2f)p. 

Theorem 6.9. (Morse Theorem). Let g: Rn --+ R be given by 

where c is some constant. Then 
(a) g has a nondegenerate critical point of index k at the origin and has no 

other singularities. 
(b) Let f: X --+ R be smooth with a nondegenerate critical point of index k 
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at p. Then there is a nbhd U of p and a chart a: U -+ Rn centered at p such that 

commutes where c = f(p). 

A simple calculation gives the proof of (a). We shall need a sequence of 
Lemmas to prove (b). Note that in the coordinates al>"" an defined bya,f 
has the "normal form" f(x) = f(p) - (a12(X) + ... + a/c2(x» + a~+l(x) + 
... + an 2 (x) for all x in a nbhd of p. Thus the behavior of a function in the 
nbhd of a non-degenerate critical point is determined. 

Lemma 6.10. Let U be an open convex subset ofRn, a E U, andf: U -+ R 
smooth. Then there exist gl> ... , gn: U -+ R all smooth so that for every x in U 

n 
f(x) = f(a) + L gt(x)(Xt - at). 

i=l 

Moreover gt(a) = (of/oxt)(a). 

Proof Fix x in U and let cfo(t) = f(a + t(x - a». This is well-defined 
for t in [0,1 ] by convexity. Then 

f(x) - f(a) = cfo(l) - cfo(O) = {I a; dt 

and 

dcfo (t) = i of (a + t(x - a»(xt - at) 
dt t=10Xt 

by the chain rule. Let 

gt(x) = II ~f (a + t(x - a» dt. 
o uXj o 

Lemma 6.11. Let f be a smooth function on an open convex subset U of 
Rn. Let a be a critical point for f Then there are smooth functions gtj: U -+ R 
(1 :::; i,j :::; n) such that 

(a) gtj = gji; 
n 

(b) f(x) = f(a) + L gt;(x)(Xt - at)(xj - aj) "Ix E U; 
t,j=l 

and 

1 02f 
(c) gj;{a) = 2-~ (a). 

uXi uXj 

Proof From Lemma 6.10 there are functions gl,"" gn such that 
f(x) = f(a) + L:f=l gt(x)(xt - ai) and gt(a) = (of/8xj)(a) = 0 since a is a 
critical point off Now apply Lemma 6.10 to each gt(x) to insure the existence 



§6. Morse Theory 67 

of smooth functions hlj: U -+ R so that g;(x) = 2.7=1 hilx)(Xj - aj). This 
is possible since gi(a) = O. Let gij = !(hij + hii). Then we have written 

n 

f(x) = f(a) + 2: glj(x)(Xj - ai)(xj - aj) "Ix E U 
;,i=1 

and gij = gj;' To see that g!j(a) = !(o2flox; oxj)(a) differentiate both sides of 
the above equation with fJ2loXi OXj and observe that the only terms on the 
right-hand side which do not disappear when evaluated at a are gila) and 
gi!(a). 0 

Lemma 6.12. Let U be an open convex nbhd of 0 in Rn. Letf: U -+ R be 
a smooth function with a non-degenerate critical point at O. Assume that 
(o2flox; OXj)(O) = ±Sij' Then there exists a nbhd V of 0 contained in U and 
smooth functions hi: V -+ R (1 ::;; i ::;; n) satisfying 

oh· 
(a) h;(O) = 0 and ~ (0) = ± aii ; 

uXj 

(b) f(x) = f(a) + (±h12(X) ± ... ± hn2(x)) "Ix E V. 

Proof. The Lemma will be proved by induction on r. The induction hy­
pothesis for each r with 0 ::;; r ::;; n is that there exist smooth functions 
hi: Vr-+R (1 ::;; i::;; n) and gij: Vr-+R (r + 1 ::;; i,j::;; n) where Vr is a 
nbhd of 0 contained in V, satisfying 

(a') g;j = gjl; 

, 1 o2J 
(b) g!j(O) = 2 ax; OXj (0) 

oh· 
(c') h;(0) = 0 and ~ (0) = ±a;i; 

uXj 

and 

(d')f(x) = f(a) + (±h12(X) ± ... ± hr2(x)) ± i gilx)h;(x)h;(x). 
;,i=r+1 

The Lemma is proved by taking r = n. 
For r = 0, let h;(x) = x; and use Lemma 6.11 to obtain the gi/S which 

satisfy (a') through (d') on Vo = U. 
Assume that the induction hypothesis is true for r - 1, giving the exis­

tence of smooth functions Ui (1 ::;; i ::;; n) and Vii (r ::;; i, j ::;; n) of Vr -1 into R. 
By (b'), vr,(O) = t(02Jloxr2)(0) =f O. Thus there is a nbhd Vr of 0 contained 
in Vr- 1 on which Vrr is nowhere zero. Let hi = ud Vr for i =f r and define 

hr is well-defined and smooth on Vr. A straight-forward calculation will show 
that (c') holds. Now let a = sign (vr,(O)). From the induction hypothesis (d') 
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we know that 

f(x) = f(O) + (±h12(X) ± ... ± hr _ 12(x» + SeX) 

wheres(x) = 2:f.j=r Vij(x)ui(x)ulx). Letgij = Vij - VrjVri/vrrfor r + 1 ~ i,j ~ n. 
Then (a') and (b') hold. Finally to see that (d') is true, compute 

and 
n 

(ii) L gijhjhj = Mr2 + S. 
l,j=r+ I 

Then 

f(x) =f(a) + (±hI2(X) ± ... ± h~_l(X» - ohr2(x) + i gijhi(x)hlx). 0 
;,j=r+ 1 

ProofofTheorem6.9 (b). Let Ube a coordinate nbhd ofp and",: U -+ Rn 
a chart. Then (d2(f."'-I» is a symmetric, nondegenerate, bilinear form on 
ToRn. Choose a matrix A which diagonalizes this form, i.e. 

d 2(f.",-I.A) = (-Ik 0) o I n - k 

where Is is the s x s identity matrix. Let TJ = A-I.",. TJ is also a chart on U. 
Now g(x) = f(TJ-I(X» - f(p) satisfies the conditions of Lemma 6.12 and 
g(O) = O. Thus there exist smooth functions hl' ... , hn defined on a nbhd 
V of 0 in Rn so that g(x) = ±hl2(X) ± ... ± hn2(x) where h;(O) = 0 and 
(8h;/8xj)(0) = ± oij' Now define H: V -+ Rn by H(x) = (hl(x), ... , hn(x». 
H is a diffeomorphism on a nbhd of O. Let a = H· TJ be a chart defined on a 
nbhd U' of p in X. Then define g(x) = ± X l 2 ± ... ± Xn 2 where the signs in 
the definition of g are the same as those in the representation of g above. 
Hence g·H = f·TJ-I - f(p) and g.a = f - f(p) or f(q) = f(p) + g(a(q». 
Let al,"" an be the coordinates with the chart a, then f(q) = f(p) + 
(± aI2(q) ± ... ± an 2(q». Finally 

Since (d2f)p has index k, so does (d2g)o. Thus by a simple reordering of the 
a;'s we may assume thatf(q) = g(a(q». 0 

Having analyzed the structure of a function in the nbhd of a nondegener­
ate critical point, we can now make a statement about the critical values. 

Proposition 6.13. Let X be a smooth manifold. The set of Morsefunctions 
all of whose critical values are distinct form a residual set in C "'(X, R). 

Proof Let S = (Sl x Sl) ('\ Jl(X, R) ('\ (B2)-I(LlR). We claim S is a 
submanifold of the multijet bundle J2 l(X, R). Let U be an open coordinate 
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nbhd in X diffeomorphic to Rn. In these local coordinates J1 2(V, R) ~ 
(Rn x Rn - ~Rn) x (R x R) x Hom (Rn, R)2 and S ~ (Rn x Rn - ~Rn) 

x (~R) x (0,0) which is clearly a submanifold. Moreover codim S = 
2n + 1 where n = dim X. 

Apply the Multijet Transversality Theorem (4.13) to conclude that the 
set of mappings f: X ~ R for which j21frF1 S is residual. Transversality in 
these relative dimensions means that j21f(X x X - ~X) n S = 0. Thus if 
p and q are critical points ofj(Pf(p),Pf(q» E Sl x Sl n J21(X, R). The fact 
that Nf(p, q) ¢= S means that f(p) =f. f(q), i.e., f has distinct critical values. 
Thus the proposition is proved. 0 

§7. The Tubular Neighborhood Theorem 

Definition 7.1. Let X be a submanifold of the smooth manifold Y. A 
tubular neighborhood of X in Y is an open subset Z of Y together with a 
submersion 7T : Z ~ X such that 

(a) Z ~ X is a vector bundle, and 
(b) Xc Z is the zero section of this vector bundle. 

Theorem 7.2. Let X be a submanifold of Y, then there exists a tubular 
nbhd of X in Y. 

We prove some preliminary results first. 

Proposition 7.3. Let Y and Y' be smooth manifolds with Xc Y and 
X' c Y' submanifolds. Let f: Y ~ Y' be smooth and satisfy: 

(a) fl X: X ~ X' is a diffeomorphism. 
(b) (df)x: Tx Y ~ T,(x) Y' is an isomorphism for every x in X. 
Then there is an open nbhd V of X in Y such that f( V) is open in Y' and 

fl V is a diffeomorphism. 

Proof If X is a point, then Proposition 7.3 is just the Inverse Function 
Theorem. In any case, since X is second countable, there is a countable 
covering of X by open sets Vb V2, . .. in V so that}; = fl Vi is a diffeo­
morphism; i.e., f is a diffeomorphism on a nbhd of Vi' Moreover, since X' 
is paracompact, there is a locally finite covering of X' by open sets W1 , W2 , ••• 

in Y which is a refinement of the open covering f1(V1)'/2(V2), ... By re­
placing Vi with h -1( Wi), where Wi c Vj, we may assume that Wi =};( Vj). 
Let W = Ut~l Wi and 

F = {y E W I if y E Wt n Wj, then };-l(y) = h -l(y)} 

clearly contains X. Moreover, we claim that Fcontains an open nbhd G of Xin 
Y. For each x in X, there is an open nbhd Gx which intersects only finitely many 
W;'s, say Wi1' ... , Wts' since the covering {Wi} is locally finite. By making G x 
even smaller we may assume that x is in Wi1 n· .. n Wis' Now};t -1 is a local 
inverse for f near x. Thus there is an open nbhd of x, H, such that 



70 TransversaIity 

A -11 H = ... = ];. -11 H using the uniqueness of inverse functions and the 
fact that];r -l(X) = ... =];. -l(X). Then (ix = H n Gx is an open nbhd of x 
in Yand (ix c F. Let G = UXEX (ix' 

Now define g: G --+ Y by g(y) =]; -l(y) if y is in Wi. g is well-defined 
since G c F and smooth since locally g =]; -1 for some i. Also f· g = idG so 
g is a diffeomorphism. Let V = g( G). 0 

Lemma 7.4. Let E ~ X be a vector bundle. Let V be an open nbhd of the 
zero section in E. Then there exists a diffeomorphism h : E --+ V (into) such that 
1T·h = 11'. 

Proof. Choose a metric t on E. The sets BxCa) = {v E Ex I t(x)(v, v) < a} 
form a nbhd basis of 0 in Ex where a is in R+. Since V n Ex is an open nbhd 
of 0 in Ex, there is an a > 0 for which BxCa) c V n Ex. Since t is smooth we 
may choose, by a partition of unity argument, a smooth function 8: X --+ 
(0, I) such that BxC8(x» c V for all x in X. The mapping h(v) = 
8(x)vj(1 + t(x)(v, V»1/2 where x = 1T(V) is a diffeomorphism of E into V 
whose inverse is given by w 1-+ 8(x)wj(82(x) - t(x)(w, W»1/2 where x = 
1T(W). 0 

Combining the last two results we have: 

Proposition 7.5. Let E ~ X be a vector bundle and let U be an open 
nbhd of the zero section Xo in E. Suppose that X is a submanifold of a smooth 
manifold Yand thatf: U --+ Y is smooth and satisfies: 

(a) fl Xo : Xo --+ X is a diffeomorphism. 
(b) (df)x: TxE --+ T,(x)Y is an isomorphismfor every x in Xo. Then there is 

a tubular nbhd of X in Y. 

Proof. By Proposition 7.3, there is an open nbhd V of Xo such that 
fl V: V --+ Y is a diffeomorphism into. Let h : E --+ V be a diffeomorphism 
guaranteed by Lemma 7.4. Then Z = f·h(E) is a tubular nbhd of X in Y 
with projection mapping 11" = f·h.1T·(j·h)-1. 0 

Lemma 7.6. Let X be a n-submanifold ofRP, then there is a tubular nbhd 
of Xin RP. 

Proof. Equip RP with the standard inner product. Let Ex be the (p - n)­
plane of normal vectors to X at x. The plane through the origin Ex - x has 
a vector space structure which we give to Ex. Let E = UXEX Ex. Then E is a 
vector bundle over X, since, in effect, E is just the complementary subbundle 
to TX in TxRP = X x RP. (See 1,5.12). The explicit construction of E gives 
a smooth mapping f: E --+ RP such that flXo = fiX = idx. To show the 
existence of a tubular nbhd we will apply Proposition 7.5. So we must show 
that (df)x: Tx E --+ T,(x)RP is an isomorphism for all x in E. Since dim TxE = 
dim TxRP we need only show that Ker (df)x = O. Let v E Ker (df)x. Since 
TxE ~ TxX E8 TxEx, v = V1 + V2 where V1 E TxX and V2 E TxEx. (df)xv = 0 
implies that V1 = 0 sinceflX = idx. Represent V2 by a curve c in Ex.f·c is 
then just the curve c in Ex when Ex is thought of as in RP. Thus (df)xCV2) = 0 
implies that V2 = O. 0 
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Proof of Theorem 7.2. Using the Whitney Embedding Theorem (Proposi­
tion 5.9), we may assume that Y c RP for p = 2 dim Y + 1. Thus X is a 
submanifold of Rk and by Lemma 7.6 there is a tubular nbhd of X in RP 
which we call Z'. Let Ex be the set of vectors normal to X and tangent to Y 
at x for x in X and let E = Uxex Ex. E is a vector bundle over X since it 
is just the complementary subbundle to TX in Tx Y. As in Lemma 7.6, this 
explicit construction of E gives a smooth mapping f: E --+ RP such that 
flXo = fiX = idx. Let Z" be a tubular nbhd of Y in RP with projection 
map 'IT". Then U = f-1(Z' n Z") is an open nbhd of Xo in E. Consider 
'IT" ·f: U --+ Y which is a smooth mapping. 'IT" ·flX = idx since Xc Yand 
'IT"I Y = idy • We wish to apply Proposition 7.5 to obtain the desired result. In 
order to do so we need to know that (d'IT" 'f)x : TxE --+ T[(x) Y is an isomorphism 
for all x in X. Since dim E = dim Y we need only show that Ker (d'IT" 'f)x 
= {O}. Now TxE = TxX EB TxEx. Since 'IT" ·fl X = idx we have to show 
that if v is in TxEx and (d'IT" ·f)xCv) = 0, then v = O. Let e be a curve in Ex 
representing v, then f·e is a curve in RP whose tangent at 0 is tangent to Y 
at x. Since 'IT"I Y = idy, 'IT" ·f·e is a curve in Y whose tangent at 0 is the same 
as the tangent to f·e at O. Thus (d'IT" ·f)xCv) = 0 implies that v = O. 0 

Remark. If one traces through the proof of the Tubular Nbhd Theorem, 
one sees that the tubular nbhd Z is always isomorphic (as vector bundles) 
to a complementary subbundle of TX in TYI X. Such a complementary 
subbundle is always isomorphic to the quotient bundle N where Nx = 
Tx Y /TxX for each x in X. N is called the normal bundle to X in Yand N x is 
called the normal spaee to X in Y at x. Thus a tubular nbhd is a realization of 
the normal bundle as an open nbhd of X in Y. 



Chapter III 

Stable Mappings 

§1. Stable and Infinitesimally Stable Mappings 

Definition 1.1. 
(a) Letf and/, be elements of COO(X, Y). Thenfis equivalent tof' if there 

exist diffeomorphisms g : X ---J>- X and h: Y ---J>- Y such that the diagram 

/' 
X~Y 

commutes. 
(b) Let f be in COO(X, Y). Then f is stable if there is a nbhd Wf off in 

COO(X, Y) such that each/, in Wf is equivalent to f 

In other words f is stable if every nearby mapping /' is identical to f, 
after suitable changes of coordinates, both in the domain and the range of/,. 

We now describe an alternative formulation of stability of mappings. 
Recall that a group G acts on a set A if there is a function G x A ---J>- A, 
written as (g, a) 1-+ g·a, with the properties that (gg').a = g.(g' ·a) and 
e·a = a for every g, g' E G and a E A where e is the identity in G. The orbit of 
a in A is the set 

G·a == {b E A I b = g·a for some gin G}. 

In the case at hand, let G = Diff(X) x Diff( Y) where Diff(X) (resp. 
Diff( Y)) is the group of all diffeomorphisms on the manifold X (resp. Y) 
and let A = C"'(X, Y). Then there is a natural action of G on A defined by 
(g, h)·f = h·f·g-l (i.e., change of coordinates) where g E Diff(X), hE 
Diff(Y), andfE COO(X, Y). 

Lemma 1.2. Let f be in COO(X, Y). Then f is stable iff the orbit off in 
C 00 (X, Y) under the action of Diff(X) x Diff( Y) is an open subset. 

We recall the following: 

Lemma 1.3. Let X and Y be smooth manifolds with g : X ---J>- X a diffeo­
morphism. Then g* : COO(X, Y) ---J>- COO(X, Y) given by fl-+ f·g is continuous. 

Proof Since g is proper, Note (2) after II,3.9 applies. 0 

72 
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Proof of Lemma 1.2. Let g be in Diff(X) and h be in Diff(Y). Let 
Y(h,g): C"'(X, Y) -+ C"'(X, Y) be induced by the action of Diff(X) x 
Diff( Y) on C "'(X, Y). Thus Y(g,h) = (h)*(g-l)* and is continuous by the 
above Proposition and II,3.5. Moreover Y(g,h) is a homeomorphism since 
Y(g-l,h- 1 )·Y(g,h) = ide "'(x,y). 

Now observe that f' is in the orbit off iff f' is equivalent to f Also the 
orbit of f is open iff there is an open nbhd of C"'(X, Y) contained in the 
orbit off (since any such nbhd can be translated by an element of Diff(X) x 
Diff( Y); i.e., Y(g,h), to an open nbhd around any other point in the orbit). 
These two facts taken together immediately yield the proof. 0 

This definition of stability proves difficult to apply in practice. However, 
using a criterion suggested by Rene Thorn, John Mather has produced a 
theorem ~hich provides a truly computable method for determining whether 
or not a mapping is stable. We now present that criterion. 

Definition 1.4. Let f: X -+ Y be smooth. 
(a) Let 7Ty: TY -+ Y be the canonical projection, and let w: X -+ TY be 

smooth. Then w is a vector field along f if the diagram 

TY 

commutes. Let Cr(X, TY) denote the set of vector fields along f 
(b) f is infinitesimally stable if for every w, a vector field along f, there is a 

vector field s on X and a vector field t on Y such that 

(*) w = (df)·s + t·f 
where (df) : TX -+ TY is the Jacobian mapping off 

Remark. Vector fields alongf can be identified with sections of a certain 
vector bundle. Let E be a vector bundle over Y. Define f* E = UVEX Ef(p) 
(disjoint union) and let 7T : f* E -+ X be the obvious projection. We claim that 
f* E can be made into a vector bundle over X, the pull-back bundle of E by f, 
as follows. Let V be an open nbhd of Y such that EI V is trivial, say EI V ~ 
V X Rk. Then make f* E into a smooth manifold by demanding that 
f*Elf-l(V) ~ f-l(V) x Rk. That the transition functions are smooth fol­
lows from the fact that E is a smooth vector bundle over Y. Now let s be a 
section off*(TY). Then sex) fJ*(TY)x = Tf(x) Y so s may be thought of as a 
smooth mapping of X -+ TY such that 7Ty·S = f, (i.e., can be identified with 
a vector field along f). The converse is also clear. Thus we can identify 
Cr(X, TY) with C "'(f*(TY)). 

Theorem 1.5. (Mather). Let X be a compact manifold and f: X -+ Y be 
smooth. Then f is stable iff f is infinitesimally stable. 
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Note. It is sufficient to assume that f is a proper mapping and to drop 
the assumption on X. 

The proof of this theorem will be given in Chapter V. For the moment we 
will content ourselves with explaining what originally motivated the intro­
duction of the concept of infinitesimal stability. This will require a sketchy 
development of the theory of Frechet manifolds. 

Definition 1.6. Let V be a topological vector space, i.e., a vector space 
with a topology in which addition and scalar multiplication are continuous. 
Let 1·1 : V -+ R be continuous and satisfy for all x and y in V: 

(a) Ixl ~ 0 
(b) Ixl = o iff x = 0 
(c) Ix + yl :::; Ixl + Iyl 
(d) Ixl = I-xl (not IAxI = l"llxl for arbitrary" E R). 

We can now define a metric d on V by setting d(x, y) = Ix - y I. If V is com­
plete with respect to this metric, then it is a Frechet space. 

Notes. (1) The norm on a Banach space satisfies axioms (a) through (d), 
so every Banach space is a Frechet space. . 

(2) Let VI and V2 be Frechet spaces. Then L(Vl' V2), the set of all con­
tinuous linear mappings of VI into V2 , is a Frechet space if we define If I = 
SUPlxl = 1 If(x) I. (This is well-defined by the linearity and the continuity of 1·1 
and f.) 

Definition 1.7. Let VI and V2 be Frechet spaces and U an open subset of 
VI' Let f: U -+ V2 be continuous and p be a point in U. Then f is differentiable 
at p iff there is a linear mapping Ap: VI -+ V2 such that 

Lim If(p + tv) - f(p) - tAp(v)I = 0 
Itl->O It I 

for every v in VI' 

Note that the linear mapping Ap is unique ifit exists. Thus we may define 
(df)p = Ap when f is differentiable at p. 

f is differentiable on U iff is differentiable at p for every p in U. f is k­
times differentiable if (df): U -+ L(VI> V2) defined by (df)(p) = (df)p is 
(k - I)-times differentiable.Jis smooth iffis k-times differentiable for every 
k. 

We note that the chain rule holds for differentiation on Frechet spaces. 

Definition 1.8. Let X be a Hausdorff topological space. Then X is a 
Frechet manifold if 

(a) there is a covering {U,,}aeI of X by open sets. 
(b) for each 0: in I there exists a homeomorphism ha: Ua -+ Va with Va 

an open subset of some Frechet space. (The ha's are called charts.) 
(c) for every 0:, f3 E I, ha·h/J -1 is smooth where defined. 
If Va is contained in a Banach space, then X is called a Banach manifold. 
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As in the ordinary manifold case, it is possible to define the tangent space 
to a point p on a Frechet manifold X. Let Sp(X) be the set of smooth curves 
c: R -+ X such that c(O) = p. (Note that smooth mappings between Frechet 
manifolds are defined exactly as in the finite dimensional case.) Define C1 

is tangent to C2 at p iffor every chart ha, (dh".c1)o = (dha·c2)o. Since the chain 
rule is valid, "is tangent to" is a well-defined concept. Finally, let TpX = set 
of equivalence classes of Sp(X) under the equivalence relation" is tangent 
to." As in the finite dimensional case TpX is a vector space. 

Note that a smooth mapf: X -+ Ybetween Frechet manifolds induces a 
well-defined linear mapping (df)p : TpX -+ Tf(p) Y just as in the familiar case 
of Chapter I. 

The following proposition will present our basic examples of Frechet 
spaces. 

Proposition 1.9. Let X be a compact finite dimensional manifold. Then 
(a) C""(X, R) is a Frechet space, 
(b) if E is a vector bundle over X, then C""(E) is a Frechet space, and 
(c) let f: X -+ Y be smooth, then CT(X, TY)-the set of vector fields 

alongf-is a Frechet space. 
It is understood that in each case the topology induced by the Frechet 

"norm" is the Whitney C "" topology. 

Proof 
(a) Cover X be a finite number of open sets V" where Va is contained in 

a coordinate patch. This is possible since X is compact. Let g: X -+ R be 
smooth. Define 

Then define I glk = L" I glk U a and, finally, define 

~ 1 Igllc 
Igl = Ic~ 2k 1 + Iglk· 

It is now an easy exercise to check that C""(X, R) is a Frechet space with 1·1 
defined in this way. 

(b) Choose the Va's so that EI Va is trivial. Then let the Frechet norm 
1·lk U. be the supremum over the Frechet norm of the coordinate functions. 
Then continue as in (a). 

(c) Since C}"(X, TY) can be identified with C""(f*TY), the result follows 
from (b). (See the Remark after 1.4.) 0 

We note that one gets different metrics on Cro(E) for different choices of 
Va but the underlying topology is the same, and that this underlying topology 
isjust the one induced on C""(E) from the Whitney C'" topology on C"'(X, E). 

Proposition 1.10. Let X be a smooth manifold. Then Diff(X) is an open 
subset of C "'(X, X) and hence a Frechet manifold. (For simplicity in the proof, 
we assume that X is compact.) 
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Proof By II, Proposition 5.8 there is a nbhd of f which consists of 1:1 
immersions. Let g: X ~ X be a 1: 1 immersion and Xo a connected com­
ponent of X. g(XO) is closed since XO is compact, while it is open since g is a 
submersion. So g(XO) is a connected component of X. We claim that 
g: XO ~ g(XO) is a diffeomorphism; this is enough to prove the proposition. 
Now (gl XO) -1 exists since g is 1: 1. Also, at each point of g( XO), (gl XO) -1 is 
smooth by the Inverse Function Theorem. So g is a diffeomorphism. D 

The following theorem shows our basic reason for studying Frechet 
manifolds. 

Theorem 1.11. Let X and Y be smooth manifolds with X compact. Then 
COO(X, Y) is a Frechet manifold. 

Proof It is easy to check that COO(X, Y) is a Hausdorff space. Letfbe 
in COO(X, Y). We wish to produce an open nbhd off, Uf , which is homeo­
morphic to an open subset Vf' of it Frechet space. We do this via tubular 
nbhds. Let Xf = graph (f) c X x Y. Xf is a submanifold of X x Y 
so we may apply the tubular nbhd theorem (II, 7.2) to find a tubular nbhd Z 
of Xf with projection 7T. Vf will be an open nbhd of the zero section in COO(Z): 

Since 7T: Z ~ Xf is smooth 7T*: COO(X, Z) ~ COO(X, Xf) is continuous 
(II, Proposition 3.5), so that (7T*)-l(Diff(X, Xf)) is an open subset of COO(X, Z). 
(Apply Proposition 1.10.) Since COO(X, Z) is an open subset of COO(X, X x Y) 
= COO(X, jO(X, Y)) we see that Uf = (j0)-l(7T*)-l(Diff(X, Xf)) is an open 
nbhd of fin COO(X, Y). To define Vf we let 7TX: X x Y ~ X be projection. 
The mapping (7Txh: COO(Z) ~ COO(X" X) given by s f-+ 7Tx'S is continuous 
since the topology on COO(Z) is the topology induced from COO(Xf' Z). 
(Again apply II, Proposition 3.5.) Thus Vf = (7Tx)* -l(Diff(Xf' X)) is an open 
nbhd of the O-section in COO(Z). 

Next we define hf : Uf ~ Vf by hlg)(x,J(x)) = jOg'(7T.jDg)-l(X,J(X)). 
Note that 7T.jDg: X ~ Xf is a diffeomorphism since g is in Uf so that 
hlg) : Xf ~ Z is well-defined. Since 7T·hlg) = idx" hf(g) is actually a section 
of the vector bundle Z. Finally 7TX·hf(g) = (7T.jOg)-l which is in Diff(Xf' X) 
so that hlg) is in Vf' To see that hf is a bijection, define kf : Vf ~ Uf by 
kls)(x) = 7Ty,s'(7TX'S)-l(X) where 7Ty: X x Y ~ Y is projection. Since 
7T.jDkf(s) = (7TX'S)-l we see that kls) is in Ufo It is an easy exercise to show 
that k f = hf -1. 

Since our reason for introducing Frechet manifolds was just to motivate 
the criterion of infinitesimal stability, we will leave the details of showing that 
hf is a homeomorphism and that hf·hg -1 is smooth (where defined) to the 
" interested" reader. D 

Now suppose that the Implicit Function Theorem were true for smooth 
functions between Frechet manifolds. Then consider the mapping 

Yf: Diff(X) x Diff(Y) ~ COO(X, Y) 

given by (h, g) f-+ g·f·h- 1• 1m Yf is the orbit of fin COO(X, Y) under the 
action of Diff(X) x Diff(Y), so a reasonable criterion for the stability of f 
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would be that Yf be a submersion. (Using Lemma 1.2.) In fact we would need 
to know only that Yf is a submersion at the identity e = (idx , idy), since then 
1m Yf would contain an open set and, as we saw in the proof of Lemma 1.2, 
this would imply that 1m Y f is itself open. We claim that f is infinitesimally 
stable iff (dYf). is onto. To see this we need to identify the spaces 

Te(Diff(X) x Diff(Y)) and TfC"'(X, Y). 

Lemma 1.12. Let t f-+ ft and t f-+ gt be smooth curves in C"'(X, Y) with 
fo = go· Then ft and gt are tangent at t = 0 iff for each p in X, the curves in Y 
t f-+ ft(p) and t f-+ glp) are tangent at t = o. 

Proof Let h = fo = go and X h = graph (h) c X x Y. Let Z be a 
tubular nbhd of Xh in X x Y. As we saw in the Proof of Theorem 1.11, 
nearby functions tofcan be identified with sections in C"'(Z). So for t small 
we can think of t f-+ ft as a smooth curve of sections in C"'(Z). The Frechet 
derivative of t f-+ ft at t = 0 is given by 

(dfMl) = (Lim 1ft - fol)(p) = Lim Ift(p) - fo(p)l. 
t-+o It I t-+o It I 

So (dfMl) = (dft/dt(P))lt=o. Writing the same for g concludes the proof of 
the Lemma. 0 

Proposition 1.13. 
(a) TfC"'(X, Y) ~ Cr(X, TY) 
(b) T!dx Diff(X) ~ C"'(TX). 

Proof (b) follows immediately from (a) since 

~dx Diff(X) = ~dxC"'(X, X) ~ C;"JiX, TY) = C"'(TX). 

To prove ( a) let w be in TfC '" (X, Y) and let t --+ ft be a curve representing w. 
Define w': X --+ TY by w'(p) = (dft/dt(p))lt=o. By the last Lemma, this 
definition is independent of the choice of curves ft. Using the identification of 
functions ft with sections of C"'(Z) we see that 1Ty'W' = f, so w' is in 
Cr(X, TY).The smoothness of w' is left as an exercise. Lemma 1.12 also 
shows that w f-+ w' is l: 1. To show that this map is onto, it is sufficient to 
work locally. Let w' be in Cr(X, TY). For each p in X choose a curve 
t --+ ft(p) which represents w'(p) and do this so thatft(p) is jointly smooth in 
p and t. (This can be done by integrating the vector field. See I, §6.) 

The curve t f-+ ft generates a section win TfC"'(X, Y). Linearity of this 
mapping of Cr(X, TY) --+ TfC"'(X, Y) follows from Lemma 1.12 and the 
pointwise linearity of vectors in TY. 0 

Thus (dYf)e: Te(Oiff(X) x Diff(Y)) --+ TfC"'(X, Y) can be identified 
with a mapping af EB f3f: C"'(TX) EB COO (TY) --+ C,(X, TY). 

Theorem 1.14. In the notation above, af: COO(TX) --+ Cr(X, TY) is given 
by s f-+ -(df)·s and f3f: C"'(TY)--+ C,(X, TY) is given by t f-+ t·f Thus 
infinitesimal stability reduces to the following criterion: for every vector field w 
along g, there exist vector fields s on X and ton Y such that w = (df)·s + t·f 
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Proof Let s be in COO(TX). Let ii: Diff(X) -»- COO(X, Y) be given by 
h f-+ f·h- 1; so (dii)idx = af. Let t f--7 ht be a curve in Diff(X) based at idx 
representing s. Then af(s) = (dii)idx(S) is represented by the curve t f--7 f·ht- 1. 
Thus 

d dh -11 
dt (f.ht -1)!t=o = (df)·+ t=o 

by the chain rule and the pointwise definition of dh t -ljdt given by Lemma 
1.12. To compute (dht -ljdt)!t=o, we consider the mappings tl: R -»- R2 given 
by t f--7 (t, t) and r: R2 -»- X given by r(u, v) = hJlv -1(p) where p is some 
fixed point in X. Clearly r.tl(t) = p for all t. Using the chain rule we see 
that 

° = or (0, 0) + or (0, 0) = dht (p) I + dht -1 (p) I 
ou ov dt t=o dt t=o 

since ho = ho -1 = idx . Thus (dht -ljdt)!t=o = -s and a/s) = -(df)·s. The 
computation of f3f is similar and is left as an exercise. 0 

To summarize, Mather's criterion for stability of a mapping, namely, 
infinitesimal stability, arises naturally when C<Xl(X, Y) is viewed as a Frechet 
manifold. Unfortunately, it is known that the Implicit Function Theorem is 
not true for Frechet manifolds, so the equivalence of stability and infinitesimal 
stability cannot be proved along these lines, although it can be proved. 

For a counter-example to the Implicit Function Theorem on Frechet 
Manifolds see J. F. Marsden, Hamiltonian Mechanics, Infinite Dimensional 
Lie Groups, etc., Berkeley Notes December 1969, p. 50. 

John Mather has given a correct proof of this fundamental theorem. We 
will give a slightly modified version of his proof in Chapter V. 

Exercises 

(1) Identify all infinitesimally stable mappings of R -»- R. (Hint: Look at 
Example B of the next section for inspiration.) 

(2) Show that the mapping of R2 -»- R2 given by (x, y) f--7 (x, y2) is infini­
tesimally stable. 

§2. Examples 

In this section we always assume that X is a compact, smooth manifold. 

A. Submersions 

Proposition 2.1. Let f be a submersion of a manifold X to a manifold Y. 
Then f is infinitesimally stable (and hence stable). 
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Proof We will show that C""(TX) -)- Ct(X, TY) given by s f-+ (d!)·s is 
onto, which trivially implies that f is infinitesimally stable. Since f is a sub­
mersion, (dfL: TxX -)- Tf(x) Y is onto for every x in X. Hence Ker (df)x has 
constant dimension and forms a subbundle of TX by I, Proposition 5.1l. 
By I, Proposition 5.12 there exists a subbundle H complementary to Ker (d!) 
in TX. Clearly (df)x: Hx -)- T[(x) Yis an isomorphism (onto) and thus induces 
an isomorphism on sections, i.e., C""(H) -)- C""(TY). 0 

Note. Proposition 2.1 gives no information about stable mappings in 
C ro(X, R), since a submersion of X into R would be a map without critical 
points, but every differential function defined on a compact manifold achieves 
a maximum and hence has a critical point. 

B. Morse Functions 

Proposition 2.2. Let f be in C""(X, R) where X is a compact manifold. 
Then f is stable iff f is a Morse function all of whose critical values are distinct 
(i.e., if p and q are distinct critical points off in X, then f(p) =P f(q». 

Proof Letfbe stable. Then there is a nbhd Wf offin cro(X, R) in which 
each function is equivalent to f However, by II, Proposition 6.13, Morse 
functions g whose critical values are distinct form a dense subset of C ro(X, R), 
so Wf must contain such a function g. Hence f is equivalent to g, but it is 
easy to see that any function equivalent to a Morse function with distinct 
critical values is itself such a function, so f is such a function. 

To prove the converse we will use infinitesimal stability. Letf: X -)- R be a 
Morse function all of whose critical values are distinct. Let w : X -)- TR = 
R x R be a vector field along f Then w(x) = (fOe), w(x» for every x in X 
where w is in C""(X, R). Let s be a vector field on X. Then df·s(x) = 

(f(x), (dfMs(x») = (f(x), s[f](x» where s[f] is just the directional derivative 
of the function f in the direction s. Let t be a vector field on R. Then t(r) = 

(r, i(r» for all r in R, where i is in C""(R, R). So t·f(x) = (f(x), i(f(x») for all 
x in X. The condition of infinitesimal stability reduces in this case to the 
following: for every w in C""(X, R) there exists a vector field s in C""(TX) 
and a function tin Cro(R, R) so that 

(*) w = s[f] + t·f 
With the given assumptions onfwe show how to solve (*). Sincefis a Morse 
function and X is compact, there is only a finite number of critical points off 
Choose t so that t·f(x) = w(x) for every critical point x off This is possible 
since the critical values are distinct. For instance use the Lagrange Inter­
polation Formula. To solve (*), it is sufficient to solve 

(**) w = s[f] 

for any w in C ""(X, R) where w(x) = 0 whenever x is a critical point of f 
(Since the w in (**) can be taken to be w - t·f from (*).) Given such a w 
we construct the vector field s. 
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Around each point P in X, choose an open nbhd Up as follows: 
(a) If p is a regular point, choose Up so small that (df)q =f- 0 for every q 

in Up. Choose a vector field sP on Up such that (df)(sP) =f- 0 on Up. 
(b) If P is a critical point, then choose Up to be a coordinate ilbhd with 

coordinates Xl>"" Xn so that fl Up is given by c + E1X 12 + ... + EnXn 2 

where El = ... = En = ± 1. (See II, Theorem 6.9.) 
The collection {Up}PEX forms an open covering of X. Since X is compact, 

there exists a finite subcovering Ul>"" Um corresponding to Pl, .•. , Pm' 

Let Pl, .•. , Pm be a partition of unity subordinate to this covering. Choose 
vector fields Si on X (1 :::; i :::; m) as follows: 

(a) if Pi is a regular point, then let 

(b) if Pi is a critical point, then W(Pi) = 0 and pjW = 21= 1 hjXj for selected 
smooth functions hj in the coordinates on Ui given above. (See II, Lemma 
6.10.) Moreover, the h/s are compactly supported functions in Ui since PiW is. 

Let 

~ Ejh j 0 
Si = L. - - on Uj 

i=l 2 OXj 

and extend it to be zero off Ui • 

Finally, define s = Sl + ... + Sm' Then s[f] = sl[f] + ... + sn[fl· 
In case Pi is a regular point, 

since Pi is zero off Ui• 

In case Pi is a critical point, 

= PiW , 

on Ui 
= PiW 

off Ui 

on Ui 

off Ui 

Therefore s[f] = P1W + ... + Pmw = W 2']'=1 Pi = W. 0 

Notes. (1) By definition stable mappings in COO(X, Y) always form an 
open subset; Proposition 2.2 tells us that in the case of C<Xl(X, R) the stable 
mappings also form a dense set. A natural question is " Are stable mappings 
dense in C<Xl(X, Y) for an arbitrary manifold Y?" The answer is unfortu­
nately "no." In Chapter VI we will give a counter-example. The general 
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answer turns out to depend on the relative dimensions of X and Y of which 
more will be said later. 

(2) The stable functions in C"'(X, R) have a particularly nice form, since 
they are just the classical Morse functions. We see that such functions take on 
only a certain type of singularity (i.e., have only non-degenerate critical points). 
Moreover they are determined by this, and a certain condition on the set of 
critical points (i.e., have distinct critical values). In general, it is true that 
stable mappings take on only certain types of singularities; again, more will 
be presented on this point in the sixth chapter. 

C. Immersions (1: 1) 

Proposition 2.3. If X is compact andf: X ~ Y is a 1: 1 immersion, then 
fis stable. 

Proof We show thatfis infinitesimally stable. With the given assump­
tions, 1m f is a submanifold of Y. A vector field w along f can be identified 
with a vector field w on Im,r. since f: X ~ f(X) is a diffeomorphism. Let t 
be any smooth extension of w to all of Y. (To see that w has a smooth exten­
sion, construct it locally and use a partition of unity argument on f(X).) 
Then t·f = w·f = w. So w = (df)(O) + t·f and hence f is infinitesimally 
stable. 0 

Proposition 2.4. Let X be compact and assume that dim Y;::: 2·dim X + 
1. Then f: X ~ Y is stable iff f is a 1: 1 immersion. 

Proof We first note that any mapping equivalent to a 1: 1 immersion is 
also a 1: 1 immersion. If f is stable, then there is an open nbhd W, of fin 
C"'(X, Y) in which each mapping is equivalent to f By the Whitney Em­
bedding Theorem, there exists a 1: 1 immersion in WI' Hence f is a 1: 1 
immersion. 

The converse is given by the last proposition. 0 

It is easy to see that not all immersions are stable. 
(a) Consider Sl ~ R2 given by 

o~0J) 
This can be perturbed slightly to f': Sl ~ R2 pictorially represented by 

or 
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It is clear that l' and f" are not equivalent to f since the number of self­
intersections is an invariant of equivalence. So the first problem is that the 
self-intersections off are not transversal. 

(b) Consider Sl -+ R2 given by the trefoil 

Perturb f slightly to l' : Sl -+ R2 given by 

The number of self-intersections does not change (when counted with the 
proper multiplicity) but still f is not stable since the number of points in the 
image where there are crossings changes. Note, however, that each self­
intersection off is transversal. 

So we find that even when dim X < dim Y andf: X -+ Y has no singu­
larities, there are still problems. It turns out that we need precise information 
on how the image of X under f sits inside Y. 

§3. Immersions with Normal Crossings 

Note that we are still assuming that X is compact. 

Definition 3.1. Let f: X -+ Y be smooth and PS): X(s) -+ ys the restric­
tion off x ... x f: XS -+ ys to X(s). (See II, §4 for the notation.) Let LlP = 
~ 

s-times 

{(y, ... , y) E ys lYE Y}. Then f is a mapping with normal crossings if for 
every s > I,PS) (h LlYs. 

It is easy to see that the two examples at the end of the last section are not 
immersions with normal crossings, while the small perturbations are. 

Proposition 3.2. The set of mappings of X into Y with normal crossings 
is dense in C"'(X, Y). 

Proof Let f: X -+ Y be an immersion. Let (3": JsO(X, Y) -+ ys be the 
multijet target mapping. Since (3" is a submersion WS = (ftS) -l(Ll P) is a 
submanifold of JsO(X, Y). It is easy to check thatfis a mapping with normal 
crossings iffjsof(h Ws. Sofis a mapping with normal crossings ifffsatisfies 
a countable number of multijet transversality conditions. Applying the 
multijet transversality theorem and the fact that C"'(X, Y) is a Baire space, 
we have the result. 0 



§3. Immersions with Normal Crossings 83 

Corollary 3.3. Immersions with normal crossings are dense in the set of all 
immersions. 

Proposition 3.4. Iff: X -+ Y is an immersion which is stable, thenfis an 
immersion with normal crossings. 

Proof Any mapping equivalent to an immersion with normal crossing 
is an immersion with normal crossings. D 

We shall now proceed to prove the converse of this proposition, but first 
we need some preliminaries. 

Definition 3.5. Let V be a vector space and let HI, ... , Hr be subs paces 
of V. Then Hh ... , Hr are said to be in general position iffor every sequence of 
integers ih •.• , is with 1 ::; i l < ... < is ::; r. 

co dim (Hll n· .. n His) = codim (HI) + ... + codim (Hi'). 

Note. In the case r = 2, then HI and H2 are in general position iff 
HI + H2 = V. For 

dim (HI + H2) = dim HI + dim H2 - dim (HI n H2) 
= n - (codim HI + codim H2 - co dim (HI n H2)). 

So dim (HI + H 2) = n iff codim (HI n H2) = codim (HI) + codim (H2). 

Lemma 3.6. Letf: X -+ Y be an immersion with normal crossings. Choose 
q in Y. Let f-l(q) = {PI> ... , Pr} all distinct points. (I-l(q) isjinite since f is an 
immersion and X is compact.) Then the spaces (df)Pl(Tp1X), ... , (df)Pr(TPrX) 
are in general position as subs paces of Tq Y. 

Proof Choose a sequence of integers iI, ... , is such that 1 ::; il < ... 
< is ::; r. Let H, = (df)p,;(Tp'l X ) (1 ::; j ::; s). Now ft = (Pll' ... , PI,) is a 
point in X(s) and f(ft) = if = (q, ... , q) is in D.. ys. By the transversality 
condition of normal crossings off, we have that 

Tq ys = (dfYs)TpX(s) + TqD.. Y' = HI EB· .. EB Hs + TijD.. P. 

Therefore 

s.dim Y = dim TqYs 
= dim(HlEB···EBHs) + dim Y- dim(HlEB···EBHsnTqD..P) 

So codim HI + ... + codim Hs = codim (HI EB· .. EB Hs n TqD.. P). But 
HI EB···EB Hs n TqD..Y· = HI n··· n H.. D 

Lemma 3.7. Let HI> ... , Hr be subs paces of V in general position. Let 
D = HI n· .. n Hr. Then there exist subs paces Flo ... , Fr of V satisfying 

(a) V = DEB Fl EB···EB Fr 
(b) HI = DEB Lu.I F j 

(c) V = FI EB HI. 
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Proof. Let DI = ni¢1 Hj. Choose a complementary subspace FI to D 
in D j (1 :s;. i :s; r). First note that dim FI = codim HI> since 

dim FI = dim DI - dim D 
= dim V - codim (n Hj) - dim V + codim (HI n· .. n Hr) 

1'#1 
= codim(Hj ) 

since the H/s are in general position. 
So 

dim D + dim FI + ... + dim Fr = dim D + codim HI + ... + codim Hr 
= dim D + codim (HI n· .. n Hr) 

(by general position) 
= dim V (since D = HI n· .. n Hr). 

Thus to show (a) we need only show that the sum D + FI + ... + Fr is 
direct. Suppose d + f2 + ... + f, is in FI where fj in Fj for 2 :s; j :s; r. Note 
that eachfj is in D j - D; so fj is in HI for i =? j. Hence d + f2 + ... + f, is 
in HI. Now Fl C Dl - D = H2 n···n Hr - HI n···n Hr. Hence FI n 
HI = 0 and thus d + f2 + ... + f, = o. 

Suppose d + fl + ... + f, = 0; then d + f2 + ... + f, E Fl and by the 
above equals o. By a simple induction argument we know that each fi = 0 
(1 :s; i :s; r) and thus that d = O. 

To show (b) we just note that D cHi and that Fj c HI for i =? j. So 
Hi :::> DEB Lj>Fi Fj. But codim (D EB Li>Fj Fj) = dim Fj = codim H j • (c) 
follows from (a) and (b). 0 

We need two more preparatory lemmas, but first some definitions: let Xo 
be a submanifold of X. 

(a) An X vector field s on Xo is a section of TX\ Xo. 
(b) s is tangent to Xo if for every pin Xo s(p) E TpXo c TpX. 

Lemma 3.B. Let Hlo ... , Hr be subs paces of Rn in general position. 
Regard each Hi as a submanifold of Rn. Let tj be an Rn vector field on Hi 
(1 :s; j :s; r). Then there is a vector field t on Rn such that for every j, t - ti 
(restricted to Hi) is tangent to Hi. 

Proof. Choose Flo ... , Fr as in Lemma 3.7. Choose an inner product on 
Rn so that D, Fl , ... , Fr are mutually orthogonal subspaces. Define 
TTi: Rn ~ Hi to be orthogonal projection. View ti as a map of Hi into Rn. 
Let ij be the vector field on Rn given by ii = ti·TTj. 

Let ~i = ii - TTj.ii (1 :s; j :s; r). ~i is the normal component of ii to Hi. 
Indeed, TTj~j = TTij - TT/ij = o. since TTj2 = TTj. So 1m (~j) is in Fj. Define 
t = ~l + ... + ~r. We claim that tlHj - tj is tangent to Hi. It is sufficient 
to show that TTlt - tj) = t - tj on Hj. Note that TT;(~I) = ~I for i =? j since 
1m (~I) c F, c Hj and TTi\Hi = idHj" Hence on Hi' 

TT;(t - tj) = t - ~i - TTjtj 
= t - ii + TTij - TTiti 
= t - ti 
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Definition 3.9. Let Y be a manifold with submanifolds Y1,···, YT' 
Suppose q E Y1 n· .. (1 YT' Then Y h ••• , YT are in general position at q if 
Tq Y1, ... , Tq YT are in general position in Tq Y. 

Lemma 3.10. Assume that the submanifolds Yh . .. , YT of Yare in general 
position at a point q. Then there exists a nbhd W of q in Y, a chart if>: W ~ Rn 
and subs paces Hl>' .. , HT such that 1'; (1 W = if> -l(Hj) (1 ~ i ~ r) where 
n=dimY. 

Note. This lemma says that in a nbhd of a point of general position, 
the submanifolds Yh ... , Yr can be simultaneously linearized. 

Proof. Let mj = codim (Yj) in Y. There is a nbhd WI of q and functions 
!t..h' .. ,!t..m, such that 

1'; n WI = {p E WI I fijp) = ... = !t..m,(P) = O} 

since Yj is a submanifold of Y. Let W = nr=l WI. By general position, we 
know that 

codim (Tq Y1 (1 ••• (1 Tq Y r ) = co dim (Tq Y1) + ... + codim (Tq YT) 

= ml + ... + mT ~ n. 

Let 1= n - ml _ ... - mT• Consider the functions {fi.j}(lSISr)(lS'Sml)' The 
number of such functions is ml + ... + m r • We claim that (dfij)q form a 
linearly independent set in T: Y. Clearly the subspace of Tq Y annihilated by 
all the (dfi.;)q is just Tq Y1 (1 ••. (1 Tq Yr which has dimension ml + ... + mr• 

Since there are exactly that many (d!t..,)q, they must be linearly independent. 
Now choose functions gl, ... , gl defined on V so that (dg1)q, ... , (dgl)q, 

(dfi.;)q form a basis of T: Y. Consider if>: W ~ Rn given by 

By construction the Jacobian of this map is nonsingular at q. Choose Wa 
nbhd of q, We Won which if> is a diffeomorphism. In terms of this chart 
Y j (1 W is given by the linear equations ft., = 0 (1 ~ j ~ mj). 0 

Theorem 3.11. Let f: X ~ Y be an immersion. Then f is stable iff f has 
only normal crossings. 

Proof. We assume that f has only normal crossings and prove that f is 
infinitesimally stable. The converse has already been shown in Proposition 
3.4. Let q E Y and {Ph' .. , Pr} = f-l(q). We claim that there exists a nbhd 
Wq of q in Yand nbhds Uj of Pt in X (1 ~ i ~r) satisfying 

(a) Uj (1 Uj = 0 1 ~ i < j ~ r. 
(b) fl Uj is a 1: 1 proper immersion. 
(c) f(Ut) c W q• 

(d) f-l(Wq) = Ur=l UI • 

(e) Wq can be chosen as small as desired. 
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It is easy to choose Vi satisfying (a) and (b). Also, there is a nbhd W q of q 
such that f-1( Wq) c Uf = 1 Vi. Wq can be chosen as small as wished, for if not, 
there is a sequence of points Xl, X2, ... in X - Uf=l Vi such thatf(xi) con­
verges to q. Since X - Uf= 1 Vi is compact we can assume that {Xj} con­
verges to some point p not in f-1(q). The continuity of f guarantees that 
f(p) = q, a contradiction. Let Vi = VI nf-1(Wq). Now Yi = f(Vi) (1 :c; i :c; 
r) are submanifolds of Y sincefl Vi is a 1: 1 proper immersion. By Lemma 3.6 
Y1 , ••• , Yr are in general position at q since f is assumed to have only normal 
crossings. Choose Wq small enough so that it satisfies the conditions of 
Lemma 3.10, i.e., Y1 , .•. , Yr are simultaneously linearized in Wq • 

The collection {Wq}qEY form an open covering of Y. Hencef-1(Wq) is an 
open covering of X. By the compactness of X, there is a finite subcover of X, 
given by f-1( W q), ••• ,f-1( W qm). Choose a partition of unity Pi (1 :c; i :c; m) 
subordinate to this covering. Let w be a vector field alongf Then PiW is also 
in Ct'(X, TY). Since w = 2:l"= 1 Piw, it is sufficient to show that the criterion 
for infinitesimal stability holds for vector fields along f whose support lies 
in a givenf-1(Wq). So let wE Ct'(X, TY) with supp we f-1(Wq) for some 
fixed q. 

In W q, we have the submanifolds Yi = f(Vi). Define ti a vector field on 
Yi by ti = w·(fl V;)-l. This is possible since fl Vi: Vi -7 Yi is a diffeomor­
phism. Moreover each ti is compactly supported. By the general position 
of Y1 , •.• , Yr at q and Lemmas 3.8 and 3.10, there exists a vector field ton 
Wq (which is compactly supported since each tj is compactly supported) such 
that tlf(Vj) - tj is tangent to Yj • Extend t to a vector field on Y by setting 
t == 0 off Wqo Consider w' = w - t·f w' has the property that for every 
p in Vb w'(p) = w(p) - t(f(p» is tangent tof(Vj) atf(p). So there exists a 
unique vector field Sj on Vi such that (df).sj = w' sincefis a 1: 1 immersion 
from Vi -7 f(V;), Moreover Sj is compactly supported so there exists a vector 
field S = Si on Vi and S = 0 offf- 1(Wq). By construction w = (df)·s + t·f 0 

Proposition 3.12. Let dim Y = 2 dim X, X compact. Then f: X -7 Y is 
stable iff f is an immersion with normal crossings. 

Proof By the Whitney Immersion Theorem (Theorem II, 5.6) the 
immersions of X -7 Yare open and dense, so stable mappings must be im­
mersions. Using Corollary 3.3 any stable map is an immersion with normal 
crossings. The converse is given by Theorem 3.11. 0 

Having settled the question of stability for mappings without singularities 
(i.e., submersions and immersions) we will now focus our attention on map­
pings with singularities. As our study of Morse functions suggested, in order 
to understand singularities it is useful to describe the behavior of a function 
in a nbhd of a given singularity by a fixed" normal form." In the next section 
of this chapter we will investigate the stability of a class of mappings similar 
to Morse functions and in doing so again demonstrate the usefulness of 
normal forms. 
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Exercise. Interpret what it means for an immersion of X -+ Y to have 
normal crossings when dim Y = 2 dim X in terms of the number of self­
crossings. 

In general show that iff: X -+ Y is a stable immersion then the number 
of points inf- 1(q)-for any q in Y-is bounded by dim Y/(dim Y - dim X). 

4. Submersions with Folds 

Let X and Y be smooth manifolds with dim X ~ dim Y. Let k = 
dim X - dim Y. Letf: X -+ Ysatisfy PfrFl SI where SI is the submanifold 
of J1(X, Y) of jets of co rank I as defined in II, §5. Applying II, Theorem 4.4, 
we see that SI(f) = (Pf)-I(SI) is a submanifold of X with codim SI(!) = 

codim SI = k + I (II, Theorem 5.4). Note that at a point x in SI(!), 
dim Ker (df)x = k + I; that is, the tangent space to SI(f) and the kernel of 
(df)x have complementary dimensions. 

Definition 4.1. Let f: X -+ Y satisfy PfrFl SI' Then x in SI(f) is a fold 
point if TxS1(!) + Ker (df)x = TxX. 

Definition 4.2. (a) A mappingf: X -+ Yis a submersion with folds if the 
only singularities off are fold points. (Note that a submersion with folds, J, 
satisfies PfrFl SI') 

(b) Letf: X -+ Y be a submersion withfolds. Then SI(!) is called the fold 
locus of! 

Example. In the case Y = R, the set of submersions with folds is pre­
cisely the set of Morse functions on X. 

The first obvious fact to observe about submersions with folds is: 

Lemma 4.3. Let f: X -+ Y be a submersion with folds, then f restricted 
to its fold locus is an immersion. 

The main theorem for this section describes a simple criterion to deter­
mine when a submersion with folds is stable. 

Theorem 4.4. Let f: X -+ Y be a submersion with folds. Then f is stable 
ifffISl(f) is an immersion with normal crossings. 

Notes. (1) The criterion thatfrestricted to its fold locus is an immersion 
with normal crossings in the case that f is a Morse function is just the cri­
terion that f has distinct critical values. 

(2) We shall actually prove Theorem 4.4 with "stable" replaced by 
"infinitesimally stable" and appeal to the as yet unproved Theorem 1.5 of 
Mather to obtain the desired result. 
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Example. The following is an example of the necessity of this criterion 

S 
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X is a sphere dented at the equator, Y is R2, and f: X ~ Y is the pro­
jection ofR3 onto R2, restricted to X. The singular set is a curve offold points 
consisting of the three circles S, S', and S" while the image forms two circles 
T and T". f is obviously not stable. For example, we can perturb the picture 
above so that the image of Sand S' intersect transversely at isolated points. 

Proof of Theorem 4.4. Necessity. We know thatfISl(!) is an immersion 
and-with the assumption that f is infinitesimally stable-we show that 
fISl(f) has normal crossings. Applying Theorem 3.11 it is enough to show 
thatfISl(f) is infinitesimally stable. 

Let T be a vector field along g = fISl(f). Extend T to a vector field T 

along f (Check that this can be done locally and use a partition of unity 
argument.) Since f is infinitesimally stable there exist vector fields' on X 
and 7J on Y so that T = (df)(D + 7J • f On Sl(f), we have T = (dg)('ISl(f)) + 
7J • g. Now 'ISl(!) = ~ + r where ~ is a vector field on Sl(f) and ~' is in 
Ker (dg) since by the definition offold points TXISl(!) = T Sl(f) EB Ker (dg). 
Thus T = (dg)(~) + 7J • g and g = fISl(f) is infinitesimally stable. 0 

Before proving the sufficiency part of Theorem 4.4 we shall need a normal 
form theorem for the local behavior of a submersion with folds near a fold 
point similar to II, Theorem 6.9 for Morse functions. 

Theorem 4.5. Let f: X ~ Y be a submersion with folds and let p be in 
Sl(f). Then there exist coordinates Xl> ... , Xn centered at p and Yl> ... , Ym 
centered at f(p) so that in these coordinates f is given by 

(Xl, ... , Xn) 1-+ (Xl' ... ' Xm-l> Xm2 ± ... ± Xn2). 



§4. Submersions with Folds 89 

Remark. From this local normal form we see the reason for the nomen­
clature "fold point." Take the particularly simple example of 2-manifolds. 
In this case the normal form is given by (Xl> X2) 1--7>- (Xl' X22). This map is 
depicted in Figure 2. We first map the (Xl' x2)-plane onto the parabolic 
cylinder X3 = X22 in (Xl' X2, X3) space by the map (Xl> X2) 1--7>- (Xl, X2, X22) 
and then follow this by the projection onto the (Xl' X3) plane. 

Figure 2 

Proof of Theorem 4.5. First choose coordinates YI, ... , Ym centered at 
f(p) so that the image of SIC!) under f is described by the equation Ym = O. 
Since f!SIC!) is an immersion the image is locally an m - I-dimensional 
manifold so this choice of y's is possible. (See I, Theorem 2.10.) Since 
f: Sl(!) ----»- {Ym = O} is a diffeomorphism locally near p, we can choose 
coordinates Xl, ... , Xn near P so that X, = y, • f for I ::;; i ::;; m - I and 
SIC!) is defined near p by the equations Xm = ... = Xn = O. In those coor­
dinates f has the form (Xl' ... , xm) 1--7>- (Xl' ... , xm-l,fm(X)), Of course SIC!) 
is also described by the equations afm/ax, = 0 (m ::;; i ::;; n). So these partial 
derivatives vanish when Xm = ... = Xn = O. Now fm itself vanishes when 
Xm = ... = Xn = 0 since the equation Ym = 0 describes the image of SI(!)' 
These two facts imply that 

fm(x) = .L h1lx)x,Xj 
i,j';2:m 

where h!j(x) are smooth functions. (This is similar to II, Lemma 6.10). 
Suppose that {h,lO)} is a nonsingular (n - m + 1) x (n - m + 1) matrix. 
The rest of the proof is similar to the proof of II, Theorem 6.9 about Morse 
functions. In particular, using arguments as in II, Lemma 6.11 show that by 
a change of coordinates in (xm' ... , xn) we can assume that fm has the form 
xm 2 ± ... ± Xn 2 • 0 

We prove the supposition in the folIowing lemma and in doing so empha­
size that point in the proof where the transversality hypothesis is used. 

Lemma 4.6. The matrix h,lO) is nonsingular. 

Proof Suppose it were singular. Then we could make a linear change 
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of coordinates in the variables Xm, ••. , Xn so that this matrix is in diagonal 
form with entries ± 1 and 0 along the diagonal and at least one of the diagonal 
entries is zefD. Thus we could assume thatfhas the same 2-jet at 0 as the map 

(*) 

where r < n. Now the condition thatjIfffi Sl at p is a condition onpf(p) 
and (djIf)p' i.e., on the 2-jet off at p. Thus if the transversality condition is 
satisfied by jIf at p it is satisfied by any other map with the same 2-jet at p 
as f For the mapping (*) the set Sl(*) is given by the equations Xm = ... 

= Xr = 0 and thus has codimension r - m + 1 < n - m + 1. If the 
transversality condition were satisfied it would have codimension n - m + 1; 
so we have a contradiction and the matrix is nonsingular. 0 

We now isolate the main step in the pfDof of the sufficiency part of Theorem 
4.4 with the foIIowing: 

Lemma 4.7. Let p be a fold point off and let T be a vector field along f 
defined on some nbhd U of p such that TI(Sl(f) n U) = o. Then there exists a 
vector field ~ defined on a nbhd V c U of p such that T = (df)(~) on V. 

Proof Choose coordinates Xl, ... , xn centered at p and coordinates 
Yl, ... , Ym centered at f(p) satisfying Theorem 4.5. In these coordinates T 

is just an m-tuple of smooth functions T = (Tl' ... , T m) (that is T(X) = 
2r~ 1 T;(x)(8/8y;) and a vector field ~ is given by an n-tuple of functions 
(~1' ... , ~n). Given the normal form of f in these coordinates solving the 
equation T = (df)(~) is equivalent to solving the system 

T; = ~i l:s;i:s;m-l 

and 

The first equations are trivially solvable and the last equation is solvable 
providing that T m = 0 on the points Xm = ... = Xn = O. But these equations 
describe the fold locus SI(f) n U and by assumption Tm == 0 on this set. 0 

Proof of Theorem 4.4. Sufficiency. We assume that f is a submersion 
with folds and thatfISl(f) is an immersion with normal crossings. We will 
show thatfis infinitesimally stable. To do this let T be a vector field alongf; 
we must find vector fields ~ in X and TJ on Y so that T = (df)(~) + TJ • f 
Since g = fISl(f) is an immersion with normal crossings, g is infinitesimaIIy 
stable so there exist vector fields' on SI(f) and TJ on Y so that TIS1(f) = 

(dg)(,) + TJ • g. Extend, to a vector field ~ on X and consider a new T = 
T - (df)(O - TJ • f This new T has the property that TIS1(f) = o. 

Applying Lemma 4.7 we can assume that around each point pin Sl(f) 
there is a nbhd V of p and a vector field ~ on V so that T = (df)(~) on V. 
At points p not in Sl(f) there exists a nbhd of p such thatfl V is a submersion. 
On these nbhds the equation T = (df)(~) is clearly solvable. Using a partition 
of unity argument we obtain a global solution by patching. 0 



Chapter IV 

The Malgrange Preparation Theorem 

§1. The Weierstrass Preparation Theorem 

In this chapter we will prove a technical theorem about smooth functions 
which will be used to prove Mather's Theorem about stable mappings and to 
establish the existence of normal forms for singularities of certain stable 
mappings. In order to make the theorem palatable, we first state and prove 
the corresponding but less complicated result for analytic functions of several 
complex variables. 

Theorem 1.1. (Weierstrass Preparation Theorem). Let F be a complex­
valued holomorphic function defined on a nbhd of 0 in e x en satisfying: 

(a) F(w, 0) = wleg(w) where (w, 0) E e x en and g is a holomorphic 
function of one variable in some nbhd of 0 in e, and 

(b) g(O) # O. 
Then there exists a complex-valued holomorphic function q defined on a 

nbhd of 0 in e x en and complex-valued holomorphic functions Ao, ... , A,e-l 
defined on a nbhd of 0 in en such that 

(i) (qF)(w, z) = wle + :2J':-Ol A;(Z)Wi for all (w, z) in some nbhd of 0 in 
ex en, and 

(ii) q(O) # o. 
Remark. The reader may well ask what such a theorem is good for. 

Before we proceed we point out one trivial consequence. Given a nonzero 
holomorphic function F of n + 1 complex variables, we may assume (by a 
linear change of coordinates) that F = F(w, z) is in the form above. Then the 
Weierstrass Preparation Theorem states that the zero set of F equals the 
zero set of the function 

Ie-I 

Wlc + :2 Ai(Z)Wi 
i= 0 

which is just a "branched covering surface" over the z hyperplane. 

We will actually prove a more general result. 

Theorem 1.2. (Weierstrass Division Theorem). Let F, g, and k be as above 
and let G be any complex-valued holomorphic function defined on a nbhd of 0 
in e x en. Then there exist complex-valued holomorphic functions q and r 
defined on a nbhd of 0 in e x en such that 

(i) G = qF + r, and 
(ii) r(w, z) = :2J':-Ol ri(z)wi for all (w, z) in some nbhd of 0 in e x en 

where each r, is a holomorphicfunction defined on a nbhd of 0 in en. 
(iii) q and r are unique (on some nbhd of 0). 
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Proof that Theorem 1.2 => Theorem 1.1. Let G(w, z) = wi' and apply 
Theorem 1.2. Setting At equal to rl proves (i). To show that q(O) i= 0, consider 

wk = q(w, O)F(w, 0) + r(w, 0) 
k-1 

= q(w, O)wkg(w) + 2: rl(O)wl. 
1=0 

Since both sides are analytic functions of w, we may use power series tech­
niques to conclude that q(O)g(O) = 1 and thus q(O) i= O. 0 

Proof of Theorem 1.2 (iii). Uniqueness. Suppose 

G = qF + r = q1F + r1' 

Then (q - q1)F = r1 - r. Fix z in cn; then r1 - r is a polynomial of degree 
:s;k - 1 in wand has at most k - 1 roots (including multiplicity). We shall 
show that there is a nbhd of 0 in cn such that for every z in this nbhd 
(q - q1)F has at least k zeroes when viewed as a function of w. Thus we can 
conclude that r1 = rand q = q1 (since F ¥: 0 on a nbhd of 0). 

It is clearly enough to show that F(·, z) has k zeroes. Let' F(w) = F(w, 0). 
Since the zeroes of a nonzero complex analytic function of one variable are' 
isolated, and F(O) = 0, there is a constant S > 0 for which F(w) i= 0 when­
ever 0 < Iwl :s; S. Let e = inf1wl=o IF(w)l. Since F is continuous there is a 
constant a > 0 for which IF(w, z) - F(w) I < e whenever IZjl < a for 
j = 1, ... , n where z = (Zl"'" zn) and Iwl = S. Choose such a z and let 
hew) = F(w, z). Since 

Ih(w) - F(w) I < e :s; !F(w) I when Iwl = S 

we can apply Rouche's Theorem [see Ahlfors, Complex Analysis, p. 152] 
and conclude that hand F have the same number of zeroes in the disk 
Iwl < S. Since F(w) = wkg(w) on a nbhd of 0, we know that F has k-zeroes 
(counting multiplicity) in this disk. 0 

Definition 1.3. Let Pk : C X cn X Ck -7 C be the polynomial Piw, z, A) 
= wk + L~~l AiWi where A = (Ao, ••• , Ak- 1). 

The heart of the proof of the Division Theorem lies in proving the tlJ.eorem 
for the polynomials Pk • 

Theorem 1.4. (Polynomial Division Theorem). Let G(w, z) be holomorphic 
on a nbhd of 0 in C x cn. Then there exist holomorphic functions q(w, z, A) 
and r(w, z, A) defined on a nbhd of 0 in C x cn X Ck satisfying: 

(i) G(w, z) = q(w, z, A)Pk(W, A) + r(w, z, A), and 
(ii) r(w, z, A) = wk + L~;;l ri(z, A)Wi where each rl is a holomorphic 

function defined on a nbhd of 0 in cn X Ck. 

Proof that Theorem 1.4 => Theorem 1.2. Let F and G be as in the hy­
potheses of the Division Theorem. Using Theorem 1.4 choose holomorphic 
function qF, rF, qG, and rG satisfying 

(*) 
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AlsorF(w, z, A) = :2}:l r/(z, A)W1• First we note that r{(O) = OandqF(O) i= 0; 
for 

wkg(w) = F(w,O) = q F(W, O)Pk(w, 0) + rF(w, O) 
k-l 

= qF(W, O)wk + L r/(0)w1• 

1=0 

Now apply a simple power series argument to both sides, recalling that 
g(O) i= O. 

Next let f.(A) = r{(O, A). We claim that det «of./oAj)(O)) i= o. For let 
z = 0, then 

wkg(w) = F(w,O) = qFPk + rF 

= qF(W, 0,1.)( wk + ~~ Aiwi) + ~~ f.(A)wi. 

Differentiate both sides with respect to Aj and evaluate at A = 0 to obtain 

_ OqF ( 0) k (0) j k~l of. (0) i o - 01. w, w + qF W, W + L.., 01. w. 
j i=O j 

Matching coefficient on Wi for i < j we see that (of./oAj)(O) = 0 and also 
(oiJ/oAj)(O) = -qF(O). So the matrix «of./oAj)(O)) is lower triangular and has 
determinant equal to (-I)kqiO) i= 0 (shown above). 

We now apply the Implicit Function Theorem (for holomorphic func­
tions) [10, p. 17] to insure the existence of holomorphic functions 8;(z) 
(0 :-:; i :-:; k - 1) satisfying 

(a) rjF(z, 8(z)) == 0 where 8(z) = (80(z), ... , 8k_1(Z)), 
and 

(b) 8(0) = 0 (since r/(O) = 0). 
Define (j(w, z) = qF(W, z, 8(z)) , and pew, z) = Pk(w, 8(z)). Then 

F(w, z) = qiw, z, 8(z))P(w, 8(z)) + riw, z, 8(z)) 
= (j(w, z)P(w, z). 

Moreover (j(0) = qF(O) i= 0, so pew, z) = F(w, z)/(j(w, z) on a nbhd of 0 
in e x en. 

From the second equation in (*) we obtain 

where 

and 

G(w, z) = qG(w, z, 8(z))P iz, 8(z)) + rG(w, z, 8(z)) 
= q(w, z)F(w, z) + r(w, z) 

( ) _ qG(w, z, 8(z)) 
q w, z - ( ) q w,z 

k-l 

r(w, z) = rG(w, z, 8(z)) = L riG(z, 8(z))w1• 
i=O 

Finally let r;(z) = riG(z, 8(z)). 0 
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Proof of Theorem 1.4. Given a holomorphic function G(w, z) we must 
produce q and r so that 

G(w, z) = q(w, z, .\.)Pk(w, .\.) + r(w, z, .\.) 

where r is of the form wk + L~':Ol ri(z, .\.)wi. We recall the following form of 
the Cauchy Integral Formula: 

1 f G(l), z) 
G(w, z) = 2-' ( ) d"') 

7Tl Y "') - w 

where y is a simple closed curve in the complex plane with w in the interior 
of y. Now note that for appropriately defined holomorphic functions Si(W, .\.), 

k-1 

Pk ("') , .\.) - Pk(w, .\.) = ("') - w) 2: Si("') , .\.)wi, 
i=O 

or 

(*) Pk("'), .\.) _ Pk(w, .\.) k.;;;;l ( \) i - + L ~"'),AW. 
"') - w "') - W i=O 

Thus 

(Using (*» 

if the appropriate integrals are in fact well-defined. Thus we should like to 
set 

1 f G(",), z) 
q(w, z, .\.) = 27Ti y Pi"'), .\.)("') _ w) d"') 

and 

1 j' G(",), z) ri(z, .\.) = -2' P ( \) SiC"'), .\.) d"'). 
7Tl y k"'), A 

But these integrals give well-defined functions as long as the zeroes of Pk ("') , .\.) 

do not occur on the curve y for.\. near 0 in Ck. Such a y is easily chosen. 0 

2. The Malgrange Preparation Theorem 

The proof given in §1 of the Weierstrass Preparation Theorem can be 
adapted to a corresponding theorem about real smooth functions, the 
difficulties in the adaptation appearing in the Polynomial Division Theorem 
(l.4). Our proof follows Nirenberg [41]. 
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Them'em 2.1. (Mather Division Theorem). Let F be a smooth real-valued 
function defined on a nbhd of 0 in R x Rn such that F(t, 0) = g(t)t k where 
g(O) #- 0 and g is smooth on some nbhd of 0 in R. Then given any smooth 
real-valued function G defined on a nbhd of 0 in R x Rn, there exist smooth 
functions q and r such that 

(i) G = qF + r on a nbhd of 0 in R x Rn, and 
(ii) ret, x) = "L7,;l rj(x)ti for (t, x) E R x Rn near O. 

Notes. (1) The Malgrange Preparation Theorem which states that 
there exists a smooth q with q(O) #- 0 such that (qF)(t, x) = t k + "L7,;l '\lx)t 
follows from 2.1 in precisely the same way that Theorem 1.1 follows from 
Theorem 1.2. 

(2) In the complex analytic theorem q and r are unique; this is not 
necessarily true in the real Coo case. As an example, let F(t, x) = t 2 - x 
and G(t, x) == O. Then q1 = 0 = r1 and 

are two pairs of q and r which satisfy the conclusions of the Division Theorem. 
This is not surprising when one realizes that the proof of the uniqueness part 
of the Weierstrass Division Theorem used methods that depended crucially 
on complex variable theory (of one variable). It is possible to state a division 
theorem for formal power series algebras and in this setting uniqueness also 
holds. [See Zariski and Samuel; Commutative Algebra, Vol. II, p. 139]. 

(3) For the case when k = 1, however, q and r are unique; in fact, the 
Mather Division Theorem follows from the Implicit Function Theorem. 
By the Implicit Function Theorem (I, 2.4) there exists a unique real-valued 
smooth function 1jJ(t, x) such that F(ljJ(t, x), x) = t and 1jJ(0) = O. Suppose 
that G = qF + r, then 

G(ljJ(t, x), x) = q(ljJ(t, x), x)t + rex). 

Setting t = 0, we see that rex) = G(ljJ(O, x), x) is uniquely determined. Now 
suppose that G = q1F + r also, then (q - q1)F == 0 and, in particular, 
H(ljJ(t, x), x)t == 0 where H = q - q1' Now (t, x) ~ (ljJ(t, x), x) maps a 
nbhd of 0 in R x Rn onto a nbhd of 0 in R x Rn so that H == 0 on a nbhd 
of 0 and q is also uniquely defined. 

It is now easy to see how to prove the Malgrange Theorem in this special 
case. Choose 1jJ as above and define rex) = G(ljJ(O, x), x) and q = (G - r)jF. 
We leave the verification that q is a smooth function as an exercise. 

(4) For the case of one variable t (n = 0) the Malgrange Theorem is 
trivial and q and r are uniquely defined. This is left as an exercise-use Taylor 
expansions of order k. 

(5) The proof of the Division Theorem given by Mather [26] yields a 
somewhat more general result; namely, the choice of q and r can be made to 
depend linearly and continuously (in the Whitney Coo topology) on F and G. 
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This proof can be used to modify and extend Nirenberg's proof [32] to 
obtain these extra results. For our purposes the Division Theorem as stated is 
sufficient. 

(6) Mather also proves a global division theorem not just a local one [26]. 

As in the complex analytic case, the crucial theorem is the following: 

Theorem 2.2 (Polynomial Division Theorem). Let G(t, x) be a complex­
valued function defined and smooth on a nbhd of 0 in R x Rn. Then there exist 
smooth, complex-valued functions q(t, x, A) and r(t, x, A) defined on a nbhd of 0 
in R x Rn x Rk satisfying: 

(i) G(t, x) = q(t, x, A)Pit, A) + ret, x, A), and 
(ii) ret, x, A) = tk + 2:r,;l ri(x, A)ti where each ri is a smooth function 

defined on a nbhd of 0 in Rn x Rk. 
Moreover if G is real-valued then q and r may be chosen to be real-valued. 

Note. The" moreover" part is obtained by equating the real parts of 
both sides of equation (i) since Pk is real-valued. Also each ri is easily seen 
to be real-valued. 

Proof that Theorem 2.2 => Theorem 2.1. This proof is word for word the 
same as the proof that Theorem 1.4 => Theorem 1.2 with the single exception 
that smooth is substituted for holomorphic throughout. 0 

We shall use the same idea to prove 2.2 as we used to prove 1.4 but first 
we need an analogue of the Cauchy Integral Formula. This is provided by 
Green's Theorem from Advanced Calculus. 

Let z = x + iy be a complex coordinate on R2. Then we can solve for x 
and y in terms of z and z (= x - iy); namely, x = -t(z + z) and y = 
(Ij2i)(z - z). Let f: C ~ R and define ofjoz so that the chain rule holds; 
that is, 

of = of ox + of oy = ! (of + i of) . 
oz ox oz oy OZ 2 ox oy 

Now suppose that F: C ~ C is given by f + ig where f, g: C ~ R. Then 

(*) of = of .og =! ({of _ Og) .(Of og)). 
oz oz + I OZ 2 \ ox oy + I oy + ox 

Thus dFjoz == 0 iff F satisfies the Cauchy-Riemann Equations iff F is holo­
morphic. It is easy to check that the standard rules of differentiation work 
when differentiating with respect to Z. We also make the convention that 
dz 1\ dz = -2i dx 1\ dy. 

Lemma 2.3. Let F: C ~ C be a smooth function (when viewed as a 
mapping ofR2 ~ R2 ). Let y be a simple closed curve in C whose interior is D. 
Then for w in D 

F(w) = _1 . r F(z) dz + ~ff o~ (z) dz 1\ dz 
2m. r z - W 2wl OZ Z - W 

D 
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Note. If Fis holomorphic in D, then this formula reduces to the Cauchy 
Integral Formula. 

Proof Let w be in D and choose s less than the distance from w to y. 
Let D. = D - (disk of radius s about w) and y. = boundary De. Now 
recall Green's Theorem for R2. Let M, N: D. -+ R be smooth and con­
tinuous on y., then 

,. "J (ON OM) Jy M dx + N dy =.1 ox - By dx /\ dy. 
o Do 

Note that the formula still holds if M and N are complex-valued since we 
integrate the real and imaginary parts separately. Apply Green's Theorem and 
(*) above to F = f + ig and obtain 

(**) t F dz = L (f + ig)(dx + i dy) = 2i.fJ a:; dx /\ dy 
Do 

Ij of -= -.I ozdz /\ dz 

Finally, apply (**) to F(z)j(z - w). Since Ij(z - w) is holomorphic on D., 

0_ ( F(z) ) = (oF joz)(z). 
oz z - w z - w 

Thus 

(***) -Jf o~ (z) dz /\ dz = J" F(z) dz = /' F(z) dz - f F(z) dz 
OZ z - W Yo Z - W • y z - w So Z - W 

Do 

where S. is the circle of radius s about w. Using polar coordinates centered 
at w, one obtains 

f F(z) dz = J 2" F(w + sei9)i dO. 
So z - w 0 

So letting s -+ 0, we see that the RHS of (***) goes to 

I' F(z) . 
-- dz - 2mF(w) 

• y z - w 

while the LHS converges to 

-Jf o~ (z) dz /\ d!. 
oz z - W 

D 

(Note this last limit exists since oFjoz is bounded on D and Ij(z - w) is 
integrable over D.) Thus taking (***) to the limit proves the lemma. 0 

Proof of Theorem 2.2. Let G(t, x) be a smooth complex-valued function 
defined on a nbhd of ° in R x Rn; we need to show that for appropriate 
choices of q and r, G = qPlc + r. Let G(z, x, .\) be a smooth function defined 
on a nbhd of ° in C x Rn x C lc so that G is an extension of G, that is, 
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G(t, x, .\) = G(t, x) for all real t. Then G = qPk + r (on C x Rn x Ck) 
where 

(. .\) = _1 J' G(TJ, x, .\) dTJ _1 fJ" (oG/oz)(TJ, x, .\) dTJ /\ dYj 
q If, x, 27ri y Pk(TJ,.\) (TJ - w) + 27ri PiTJ, .\) (TJ - w) 

D 

and 

if these integrals are well-defined and yield smooth functions. (This follows 
from Lemma 2.3 as the calculations in Theorem 1.4 follow from the Cauchy 
Integral Formula.) The first integral in the definition of both q and r is well­
defined and smooth for the same reasons as for the corresponding integral 
in Theorem 1.4. 0 

The problem lies with the second integrals since D may contain zeroes of 
Pk' But if it is possible to choose a smooth extension G of G so that oG/oz 
vanishes on the zeroes of Pk and for real z, then we will have q and r well­
defined. Yet this is not enough, since q and r must be smooth functions. Since 
the integrands are bounded we can differentiate under the integral sign and 
then quickly see that an appropriate condition for insuring that q and rare 
smooth is the existence of a smooth extension G of G such that oG/oz vanishes 
to infinite order on the zeroes of Pic and for z real. Thus the last detail-in 
fact, the crucial detail-is to show the existence of such an extension. This 
we shall now do. 

Proposition 2.4. (Nirenberg Extension Lemma). Let G(t, x) be a smooth 
complex-valued function defined on a nbhd of 0 in R x Rn. Then there exists a 
smooth complex-valued function G(z, x, .\) defined on a nbhd of 0 in C x Rn x 
C Ic satisfying 

(1) G(t, x, .\) = G(t, x) for all real t, 
(2) oG/oz vanishes to infinite order on {1m z = O}, and 
(3) oG/oz vanishes to infinite order on {Piz, .\) = O}. 

As a first step in proving the Nirenberg Extension Lemma we recall a 
more elementary extension lemma due to Emile Borel. 

Lemma 2.5. Let fO(X),fl(X), ... be a sequence of smooth funCtions de­
fined on a given nbhd of 0 in Rn. Then there is a smooth function F(t, x) defined 
on a nbhd of 0 in R x Rn such that (oIF/otl)(x, 0) = fz(x) for aliI. 

Set 

(*) 

Proof Let p : R -)- R be a smooth function such that 

pet) = {~ It I :c:; t 
It I ~ l. 

co t l 

F(t, x) = 2: Ii P(fLlt)fz(x) 
1=0 • 
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where the fLz'S are an increasing sequence of real numbers such that 
Lim/_ oo fLl = 00. We will choose the fLz'S so that F(t, x) is smooth on a nbhd 
of 0 in R x Rn. First observe that the RHS of (*) is well-defined for all t 
(since for any given t only finitely many terms are nonzero) and is a smooth 
function of t when t =1= 0 (since for t =1= 0 only finitely many terms are not 
identically zero on a nbhd of t). Next choose a compact nbhd K of 0 in Rn 
contained in the common domain of the fz's and let MI = SUpxEK Ifz(x)l. 
Now differentiate the terms on the RHS of (*) s times with respect to t; the 
resulting series is dominated in K by 

00 I t l l - 8 

C8/~ (1- s)! P(fLlt)fL/MI 

where C8 is some constant depending on P and its first s derivatives. Since 
P(fLlt) = 0 as soon as 1 t 1 > 11 fLl' this series is itself dominated by 

C ~ M p + 8 

8 L p " p=o fLp+8P· 

which will converge for all s if the fLz'S tend toward infinity rapidly enough. 
This shows that if the RHS of (*) is differentiated with respect to t term wise 
(s-times) the resulting series converges uniformly on R x K. The correspond­
ing result obtained by differentiating with respect to the x-variables is clear. 
Suppose that you want to show that the series for (olotS)(olox,,)f converges 
uniformly. Let 

Mz" = sup __ "I (x) 1
01"1Jz I 

XEK ox 

and proceed as before. Finally to do this for all possible mixed partials 
simultaneously we use the diagonal trick of I, Proposition 4.8. That is, let 

Ml = sup __ "I (x) . I 01"1Jz I 
XEK oX 
lalsl 

Proceed as above choosing the fLl'S and note that now the series for each 
partial derivative converges uniformly on K and that this f is smooth on a 
nbhd ofO. 0 

Note. One can use Lemma 2.5 to show that for any power series about 
o in Rn there exists a smooth COO real-valued functions whose Taylor series 
expansion at 0 is this given power series. 

We will need another elementary extension lemma which is, in fact, a 
special case of the Whitney Extension Theorem. [59] 

Lemma 2.6. Let V and W be subspaces of Rn such that V + W = Rn. 
Let g and h be smooth functions defined on a nbhd of 0 in Rn. Assume that for all 
multi-indices ex 

Olalg 01((111 

oxa (x) = ox" (x) for all x in V n W. 
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Then there exists a smooth function F defined on a nbhd ofO in R" such that for 
all a lo,a,g 

olalF X _ oxa (x) 
oxa ( ) - olalh 

oxa (x) 

ijx is in V 

ijxisin W 

Proof We observe first that it is sufficient to prove the lemma for 
h == 0. For let F1 be the extension for g - hand 0, then F = F1 + h is the 
required extension for g and h. So we do assume that h == 0. 

Next choose coordinates Y1, ... , Y" on R" so that V is defined by the 
equations Y1 = ... = Yi = ° and W is defined by the equations Y1+1 = ... 
= Yle = 0. This is possible since V + W = R". Then set 

co ya olalg ( i 2) 
F(y) = 2: "I 0''« (O""'O'Y1+b""Y")p p.lal 2:Yi 

lal=O a.)' 1=1 
a =(al •.. . ,al' 0, ... ,0) 

where p is the same smooth functions which appeared in the proof of the last­
lemma and the sequence {p.z}i= 0 is increasing to infinity. As in the last lemma 
the p.z's can be chosen to increase rapidly enough to infinity to insure that F 
is a smooth function on a nbhd of ° in R". 

We need only check that F has the desired properties. If Y = (ll, ... , Y,,) 
is in W, then Yi+1 = ... = Yle = ° and every term of (oIPIF/oyP)(y) contains 
a factor of the form (olrlg/fJyr)(o, ... , 0, YIe+1, ... , y,,). Since (0, ... , 0, Ylc+b 
... , Y,,) is in V n W that factor equals zero by assumption. Thus 
(oIPIF/oyP)(y) = 0. On the other hand, if Y is in V, then Y1 = ... = Yi = ° 
and 

Thus 

OIPIF ~ 01131 (ya olalg ) I 
-13 (y) = L.. -13 ,-a (y) . 
oY lal=O oY a. oY Yl = ... =y,=o 

Let f3 = (b1, ••• , b,,). It is easy to see that if bl # al for some i :::; j, then the 
given term in the series is 0. In fact, the only nonzero term is (oIPlg/oyP)(y). 
So F is the desired extension. 0 

Finally we need to solve formally an "initial value" problem for certain 
partial differential equations. 

Lemma 2.7. Let f(x) be a smooth complex-valued function defined on a 
nbhd of ° in Rn and let X be a vector field on Rn with complex coefficients. 
Then there exists a smooth complex-valuedfunction F defined on a nbhd ofO in 
R x Rn such that 

(a) F(O, x) = f(x) for all x in R", and 
(b) of/at agrees to infinite order with XF at all points (0, x) in R x Rn. 
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Proof. An obvious candidate for such a solution is the formal expression 

In fact, by differentiating the LHS of this equation term by term and evaluat­
ing at t = 0 we see that (b) holds. Clearly (a) holds. The only problem is 
that Fneed not be smooth. Now by the Borel Theorem (Lemma 2.5) we may 
choose a smooth function F of the form 

having the same power series expansion as F at t = O. This F will solve our 
"initial value" problem. D 

Proof of Proposition 2.4. The proof will be done by induction on k. 
When k = 0, Pk(z) == 1, so we need only show that there exists a smooth 
function G(z, x) such that G(t, x) = G(t, x) for real t and (oG/oi)(t, x) 
vanishes to infinite order for real t. Let z = s + it. Then . 

. 0 0 .0 
1 oi = ot + 1 os 

and the existence of such a G follows from the last lemma by taking X = 

-i(%s). 
We now assume that the case k - 1 has been proved and attempt to 

prove the proposition for k. In particular, we will show that there exist 
smooth functions E(z, x, A) and F(z, x, A) satisfying 

(i) E and F agree to infinite order on the set {Pk(z, A) = O} 
(ii) F is an extension of G 

(iii) of/oi vanishes to infinite order on {1m z = O} 
(iv) Let M = F I {Piz, A) = O}. Then oM/oivanishes to infinite order on 

{oPk/oz)(z, A) = O} and 
(v) oE/oi vanishes to infinite order on {Pk(z, A) = O}. 
First we show that the existence of E and F is sufficient to prove the 

proposition. Set u = P(z, A) == Pk(z, A), and let A' = (AI" .. , Ak- 1). Then 
consider the change of coordinates (z, Ao, .\') ~ (z, u, A') on C x C X Ck-l. 
Recalling that P(z, A) = Zk + J.r::01 A1Zi we see that OU/OAo == 1 so that this is 
a legitimate change of coordinates. In these new coordinates the hyper­
surface {P k(Z, A) = O} is given by the simple equation U = O. The coup de 
grace is then administered by Lemma 2.6. By this lemma there exists a func­
tion G which agrees to infinite order with E on U = 0 and to infinite order 
with F on 1m z = O. (Note that u = 0 and 1m z = 0 are subspaces of R2k+2 

which intersect transversely. Along with (i) this guarantees that Lemma 2.6 
is applicable.) Properties (ii), (iii), and (v) then imply that G is the desired 
extension of G. 

Now to show the existence of E and F. First we assume the existence of F 
and construct E. Consider again the coordinates (z, u, A') and notice that in 
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these coordinates the vector field 8/8z has the form 8/8z + (8P /8z)(8/8u). 
Similarly, 8/8i becomes 8/8i + (8P/8z)(8/8ii). So our problem in these 
coordinates is to find E(z, x, u, ,\') such that 

(a) E = F to infinite order on {u = O}, and 
(b) (8/8i + (8P/8z)(8/8U)E) = 0 to infinite order on the set {u = O}. 
Let X == -(8P/8z)-1(8/8i). (We will deal with the problem of the zeroes 

of 8P/8z in a moment.) Then this problem can be reformulated in a form 
analogous to Lemma 2.7, i.e. find a smooth function E satisfying (a) and 

(b') 8E/8i = XE to infinite order on {u = O}. 
This admits the same sort of formal solution as Lemma 2.7; namely, 

(*) 

where p is the same bump function used before. Now since 8M/8i = 0 to 
infinite order on the set {(8P /8z)(z, '\') = O} (assumption (iv)) we see that 
XIM is a smooth function in z, x, and '\' for all I. Hence we can choose fLz'S 
which increase to infinity rapidly enough to guarantee that the RHS of (*) 
is a smooth function of z, x, u, and '\. Thus the zeroes of 8P/8z cause no 
problem and this E is then the desired function. 

Thus to complete the proof we need to construct a smooth function F 
satisfying (in the z, x, u, '\' coordinates) 

(ii) F(t, x, u, '\') = G(t, x) for all real t, 
(iii) 8F/8i = XF to infinite order on {1m z = O}, and 
(iv) Let M = F I {u = O}. Then 8M/8i = 0 to infinite order on 

{8Pk/8z = O}. 
Consider the hyperplane u = 0 and the change of coordinates '\' = 

('\1"'" '\,e-1) 1---7- ('\1/1, ... , '\k-1/k - 1) = ,\". These conditions translate to 
finding a smooth function M(z, x, '\") (which will be F restricted to {u = O}) 
satisfying 

(1) M(t, x, '\") = G(t, x) for all real t, 
(2) 8M/8i vanishes to infinite order on {1m z = O}, and 
(3) 8M/8i vanishes to infinite order on {Pk- 1(Z, '\") = O}. 

By our induction hypothesis such a smooth function M of the variables 
z, x, and '\" exists and we can view M as a smooth function of z, x, and,\'o 

Finally we define Fusing M and (*); that is, 

Again since 8M /8i vanishes to infinite order when (8P/8z)(z,,\') = 0 = 
Pk - 1(Z, /.."), X1M is smooth in z, x, and '\'. Thus the fLz'S can be chosen so that 
F is a smooth function satisfying (ii) and (iii). Also on {u = O} F = M so 
8F/ai vanishes to infinite order and F satisfies (iv). 0 

Thus we have proved the Nirenberg Extension Lemma and the Malgrange 
Preparation Theorem. 
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Exercise. Let f: R --+ R be a smooth even function. Show that there 
exists a smooth function g: R --+ R such that f(x) = g(x2 ). Hint: Use the 
trick used to prove Lemma 2.5. 

§3. The Generalized Malgrange Preparation Theorem 

Our purpose is to generalize the Malgrange Preparation Theorem to a 
statement about certain local rings. We will only discuss rings which are 
commutative and have a mUltiplicative identity. 

Definition 3.1. Let X be a smooth manifold and let p be a point in X. 
(a) Two smooth real-valued functions f and g, defined on nbhds of p, are 

equivalent near p iff = g on some nbhd of p. 
(b) Let f: U --+ R be a smooth function where U is some nbhd of p. Then 

[f]p == germ of f at p is the equivalence class off in the equivalence relation 
defined in (a). Let Cp""(X) be the set of all germs of smooth, real-valued func­
tions defined on a nbhd of p. 

(c) A local ring is a ring with a unique maximal ideal. 

Lemma 3.2. Cp""(X) is a local ring if the ring operations are given by 
[f]p + [g]p = [f + g]p and [f]p' [g]p = [fg]p where f + g and fg are assumed 
to be defined on domf n dom g which is a nbhd of p. Let ,Ap(X) = 

([f]p E C;(X) I f(p) = O}. Then ,Ap(X) is the unique maximal ideal. 

Proof It is easy to convince oneself that these operations are well­
defined and that C;(X) is a commutative ring with multiplicative identity. 
It is also a trivial exercise to see that ,Ap(X) is an ideal in Cp""(X). As for 
unique maximality, let ~ be any other ideal in Cp""(X). Suppose [f]p E,A -
,Ap(X). Then [ljf]p is defined since f(O) "# 0 and therefore [ljf]p·[f]p = 
[l]p E,A. SO u#t = Cp""(X). Thus U#tvCX) is the unique maximal ideal in 
Cp""(X). 0 

Note. We will sometimes omit the brackets when discussing germs, 
and use the same symbols as for functions. The context should allay any 
possible confusion. 

Lemma 3.3. Let ~p 2(X) be the ideal generated by germs of the form fg 
where!, g E ,Ap(X). Then u#tp(X)j,Ap2(X) is a vector space (over R) canonically 
isomorphic with T: x. This isomorphism is induced by the mapping if; : ,Ap(X) --+ 
T: X given by [f]p H> (df)(p). 

Proof The facts that U#tp(X)j,Ap 2(X) is a vector space and that if; is well­
defined and linear are easy to verify. Equally easy to see is that if; is onto. 
For let Xl> ... , Xn be local coordinates on X based at p, and V be a cotangent 
vector in T; X, so that v = (v1dx1 + ... + vndxn)lx=p. If we let f(x) = 

L:f= 1 ViXi which is defined on a nbhd of p, then (df)(p) = v. Finally we show 
that Ker if; = u#tp 2(X). It is an easy calculation to show that,Ap 2(X) c Ker if;. 



104 The Malgrange Preparation Theorem 

So let [f]p E Ker l/;. Since f(O) = 0, f(x) = L:f= 1 Xij;(X) where j;(0) = 
(ofloXI)(O) by II, Lemma 6.l0. Since (df)(p) = 0, j;(0) = O. Thus [f]p is 
in .4p 2(X). 0 

Lemma 3.4. Let </>: X ---+ Y be a smooth mapping with q = </>(p). Then </> 
induces a ring homomorphism </>*: C;'(Y) ---+ C;(X) given by [f]q f-+ [f·</>]p. 
Moreover </> is locally (near p) a diffeomorphism iff</>* is an isomorphism. 

Proof It is easy to see that </>* is well-defined. To show that </>* is a ring 
homomorphism and that if </> is a local diffeomorphism then </>* is an iso­
morphism is also easy. (Note that (</>*)-1 = (</>-1)*.) So we assume that </>* 
is an isomorphism. Clearly </>* induces an isomorphism of .4i Y)j.4q 2( Y) ---+ 
.4vCX)j.4p2(X) so that by Lemma 3.3 dim Y = dim X. Choose local co­
ordinates Xl> ... , Xn on X based at p corresponding to the chart 7]. Let 
[xtlp = </>*[h;]q for some smooth functions hi. Define 

H: (dom h1 n· .. n dom hn) ---+ Rn 

by H(y) = (h1(y), ... , hn(y)). H is smooth and 7] = H.</> on a small nbhd 
of p. Applying the chain rule, we have (d7])p = (dH)id</»p. Since (d7])p is 
invertible (d</»p is 1:1. Apply the Inverse Function Theorem to see that </> is 
a local diffeomorphism. 0 

Let f!lI be a ring (commutative with identity) and A an abelian group 
(with the group operation denoted by +). Then we recall that A is an flt­
module if there is a mapping of flt into the set of homomorphisms on A. 
We denote the action of r in flt on a in A by ra and demand that the following 
relations hold for all r1, r2 in flt and a in A: (r1 + r2)a = r1a + r2a, 
(r1r2)a = r1(r2a), r(a1 + a2) = ra1 + ra2, and l·a = a. Note that if f!lI is a 
field, A is simply a vector space over flt. Recall also that an f!lI-module A is 
finitely generated over f!lI if there is a finite number of elements a1, ... , an 
in A such that each element a in A can be written as a linear combination 
a = r1a1 + ... + rnan for some r;'s in flt. (Warning: In an arbitrary module 
the linear combination need not be unique, even if the generating set 
{al> ... , an} is minimal.) 

We assume in what follows that the reader is familiar with such elemen­
tary notions as submodules, quotient modules, module homomorphism, etc. 

We will need two lemmas about flt-modules. 

Lemma 3.4. (Nakayama). Let flt be a commutative local ring with 
identity and let .4 be the maximal ideal in flt. Let A be an flt-module. Assume 
that 

(i) A is finitely generated, and 
(ii) A = .4 A (= the set of sums of elements of the form ra with r E .4 

and a EA.) 
Then A = {O}. 

Proof Let el> ... , en be a finite set of generators for A over flt. We will 
show that each e" = o. First we may write e" = m1a1 + ... + msas where 
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each ?ni is in .A since A = .A A. But since el , ... , en are a set of generators 
we may also write ai = If=l rijej. Thus ek = If=l skjej where Skj = 
If=l ?nirij is in.A. Using the Kronecker delta we have that If=l (8kj - Skj)ej 
= 0 for each k. This is a system of n linear equations in n unknowns el , ... , en' 
Now note that if the matrix (8ij - Sij) is invertible then the system of equa­
tions has only the trivial solution el = ... = en = O. Now a matrix D (over a 
commutative ring with unit) is invertible iff det (D) is invertible in the ring. 
(To review the theory of determinants of matrices over a commutative ring 
with identity, see Chapter V of Hoffman and Kunze, Linear Algebra.) Now 
by using the standard expansion of det (8ij - Sij) by permutations it is easy to 
see that det (8ij - SIj) = 1 + S where S is in .A. Also, in a local ring, the 
maximal ideal is precisely the set of non invertible elements: Suppose t is in 
Jlt; then t is not invertible. For if t were invertible then 1 = tt- l would be 
in .A. Conversely if t is not in .A, then t is invertible, for the ideal generated by 
t is not contained in .A so it must be all of B? Thus there is t' in [J£ such 
that tt' = 1. From this we may conclude that 1 + S (which is not in .A) 
is invertible and, therefore, el = ... = en = O. 0 

Remark. A more sophisticated way of formulating the last half of the 
above argument is that the quotient ring B?j.A is afield. 

Corollary 3.5. Let A be a finitely generated B?-module. Then Aj.A A is a 
finite dimensional vector space over the field B? j.A. Let 4> : A --'>- Aj.A A be the 
natural projection and Vb ••• , Vn a basis for this vector space. Choose eb ••• , en 
in A so that 4>(ei) = Vi' Then eb ... , en form a set of generators of A over B? 

Proof Since the action of B? on A clearly induces an action of B?j.A 
on Aj.A A we see that Aj.A A is a module over the field B?jj/; i.e. a vector 
space. To show that dim9f!/.4't Aj.A A < 00, let al , ... , ak be a set of 
generators of A over B? and let v be in Aj.A A. Choose a in A so that 
4>(a) = v and choose ri in B? so that a = rIal + ... + rkak. Then v = 
[rd4>(al) + ... + [rk]4>(ak) where [r;] denotes the equivalence class of ri in 
B?j.A. Thus 4>(al), ... , 4>(ak) form a set of generators of AjJit A. 

Conversely let Vb ••• , Vn be a basis for Aj.A A with el , ... , en chosen as 
in the statement of the corollary. Let B be the submodule of A generated by 
eb ... , en and let C be the quotient module Aj B. Since A is finitely generated 
over [J£, C is finitely generated over B? Now A = B + .A A. For if a is in A, 
then 4>(a) = [rdvI + ... + [rn]vn. So a = rIel + ... + rnen + s where s is in 
",itA. Thus C = AjB = (B + .AA)jB = j/(AjB) =.Ac. Use arguments 
about co sets to check these equalities. Finally apply Nakayama's Lemma to 
show that C = 0 and thus A = B. 0 

Returning to our local ring of interest, suppose that A is a Cp""(X) module 
and that 4> : X --'>- Y with q = 4>(p) is a smooth mapping. The induced ring 
homomorphism 4>* allows us to view A as a Cq""( Y) module. More specifically 
if a is in A and [f]q is in Cq""( Y), then we define [f]qa == 4>*[f]qa. We now state 
the local ring generalization of the Malgrange Preparation Theorem. 
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Theorem 3.6. (Generalized Malgrange Preparation Theorem). Let X 
and Y be smooth manifolds and <P : X ---+ Y be a smooth mapping with <p(p) = q. 
Let A be a finitely generated C;(X)-module. Then A is a finitely generated 
CqOO( Y)-module iff A/viti Y)A is a finite dimensional vector space over R. 

Notes. Consider the mapping of CpOO(X) ---+ R given by [f]p ---+ f(p) to 
see that 

(1) R ~ C;(X)/vltiX) ~ CqOO( Y)jvlti Y) so that A/viti Y)A is a real 
vector space. 

(2) As we noted in Corollary 3.5, the fact that A is finitely generated over 
CqOO( Y) automatically implies that A/viti Y)A is a finite dimensional vector 
space. 

(3) We will now prove that Theorem 3.6 is, in fact, a generalization of 
the Malgrange Preparation Theorem (2.l). Let X = R x Rn, Y = Rn, and 
7T: R x Rn ---+ Rn be given by 7T(t, x) = x. Also let p = 0 = q. Let [F]o be in 
Co(R x Rn) and assume that F(t, 0) = tkg(t) where g(O) i= O. Let [G]o be a 
germ of some other smooth function in CoeR x Rn). We must find [q]o 
and [1']0 satisfying the appropriate conditions for the Malgrange Theorem. 

Let A = CoOO(R x Rn)/(F) where (F) is the ideal in CoOO(R x Rn) generated 
by [F]o. A is clearly a CoOO(R x Rn)-module and is finitely generated. (In fact, 
it is generated by the image of [1]0 in A.) The vector space A/vlto(Rn)A = 
CoOO(R x Rn)/(F, XI. ... , xn) since J!{o(Rn) = (Xl' ... , xn) where ( , ... , ) 
indicates the ideal generated by germs of the indicated smooth functions. 
(Consider the mapping of A ---+ CoOO(R x Rn)/(F, Xl, ... , xn) given by [g]o + 
(F) f--7 [g]o + (F, Xl, ... , Xn) to obtain the above identification.) 

We will show that A/vlto(Rn)A is a finite dimensional vector space. First 
we claim that (F, XI. ... , xn) = (tk, Xl, ... , xn). Let h: R ---+ R be given by 
h(s) = F(t, sx) where (t, x) is fixed in R x Rn. Then 

Jl dh 
F(t, x) - F(t, 0) = h(1) - h(O) = 0 dt (s) ds 

Jl n of n 

= ° j~ Xj OXj (t, sx) ds = j~ Xjgj(t, x) 

where gj(t, x) = f~ of/oxj (t, sx) ds. Thus F(t, x) = tkg(t) + r where r is in 
(Xl' ... , xn). Since g(O) i= 0, [g]o is invertible and we obtain (F, Xl, ... , Xn) = 
(tk, Xl, ... , xn). Thus a basis for the vector space CoOO(R x Rn)/(F, Xl, ... , xn) 
is given by the images of [1]0, [t]o, ... , [tk-l]O' Applying the Generalized 
Malgrange Preparation Theorem, we deduce that A is a finitely generated 
Cooo(Rn) module. By Corollary 3.5 the images of [1]0, [t]o, .. . , [t k- 1]0 
generate A as a Co"'(Rn)-module. Thus 

where V is in (F). Let V = [qF]o, and then, on a nbhd of 0 in R x Rn, 

G(t, x) = q(t, x)F(t, x) + ro(x) + rl(x)t + ... + rk_l(x)t k - 1 • 0 
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The proof of 3.6 will be given in two special cases, immersions and sub­
mersions, and then done in general. 

Lemma 3.7. Let 7T: X -l> Y be a submersion with dim X = n = dim Y + 1 
and q = 7T(p). Let A be a finitely generated C;(X)-module.lf V = AjV«q{ Y)A 
is afinite dimensional vector space over R then A is afinitely generated Cq"'( Y)­
module (via 7T*). 

Proof. Since this is a local result, we may assume, with a proper choice 
of charts, that X = Rn, Y = Rn-\ p = ° =.q, and 7T: Rn-l>Rn-l is given 
by (Xl" .. , Xn) H>- (X2' ... , xn). Let .p: A -l> V be the canonical projection 
and choose el , ... , en in A so that {.p(el), ... , .p(en)} is a basis for V. 

Step I: eb ... , en generate A as a Co"'(Rn)-module. To see this note that 
V«o(Rn-l) c V«o(Rn) so that there is a natural surjection YJ: AjV«o(Rn-l)A-l> 
AjV«o(Rn)A. Thus YJ • .p(el), ... , YJ' .p(en) is a set of generators for AjV«o(Rn)A 
and Step I follows from Corollary 3.5. 

Step II: All elements of A have the form 2:7=1 (Ciei + hei) where Ci is a 
scalar in R and.!; is in V«o(Rn -l)Co"'(Rn). Since .p(el), ... , .p(en) is a basis for V, 
we see that if a is in A, then a = 2:r=1 Ciei + e where e is in V«o(Rn-l)A. Thus 
e = 2:7=1 gjaj where gj is in V«o(Rn-l) and aj is in A. But by Step I aj = 
2:r=1 hiei where hi is in Co"'(Rn). Thus e = 2:r=1 (2:1'= I gihj)ej and by letting 
j; = 2:1'= I g/lj. Step II is proved. 

Now we prove the Lemma. By Step II, xlei = 2:1=1 (Cij + hj)ej with Cij 
and hj in the appropriate places. Using the Kronecker delta we obtain the 
n-linear equations in n-unknowns el , ... , en 

(*) 
n 

2: (XIOij - Cij - /ij)e j = 0. 
j=l 

Let P(Xb ... , xn) be the determinant of the matrix (XIOij - Cij - j;J. By 
Cramer's Rule Pei = ° for each i. Now note that /ij(x l , 0, ... , 0) = ° since 
hj is in V«o(Rn-I)Co"'(Rn). Therefore, P(Xl' 0, ... ,0) = det (XlOij - cij) 
which is a polynomial in Xl of degree ~n. Hence there exists k ~ n such that 
P(Xb 0, ... , 0) = xr"g(xl ) and g(O) #- 0. By Step II, if a is in A, then a = 
2:r = 1 (Ciei + hei)' Apply the Malgrange Preparation Theorem to hand P to 
obtain 

Ie-I 

h = QiP + 2: R ilx2 , ••• , Xn)x/. 
j=O 

Since Pei = 0, we have thathei = 2:J~J Rijx/ei and 

a = i (ciei + leII Rijx/ei). 
i=l j=l 

Thus A is generated by the nk elements eb ... , en, xlel , . .. , xlem ... , xr"en as 
a module over Co"'(Rn-l) since Rij is in CO'(Rn-I). 0 

Lemma 3.8. Let rj>: X -l> Y be an immersion with q = rj>(p). Let A be a 
finitely generated Cp"'(X)-module. Then A is a finitely generated C;: (Y)­
module. 
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Proof 4>*: Cq""( Y) --+ C;(X) is onto, since there is a nbhd U of p in X 
such that 4>1 U is a 1: 1 immersion and 4>(U) is a submanifold of Y. Clearly, 
using the definition of submanifold, every smooth function on 4>(U) can be 
extended to be a smooth function on a nbhd of 4>(U) in Y. (Since we are 
working locally we can assume that 4>( U) is small enough to be made a k­
plane in Rm by one chart on Y.) The surjectivity of 4>* implies the stated 
result. 0 

Proof of Theorem 3.6. Define q;: X --+ X x Y by q;(x) = (x, 4>(x)). 
Using charts, we may assume that X = Rn and that p = O. Let 71"i : Ri x Y--+ 
Ri-l x Ybegivenby(xl, ... ,x;,Y)H>-(x2, ... ,x;,y).Then4> = 71"l.···.71"n.q; 
(locally). Since q; is an immersion Lemma 3.8 applies and A is a finitely 
generated C<,~),q)(Rn x Y)-module. Now assume that A/vfti Y)A is a finite 
dimensional vector space. Since ~o.qlRn -1 X Y)A ::> vfti Y)A, there 
is a natural surjection of A/Jli Y)A --+ A/vft(O,q)(Rn -1 X Y)A so that the 
latter space is finite dimensional. Thus the hypotheses of Lemma 3.7 are 
satisfied for 71"n and we may conclude that A is a finitely generated 
q~,q)(Rn-l x Y)-module. A simple induction argument implies that A is a 
finitely generated Cq""( Y)-module. 0 

Examples 
(A) Letf: R --+ R be a smooth even function; then there exists a smooth 

function g: R --+ R satisfying f(x) = g(x2 ). This is easy to prove if f is 
assumed real or complex analytic near 0 (using Taylor series) but is not quite 
so obvious in the stated case. (This fact was first proved by Hassler Whitney­
Duke Journal of Mathematics, volume 10, 1943.) 

Proof Let p = 0 in the domain and q = 0 in the range. Let A = CpOO(R) 
which is clearly a finitely generated module over C;(R). Let 4>(x) = x2 • 

Then via 4>, Cp""(R) becomes a CqOO(R)-module, the module action being 
given by (ba)(x) = b(x2)a(x) where a is in CpOO(R) and b is in Cq""(R). Ob­
serve that vftiR)C;(R) = (x2) and that the images of 1 and x span the vector 
space C;(R)/vftq(R)CpOO(R). Apply Theorem 3.6 and Corollary 3.5 to see that 
f(x) = g(x2) + xh(x2). Since f is even, h(x2 ) == 0 and f(x) = g(x2) on a 
nbhd of O. It is easy to see how to make this equality a global one. 0 

(B) Let g!> ... , gn be the n elementary symmetric polynomials in n-
variables; that is, 

gl(X!> ... , xn) = Xl + ... + Xn 
g2(Xl, ... , xn) = X1X2 + ... + X1Xn + ... + Xn-1Xn 
gnCxl , ... , x n) = Xl' .. Xno 

Let f(x!> ... , xn) be any smooth symmetric function; that is if 0' is any 
permutation on n-Ietters, then f(x!> ... , x n) = f(Xa(l), ... , xa(n»)' Then there 
exists a smooth function h : Rn --+ R satisfying 

f(x) = h(gl(X), ... , gn(X)). 

This global result was proved originally by Glaeser [9]. We shall only 
prove the corresponding local result. Define g: Rn --+ Rn by g(x) = 
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(gl(X), ... , gn(x». Using the same convention concerning p and q in (A) we 
see that via g Cp"'(Rn) is a Cq"'(Rn)-module. Let B be the set of multi-indices 
13 = (131, ... , f3n-l, 0) where f3i < n. Then the set of nomomials {xil I 13 E B} 
is a generating set for the vector space C;'(Rn)jvllq(Rn)cp'" (Rn). (To see tJ"c 

note that 

(x - Xl)· .. (X - Xn) = Xn + gl(Xl, ... , Xn)Xn- l + ... + gn(X1 , ••• , xn). 

Substituting Xi into this polynomial we have that Xin is in the submodule 
J/{iRn)cp'" (Rn). Also Xn = -Xl - ... - Xn- l modulo vIIiRn) C;' (Rn).) 
Applying Theorem 3.6 and Corollary 3.5 we see that 

f(x) = h(g(x» + L hP(g(x»xB. 
IlEB 

Since f is symmetric and Xn is not a factor of any of the monomials we see 
that each ha(g(x» == 0 and thatf(x) = h(g(x». 0 

In all of our applications of the Malgrange Theorem we shall be dealing 
with modules of smooth functions. The most obvious problem in dealing 
with such functions (as distinct from analytic functions) is that the Taylor 
series about a point does not necessarily converge to the given function. 
Thus, in order to show that a module is finitely generated it would be nice to 
show that the prospective generators need only generate the module in 
question up to some finite order, thus eliminating the problem of what hap­
pens to the smooth functions" at the tail". We now show that this is, in fact, 
the case. 

Define inductively a sequence of ideals vIIp "(X) in C;'(X) by letting vIIp leX) 
be vIIP(X), and vIIpk(X) be the vector space generated by germs of the formfg 
wherefis in vIIP(X) and g is in vIIpk-l(X). 

Lemma 3.9. vIIo"(Rn) consists precisely of germs of smooth functions f 
whose Taylor series at 0 begin with terms of degree k, i.e., 8afj8xa(0) = 0 for 
lal ::; k - 1. Thus Co"'(Rn)/vllo"(Rn) can be identified with the vector space of 
polynomials in n variables of degree ::; k - 1. 

The proof of this Lemma is a simple induction argument based on II, 
Lemma 6.10 and is left to the reader. 

Theorem 3.10. Let A be ajinitely generated Cp"'(X)-module. Let 4>: X---+ 
Y be smooth with q = 4>(p) and let el , ... , e" be elements of A. Then el , ... , e" 
generate A as a Cq"'( Y)-module iff 7)(e l ), ... , 7)(e,,) generate Ajvllp ,,+ l(X)A as a 
Cq"'(Y)-module where 7): A ---+ Ajvllpk+l(X)A is the obvious projection. 

Proof The forward implication is obvious, so assume that 7)(e1), ••• , 7)(e,,) 
generate A/vllp k+ l(X)A as a Cq"'( Y)-module. Let 

B = A/(vllp"+l(X)A + vIIiY)A). 

Note that vIIq( Y) acts trivially on B; thus we may consider B as a module over 
C;:( Y)jvllq{ Y) = R, i.e., a real vector space. Since the images of eb ... , e" 
generate B, dimB B ::; k. Consider the sequence of vector spaces B::;, 
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vff/(X)B :::::J ••• :::::J vff/+l(X)B = O. There are k + 2 vector spaces in 
this decreasing sequence. Applying the" pigeon-hold principle" we see that 
there must be i ::; k such that vffpi(X)B = J/{pi + l(X)B. Thus J/{pi(X)A + 
vffiY)A = vffpi+l(X)A + vffiy)A, since vff/+l(X) c vffpi+l(X) C vffpi(X). 
Finally consider the CpOO(X)-module C = Ajvffg{ Y)A and note that vftpi(X)C 
= vffpi+l(X)C = vffiX)vffpi(X)C. Thus we may apply Nakayama's Lemma 
and deduce that vffpi(X)C = O. (Note that as a CpOO(X)-module J/tpi(X)C is 
finitely generated. This follows since vffpi(X) is a finitely generated ideal in 
CpOO(X) and C is a finitely generated module.) But C = Ajvffi Y)A, so 
vffpi(X)A c vffi Y)A for some i ::; k. Since the images of eb ... , ek generate 
AjJ/tpk+l(X)A, 'I)(e1), ... ,'I)(e/c) must generate Ajvffq{Y)A as a CqOO(y)_ 
module and thus as a CqOO( Y)jvffq{ Y) = R-module. Said differently, 
dimR AjJ/tq{Y)A ::; k. We can now apply the generalized Malgrange Prepara­
tion Theorem to conclude that A is a finitely generated CqOO ( Y)-module and 
Corollary 3.5 to conclude that eb ... , e/c generate A. 0 

The usefulness of Theorem 3.10 is illustrated by the following: 

Corollary 3.11. If the projections of e1, . .. , ek form a spanning set of 
vectors in the vector space Aj(vffv";+l(X)A + vltq(Y)A), then e1, ... , ekform a 
set of generators for A as a CqOO( Y)-module. 



Chapter V 

Various Equivalent Notions of Stability 

§1. Another Formulation of Infinitesimal Stability 

In this section we have three objectives: to show that 
(1) Infinitesimal stability is locally a condition of finite order; i.e., if the 

equations can be solved locally to order dim Y then they can be solved for 
smooth data. 

(2) Infinitesimal stability is globally equivalent to a multijet version of 
local infinitesimal stability. 

(3) Infinitesimally stable mappings form an open set. 
We won't be able to achieve our last objective just yet; but, at least, we shall 
be able to give a sufficient condition for the existence of a neighborhood of 
infinitesimally stable mappings around a given infinitesimally stable mapping. 

Let X and Y be smooth manifolds with p in X and q in Y. Denote by 
COO(X, Y)P.Q the germs at p of mappings of X -7 Y which also map p to q. 
Recall that a germ at p is an equivalence class of mappings where two map­
pings are equivalent if they agree on a neighborhood of p. (We shall use the 
symbol [f]p to indicate the germ off: X -7 Y at p-at least at those times 
when pedagogy overwhelms natural instincts.) 

Let E be a vector bundle over X. Denote by C 00 (E)p the germs of smooth 
sections of E at p. Since sections are mappings of X -7 E this makes sense 
according to the above prescription. In particular, we can speak of germs of 
vector fields alongf as germs of sections off*(TY) using the identification of 
Ct(X, TY) with coo(f*(TY)) discussed in III, §I after Definition 1.4. 

Definition 1.1. Let f: X -7 Y, let p be in X, and let q = f(p) in Y. 
(a) the germ [f]p is infinitesimally stable if for every germ of a vector field 

along f, [TJp, there exist germs of vector fields mp in C 00 (TX)p and h]q in 
COO(TY)q so that 

(*) 

(b) f is locally infinitesimally stable at p if [f]p is infinitesimally stable. 

It is clear that if f: X -7 Y is infinitesimally stable, then f is locally 
infinitesimally stable. 

Choose coordinates Xl> .•. , Xn on X based at p and coordinate Yl, ... , Ym 
on Y based at q. We will compute equation (*) in these coordinates. If T is a 
vector field along ,f, then we can write T(X) = 2~ 1 Ti(X)(OjoyJ So equation 
(*) becomes 

(**) 

111 
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where 

n 0 
~ = L ~j-' 

j=1 OXj 

m 0 
7J = i~ 7Ji oy/ 

andfh" .,fm are the coordinate functions off 
Equations (**) can be solved to order k if for each set of germs Th ... , T m 

in CO'(Rn), there exists germs ~1"'" ~n in CO'(Rn) and germs 7J1,·· ., 7Jm 
in CO'(Rm) so that 

Theorem 1.2. Let f: X ---+ Y with p in X, q = f(p) in Y, and m = dim Y. 
Then [f]p is infinitesimally stable iff equations (**) can be solved to order m. 

Proof We shall use the Generalized Malgrange Preparation Theorem. 
First note that coo(f*TY)p = EB\"=1 C;'(X) since T(X) = L\"= 1 Ti(X)(OjOYi) 
(locally). Thus COO(f*TY)p is a finitely generated C;'(X) module. Let A = 

{(df)(~) I ~ E COO(TX)p}. A is a submodule of coo(f*TY)p so that Ml = 
coo(f*(TY))pjA is a finitely generated CpOO(X)-module. Via f* we can view 
Ml as a CqOO( Y)-module. Let ei be the projection off*(ojoYi) in Ml. We first 
observe that [f]p is infinitesimally stable iff eh ... , em generate Ml as a 
C:'( Y)-module. Recall that Jlp m + leX) consists of germs of functions at p 
whose Taylor series start with terms of order m + 1 or greater (IV, Lemma 
3.9). Now apply IV, Theorem 3.10 to see that [f]p is infinitesimally stable 
iff the module Ml/.;Itpm+l(X)M/ is generated over CqOO(Y) by the pro­
jections of e1, ... , em. This last statement is easily seen to be equivalent 
to solving equations (**) to order m, for if [T]p is in coo(f*TY)p, then 
T = L\"=l (7Ji·f)ej + (df)(~) + g where ~ and 7J are defined as usual and g is 
in .;Itpm+l(X)COO(TY)q; i.e., g is O(lxlm+1). 0 

Theorem 1.2 makes it clear that whether or not f is infinitesimally stable 
at p is determined by r+Y(p). We shall formalize this notion. Let E be a 
vector bundle over X and let Jk(E) = {a EJk(X, E) I a is represented by a 
section of E} = k-jet bundle of sections of E. Let 7T : E ---+ X be the projection. 
Then 7T* : Jk(X, E) ---+ Jk(X, X) is a submersion. Let I be the submanifold of 
Jk(X, X) given by {a E I I a is represented by idx}. Then Jk(E) = (7T*)-1(I) 
and is thus a submanifold of Jk(X, E). The source map a: Jk(X, E) ---+ X 
restricts to a map of Jk(E) ---+ X. It is not hard to see that this is a fiber map. 
Let Jk(E)p = fiber of Jk(E) at p. This has a natural vector space structure. 
In fact, given two elements of Jk(E)p we can find sections that represent them. 
Add these sections and take the k-jet of the sum. We let the reader check 
that this operation is well-defined; i.e. independent of the choice of sections 
and that this gives Jk(E) a vector bundle structure over X. Hint: Do this 
first for the trivial bundle whose sections are just maps of X ---+ Rn. 

The following is just a restatement of Theorem 1.2. 
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Corollary 1.3. Let f: X -+ Y with p in X, q = f(p) in Y, and m = dim Y. 
Then f is locally infinitesimally stable at p iff 

Jm(f*TY)p = (dj)pJm(TX)p + f* Jm(TY)q 

where (df)p and f* are the obvious mappings into Jm(f*TY)p induced by the 
action of(df) andf* on vector fields. 

We wish to obtain conditions analogous to those in Corollary 1.3 which 
will be equivalent to infinitesimal stability. We have local conditions but 
these are not sufficient; for what happens at the self intersections of a func­
tion is not taken into account. In particular, the choice of 7] in Jm(TY)q might 
be forced in two different ways at two different pre-image points. We shall 
extend our results to take care of these cases. 

Letf: X -+ Ybe smooth and let q be in Y. Let S = {Pl, ... , Pk} C f-l(q). 
Define C;'(X) = ffif=l Cp":(X) and note that Cs""(X) is a ring where the 
operations are done coordinatewise. Since f induces a ring homomorphism 
f*: Cq""(Y) -+ Cp":(X) for each i, it induces a ring homomorphism of Cq""(Y) 
-+ C;'(X) which we also denote by f*. So if A is a C;'(X)-module, then via 
f* A becomes a Cq""(Y)-module. We reformulate the Generalized Malgrange 
Preparation Theorem so that it is applicable to these modules. 

Lemma 1.4. Let Ai (1 :0:; i :0:; k) be a finitely generated C;:(X) module. 
Then A = Al EB···EB Ak is a finitely generated C;'(X) module (where the 
action of Cp":(X) on Aj for i =f j is zero). Let elo ... , em be in A so that the 
projections of the e/ s in AJAq( Y)A span this vector space. Then el , ... , em 
generate A as a Cq<Xl(y) module. 

Proof. Since AJAq( Y)A = (AIJAq( Y)A I) EB· .. EB (AkJAq{ Y)Ak) we can 
apply the Malgrange Theorem (IV, 3.6) coordinatewise. 0 

Remark. Let As(X) = Ap1(X) EB·· ·EBApk(X). Then it is enough to 
know that the projections of elo ... , em span the vector space 

A/(AiY)A + Asm+I(X)A). 

Just apply III, Corollary 3.11 in the above Lemma instead of III, Theorem 
3.6. 

Let E be a vector bundle over X and let Jm(E)s = ffif=l Jm(E)pt. Now 
f: X -+ Y induces mappings f* : Jm(TY)q -+ Jm(f*TY)p, and thus a mapping 
f* : Jm(TY)q -+ Jm(f*TY)s given by f*[7]]q = ([7] • f]Pl' ... , [7] • f]Pk). Also 
f induces (df): Jm(TX)p, -+ Jm(f*TY)p, and thus induces a mapping 
(d!) : Jm(TX)s -+ Jm(f*TY)s. 

Let f: X -+ Y be smooth and S = {Plo ••• , Pk} C f-l(q). Then f is 
simultaneously locally infinitesimally stable at PI, ... , Pk if given germs of 
vector fields along f [Tdpl' ... , [Tk)Pk' there exist germs of vector fields 
['dPl' ... , ['k]Pk and [7]]q such that 

[(d!)C't)]PI + [17 • f]PI = [TtlPI 

for all i. 
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Note. The "simultaneously" is to emphasize that one vector field germ 
of Y is being chosen along with the k vector field germs on X to solve the 
equations of infinitesimal stability for k germs of vector fields along f 

Proposition 1.5. Letf: X -i>- Y be smooth and S = {PI' ... ,Pk} C f-I(q). 
Then f is simultaneously locally infinitesimally stable at PI>···, Pk iff 
Jm(f*TY)s = (df)Jm(TXh + f*Jm(TY)q. 

Proof For S consisting of a single point this result is given by Corollary 
1.3. The proof for general S is exactly as in the single point case except that 
we substitute Lemma 1.4 and the subsequent remark for the Generalized 
Malgrange Preparation Theorem. In particular choose coordinates on X at 
PI, ... , Pk (with disjoint domains) and coordinates on Y at q and write down 
the equations generalizing (**) to solve the local infinitesimal stability 
condition simultaneously to order m at PI> ... ,Pk. Let M/ = ffi~=1 M/i. 
Continue as before-except for the substitution of Lemma 1.4 and its sub­
sequent remark. 0 

Theorem 1.6. Let f: X ->- Y be smooth. Then f is infinitesimally stable iff 
(t) for every q in Yand every finite subset S off-I(q) with no more than 
(m + 1) points 

The necessity part of this theorem is obvious. Before proving the suffi­
ciency we need some preparatory lemmas. 

Lemma 1.7. Let HI, ... , Hk be subspaces of a finite dimensional vector 
space V. Then HI, ... , Hie are in general position (see III, Definition 3.5) (If 
(*) given VI> ••. , Vk in V, there exists hi in Hi and Z in V such that Vi = Z + hi 
for all i. 

Proof Let l7i: V -i>- V j Hi be the natural projection and let 

17: V-i>- VjHIEB···EB VjHk 

be given by l7(V) = (l7I(V), ... , l7k(V)). Clearly Ker 17 = HI n· .. n Hie so that 
the sequence 

o -i>- HI n··· n Hk -i>- V ~ VjHI EB· . ·EB VjHk 

is exact. Now 17 is onto iff codim (HI n· .. n Hie) = 2~=1 dim VjHi iff 
HI, ... , Hie are in general position. But clearly 17 is onto iff given VI, ... , Vk 
in V, there exists z in V such that l7i(Z) = Vi> i.e. there exists hi in Hi so that 
Vi = Z + hi. So 17 is onto iff condition (*) holds. 0 

Lemma 1.S. Letf: X -i>- Y satisfy (t) and let S = {PI> ... , Pie} C f-I(q). 
Let Hi = (df)p,(Tp,X) for 1 ::::; i ::::; k. Then HI, ... , Hk are in general position 
as subs paces of Tq Y. 

Proof Let ZI, ... , Zk be in TqY. By Lemma 1.7 we must show that there 
exist hi in Hi and y in Tq Y so that Zi = hi + y for all i. Choose a vector field 
r alongf so that r(pi) = Zi. By (t) choose vector fields ~ on X and 7J on Y so 
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that T = (df)(~) + f*Tj on a neighborhood of S. (Use Proposition 1.5.) Let 
hi = (df)pl~i) and y = Tjq. 0 

For our current purposes we shall call p in X a critical point off: X --+ Y 
if (df)p : TpX --+ Tf(p) Y is not onto. Thus a critical point is either a singularity 
in case dim Y;::: dim X or an arbitrary point if dim X < dim Y. 

Lemma 1.9. Letf: X --+ Y satisfy (t), let m = dim Y, and let q be in Y. 
Then the number of critical points in f-l( q) is -:s; m. 

Proof We shall argue by contradiction. Suppose S = {Pb ... , Pm + l} 
consists of distinct critical points off in f-l(q). Let Hi = (df)p,(Tp,X). The 
last lemma states that Hl, .. . , Hm+l are in general position as subspaces of 
TqY. Thus m ;::: codim (Hl (\ ... (\ Hm+l) = L:f;} codim Hi ;::: m + 1. The 
last inequality holds since if P is a critical point codim (dfMTpX) ;::: 1. 0 

Proof of Theorem 1.6. Sufficiency. We assume that f satisfies (t). Let 
I: be the critical point set of f in X and let I:q = I: (\f-l(q). By the last 
lemma I:q is a finite set with -:s; m points. Let T be a vector field along X. To 
prove that f is infinitesimally stable we need to show that there exist vector 
fields ~ on X and Tj on Y so that T = (df)(~) + f*Tj. We first show that this 
equation can be solved on a neighborhood of I:. 

We claim that there exist open sets Ul , ... , UN in X, Vb ... , V N in Y, and 
Wl , ... , W N in Y; and vector fields ~i on Ui and Tji on Vi satisfying 

(a) f(I:) c Uf"= 1 w; 
(b) f(Ui) C Vi 
(c) T = (df)(~i) + f*Tj on Ui 
(d) f-l(Wi) (\ I: C Ui> and 
(e) Wi C Vi. 

One need only construct U, V, W, ~, and Tj for a given q inf(I:) (i.e., W must 
be a neighborhood of q) satisfying (b)-(e). Sincef(I:) is compact, the necessary 
N will exist. By Proposition 1.5 we may choose open neighborhoods U of I: q 

in X and V of q in Y, and vector fields ~ on U and Tj on V so that (b) and 
(c) are satisfied. Next we choose W satisfying (d). Since I:q = f-l(q) (\ I: C 

Ui> there is a small open neighborhood W so that f-l( W) (\ I: CUi. If not 
there would exist a sequence of critical points Xl, X2, ... with Limi~ '" f(Xi) = 
q and Xi ~ Ui for all i. Since X is compact we may asume that Xi --+ x. By 
continuity f(x) = q and X is a critical point. Thus X is in I:qo A contradiction 
since X is in X - U and (X - U) (\ I: q = 0. By shrinking Wwe may assume 
thatf-l(W) (\ I: c U and that Wi c V. 

Next choose a partition of unity Pl, ... , PN on W = Uf"= 1 Wi with 
supp Pi C Wi. Choose an open neighborhoodZ of I: such thatf-l(Wi) (\ Z C 

Ui. (This is possible. Otherwise there exists a sequence Xl, x 2 , ••• converging 
to X in I: with Xi in f-l(Wi) (\ (X - U). Since both f-l(Wi) and X - U 
are closed X is inf-l(Wi) and X is not in U. Contradiction.) Choose a smooth 
function P: X --+ R such that supp P C Z and P == 1 on a neighborhood ofI:. 
Let ~ = L:f"= 1 pf*(Pigi. This is well-defined on X since supp Pf*(Pl) C 
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i-l(Wi) n Z CUi' Next let 7) = 2:f=l Pi7)i' Then calculate that T = (df)(O + 
f*7) on a neighborhood of~. 

Thus we may assume that T == 0 on a neighborhood U of ~ in X. If 
dim X < dim Y, then we are finished for ~ = X. In case dim Y ::::: dim X, 
thenfis a submersion on X - ~. Thus there exists a vector field ~ on X - ~ 

so that (df)(~) = T. Use III, Proposition 2.1 which states that all submersions 
are infinitesimally stable. (Note the fact that X is compact was not used in 
that proof.) Choose a smooth function P: X.......,.. R which is zero on ~ and 1 
off U. Then p~ is globally defined on X and (df)(pO = T since supp T C 

X- U. 0 

We now attack the last of our three objectives. 

Proposition 1.10. Letf: X.......,.. Y be infinitesimally stable. Then there exists 
a neighborhood W off such that every g in W is locally infinitesimally stable. 

Proof Let p be in X and let q = f(p). Since f is infinitesimally 
stable Jm(f*TY)p = (df)Jm(TX)p + 1*Jm(TY)q. Now consider the mapping 
1: Jm(TX)p (£; Jm(TY)q""""" Jm(f*TY)p given by (df) + 1*. This is just a linear 
mapping between vector spaces. In particular, if we choose chart neighbor­
hoods U of p and V of q such that f( U) C V, then in these local coordinates 
jis a linear mapping of B':.n (£; B:::.m.......,.. B':.m where B~.m is the vector space of 
polynomials of degree::::; k from Rn.......,.. Rm. Now clearly jdepends continuously 
on p and f (in fact on jm+ If). Thus there is an open neighborhood Up of p 
and an open neighborhood Wp off such that if g is in Wp then g(U) c V 
(a Co condition) and if p' is in Up, then g is onto at p'. Thus g is infinitesimally 
stable at p' using Corollary 1.3. Since X is compact there is a finite covering of 
Xby Up's. The intersection of the corresponding Wp's is an open neighborhood 
of f with the desired properties. 0 

We would like to prove a corresponding theorem for (global) infinitesimal 
stability; unfortunately there are some difficulties. We have the global result 
given in Theorem 1.6 to use instead of Corollary 1.3 but the proof above will 
not work for X(s) is not compact (even though X is compact). To avoid these 
difficulties for the moment we make the following definition. 

Definition 1.11. An infinitesimally stable mapping f: X.......,.. Y satisfies 
condition (!) if for every p in X, there exists a neighborhood Up of p and a 
neighborhood Wp off such that if g is in Wp and if S = {Pl, ... , Ps} c Up n 
g-l(q), then Jm(g*TY)s = (dg)Jm(TXh + g*Jm(TY)q. 

The object of this definition is to finesse-for the moment-the question 
of what happens in X(s) near the generalized diagonal. This is shown by the 
following. 

Lemma 1.12. Iff: X.......,.. Y is an infinitesimally stable mapping satisfying 
condition (!), then there exists an open neighborhood W off which consists of 
infinitesimally stable mappings. 
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Proof We will prove the lemma by applying Theorem 1.6. In order to 
make the notation a little easier to follow we shall prove that there is a neigh­
borhood W2 off such that each g in W2 satisfies (t) for every finite subset S 
consisting of two points. A similar proof will yield an open neighborhood 
Wr of f consisting of mappings satisfying (t) for all sets S consisting of r 
points. The desired W is then given by nr=V Wr where W1 is given by Propo­
sition 1.10. 

Let (p, t) be in X x X. We will choose neighborhoods Up of p, Vt of t, 
and Wp,t off such that if g is in Wp,t, x is in Up, and y is in Vt with g(x) = 
g(y) = q, then Jm(g*TY){x,y} = (dg)Jm(TX){x,y) + g*Jm(TY)q. If p = t, then 
the relevant data (with Vt = Up) is given by condition @. If p i= t and 
f(p) i= f(t), then we may choose Up, Vto and Wp,t so that g(Up) n g(i7t) = 0 
for every g in Wp,t. Finally if p i= t and f(p) = f(t) = q, we may choose 
disjoint neighborhoods Up and Vt and a neighborhood Wp,t so that TXI Up 
and TXI Vt are trivial and g(Up) U g(i!;) C Zq where Zq is an open neighbor­
hood of q in Ywith TYIZq trivial for every g in Wp,t. Sincefis infinitesimally 
stable l: Jm(TX)\p,t} EEl Jm(TY)q -)- Jm(f*Ty){p,t} is onto where! is the linear 
mapping between these finite dimensional vector spaces given by (d!) + f*. 
Since TXI Up, TXI Vto and TYI Zq are trivial we may identify!with a mapping 
of B':,n EEl B':,n EEl B;;:,m -?o- B':,m which depends continuously on p, rand f as 
long as the perturbation off is in Wp,t. 

Now the sets Up x Vt cover X x X which is compact. So there exists a 
finite subcover given by the Up x Vt's. Intersecting the corresponding Wp,t's 
gives the desired open neighborhood W2 off 0 

Exercises 

(1) Consider the mapping f: R2 -?o- R2 defined by (x, y) 1--+ (x, xy _ y3). 
Try showing that f is infinitesimally stable using only the definition of infini­
tesimal stability. In doing so you should get to a functional equation which is 
rather difficult to solve on a nbhd of the origin, i.e., for every pair of smooth 
functions 71, 72 : R2 -?o- R there exist smooth functions g10 g2, 7)10 and 7)2: R2 -?o­

R such that 

(*) [
71 = gl + 7)1 • f 
72 = yg1 + (x - 3y2)g2 + 7)2 • f 

Use Theorem 1.2 to show that [flo is infinitesimally stable by solving equa­
tions (*) to order 2. Try showing that f is infinitesimally stable by applying 
Theorem 1.6. (Sincefis proper the theorem is still valid even though X = R2 

is not compact.) 
(2) Letf: R2 -?o- R3 be given by f(x, y) = (x, xy, y2). Show thatfis locally 

infinitesimally stable at O. 
(3) It is possible to reduce even further the calculations needed to com­

pute local infinitesimal stability using the following observation due to 
Arnold. Let f: Rn -?o- Rm and assume that f(O) = O. Say that f satisfies con-
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dition (Z) if for every germ <P E Ca"'(Rn) there exists an n x m matrix H of 
germs in Co"'(Rn) and an m x m matrix K of germs in Co(Rm) such that 

<pIm = (df)H + K·f 

where 1m is the m x m identity matrix. 

(a) Show that condition (Z) holds (to order m) at ° iff equations (**) 
hold (to order m) at 0. 

Hint: For (**) => condition (Z). Let TI = (0, ... , <p, ... , 0) where <p is in 
the lth position for 1 ~ I ~ m. Using (**) obtain TI = (df)(e) + YJI 0 f 
Let H = {til} and K = {YJn where tl = (tIL, . .. , tnl) and YJI = (YJl l, . .. , YJm Z). 

For condition (Z) => (**), let T = (Tl, •.. , Tn,) and solve TZ = (df)H + K 0 f 
Let ti = 2.'J'= 1 YJij and YJi = 2.'J'= 1 k ij where H = (hiJ and K = (kij). Then 
let t = (tl>"" tn) and YJ = (YJl>"" YJm)· 

(b) Show that if condition (Z) can be solved for <PI and <P2 in Co(Rn), 
then condition (Z) holds for <p = <P1<P2' 

Hint: Choose HI, Kl for <PI and H2, K2 for <P2' Let H = <pIH2 + H1 K2" 
and let K = K1 K2. 

(c) Proposition 1.13. Let f: X -J>- Y be smooth and let p be in X. 
Choose coordinates Xl, ... , Xn on X at p. Then f is locally infinitesimally 
stable at p iff equations (**) are solvable to order m for TZk = (0, ... , 
Xb ... , 0) where the X k appears in the lth position for 1 ~ I ~ m and 
1 ~ k ~ n. 

(4) Let f:Rn-J>-Rn be given by (Xl>""Xn)I-+(X1"",Xn-l,XIXn + 
X 2X n2 + ... + Xn_1Xnn-1 + xnn+1). Show that f is locally infinitesimally 
stable at 0. 

§2. Stability Under Deformations 

Our intention in this chapter is to prove (under the assumption that the 
domain is a compact manifold) that stability is equivalent to infinitesimal 
stability. To accomplish this task it seems necessary to introduce several 
other notions of stability-all of which are, in fact, equivalent to the ones 
just mentioned. The most natural of these is the concept of stability under 
deformations introduced by Thorn and Levine. 

Definition 2.1. Let f: X -J>- Y be smooth and let Is = (- e, e). Then 
(a) let F: X x Is -J>- Y X Is be smooth. F is a deformation off if 

(i) for each s in ( - e, e), F: X x {s} -J>- Y X {s}. Denote by Fs the map­
ping of X 1-+ Y defined by F(x, s) = (FsCx), s). 

(ii) Fa = f 
(b) Let F: X x Is -J>- Y X Is be a deformation off Then F is trivial if 

there exist diffeomorphisms G: X x 10 -J>- X x 10 and H: Y x 10 -J>- Y x 10 
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(where 0 < I) :::; e) such that G and H are deformations of idx and idy, re­
spective/y, and such that the diagram 

x X 10 
F 

I Y X 10 

Gl lH 
X x 16 

f X id10 
I Y X 16 

commutes. 
(c) f is stable under deformations (or homotopically stable) if every 

deformation off is trivial. 

Remarks. (1) In a trivial deformation F of f each Ft is equivalent to f 
Also, iff is stable then for a given deformation F each Ft (for t small enough) 
is equivalent to f Unfortunately, this is not enough to show that F is trivial, 
since the conjugating maps need not vary smoothly. 

(2) By viewing a deformation of f as a mapping of Ie 1-+ cro(X, Y) we 
can equate deformations off with curves in cro(X, Y) based atf Recall that 
in Chapter III, §1 we motivated the definition of infinitesimal stability in 
terms of Frechet manifolds. In particular, we showed that f is infinitesimally 
stable iff (d')lr)id is onto where ')Ir: Diff(X) x Diff( Y) -+ cro(X, Y) is defined 
by ')IrCg, h) = h·f·g-1. Certainly (d')lr)id is onto if for every curve t 1-+ Ft in 
cro(X, Y) where Fo = f, there is a curve t 1-+ (Gb H t) in Diff(X) x Diff(Y) 
so that ')Ir(Gb H t) = Ft for all small t; i.e., for small t the diagram 

commutes. But this is just the condition that the deformation F be trivial. 
So it should come as no surprise that we will show that homotopic stability 
implies infinitesimal stability. In fact, they are equivalent notions and this also 
will be shown later. 

(3) As for the relationship between stability under deformations and 
stability, the only fact which can be immediately proved is the following: 

Lemma 2.2. Let f: X -+ Y be stable under deformations. Suppose there 
exists an open nbhd W off in C ro (X, Y) such that each g in W is stable under 
deformations, then f is stable. 

Proof By shrinking, if necessary, we can assume that W is "arc-wise 
connected" ; that is, for each g in W, there is a deformation F: X x [- 1, 1] 
-+ Y x [-1, 1] offso that F1 = g and Ft is in W for all tin [-1, 1]. (In III, 
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Theorem 1.12 we identified functions in a nbhd U of f with sections of a 
tubular nbhd of graph (I) in X x Y. For functions in U the deformation is 
obvious. Thus by "shrinking" we mean replacing W by W n U.) Now let g 
be in Wand choose such an F. Consider the equivalence relation on [-1, 1] 
defined as follows: s ~ t if Fs is equivalent to Ft as mappings of X -+ Y. 
The assumption that each mapping in W is homotopic ally stable along with 
Remark (1) implies that each equivalence class is open. Since [-1, 1] is 
connected there is only one equivalence class and thus g is equivalent to f. 0 

So if we know that infinitesimally stable maps form an open set and that 
infinitesimal stability is equivalent to homotopic stability, then we would 
know that infinitesimally stable mappings are stable. Recall that in the last 
section we showed (in Lemma 1.12) that if every infinitesimally stable map­
ping satisfies condition @ then the set of infinitesimally stable mappings is 
open. We now generalize the concept of homotopic stability and show that a 
mapping which is both infinitesimally stable and satisfies this generalized 
homotopic stability criterion also satisfies condition @. 

Definition 2.3. Let f: X -+ Y be smooth and let U be a nbhd of 0 in Rk. 
(a) Let F: X x U -+ Y x U be smooth. F is a k-deformation off if 

(i) for each v in U, F: X x {v} -+ Y x {v}. Denote by Fv the mapping 
of X -+ Y defined by F(x, v) = (Fv(x), v). 

(ii) Fo = f 
(b) Let F: X x U -+ Y x U be a k-deformation of f Then F is trivial if 

there exist diffeomorphisms G: X x V -+ X x V and H: Y x V -+ Y x V 
where V is an open nbhd of 0 contained in U such that G and H are deformations 
of idx and idy respectively, and such that the diagram 

Xx V 
F ) Y x V 

Gl IH 
XX V ) Yx V 

f x idv 

commutes. 
(c) f is stable under k-deformations if every k-deformation off is trivial. 

Remarks. (1) Stability under I-deformations = homotopic stability. 
(2) Iffis stable under k-deformations, thenfis stable under I deformations 

for I s k. In particular, f is homotopically stable. 
Before giving our discussion of condition @ we make some preparatory 

lemmas. If g: Rn -+ R is smooth and K is a compact subset of Rn, then define 

I alai I JJgJJsK = max a! (x) . 
XEK X 

O:s:lal:S:s 
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Lemma 2.4. Let p be in a convex compact subset K of Rn and let 
g: Rn -+ R be smooth. Let 

g(x) = L a..(x - p)a + 
Osla!ST 

L gp(x)(x - p)/3 
IPI =T+ I 

be the Taylor expansion with remainder term of order r + 1. Then if \\g\\/ < s, 
then \\gp\\:f-T-I < sfor r < sand \.8\ = r + 1. 

Proof Without loss of generality we may assume that p = O. We pro­
ceed by induction on r. For r = 0, g(x) = g(O) + :Lf=l xig!(x) where gi(X) = 
f~ (8gj8xi)(tx) dt. (See II, Lemma 6.10.) Thus 

I 8~:!! (x) I ~ f I ~;~ :!! (tx) I dt < e for \ex\ ~ S - 1 
since \ex\ + 1 ~ sand \\g\\sK < e. (Note that tx is in K since K is convex.) 
So \\gi\W-l < e. 

For the general case just note that if 

g(x) = L aaxa + L hp(x)xP, 
OslalsT-I IPI=T 

then by expanding hp(x) = hP(O) + :Lf= 1 gp,;(X)Xi we get the Taylor expansion 
of g to order r. Apply induction and the r = 0 case to obtain the desired 
result. 0 

Let Anl be the vector space of polynomials of Rn -+ R of degree ~ I. 

Lemma 2.5. Let r ~ 0 and s > 0 be integers and let K be a compact 
convex nbhd of 0 in Rn. Let Z be an open nbhd of 0 in Anl where I = (r + I)'. 
Then there exists an e > 0 so that if PI, ... , Ps are in K and if g: Rn -+ R is 
smooth and satisfies \\g\\fcr+l) < e, then there exists a polynomial v in Z such 
that 

Proof We prove the lemma by induction on s. Let s = 1 and let p = Pl' 
By Taylor's Theorem 

g(x) = L a..(x - py + L (x - p)agaCx) 
OSlalST lal=T+l 

where each ga is a smooth function. Let v = :Lo sial <r a..(x - p)a. Since p is 
assumed to vary within the compact set K, the coordinates of p are bounded 
by some constant. It is then easy to see that the coefficients of v are bounded 
by some constant multiple of e (where the constant depends on Kbut not onp) 
since \aa\ ~ \(8 Ialgj8xa)(p) \ < e. Thus by making e small enough we can 
guarantee that v is in Z. (Note that deg v ~ r so that v is in A/) 

Assume that the lemma is true for s - 1 and let PI> ... , Ps be distinct 
points in K. Again apply Taylor's Theorem to g and obtain 

g(x) = L aa(x - ps)a + L g..(x)(x - ps)a. 
OslalSr lal=r+l 
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IfIIg!lf<r+l) < e, then Ilga!l~-l)(r+l) < e by Lemma 2.4. So by induction we may 
choose polynomials Va with deg Va ~ (r + lY- l so that 

811llv 8 11llg 
8X/ (Pi) = 8x/ (pj) for 1 ~ i ~ s - 1 and 0 ~ 1,81 ~ r. 

Moreover we know that we may assume that the coefficients of Va are smaller 
than some constant (depending on K) mUltiple of e. Let 

V= 2: aa(x - p.)a + 2: (x - p.)ava. 
O,,;lal";r lal=r+l 

Note that deg V ~ deg va·(r + 1) ~ (r + l)k so that V is in Ani. Clearly the 
coefficients of V are smaller than some constant mUltiple of e since p!> ... , P. 
are assumed to be in K, and the coefficients of Va are bounded by a constant 
times e. Thus by choosing e small enough we can guarantee that V is in Z. 
Finally, we note that 

811llg 8181 ( '" '" 8xll (Pi) = 8x/3 L. aaCx - p.)a + L. 
O,,;lal,,;r lal=r+l 

811llv 
= 8Xll (pj) 

for 1 ~ i ~ sand 0 ~ 1,81 ~ r since the middle term of this equality depends 
only onp!> ... ,p., aa (lal ~ r), and (8IYlga/8xY)(Pi) (y ~ ,8) and the RHS of 
the equation depends in exactly the same way on these parameters. Thus the 
induction is proved. 0 

Proposition 2.6. Suppose that f is infinitesimally stable and that f is stable 
under k-deformationsfor k large. Thenfsatisfies condition (!). 

Proof Let p be in X. Choose coordinate nbhds U of p in X and V of 
f(p) in Y such that f( U) c V. Let W be a Co open nbhd off such that if g is 
in W, then g(U) c V. Choose an open nbhd Up of p such that Up is convex, 
compact, and contained in U. (By convex, we mean convex in the coordinates 
chosen on U.) Note that if g is in W, then gl U can be thought of as a mapping 
of Rn --+ Rm. Define IIglV'Jp = maXl,,;t,,;m IIgilia up where gl>' .. , gm are the 
coordinate functions of g. Let p : X --+ R be a smooth function which is 1 
on a nbhd of Up and 0 off U. Let rand s of Lemma 2.5 both equal m + 1 
so that I = (m + 2)m+l. Let B~,m be the polynomial functions of Rn --+ Rm; 
i.e., B~,m = EEl;"=l Ani. Let k = dim B~,m' 

We now define a k-deformation of F. For v in B~,m' let FvCx) = f(x) + 
p(x)v(x). Certainly F: X x B~,m --+ Y x B~,m is smooth and Fo = f so that F 
is a k-deformation. Sincefis stable under k-deformations there is a nbhd Z of 
o in B~,m on which F is trivial. 

Let W. = {g E W Ilig - f!l~+l)(m+2) < e}. First note that g - f makes 
sense since g(U) c V. Next note that W. is an open nbhd offin the cm2 +3m+2 

topology on Coo(X, Y) and thus open in the Coo topology. Now we choose 
e > 0 by using Lemma 2.5 as follows: Choose e so that if P!> ... , P. are s 
distinct points in Up where s ~ m + 1 and if g is in W., then there exists a v 
in Z for whichr+l(g - f)(Pi) = r+lv(pj) for 1 ~ i ~ s. 
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Finally we shall show that if g is in We> then g satisfies (t); that is, if 
S = {Pl, ... , Ps} c Up 11 g-l(q), then 

Jm(g*TYh = (dg)Jm(TXh + g*Jm(TY)q. 

Note that if this statement is true then f satisfies condition (!) for the choices 
Up and We. So let g, P1, ... , p., and q be given satisfying the conditions of (t). 
Since g is in We, there exists a v in Z so thatr+1g(Pi) = jm+1(f + v)(pj) for 
1 :0:; i :0:; s. Since p == 1 on a nbhd of Up, jm+1(f + V)(Pi) = r+ 1Fv(Pi) for 
1 :0:; i :0:; s. Since F is trivial on Z, Fv is equivalent (as mappings of X -+ Y) 
with f and since f is infinitesimally stable so is Fv. Thus (t) is satisfied by Fv 
at the points P1, ... , P., q. Now the equations in (t) depend only onjm + 1 Fv(Pi) 
(1 :0:; i :0:; s) so these same equations must be satisfied by g sincer+ 1FvCPi) = 
r+ 1g(Pi). 0 

To summarize this discussion we have: 

Proposition 2.7. If infinitesimal stability is equivalent to stability under 
k-deformations for k large (e.g., k = dim Bit.m where 1= (m + 2)m+1), then 
infinitesimal stability implies stability. 

Proof By Proposition 2.6 all infinitesimally stable mappings satisfy 
condition (!). By Lemma 1.12 the set of infinitesimally stable mappings is an 
open set. Apply Lemma 2.2 and the hypothesis of this Proposition to see that 
infinitesimal stability implies stability. 0 

§3. A Characterization of Trivial Deformations 

Let V be a nbhd of 0 in Rk and let t1, ... , tk be the standard coordinates 
on Rk. 

Definition 3.1. Let f: X -+ Y be smooth and let F: X x V -+ Y x V 
be a k-deformation off Define the vector field along F 

7/ = (dF)(!) - F*(!) 

where 8/8ti is a vector field on X x Vor Y x Vas required. 
We now establish some notation. Let 7T: X x V -+ V and p: X x V -+ V 

be the obvious projections. Then T(X x V) = 7T*(TX) EEl p*(TV). So any 
vector ~ in T(X x V) can be written uniquely as ~ = ~x + ~v where ~x is in 
7T*(TX) and ~v is in p*(TV). We call ~x the X-component of ~ and ~v the Rk_ 
component of ~ and denote ~x by 7T(~) and ~v by pm. 

Lemma 3.2. Let F be a k-deformation off Then F = f x idv iff 7Fi == 0 
for 1 :0:; i :0:; k. In particular F is independent of ti if 7F i == o. 

Proof If F = f x idv, then 

(dF)(x,v)(!i I(x.v») = !i IF(X'V) 
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So that 7Fi = O. So assume that 7Fi = 0 for all i. Fix (xo, va) in X x V and 
choose coordinates Xl> ... , Xn near Xo in X and Yl, ... , Ym near Fvo(xo, va) 
in Y. In these coordinates we may write F(x, v) = (Fl(x, v), ... , Fm(x, v), v). 
Then 

(dF)(x,v)(: I ) = (~Fl (x, v), ... , o!'m (x, V)) + : I . uti (x,V) uti uti uti F(x,v) 

Thus 7/ == 0 implies that of)ot;Cx, v) == 0 for 1 ::;; j ::;; m. Thus Fix, v) 
is independent of ti for all i and Fix, v) = Fix) = fix) where f = 

(fl> ... ,1m) in these coordinates. Since (xo, va) is arbitrary we find that 
globally F(x, v) = f(x). 0 

Theorem 3.3 (Thom-Levine). Let/: X --+ Y be smooth and let F: X x V 
--+ Y x V be a k-deformation off Then F is trivial iff there exists an open nbhd 
U of 0 in V and vector fields ~i on X x U and r/ on Y x U (for 1 ::;; i ::;; k) 
satisfying 

(a) pW) = 0 = p(r/), and 
(b) 7Fi = (dF)W) + F*(r/) on X x U. 

Proof Necessity. Assume that F is trivial, then there exists a nbhd U 
and diffeomorphisms G: X x U --+ X x U and H: Y x U --+ Y x U 
satisfying Definition 2.3(b). First we note that for any deformation K the 
Ric-component of 

(dK) (·~I ) -~I p otj p - oti K(p) 

since p. K = p. Thus 

(dK)p ( ~j \J = ~j IK(P) + 7T( dK)p (~i IJ . 
Now, by assumption, F = H·(f X idu)·G-l where all the mappings are 
k-deformations. Let p be in X x U and let r = (f x idu)·G-l(p). Then 
compute 

(*) (dF)p(~j IJ 
= ~i Ip + 7T(dH)r(~J) + (dHMdf X idu)a-l(p)7T(dG-l)p(~j IJ· 

Let ~pi = (dG)a-1(p)7T(dG-lM(%ti)lp)' Thus ~i is a vector field on X x U 
and pW) = p.7T(dG-l)(O/ot j) = 0 since G is a deformation and p.7T = O. 

Now insert (dG)p -l.(dG)a-\p) before 7T in the last term of the RHS of(*) 
to obtain 

(dF)p(OO I ) = 00 I + 7T(dH)r(ool ) + (dFM~pi). ti p ti F(p) ti p 
Thus 

(**) 7Fi(p) = (dF)p(: I ) - 00 I = 7T(dH)r(oo I) + (dFM~pi). uti p ti F(p) ti r 
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Define TJql = 7T(dH)H- 1(Q)«0/otl)IH-1 (Q» where q is in Y x U. Clearly TJI is a 
vector field of Y x U and the Rk-component of TJI is zero. Substituting TJ 
in (**) we see that 'TFI(p) = (dF.M~pl) + TJk(r)' But H(r) = H.(j·idu)·G-l(p) 
= F(p). SO 'TFI = (dF)(~I) + F*(TJt). 0 

Before proving the sufficiency part of the theorem we make some prepara­
tory calculations. 

Lemma 3.4. Let ~ be a compactly supported vector field on X x Rk such 
that the Rk-component of~ is zero. Then there is a di./feomorphismg: X x Rk-+ 
X X Rk which is a deformation of idx satisfying 

(*) 

Proof. Since ~ is compactly supported and %tk has a globally defined 
one parameter group, I, Corollary 6.5 guarantees that ~ + %tk has a globally 
defined one parameter group ~ : (X x Rk) X R -+ X X Rk. 

Let ek = (0, ... ,0,1) in Rk. We claim that~.: X x {v} -+ X x {v + sek}' 
Let p = (x, v) be in X x {v}. Then 

(dp) ~ + - =-(( 0 ) 1 ) 0 1 
P otk p- otk p(p) 

since the Rk-component of ~ is zero. Since ~ + (a/atk) is the infinitesimal 
generator of ~, the curve s I-l>- ~s(p) is an integral curve for ~ + o/atk and 
thus represents the vector (~ + %tk)l",s(p) for each s. Thus (d/ds)p(~s(p» = ek 
and p(~s(p» = sek + p(~o(p» = v + sek' This proves the claim. 

Next, define g: X x Rk -+ X X Rk by g(x, v) = ~Vk(X, V - Vkek) where 
v = (Vb' .. , Vk)' Then g: X x Rk -+ X X Rk is a smooth mapping 
Since g: X x {v} -+ X x {v} and g(x, 0) = ~o(x, 0) = (x, 0), g is a deforma­
tion of idx. Note that gl X x {v} is a diffeomorphism since hex, v) = 
~-vJx, v + Vkek) is the smooth inverse of gl X x {v}. To see that g is a diffeo­
morphism we need only show that Ker (dg) n p*(TRk) = {O}. But this is 
clear since g is a deformation; i.e., (dg)(o/at!) = o/at! + 7T(dg)(o/att) :1= O. 

Finally we compute (*). 
The curve s I-l>- (x, V + sek) represents (a/otk)I (x,V) so the curve s I-l>­

g(x, V + sek) = ~Vk+'(X, V - Vkek) = ~.(~vix, v - Vkek» = ~.(g(x, v» repre­
sents 

(dg)(x,v) - = ~ + - . ( a 1 ) ( a)1 otk (x,V) otk g(x,V) 

Lemma 3.5. Using the same notation as in Lemma 3.4, we have that 
(i) ~ = 7T(dg)(g-I)*(O/oti)' and 

(ii) ~ = -(dg)7T(dg- 1)(a/ott). 

o 

Proof. (i) follows trivially from Lemma 3.4 since 7T(O/Ott) = O. Applying 
(dg)p -1 to both sides of Lemma 3.4 we have that 
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Thus 

Since the Rk-component of ~p = 0 so does the Ric-component of (dg-l)p(~p). 
So 7T(dg)p -l(~p) = (dg)p -l(~p). Apply (dg)g-l(p) to obtain (ii). 0 

Proof of Theorem 3.3. Sufficiency. Let F: X x V --+ Y x V be a k­
deformation of f and let ~i and 1]i be vector fields on X x V and Y x V 
respectively, such that the Ric-components of ~i and 1]i are zero and T/ = 
(dF)W) + F*(1]i) on X x V. We must show that F is trivial. Since X is 
compact ~i is trivially compactly supported. By shrinking V we may assume 
that V is compact and that T/ = (df)(~i) + F*1]i on X x V. We can then 
damp 1]i to zero off a compact nbhd of F(X x V) and assume that 1]i is 
compactly supported. 

Apply Lemmas 3.4 and 3.5 to show the existence of diffeomorphisms 
G: X x V -;. X x V and H: Y x V --+ Y x V so that 

and 

1]k = -(dH)7T(dH-l)(8~J' 

Let M = H-l·F·G and let p be in X x V with q = G(p) and r = F·G(p). 
Then 

(dM)p(8~JJ = 8~JM(P) + 7T(dH-l)r(8~J) 

+ (dH-l)r7T(dF)q(8~k IJ + (dH-IMdF)q7T(dG)p(8~1c IJ 
using the fact that H, F, and G are deformations. 

So 

(dM)p(8~k IJ = 8~1c IM(P) + (dH-1)r( - 1]/ + 7T(dF)q(8~1c IJ - (dFM~qk)) 
Now TFk(q) = (dFM~qlc) + 1]/ by assumption. Hence 

TMk(p) = (dM)p(8~" IJ - M*(8~J 

= (dH-1)r( - TFk(q) + 7T(dF)q(8~k IJ ) 
=0 

since 
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Applying Lemma 3.2 we see that M is, in reality, a (k - 1) deformation 
trivially extended to a k-deformation. Thus if we can show that 7Mi 

(1 :0; i :0; k - 1) can be written in the form 7Mi = (dM)(~i) + M*(iji) where 
~i and iji are vector fields whose Rk-components are zero, then we will be 
able to use induction to conclude that F is trivial. 

Now note that 

(*) 7Mi ·G = (dH)7pi - (dM)7T(dG)(8/8t). 

For (dH)(7pi) = (dH)7T(dF)(8/8ti) = 7T(dH)(dF)(8/8ti ) since Hand Fare 
deformations. So 

(dH)(7pi) = 7T(dM)(dG)(~) = 7T(dM)(~i la) + (dG)(~) 

= 7T(dM)(~i la) + (dM)7T(dG)(~} 
This proves (*) since 7T(dM)(8/8ti)1 a) = 7Mi .G. From (*) we see that to show 
that 7Mi has the desired form it is sufficient to show that (dH)7/ has the 
desired form. 

Finally we compute (dH)(7pi) = (dH)(dF)W) + (dH)(7]ilp), Define 
~a(p) = (dGM~pj) and ij/ = (dH)H- 1(Q)(7]k- 1(Q)' Then ~ and ij are vector 
fields whose Rk-components equal zero. Moreover, 

o 

Exercises 

It is possible to use the Thorn-Levine Theorem to prove that certain 
mappings are homotopically stable. For example, show that: 

(1) Submersions are stable under deformations and 
(2) 1: 1 immersions are stable under deformations. 

§4. Infinitesimal Stability => Stability 

Proposition 4.1. Let /: X -+ Y be stable under k-de/ormations,' then / is 
infinitesimally stable. 

Proof. Since / is stable under k-deformations, / is homotopically stable. 
To show that/is infinitesimally stable we must produce for each vector field 
7 along/vector fields ~ on X and 7] on Y so that 7 = (d/)(O + /*7]. Consider 
Xf = graph/in X x Y. We can view 7 as a vector field on Xf pointing in the 
Y-direction as follows: T(P,f(P)) = 7p in {O} EEl Tf(p) Y C T(p.f(p))(X x Y). 
Extend T to a compactly supported vector field on X x Y. (This is possible 
since Xf is closed in X x Yand thus has a tubular nbhd Z. Trivially translate 
T(p.f(p)) along the vector space fiber of Z at (p,f(p» and damp-out off a 
compact nbhd of 0 in this vector space. This can clearly be done smoothly.) 
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Next let CPt: X x Y ~ X x Ybe the one parameter group whose infinitesimal 
generator is T. Finally define F: X x R ~ Y x R by F(x, t) = 
(7Ty·CPt(X,J(x», t) where 7Ty: X x Y ~ Y is the obvious projection. Clearly 
F is smooth and is a deformation of f since F(x, 0) = (7Ty(X,J(X», O) = 
(f(x), 0). Since f is stable under deformations there exist vector fields { on 
X x 16 and Tj on Y x 16 (where I) > 0) whose R-components are zero satis­
fying TF = (dF)({) + F*Tj on X x 16 by Theorem 3.3. Restrict this equation 
to X x {O} to obtain TFlxx{o} = (df)W + f*'TJ where ~p = {(P,O) and 'TJq = 
Tj(q,O) define vector fields on X and Y respectively since the R-components of 
{ and Tj are zero. Finally we compute TFI(p,o) = 7T(dF)(p,o)«8/8t)l(p,o»' 
The curve t ~ (p, t) represents (8/8t)l(p,o) so that t ~ 7Ty·cpt(P,J(p» repre­
sents TFI(p,o)' Now 

~ 7Ty·cpt(p,J(P»lt=o = (d7TY)(P,f(P»(TI(p,f(P») = Tp 

since TI(P,f(P» points in the Y-direction. Thus TFI(p,o) = Tp. 0 

The proof of the fact that stability under deformations implies infinitesimal 
stability is a calculation involving nothing deeper than the global integration 
of certain vector fields. This is not true for the converse statement. As we 
shall see, the proof of this implication uses the generalized Malgrange Prepara­
tion Theorem and is quite similar in spirit to the proof of the formulation of 
infinitesimal stability given in § 1. 

Theorem 4.2. Let f: X ~ Y be infinitesimally stable, then f is stable 
under k-deformations for all k. 

Let F: X x V ~ Y x V be a k-deformation off We need to show that 
F is trivial. By applying Theorem 3.3 we see that it is enough to find a nbhd U 
of 0 with U C V and vector fields ~ on X x U and 'TJ on Y x U such that 
the Rk-components of ~ and 'TJ are zero and TF = (dF)W + F*'TJ on X x V. 

First we prove that ~ and'TJ exist locally. 

Proposition 4.3. Iff is infinitesimally stable at p, then there exists germs 
of vector fields ~ and'TJ with Rk-components equal to zero such that 

[TF](P,O) = (dF)m(p,o) + ['TJlf(p),o). 

Proof Let NFP == N == {germs of vector fields T: X x Rk ~ T(Y X Rk) 
along Fat (p, 0) I Rk-component of T = O}, and let AFP == A == NjK where 
K = {(df)[np,o) I ~ is a vector field on X x Rk with Rk component = O}. 
There is an obvious action of q;;,O)(X x Rk) on N given by multiplication. 
Thus N is a module over C(';;,O)(X x Rk) and is finitely generated. For if we 
choose coordinates Xl>"" Xn based at p on X and Y1,' •• , Ym based at 
f(p) on Y, then every vector field along F whose Rk-component is zero can 
be written as 

L: TtCX, t) - . m 81 
1=1 8YI F(X,t) 
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Thus the vector fields along F, F*(8/8Yi) are generators of the module N. 
Thus A is a finitely generated module over q;,O)(X x Rk). Finally we note 
that via F*, A is a module over q:,O)( Y x Rk) where q = f(p). We claim that 
A is also a finitely generated Ct:.,o,( Y x Rk) module with a set of generators 
given by ei = projection of F*(8/8YI) in A. It is in proving the claim that we 
shall use the fact thatfis infinitesimally stable at p. 

First we show that the claim is sufficient to prove the Proposition. In A, 

[TF](V,O) = i ['TJiF*(88y )] . 
1=1 1 (v,O) 

Thus in N, 

[TFlv,o) = (dF)[nv,o) + F*[i 'TJI c;,8y ] 
i= 1 (J 1 (V,O) 

where t has Rk-component equal to zero since (dF)[nv,o) is in K. 
Now 'TJ = Lf'=l 'TJi(8/8YI) clearly has Rk-component equal to zero so 

TF = (dF)(t) + F*'TJ on the germ level near (p, 0). Apply the obvious local 
form of Theorem 3.3 to prove the proposition. 

To prove the claim we shall use the Malgrange Preparation Theorem 
(IV, Theorem 3.6). Using Taylor's Theorem write 

k 

(*) T(X, t) = TO(X) + 2: tITI(X, t). 
1=1 

Since T is a vector field along F, TO is a vector field alongf. Sincefis infini­
tesimally stable, there exist vector fields t on X and 'TJ on Y such that TO = 
(df)(0 + f*'TJ. Extend t and 'TJ trivially to be vector fields on X x Rk and 
Y x Rk and apply Taylor's Theorem again to obtain 

k 

(**) TO(X) - «dF)(0 + F*'TJ)(x, t) = 2: tIT;(X, t). 
1=1 

Substituting (**) in (*) we obtain 
k 

(***) T(X, t) = [df(t) + F*'TJ](x, t) + 2: tIT~(X, t). 
1=1 

Next we consider the vector space A/(tl , ... , tk)A. The equivalence class 
of T in A/(tl , ••• , tk)A is F*'TJ. Now F*'TJ = Lf'=l ('TJI'f)(8/8YI)IF since'TJ is the 
trivial extension of a vector field on Y to Y X Rk. So the projections of 
F*(8/8YI), ... , F*(8/oYm) generate the vector space A/(tl> ... , tk)A. 

Finally consider the vector space A/.Ac.q,o,( Y x Rk)A. Since (tI. ... , tk) C 

.Ac.q,O)( Y x Rk) there is a natural projection of A/(tl , ... , tk)A onto 
A/.Ac.q,O)(Y x Rk)A so that e1 , ••• , em generate this last vector space. Now 
apply the Malgrange Theorem to obtain the desired result. 0 

Corollary 4.4. Let f be infinitesimally stable and let F: X x V -+ Y x V 
be a k-deformation off. Let S = {Pl> ... , P.} C f-l(q). Then there exists a 
nbhd U of S x {O} in X x Rk and vector fields t on X x Rk and'TJ on Y x Rk 
such that the Rk-components of t and'TJ are zero and TF = (dF)(t) + F*'TJ on 
Xx U. 
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Proof In the case that S is a single point, this is just Proposition 4.3. 
The proof proceeds precisely as the proof of Proposition 4.3 substituting 
Aps = AFP1 EEl···EEl AFPk for AFP and using Lemma 1.4 rather than the 
Malgrange Preparation Theorem. 0 

Our next step is to show that TF can be written in the desired form on a 
nbhd of the critical point set off Let ~q denote the critical points of fin 
f-l(q) and let ~ = UqEY ~q denote the critical point set off 

Note. p is a critical point off if (df)p : TpX --+ Tf(p) Y is not onto. Recall 
Lemma 1.8 which showed that ~q is a finite set. 

Proposition 4.5. Let X be compact, letf: X --+ Y be infinitesimally stable, 
and let F be a k-deformation off Then there exist vector fields ~ on X x Rk 
and 7J on Y x Rk with the Rk-component of ~ and 7J equal to zero on a nbhd B 
of~ x {O} in X x Rk such that TF = (dF)W + F*7J on B. 

Proof We claim that there exist open sets Ul , ... , UN in X; VI' ... ' VN 
in Y; and WI' ... , WN in Y; and e > 0 satisfying 

(a) f(~) c Uf=l Wi 
(b) Wi C Vi 
(c) for all v E Rk with Ivl < e, Fv -l(Wi) n ~ C Ui where F(x, v) = 

(Fv(x), v) 
(d) for Ivl < e, Ui C Fv -leVi) 
(e) there exist vector fields ~i on Ui X Be and 7Ji on Vi X Be with Rk_ 

components equal to zero (where Be = {v E Rk I Ivl < e} so that 

TF = (dF)(~i) + F*7Ji on Ui x Be. 

We need only verify the choices at each point q inf(~). The finiteness then 
follows since f(~) is compaet. Since ~q is a finite set we may apply Corollary 
4.4 for S = ~q and gain the existence of U, V, ~, 7J, and e satisfying (e). Shrink 
U so that feU) C V. Now choose W satisfying (b) and (c) for f = Fo. By 
taking e smaller if necessary we may assume that (c) and (d) hold. 

Next choose a partition of unity PI, ... , PN on Uf= 1 Wi with supp Pi C Wi 
and extend Pi to be =0 off Wi. Now there is a nbhd U of ~ such that 
f-l( Wi) n U C Ui for each i since ~ is compact and Ui is open. Choose a 
smooth function P on X such that supp pC U and P = 1 on.a nbhd of~. 
Let ~ = 2:f= 1 pF* Pi~i. (This is globally defined and smooth since 

supp (pF*Pi) C supp P n supp F*Pi C Un F-l(Wi X Be) C Ui X Be. 

Hence pF*Pi~i can be extended to all of X x Rk trivially.) Let 7J = 2:f=l Pi7Jl. 
(7J is globally defined on all of Y x Rk.) Then calculate 

(dF)(~) + F*7J = (dF)(~ pF*Pi~i) + i~ F*(Pi7Jl) 

N 

= L F*Pi[(dF)(~i) + F*7J;] on a nbhd of~ x {O} 
1=1 

= TF· 

Let B be that nbhd. 0 
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Proof of Theorem 4.2. If dim X < dim Y, then ~ = X and the last 
proposition proves the theorem. So assume dim X ;::: dim Y and let B, " 
and 'YJ be given by Proposition 4.5. Choose a nbhd Z of ~ x {O} so that 
Z c B. Let a = Tp - (df)W - F*'YJ. Then a is a vector field along F whose 
R"-component is zero and which is zero on B. Now fl(X - Z) is a submer­
sion. Thus for v in R" small enough Fvl(X - Z) is a submersion. Since F 
is a deformation, F is a submersion on a nbhd D of X x R" - Z in X x R". 
Thus T(X x R") = TR" EB Ker (dF) EB G on D where G is some comple­
mentary subbundle. Moreover (dF): G -+ TY is an isomorphism on D. 
Since a is a vector field along F whose R"-component is zero, there exists a 
vector field r on D so that (dF)(O = a on D. Moreover, we can assume that 
" is a section of G so that the R"-component of " is zero. Since a = 0 on B, 
we can extend r to be =0 near the boundary of D and thus extend " to a 
vector field on X x R" whose R"-component is zero. Then Tp = (dF)(, + 0 
+ F*'YJ on a nbhd of X x {O}. 0 

Theorem 4.6. Suppose f: X -+ Y is smooth and X is compact. Iff is 
infinitesimally stable, then f is stable. 

Proof A trivial consequence of Proposition 4.1, Theorem 4.2, and 
Proposition 2.6. 0 Q.E.D. 

§5. Local Transverse Stability 

We will show that local infinitesimal stability (see Definition 1.1) is 
equivalent to a certain transversality condition. First we must construct the 
sub manifolds which will appear in this transversality statement. To do this, 
consider the action of Diff(X) x Diff(Y) on J"(X, Y) given by (g, h).a = 
j"h(q).a.j"(g-l)(g(p» where a is in J"(X, Y)p,q. Let!?d" be the orbit of the 
action thru the k-jet a. It is true that !?d" is a submanifold of J"(X, Y) but, 
for our purposes, we shall not need this fact. We shall only prove the follow­
ing. 

Theorem 5.1. !?d" is an immersed submanifold of J"(X, Y). 

Before proving this result, we need some facts about extending diffeo­
morphisms and damping translations. 

Lemma 5.2. Let 'YJ: Rn -+ Rn be an immersion such that 'YJ is a diffeo­
morphism outside of some compact set K. Then 'YJ is a diffeomorphism. 

Proof We need only show that 'YJ is 1: 1 and onto as the Inverse Function 
Theorem will imply the result. To show that 'YJ is onto we note first that 'YJ is a 
submersion and so 1m 'YJ is open. Let L be a compact set with K c Int L. 
Then Im'YJ = 'YJ(L) U 'YJ(Rn - Int L). Both sets in the union are closed so 
Im'YJ is closed. Thus 1m 'YJ = Rn. 

To show that 'YJ is 1: 1, define S = {x E Rn I 3y ERn, y t= x, with 'YJ(y) = 
'YJ(x)}. Since 'YJ is a diffeomorphism off K, Rn - S t= 0. Thus it is enough to 
show that S is both open and closed; for then S = 0 and 'YJ is 1: 1. Let x 
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be in Sand y be in Rn - {x} such that 7){x) = 7){y) = q. Choose nbhds U 
of x, V of y, and W of q so that U () V = 0 and 7) I U: U --+ Wand 7) IV: V--+ 
Ware diffeomorphisms. (This is possible since 7) is an immersion.) Then 
U c S for if a is in U, then b = (7)1 V)-l·{7)1 U){a) satisfies b i' a and 7){b) = 
7){a). Thus S is open. To see that S is closed let Xl> X2, ... be a sequence of 
points in S converging to x. Choose an open nbhd W of x so that'l)l W is a 
diffeomorphism. We may assume that each Xi is in W. Choose Yt i' Xi so that 
'I){Yt) = 'I){Xi)' Clearly the y;'s are not in W since '1)1 W is 1: 1. Also, the y;'s 
are contained in the compact set 7)-l{'I){K)). Thus we may assume that the 
y;'s converge to y in 'I)-l{'I){K)) - W. Clearly y i' x and the continuity of 'I) 
guarantees that 'I){x) = 'I){y). Thus x is in Sand S is closed. 0 

Proposition 5.3. Let Ta : Rn --+ Rn be translation by a in Rn-i.e., Ta{x) = 
x + a. Given an open set B in Rn, there exists a diffeomorphism 7) : Rn --+ Rn 
such that 7) = Ta on Band 7) = idR R outside of some compact set. 

Proof Choose a smooth function u : Rn --+ R which is 1 on a ball cen­
tered at 0 containing B and which has compact support. Let p(x) = u{tx) 
for some t. Choose t so small that Idpl = t Idul < 1/14 By also demanding 
that t ::; 1 we see that p == 1 on B. Now consider 'I){x) = x + p(x)a and 
observe that 7) = Ta on Band 7) = idR R off of some compact set. By applying 
Lemma 5.2 it is enough to show that 'I) is an immersion in order to show that 'I) 
is a diffeomorphism. Now 

(d,). ~ I, + c:)(::,. ... , ::.) where a ~ (a ... .• , aJ· 

(A short computation is necessary here.) Thus for v i' 0, I (d'l))xCv) I ;::: 
Ivl - lal·ldpl·lvl > 0 by the choice of p. Hence 'I) is an immersion. 0 

The following is left as an exercise. 

Lemma 5.4. The connected component of the identity in GL{n, R) is the set 
of matrices with positive determinant. 

Proposition 5.5. Let 1> be a local diffeomorphism on Rn defined near 0 
satisfying 1>(0) = 0 and det (d1»o > O. Then there is a diffeomorphism 
'I) : Rn --+ Rn such that 'I) = idR n outside of some compact set K and 'I) = 1> on 
some nbhd ofO. 

Proof Since 1>(0) = 0,1> = (d1»o + f3 where f3 is O(lx12) near O. We first 
show that {3 can be damped out off K. Let p : Rn --+ R be a smooth function 
such that p == 1 .on a nbhd of 0 and p == 0 off K. Consider T = (d1»o + p{3. 
Clearly T = 1> on a nbhd of 0 and T = {d1»o off K. We wish to choose p so that 
T will be a diffeomorphism. By Lemma 5.2 it is enough to show that T is an 
immersion. Now for v in TxRn = Rn, I (dT)xCv) I ;::: Id{d1>)O(v) I - l{dp(3)xl·lvl 
;::: (c - I{dp (3)xDlvl where c = I (d1» 0 -11. Thus if we choose p so that 
I{dp (3)1 < c, then T will be an immersion. Choose u: Rn --+ R such that 
u == 1 on a nbhd of 0 and supp u c B(l) = ball of radius 1 centered at the 
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origin. Let p(x) = a(rx) for some positive constant r. Then p == 1 on a nbhd 
of 0 and supp p c: B(1/r) = ball of radius l/r centered at O. By choosing r 
large enough supp p c: K. Let M = sup Idal. Then rM ~ Idpl. Since f3 is 
O(lx12) and supp p c: B(1/r) there exist constants e and f so that 1f3(x) I :::; 
elxl 2 and I (df3)x I :::; flxl on supp p. Thus I (dpf3) I :::; Idpl·If31 + Ipl·ldf31 :::; 
(eM + /)/r. Choose r large enough so that (eM + f)/r < c. 

Next we show that given a linear map a with det a > 0 there exists a 
diffeomorphism g so that g = a on a nbhd of 0 and g = idR n outside of K. 
If g exists, then 1) = a-1.g'T is the desired diffeomorphism where a = (d(/»o' 
(We use the hypothesis that det (dcP)o > 0 here.) Moreover, it is sufficient to 
show that there exists a 0 > 0 so that g exists whenever la - Inl < o. For 
we may choose a curve c: R -? Gl(n, R) so that c(O) = In and c(1) = a 
using Lemma 5.4. Also, since [0, 1] is compact there exist points to = 0 < 
tl < ... < tk = 1 such that Ic(ti)·c(tt_l)-l - Inl < 0 for 1 :::; i:::; k. Let 
gj be the diffeomorphism associated with c(ti)'C(tt-l)-t, then g = gk'" . 'gl 
is the desired diffeomorphism. Let p : Rn -? R be a smooth function such that 
p == 1 on a nbhd of 0 and p == 0 off K, then consider g = In + pea - In). 
Clearly g = a near 0 and g = In off K. Using Lemma 5.2 again, we need only 
show that g is an immersion to see that g is a diffeomorphism. Indeed 

I (dg)xCv) I ~ Ivl - (I (dp)xl + Ip(x)IHa - Inl·lvl· 

Thus if we choose 0 < l/sup (Idpl + Ipl), then whenever la - Inl < 0, the 
associated g will be an immersion. 0 

At this point we shall need some standard facts about Lie groups. We 
refer the reader who is not familiar with this topic to the appendix where we 
give definitions, examples, and sketch the results that are used here. 

Now let p be in X and q be in Y. Let Gk(X)p and Gk( Y)q be the invertible 
k-jets in ]k(X, X)p,p and J"( Y, Y)q,q respectively and let G = Gk(X)p X 

Gk ( Y)q. Then G is a Lie group (see Example (4) after Definition A. I) and there 
is an obvious action ofG onJ"(X, Y)p,q given as follows: (a, f3)(a) = f3'a'a- 1 
where (a, f3) is in G and a is in J"(X, Y)p,q. Let (!}(1 be the orbit in ]k(X, Y)p,q 
thru the k-jet a. Applying Theorem A.13 we see that (!}(1 is an immersed 
submanifold. (In fact, (!}(1 is a submanifold as it is the orbit of an algebraic 
group acting algebraically on a manifold. See Borel, Linear Algebraic 
Groups-Proposition 6, 7, p. 180. For our purposes we shall not need this 
fact. We also note that the knowledge that (!}(1 is a submanifold would be 
enough to prove that !l)(1 is actually a submanifold of J"(X, Y).) Now let &(1 

be the connected component of (!}(1 containing a. Clearly &(1 is also an immersed 
submanifold of ]k(X, Y)p,q. 

Proof of Theorem 5.1. Suppose that dim X = n and dim Y = m. Choose 
p in X and q in Y with chart nbhds U of p and V of q. Via charts we may 
identify U with Rn, V with Rm, p with 0, and q with O. Consider 
T: U x V X ]k(U, V)p,q-?J"(U, V)definedby(p',q', T)'t-+j"Tq"T.j"(Tp,-l) 
where Tc is translation by the vector c. (This makes sense using the identifi­
cations above.) T is a diffeomorphism as it is essentially the inverse of a chart 
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in the manifold structure of Jk(X, Y). (Identify the domain with Rn x Rm x 
]"(Rn, Rm)o,o and see II, Theorem 2.6.) We claim that T(U x V x @(,) = 
~r;.v == connected component of ~(J n ]"(U, V) containing a. This will imply 
the Theorem as @(J is an immersed submanifold since T is a diffeomorphism; as 
long as we also show that ~(J n ]"(U, V) has at most a countable number of 
components. First we show that T(U x V x @(J) C ~r;'v. Since U x V X @(J 
is connected, it is enough to show that T(U x V x @(J) C ~(J n ]"(U, V). 
Let (p', q', r) be in U x V X {g(J' Now @(J = Goa (using Lemma A.14) and 
G = G"(X)p X G"(Y)q where Gk(X)p = {a EO Gk(X)p I det (da)p > O}. Thus 
r = f3 oa oa- 1 where a EO Gk(X)p and f3 EO Gk(Y)q. Now we can represent a and 
f3 by mappings a: X ---»- X and i3: Y ---»- Y which are diffeomorphism nbhds of 
p and q respectively. Using Proposition 5.5 we can insure that a and i3 are 
globally defined diffeomorphisms. So r = j"(i3)(q) 0 aojk(a-1)(p). Now 
T(p', q', r) = j"(Tq.)(q) 0 7"j"(Tp' -l)(p'). By Proposition 5.3, we may assume 
that Tq.: Y ---»- Y and T p .: X ---»- X are globally defined diffeomorphisms. Thus 
T(p', q', r) = (Tp.oa, Tq.oi3)oa EO~(J' For the reverse inclusion, let r be in 
~r;.v. Let the source of r be p' and the target be q'. Consider p = 

j"(Tq. -l)(q') 0 roj"(Tp.)(p). Since Tp. and Tq. are in Diff(X) and Diff(Y) re­
spectively (Proposition 5.3 again), we see that p is still in ~(J' Thus there exist 
(y, 8) in Diff(X) x Diff(Y) such that p = jk(8)(q)oa oj"(y-l)(p) and so p is in 
@(J' So we have shown that ~r;,v C T(U x V x @(J)' Also we have shown that 
~(J n Jk( U, V) C T( U x V x @(J) so that ~ (J n ]k( U, V) has at most a count­
able number of components. Since T is a diffeomorphism and ~r;.v is con­
nectedwemusthavethat~r;'v C T(U x V x (connectedcomponentof@,,)). 
But certainly a is in ~r;'v n T(U x V x @(J) so that ~r;.v C T(U x V x @(J)' 
Thus the components of ~" n ]k( U, V) are a subset of the components of 
T(U x V x @(J) and this last set is at most countable. 0 

Definition 5060 Letf: X ---»- Y be smooth and let p be in X. Let m = dim Y 
and let a = rf(p). Then f is locally transverse stable at p if rrm ~(J at p. 

Notes. (1) The concept of intersecting transversely an immersed sub­
manifold makes sense in an obvious way, since the tangent space to an 
immersed §ubmanifold at a point is well-defined. More precisely, let W be an 
immersed submanifold of Y and let f: X ---»- Y. Then rm W at p if either 
f(p) rt W or f(p) EO Wand Tf(p) Y = (dfMTpX) + Tf(p) W. 

(2) Another way of phrasing this definition is that an immersed submani­
fold, W, is the countable union of sub manifolds WI> W2 , ••• which are open 
subsets of W. Thus fm W iff fm Wi for each i. 

(3) Applying (2) we see that the Thorn Transversality Theorem still 
applies to immersed submanifolds; i.e., if W is an immersed submanifold of 
]k(X, Y), then T W = {f EO C ""(X, Y) [jkfm W} is a residual subset of 
C ""(X, Y). (Trivial, since T W = nj; 1 T Wi where T Wi is defined in the obvious 
fashion.) 

A corollary of all this is the following: 

Lemma 5070 Let f: X ---»- Y be stable, then f is locally transverse stable at 
p for all p in X. 
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Proof. Choose an open nbhd U of fin C"'(X, Y) such that all g in U 
are equivalent to f Let a = rf(p), By the Thorn Transversality Theorem 
(and Note (3) above), there is a g in U such that rg m £»'1" Choose (a, (3) 
in Diff(X) x Diff(Y) such that f = f3.g.a- l • Then jmfm £»(J at p since 
jmg m £»(J at a(p). 0 

Let f: X ~ Y be smooth with p in X and a = j'<f(p). Our next goal is to 
compute T(J£»(J as well as a normal subspace in T(JJk(X, Y). The idea is to 
compute a jet version of TrC"'(X, Y) = Cr"'(X, TY) = C"'(f*TY). 

Let w be in Jk(f*TY)p and let T: X ~ TY be a vector field along f 
representing w. (We will constantly use the identification of Cr"'(X, Ty) 
with Cro(f*TY).) Let F be a deformation of f satisfying dFtjdtlt=o = T. 

(The existence of such a deformation can be shown as follows; Consider 
graphf as a submanifold of X x Y and identify T as a vector field along 
graphfalways pointing in the Y directions. Since X is compact we may extend 
T to a compactly supported vector field f on X x Y. Let <Pt be the correspond­
ing one parameter group and let 7Ty : X x Y ~ Y be the obvious projection. 
Define FtCx) = 7Ty·<pt(X,f(x)). Then the associated F is a deformation of f 
with the desired property.) Consider the path t f-+ j'<Ft(p) in Jk(X, Y) based 
at a and define ,\( w) to be the tangent vector to this path at t = O. 

Proposition 5.8. ,\ : Jk(f*TY)p ~ T(JJk(X, Y) is a well-defined linear 
injection. 

Proof To see that ,\ is well-defined we shall compute a formula for 
'\(w) which just depends on the k-jet of T. Choose coordinates Xl, ... , Xn 

based at p in X and coordinates Yb' .. , Ym based at q = f(p) in Y. Let 
fl'" ·,fm be the coordinate functions offin these coordinates. We may write 
T = 2:f'=1 g;/*(BjBYi) where gi is a smooth function on X and Ft = 
(F/, ... , Ft) where Fti = /; + tgj + 0(t2). This last equality follows since 
(dFt/dt)lt=o = T. Thus 

j'< nCO) = L ,. '0:(; Ft'(O) = L ,. '0:(;NO) + t '0:(; gj(O) + 0(t2) 
xct Blal . xa (Blctl Blctl ) 

lexl,,;], a. uX lal,,;k a. uX uX 

Hence 

d 'k i _ x a Blal 
(*) dtJ Ft (O)lt=o - L ,. "xa gj(O). 

lal,,;k a. u 

This sum is completely determined by jkg(O); that is, the k-jet of T at p. Now 
suppose that '\(w) = O. Then by (*) (BlaljBxa)gj(O) = 0 for lal :s; k and thus 
w = 0 in Jk(f*TY)p; so ,\ is injective. The linearity of ,\ also follows from 
(*). 0 

Proposition 5.9. Let a: Jk(X, Y) ~ X be the source map; then the 
sequence 0 ~Jk(f*TY)p ~ T(JJk(X, Y) (da).) TpX ~ 0 is exact. 

Proof Since'\ is injective and a is a submersion we need only show that 
Im'\ = Ker(da)(J' First we note that (da)(J.,\ = 0, since tf-+a.p'FtCp) =p 
is a curve representing (da)(J.'\(w) when Ft is a deformation defining '\(w). 
Since this curve is constant (da)(J.'\(w) = O. To finish the proof we show that 
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dim 1m A = dim Ker (da)(J' Now dim 1m A = dim JIc(f*TY) = dim (poly­
nomial mappings of Rn into Rm of degree :s; k) where n = dim X and m = 
dim Y. On the other hand dim Ker (da)(J = dim JIc(X, Y) - dim X = dim 
(polynomial mappings of Rn into Rm of degree :s; k). 0 

There is a natural mapping of C "'(TY)q -?- T(J!!J(J given by the action of 
Diff( Y) on JIc( X, Y) where q = target of u. Let TJ be a vector field on Y 
representing [TJ]q. We may assume that TJ has compact support. Let <Pt be the 
one parameter group whose infinitesimal generator is TJ. Consider the curve 
c(t) = r<pt(q)·u. Clearly this curve lies in !!J(J' Let (dYl)(TJ) = (dcfdt)lt=o. 
Thus (dYl) : C"'(TY)q -?- T(J!!J(J and is just the k-jet version of 

(dYr): Tidy Diff(Y) -?- TfC"'(X, Y). 

Proposition 5.10. The diagram 

commutes where 7Tk' : C"'(TY)q -?- JIc(TY)q is the obvious projection. 

Proof Let TJ and <P be as above. Then 

A·f*·7Tk'(TJ) = ;jk(<pt.f)(p)lt=o = ;jlc<ptCq)·ult=o = (dYl)(TJ) 

since a deformation off corresponding to f*TJ is given by Ft = <pt·f 
There is also a natural mapping of C"'(TX)p -?- T(J!!J(J given by the action 

of Diff(X) on JIc(X, Y) where p = source of u. Let ~ be a vector field on X 
and let if;t be the one parameter group whose infinitesimal generator is ~. 

Consider the curve c(t) = u·rif;t -l(if;tCp». Clearly this curve lies in !!J(J' 
Let (dY2)W = (dcfdt)lt=o. Thus (dY2): C"'(TX)p -?- Ta!!J(J and is the k-jet 
version of (dYt): Tidx Diff(X) -?- TtC"'(X, Y). 0 

Proposition 5.11. Let f = -A·(df) + (djkf)p·7TO Ic where 7TOIc: JIc(TX)p 
-?- JO(TX)p = TpX is the obvious projection. Then the diagram 

commutes where 7Tk' is the obvious projection. 

Proof Let ~ and if; be as above. Let w = 7Tk'W. We compute A.(df)(w). 
Note that Ft = f·if;t is a deformation of f satisfying (dFt/dt)lt=o = (df)W. 
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Thus we may use Ft to compute ;"«df)(w)). Now 

;".(df)(w) = ~ (rFt)(p)lt=o = ~ Ukf(ifit(p))·rifitCp)]lt=o 

= ~rf(ifit(p))lt=o + ~ a·rifit(p)lt=o· 

Thus 

where 7Tg': COO(TX)p ~ TpX = JO(TX)p is the obvious projection. Since 
7Tg' = 7TOk'7Tk and ifi-t = ifit- 1 we have that 

or 

D 

Proof Let v be in T/!~" and e(t) a curve representing v in filJ". Suppose 
there exists a curve of diffeomorphisms t J--+ (gt> ht) in Diff(X) x Diff( Y) 
such that e(t) = rht(q)·a.jkgt -l(gtCp)) then v is in the image (dY2) EB (dY1)' 
Let 

~p = ~; (P)lt=o and TJq = ~t (q)lt=o. 

Then ~ and TJ are vector fields on X and Y respectively. (Since we are only 
interested in the germ of TJ at q we may assume that TJ has compact support.) 
Let 4>t and ifit be the one parameter groups associated with, and TJ respectively. 
Then the curve e(t) = rifit(q)·a.jk4>-MtCp)) satisfies 

del del 
dt t=o = dt t=o = v 

since (defdt)lt=o only depends on (dgtfdt)lt=o and (dhtfdt)lt=o but 

dgt I = d4>t I and dht I = difit I 
dt t=o dt t=O dt t=o dt t=o' 

Thus 

Recall that when we proved that filJ" is an immersed sub manifold (see the 
proof of Proposition 5.1) we showed that filJ;:'v = connected component of 
filJ" n Jk(U, V) containing a is equal to T(U x V x (g,,) where @" is the orbit 
thm a of the action of the Lie group G = Gk(X)p X Gk( Y)q on Jk(X, Y)p,q. 
Since T"filJ" = T"filJ;:'v we may assume that the curve e(t) is in filJ;:·v. Since T 
is a diffeomorphism there is a curve aCt) = (p(t), q(t), T(t)) in U x V x @" 
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such that T(a(t» = c(t). Thus c(t) = jk(Tq(t)' T(t) .jk(T;(t\). So if we can 
show that T(t) = jk(h(t».a·/«g(t)-I) then we will be finished by the last 
paragraph. But T(t) is a curve in @a. Thus there is a curve (g(t), h(t» in 
Gk(X)p x Gk(Y)q such that h(t).a.g(f)-1 = T(t) since G is a Lie group. 

In local coordinates (;k(X) is just polynomial mappings of degree -::;,k 
on Rn which are diffeomorphisms on a nbhd of o. Let get) be the unique 
polynomial of degree -::;, k such that jkg(t) = get). Similarly for h(t) and h(f). 
Since det (dgo)p > 0 and det (dho)q > 0 we may assume that gt and ht are 
globally defined diffeomorphisms on X and Y respectively. (Apply Proposi­
tion 5.5.) Thus we obtain the desired gt and ht· 0 

We now state and prove the main Theorem of this section. 

Theorem 5.13. Let f: X ~ Y be smooth and let m =dim Y. If f is 
locally transverse stable at p, then f is locally infinitesimally stable at p. 

Proof Assume that f is locally transverse stable at p. By Corollary 1.3 
it is sufficient to show thatf satisfies the conditions of infinitesimal stability to 
order m. In particular, we need to show that if T is in Jm(f*TY)p, then there 
is a VI in Jm(TX)p and a V2 in Jm(TY)q so that T = (df)(Vl) + j*(V2). Consider 
,\( T) in TaJm(X, Y). Since f is locally transverse stable at p there exists w in 
Ta~a and v in TpXso that '\(T) = w + (drfMv). By Lemma 5.12 there exists 
~ in COO(TX)p and T) in C"'(TY)q so that w = -(dY2)(O + (dYl)(T). Let 
VI = 7T;:::m and V2 = 7T;:::(T). Applying Propositions 5.10 and 5.11 we have 
that w = ,\·f*(V2) - :t""(Vl). Thus 

'\(T) = ,\·(df)(Vl) - (drf)p' 7Tom(V1) + ,\·j*(V2) + (drfMv). 

Apply (da)a to both sides and apply Proposition 5.9 to obtain 

SO '\(T) = ,\.(df)(v1) + ,\.j*(V2). But ,\ is injective (Proposition 5.8), so 
T = (df)(v1) + f*v2. 0 

§6. Transverse Stability 

The problem of transferring the result that local transverse stability 
implies local infinitesimal stability to a global result is, as usual, at the self­
intersections of the mapping in question. Multijet transversality is again the 
tool used to solve the problem. 

Let ~a' be the orbit through the s-fold multijet a under the action of 
Diff(X) x Diff(Y) on Jsm(x, Y). 

Proposition 6.1. ~as is an immersed submanifold of Jsm(x, Y) for each 
s-fold multijet a. 

Remarks. (1) ~(Js is, in fact, a submanifold for the same reasons that 
~(J is a submanifold of Jk(X, Y). 
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(2) We are only interested in s-fold m-jets a = (aI' ... , as) where target al 
= ... = target as since these jets reflect the problem of self-intersection. 
Such multijets are called diagonal elements. 

Proof The proof splits into two cases: namely, whether or not a is a 
diagonal element. Suppose a = (aI> ... , as) is a diagonal element. Recall 
from Proposition 6.1 the diffeomorphism T: U x V X @a ~J'C(U, V). Now 
we extend this to an immersion as follows: Let Ub ... , Us be disjoint chart 
nbhds of source (al) = PI>"" source (as) = Ps respectively and Va chart 
nbhd of q = target (al) = ... = target (as). Define T: UI x ... x Us x V X 

@al x··· X @as ~Jk(UI' V) X ... x Jk(Us> V) c J/(X, Y) as follows: 

T(x1o ... , x s, y, T10 •.• , Ts) = (T(x1o y, TI), ••• , T(xs> y, Ts»). 

Define ~a"(U1o"" Us> V) = connected component of a in ~as n 
(Jk(UI, V) x ... X Jk(Us, V). With arguments similar to those in Proposi­
tion 5.1 one shows that 1m T = ~a"( UI, ... , Us> V) so that ~/ is an immersed 
submanifold. The only catch is that if we have s diffeomorphisms one each 
defined on Ui that there is a global diffeomorphism on X which is equal to 
each on a nbhd of ai' This is possible as long as the diffeomorphisms are 
given by translations or have a fixed point where the diffeomorphism has a 
Jacobian with positive determinant. But these are the only diffeomorphisms 
that are considered in the proof. In other words, the diffeomorphisms 
on Ui can be damped near the boundary to extend smoothly to the identity 
off Ui' 

Now suppose a is not a diagonal element. For simplicity suppose that 
s = 2 so that a = (aI' a2) and target al =1= target a2' Then we claim that 
~a 2 = (~al X ~(2) n Z where Z is the open set 

{(aI' a2) EJ2m(x, Y) I target al =1= target a2} 

(at least locally). If this is true, then certainly ~a2 is an immersed submanifold. 
We shall leave the proof of this claim to the reader as it is not difficult and 
we shall not make further use of this fact. Note the case for general s is 
similar to s = 2; the details of this observation are also left as an exercise. 0 

Definition 6.2. Let f: X ~ Y be smooth and let m = dim Y. Then f is 
transverse stable if for every s with 1 :s; s :s; m + 1 and diagonal element a, 
js"1m ~/. 

Lemma 6.3. Let f: X ~ Y be smooth. Iff is stable, then f is transverse 
stable. 

Proof The proof is the same as the proof of Lemma 5.7 except that we 
substitute the Multijet Transversality Theorem for the Thom Transversality 
Theorem. 0 

The main result is the following: 

Theorem 6.4. Letf: X ~ Y be smooth. Iff is transverse stable, thenfis 
infinitesimally stable. 
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The proof of Theorem 6.4 is almost identical to that of Theorem 5.13. 
We will just give a sketch as the important ideas have already been presented. 

Sketch afProof We assume thatfis transverse stable; we need only show 
that condition (t) of Theorem 1.6 is satisfied by f So let S = {Ph' .. , P.} C 

f-l(q), with 1 :s; s :s; m + 1. Define AS: Jm(f*TY)s -+ T,,J.m(x, Y) as fol­
lows: A: Jm(f*TY)p! -+ Ta/m(X, Y) has already been defined in the discussion 
before Proposition 5.8. Since Jm(f*TY)s = EBf=l Jm(f*TY)v! and T"J.m(x, Y) 
= EBf=l T,,/m(x, Y) it makes sense to define AS = EBf=l A. Proposition 5.8 
still applies so that AS is a linear injection. Let 0:.(,): J.m(x, Y) -+ X(·) be the 
source map. Just as in Proposition 5.9 the sequence 

m(f* ) AS m( ) (du(·»" (.) 0 O~J TYs~TaJ. X'Y-T(Vl ..... V.)X ~ 

is exact. 
Next let TJ be a vector field on Y with compact support represent [TJ]q and 

let cfot be the associated one parameter group. Define (dyl)(TJ) by (de/dt)lt=o 
where e(t) = j.kcfotCq)·a. Then (dylS) is a mapping of COO(TY)q -+ T ~a". 
Just as in Proposition 5.10 the diagram 

l~: * r AS 

Jm(TY)q --.l- Jm(f*TY)s 

commutes. 
Similarly, we can define (dyl): COO(TX)s -+ Taflj,,·· Let ['l]Vl"'" [,.]v, 

be germs of vector fields on X. Since Pl, ... , P. are all distinct, there is one 
vector field' on X such that l'lV! = ['i]V!' Let ifJt be the one parameter group 
associated with ,. Then define (dyl)(['l]Pl"'" ['.]p.) = (de/dt)lt=o where 
e(t) = a.j.mifJt-lifJt(S). Next define :/('S = -As·(df) + (djs'T'f)s'~om where 
~om : Jm(TX)s -+ TsX(') is the obvious projection. Then just as in Proposition 
5.11 the diagram 

COO(TX)s (dYl») Taflja" 

l~~~ 

commutes where ~: is the obvious projection. 
Finally we note that (dy2S) EEl (dY1S): COO(TX)s EEl COO(TY)q -+ Taflja" is 

onto as in Lemma 5.12. 
The calculations to show that condition (t) holds for the set S proceed 

in an entirely analogous way as the calculations in the proof of Theorem 
5.13. 0 
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§7. Summary 

The following summarizes the work of this Chapter. 

Theorem 7.1. Let f: X --+ Y be smooth and let X be compact. Then the 
following are equivalent: 

(a) fis stable; 
(b) f is transverse stable; 
( c) f is infinitesimally stable; 
(d) f is homotopically stable; 
(e) f is stable under k-parameter families of deformations. 

Proof 
(a) => (b) Lemma 6.3; 
(b) => (c) Theorem 6.4; 
(c) -¢> (d) -¢> (e) Theorem 4.2 and Proposition 4.1. 
(d) => (a) Proposition 2.6. 0 

At this point a few comments about the heuristics of stable mappings 
seem in order. It should be clear that "generic" properties have something 
to do with stable mappings. This can be made precise as follows. A property 
P of smooth mappings of X --+ Y is generic if it satisfies the following two 
conditions. Let Wp = {fE C"'(X, Y) ifsatisfies property P}: 

(1) Wp contains a residual subset of C"'(X, Y). (Preferably Wp is open 
and dense.) 

(2) Iff is in Wp, then any mapping equivalent to f is in Wp; that is, Wp 
is an invariant subset under the action of Diff(X) x Diff( Y) on C "'(X, Y). 

A simple argument shows that with this definition of generic a stable 
mapping does satisfy every generic property. Examples of generic properties 
were developed in Chapters II and III. (e.g., Morse functions with distinct 
critical values, 1: 1 immersions when 2 dim X < dim Y, and immersions 
with normal crossings when 2 dim X = dim Y). In these cases we used the 
Thorn Transversality and Multijet Transversality Theorems to show that the 
property in question is valid for a residual set of mappings and is thus a 
generic property. John Mather's Theorem which states that infinitesimally 
stable mappings are stable enabled us to show (in Chapter III) that (for the 
relative dimensions of X and Y under consideration) there are no other 
interesting generic properties; i.e., if there were other generic properties they 
would be satisfied automatically if the function in question satisfied the generic 
properties listed above. The subsequent chapters will be devoted to finding 
generic properties for mappings between manifolds of arbitrary dimensions. 
One might hope for a list of "interesting" generic properties along with a 
result which states that if a mapping satisfies the properties on this list then 
it is stable. This turns out not to be possible! 

The proof that infinitesimal stability implies stability-in particular, the 
notion of transverse stability-allows us to describe what all of the generic 
properties are (at least those generic properties which depend only on the 
m-jet of the function for some m). Since the m-jet of a function determines 
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whether or not the function is stable (Theorem 1.6 where m = dim Y), this 
means that we can describe all of the "interesting" generic properties. Said 
more precisely-to each orbit, (!), in JJ::+ l(X, Y) under the action of Diff(X) x 
Diff(Y) there is associated a generic property, P(f) of mappings of X -+ Y; 
namely, the property that the m-jet extension of the function intersects (!) 

transversely. Theorem 7.1 states that a mapping is stable iff it satisfies all 
generic properties P(f) constructed in this fashion. Since the number of orbits 
is uncountably infinite it is by no means clear that the set of stable mappings 
is dense. Quite the reverse, it seems remarkable that a large subset of mappings 
could satisfy all of these properties simultaneously. 

The problem with the generic properties P (f) described in the last paragraph 
is that they do not translate easily into more familiar properties of smooth 
mappings such as the structure of the singular sets. In the next chapter we 
will show how to construct submanifolds of Jk(X, Y) (which are unions of 
orbits) and which do translate into nice geometric notions. In doing so, we 
shall also be able to show that certain of these properties are contradictory 
so that stable mappings are not always dense. In fact, there exist manifolds 
X and Y for which there are no stable mappings in C"'(X, Y). 



Chapter VI 

Classification of Singularities 
Part I: The Thorn-Boardman Invariants 

§1. The Sr Classification 

For a mappingf: X -+ Y we can make the following rudimentary classi­
fication of singularities. We say that f has a singularity of type Sf at x in X 
if (df)x drops rank by r; i.e., if rank (df)x = min (dim X, dim Y) - r. 
Denote by SrCf) the singularities off of type Sr. Recall that in the proof of the 
Whitney Immersion Theorem we introduced the submanifolds Sr of ]leX, Y) 
consisting of jets of co rank r. (See II, Theorem 5.4.) Clearly SrCf) = 

(Pf)-l(Sr). To prove the Whitney Theorem we showed that if X and Y 
have the" right" relative dimensions then generically Sr(f) = 0 (r > 0) and 
f has no singularities; i.e., f is an immersion. Without restricting the relative 
dimensions of X and Ywe can still say that generically SrCf) is a submanifold 
of X and codim Sr(f) = codim Sr = r2 + er where e = [dim X - dim yr. 
This statement follows immediately from the Thorn Transversality Theorem 
and II, Theorem 4.4. In particular, the set of mappings for which Pf(fl Sr 
(for all r) is residual. Besides the Transversality Theorem, the main fact used 
in the proof of this statement is that Sr is actually a submanifold of ]leX, Y). 
We shall sketch a different proof of this fact in order to motivate the material 
in §4. 

Given a pair of vector spaces V and W, let U( V, W) be the set of linear 
maps of V into W which drop rank by r. The main fact needed is: 

Proposition 1.1. U(V, W) is a submanifold of Hom (V, W) of codimen­
sion r2 + er l",here e = [dim V - dim WI. 

This is just II, Proposition 5.3, which we shall reprove here using a trick 
involving Grassmann manifolds. 

Let s = r + max (0, dim V - dim W) and let G(s, V) be the Grass­
mannian of s planes in V. Let E be the canonical bundle over G(s, V). 
(See Example (4) after I, Proposition 5.4.) We will denote by Q the vector 
bundle with fiber VjEp at p E G(s, V) and by Hom (Q, W) the vector bundle 
over G(s, V) whose fiber at p is Hom (Qp, W). (The construction is functorial 
and thus yields a smooth vector bundle. See I, Proposition 5.4.) This fiber 
contains L°(Qp, W) as an open subset, and LO(Q, W) = Up U(Qp, W) is an 
open submanifold of Hom (Q, W). 

Now we claim there is a natural identification (as sets) 

(1.2) LO(Q, W) ~ U(V, W). 

143 
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In fact, for each p E G(s, V) we have a projection 7T: V --+ Qp and this 
induces a transpose map backwards. 

(1.3) 7T*: Hom (Q, W) --+ Hom (V, W). 

The image of this map is the set of elements in Hom (V, W) of co rank '2::.r. 
Moreover, 7T* maps LO(Q, W) bijectively onto the elements in Hom (V, W) 
which are precisely of corank r; so 7T* gives us the identification (1.2) whose 
existence we asserted. 

We now use (1.2) to provide D(V, W) with a manifold structure. We will 
let the reader compute the dimension of this manifold and check that it 
gives the same answer as our computation in Chapter II. (Hint: It is the same 
as the dimension of Hom (Q, W) regarded as a manifold.) This does not yet 
show that D(V, W) is a submanifold of Hom (V, W). Let 7T* : Hom (Q, W) 
--+ Hom (V, W) be the map described above and let M be the subset of 
Hom (V, W) consisting of elements of co rank > r. To conclude the proof one 
has to show 

Proposition 1.4. The map 7T*: P(Q, W) --+ Hom (V, W) - M is a 1:'1 
proper immersion. 

The proof is straightforward but a little tedious. We will not include it here. 
(See exercises.) Anyway, given Proposition 1.4, it is easy to prove our asser­
tion about SrCf). Namely, we first observe that Proposition 1.1 is true for 
vector bundles as well as vector spaces. Given two vector bundles E --+ X 
and F --+ Y denote by D(E, F) the fiber bundle over X x Y with typical 
fiber D(Ex, Fy). Then by Proposition 1.1 D(E, F) is a subfiber-bundle of 
Hom (E, F) of codimension r2 + er. 

Recall now the canonical identification P(X, Y) = Hom (TX, TY). 
(See Remark (2) after II, Theorem 2.7.) Just note that Sr is the subfiber­
bundle of ]leX, Y) corresponding to D(TX, TY) and we have the desired 
conclusion that Sr is a sub manifold of ]leX, Y). 

Definition 1.5. We will say that a mapping f: X --+ Y is one generic if 
Pfffl Srfor all r. 

From now on, we will assume all maps are one-generic. 

Exercises 

(The purpose of these exercises is to supply the reader with an outline 
of the proof of Proposition 1.4.) 

(1) Show that the map (1.2) is a homeomorphism; i.e., give D(V, W) 
the induced topology and show that the inverse of the map (1.2) is continuous. 

(2) Let Z 4 X be a fiber bundle and let p: Z --+ Y be a map. Let Z E Z, 
X = a(z), and y = p(z). Show that 
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is exact, and deduce the existence of a mapping 

(1.6) TxX -+ TyYj(dpMTzZx)· 

(3) Apply Exercise (2) with the following data: X = G(s, V), x = an s 
dimensional subspace K of V, Y = Hom (V, W), y = a linear map A in 
Hom (V, W) with Ker A = K, Z = LO(Q, W), and z = A'7T where 7T is as in 
Proposition 104. (Note that V/K is the fiber of Q above x and LO(V/K, W) is 
the fiber of Z above x.) Let p = 7T*: L O( Q, W) -+ Hom( V, W) and let 
a: LO(Q, W) -+ G(s, V) be the canonical projection. Note that Ty Y = 
TA Hom (V, W) ~ Hom (V, W) and 

TzZx = TA." Hom (V/K, W) ~ Hom (VjK, W) 

since Hom's are vector spaces. 

(i) Show that (dp)z: TzZx -+ Ty Y is an injection. In particular show that 
the image is all maps containing K in their kernels. 

(ii) From (i) conclude that (dp)iT zZx) ~ Hom (V/K, W). 
(iii) Finally conclude that Ty Y/(dp)zCT zZx) ~_ Hom (K, W). 

Moreover, show all these identifications are canonical. 
(4) Let x E G(s, V) and let K be the s-dimensional subspace it represents 

in V. Recall there is a canonical identification TxG(s, V) ~ Hom (K, VjK). 
(See Note (2) at the end of!, §3.) Show that the map (1.6) of Exercise 2 is 
just the map A* : Hom (K, V / K) -+ Hom (K, W) given by composition on the 
last factor where A is given in Exercise 3. 

(5) From 2-4 deduce that the map 7T* in Proposition 104 is an immersion. 
(6) Using Exercise 4, prove that NA = TA Hom (V, W)jTAL'(V, W) the 

normal space to LT( V, W) in Hom (V, W) at A is canonically isomorphic to 
Hom (Ker A, coker A). 

(7) Let f: Rn -+ Rn be given by f(Xh ... , xn) = (fl(X), ... ,!rex), Xr+h 
... , Xn). Suppose thatf(O) = 0 and thatfhas an ST singularity at O. Show that 

PI(fl Sf at 0 iff the r2 vectors (d ~J ° where 1 ~ i,j ~ rare all linearly 

independent. Hint: Use the proof of II, Proposition 5.3 to identify 
T<1L'(Rn, Rn) in coordinates where a = PI(O). 

§2. The Whitney Theorem for Generic Mappings between 
2-Manifolds 

The Thorn-Boardman Theory has to do with the behavior of maps 
restricted to their singular sets; i.e., if I: X -+ Y is one-generic, Sr(f) is a 
submanifold, so IISr(f) is again a map between manifolds; and we can, for 
example, ask whether it has singularities generically. It is this type of question 
to which the Thorn-Boardman Theory addresses itself. Before we outline 
this theory, we will discuss one example in detail-the Whitney Theory for 
maps between 2-manifolds. 

Let X and Y be 2-dimensional manifolds and let I: X -+ Y be a one­
generic mapping. By our computation in §l Sl(f) is of codimension 1 in X 
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and S2(f) does not occur since it would have to be of codimension 4. Let p 
be in Sl(f) and q = f(p). One of the following two situations can occur. 

(2.1) { (a) 
(b) 

T pS 1(f) EB Ker (df)p = TpX; 
Tp S1(f) = Ker (df)po 

Note that if p is a Sl singularity satisfying (a), then p is a fold point. (See 
III, Definition 4.1.) The first theorem of Whitney for maps between 2-manifold 
gives the normal form for fold points. 

Theorem 2.2. If (a) occurs then one can choose a system of coordinates 
(Xl' X 2) centered at p and (Y1, Y2) centered at q such that f is the map 

(*) 

This theorem is just a special case of the normal form that we derived for 
submersions with folds. (See III, Theorem 4.5.) 

Now we will suppose that condition (b) holds; i.e., ker (d!)p = T pS1(f). 
This situation is considerably more complicated. Let us choose a smooth 
nonvanishing vector field, g, along Sl(f) such that at each point of Sl(!) 
g is in the kernel of (df). (Locally this is always possible.) By assumption, g 
is tangent to Sl(!) at p. The nature of the singularity at p obviously depends 
on what order of contact g has with Sl (f) at p. Let us make this statement more 
precise. Let k be a smooth function on X, such that k = ° on Sl(f) and 
(dk)p i= 0. Consider (dk)W as a function on Sl(f). By assumption this has a 
zero at p. We let the reader check as an exercise that the order of this zero 
does not depend on the choice of g or k. (Hint: for another choice (f, k') 
show that f and k' are nonzero multiples of g and k.) 

Definition 2.3. We will say p is a simple cusp if this zero is a simple zero. 

The second main theorem of Whitney states 

Theorem 2.4. If p is a simple cusp then one can find coordinates (Xl' X 2) 

centered at p and (Y1, Y2) centered at q such that 

{ J*Y1 = Xl 

J*12 = X 1X 2 + X23. 

A picture of this map is sketched in Figure 3. Let X be the graph of 
X3 = X1X2 + X23. This graph can be viewed as a family of cubic curves in 
(X2' x 3) depending on the parameter Xl' For Xl positive these curves are 
without critical points. For Xl = ° there is a critical point which is a point 
of inflection and for Xl < ° there are max and min's. Letf: X -+ R2 be the 
projection of X onto the x1x3-plane. There is a natural set of global coordi­
nates on X given by (Xl. x 2) H>- (Xl. X2, X 1X2 + X23). In these coordinates on 
X f has the form of Theorem 2.4. The fold curve is the locus of extrema 
and the cusp is the inflection point. Note that Sl(f) is a parabola twisted in 
R3 so that any vector tangent to Sl(f) at (0,0,0) is killed by f Also note 
that the image of Sl(f) under fis the cusped plane curve t H>- (-3t 2 , -2t 3). 
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X3 

----:::::~---__ Xl 

II 
/ 

Figure 3: The Simple Cusp 

SIU) (in coordinates) 

={xl=-3x2 2 } 

The proof we will give of Theorem 2.4 is due to Morin and uses the 
Malgrange Preparation Theorem. Whitney gives a more elementary but 
slightly more complicated proof in [58]. 

Proof Let us choose coordinates (Xl' X 2) centered at p and (11, Y2) 
centered at q such that 1 has the form 

1*11 = Xl 

1*Y2 = h(X1> X2)' 

Since 1 has rank I at p this is possible. We can also assume that at the 

origin (df)a = [b ~] in this coordinate system; i.e., (Oh/OXl)(O) = 

(oh/ox2)(0) = O. We note, however, d(oh/ox2)o =P 0, otherwise 1 would not 
be one-generic. (Proof Suppose 
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at O. Let a = t(a2hjax12)(0) and compare fwith the map 

(tt) (Xl' X2) f--+ (Xl' aX12). 

They have the same 2-jet at 0, but (tt) is of rank 1 everywhere, so it is not 
one-generic. ) 

The set Slf) is defined by the equation ahjax2 = 0; so at each point of 
Sl(f) the kernel of (df) is spanned by aj8X2. This means that we can take 
ahj8x2 to be the function k and ajax2 to be the vector field g of Definition 2.3. 
The condition for the origin to be a cusp is that (82hj8x22)(0) = 0; and for it 
to be a simple cusp, (83hj8x23)(0) #- O. Therefore, at the origin, we have 

8h a2h a3h 
h = -a = -a 2 = 0 and -a 3 #- O. X2 X2 X2 

The Generalized Ma1grange Preparation Theorem allows us to write 

X23 = 3aixl, h)X22 + al(Xl> h)X2 + ao(xl , h) 

where ao, aI, and a2 are smooth functions of Yl and Y2 vanishing at O. (To see 
this recall that f is given by f(xl> x 2) = (Xl' h(Xl> X2». Then via f CO"(R2) 
becomes a module over itself; i.e., a.b(xl , x 2) = a(f(xl, x2))b(xl> X2) where 
a is in the ring CO"(R2) and b is in the module C 0"(R2). By the Malgrange 
Theorem (IV, Corollary 3.11) this module is generated by 1, X 2 , and X 22 if 
the vector space CO"(R2)j«Xl' h) + JtO(R2)4) is generated by 1, X2, X22. The 
assumptions on h guarantee that this is so.) 

Now the equation above can be written in the form 

(*) 

(with a = a2, and band c new functions of (Yl> Yz) vanishing at 0.) If we set 
Xl = 0 in (*) we see that the left hand side is of the form X 23 + ... , the dots 
indicating terms of order> 3 in X2. Since h(O, X2) = X23 + ... , the right and 
left hand sides of (*) can be equal only if (8ejaY2)(Yl> Y2) #- 0 at O. The leading 
term in the Taylor series of h is a nonzero multiple of XI X2; so, comparing 
the linear and quadratic terms on the right and left hand sides of (*), one 
easily sees that 8ej8h = 0 and abj8Yl #- 0 at the origin. This means that the 
following are legitimate coordinate changes: 

{ Xl = b(xl , h) 
X2 = X2 - a(xl' h) 

{ Yl = b(Yl> Y2) 
Y2 = c(Yl> Y2). 

In these coordinates we have 

f*Yl = Xl 
f*Y2 = X23 + XIX2 

which is Whitney's canonical form. 0 

Finally, Whitney proved that the singularities described above are 
generically the only singularities that can occur for maps between 2-manifolds. 
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Theorem 2.5. Let X and Y be 2-manifolds. Then there is a residual set in 
C 00 (X, Y) such that iff belongs to this set, its only singularities are folds and 
simple cusps. 

This is not hard to show directly, but we prefer to deduce it from a more 
general result. We defer the proof to §4 below. (See §4, Exercise 4.) 

§3. The Intrinsic Derivative 

In this section we will develop a technique due to Porteous for differ­
entiating maps between vector bundles. This is the intrinsic derivative, and it 
plays a rather important role in the Thorn-Boardman theory (a special case 
of the intrinsic derivative was introduced in Chapter II, Definition 6.5). 

We will first of all give a pedestrian (and uninvariant) definition of this 
notion, then later a more sophisticated (invariant) definition. 

Let X be a manifold and let E = X X Ric and F = X X RI be product 
bundles over X. Let p: E ~ F be a vector bundle homomorphism. We may 
view p as a mapping of X ~ Hom (Ric, Rl). Then for p in X, (dp)p: TpX ~ 
Tp(p) Hom (R\ RI) = Hom (Ric, RI) makes sense. Let Kp = Ker pep) and 
let Lp = Coker pep). Then we define the intrinsic derivative, (Dp)p, in this 
local situation by the composite map 

TpX ~ Hom (R\ Rl) ~ Hom (Kp, Lp) 

where this second arrow is given by "restricting and projecting". 
We claim that the intrinsic derivative does not depend on which choices 

of trivializations of E and F are made. More precisely, let A: E ~ E and 
B: F ~ Fbe vector bundle isomorphisms. We may view A and B as mappings 
of X ~ Hom (R\ Ric) and X ~ Hom (Rl, Rl) respectively. With these 
trivializations p has the form p where p(x) = B(x).p(x).A(x)-l. Let Kp = 
Ker pep) and Lp = Coker pep). Clearly A(p) and B(p) induce isomorphisms 
of Kp ~ Kp and Lp ~ Lp respectively. Thus the different trivializations give a 
natural mapping <p: Hom (Kp, Lp) ~ Hom (Kp, Lp) defined by <p(C) = 
B(p)·CoA(p)-l. Our statement of invariance reduces to showing that the 
diagram 

commutes. First note that if A and B are linear changes of trivializations­
i.e., A = idx x a and B = idx x b where a: Ric ~ Ric and b: Rl ~ RI are 
linear isomorphisms-then the computation that the diagram commutes is 
trivial. In the general case, we may, by using linear changes of trivializations, 
assume that A(p) = idn n and B(p) = idn,. By doing so we see that Kp = Kp 
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and Lp = Lp; so we need only show that (Dp)p = (Dp)p as mappings of 
TpX ~ Hom (Kp, Lp). First compute 

d(p)p = d(B.p.A-l)p 
= (dB)p·p(p).A(p)-l + B(p).(dp)p.A(p)-l + B(p).p(p).(dA-l)p 
= (dB)p.p(p) + (dp)p + p(p).(dA-l)p. 

(Note that we use the product rule and not the chain rule in the computation 
since we are differentiating the product of matrices whose coefficients depend 
smoothly on the parameters x.) When we "restrict and project" the first and 
third terms vanish. Thus, (Dp)p = (Dp)p. 

In general, let E and F be vector bundles over X and let p: E ~ F be a 
vector bundle homomorphism. Fixing p in X and defining Kp and Lp as 
above, we may define the intrinsic derivative of p at p, (Dp)p: TpX ~ 
Hom (Kp, Lp), by choosing trivializations of E and F on a nbhd of p and 
computing as in the local situation. The last paragraph implies that this 
mapping is independent of the choice of trivializations. 

To prepare the reader for our other definition of the intrinsic derivative, 
we need to look again at some elementary properties of the manifold 
D(V, W) c Hom (V, W) discussed in §l. 

Let A be in D(V, W) and let KA = kernel A, LA = co kernel A. Let NA 
be the normal space to D( V, W) in Hom (V, W) at the point represented by 
A, i.e., NA = TA Hom (V, W)/TAD(V, W). We will show that there is a 
canonical identification Hom (KA, LA) ~ N A. 

Since TA Hom (V, W) is canonically isomorphic with Hom (V, W) there 
is a canonical surjective linear map 

(3.1) 

given by "restricting and projecting." 

Lemma 3.2. The kernel of the mapping (3.1) is the tangent space to 
D( V, W) at A. 

Proof We can choose linear coordinates in V and W so that A has the 
form 

(fa I~) where m = rank A. 

If we define Lr( V, W) in a nbhd of A as the pre-image of 0 with respect to the 
map 

(3.3) (~ I ~) C+ V - US'T, 

(see II, Proposition 5.3), then T = U = 0 at A, so the derivative of (3.3) at 
A is just the map (3.1). 0 

Corollary 3.4. The map (3.1) induces an isomorphism NA ~ Hom (KA' LA). 
(For a more elegant proof, see Exercise 6 at the end of §l.) 
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This result is true of vector bundles as well as vector spaces. Let E -+ X 
and F -+ X be vector bundles, and let a be in the fiber of Lr(E, F) above x. 
Since we are dealing with fiber bundles, the normal space to r(Ex, Fx) in 
Hom (Ex, FJ at a is identical with the normal space to r(E, F) in Hom (E, F); 
so just as in the case of vector spaces we have a canonical identification 
Na ~ Hom (Ka, La)· 

Now let p: E -+ F be a vector bundle map. For the moment we will view 
p as a map p: X -+ Hom (E, F). Let a = Px, assume a is of corank r (i.e., 
a E r(E, F)), and let Na be the normal space to r(E, F) in Hom (E, F). 
Then we get a sequence of maps 

(3.5) TxX (dP)x) Ta Hom (E, F) -+ Na ~ Hom (Ka, La). 

An easy result, whose proof we leave to the reader, is: 

Proposition 3.6. The composite of the maps (3.5) is identical with the 
intrinsic derivative. 

(Hint: The intrinsic derivative was defined in terms of a trivialization, so 
prove the assertion for trivial bundles.) 

This proposition immediately provides us with the following: 

Proposition 3.7. Suppose a = Px is of corank r. Then the following two 
assertions are equivalent. 

(a) (Dp)x: TxX -+ Hom (Ka, La) is surjective. 
(b) pm r(E, F) at x where p is viewed as a mapping of X -+ Hom (E, F). 

Exercises 

To become familiar with this definition, the reader ought to try computing 
some special cases. One good case to look at is the following. Letf: X -+ Y 
be a smooth map. Let E = TX and F = j*TY and let p: E -+ F be (df). 
(Note that we use f*TY which is a bundle over X rather than TY which is 
not.) 

(1) Compute the intrinsic derivative 

D(df)x: TxX -+ Hom (Kx, LJ 

where Kx = ker (df)x and Lx = coker (df)x. 

(Hint: Trivialize the tangent bundles by choosing coordinate systems 
(Xl' ... , xn) centered at X and (Yl, ... , Ym) centered at y. Moreover, choose 
these coordinates so that (df)x has the form 

In terms of these coordinates the last m - s coordinate functions off can be 
written in the form: 

(3.8) 
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plus terms of order O(lxI 3). Show that the intrinsic derivative can be viewed 
as a map 

(3.9) 

Moreover, show that this map is just the map defined by the last two terms 
of (3.8) (providing one uses the linear coordinates x.+ 1> ••• , Xn in Kx and the 
linear coordinates YS+l,"" Ym in Lx).) 

(2) Show that the intrinsic derivative D(df)x is determined by the 2-jet 
of f at x (Hint: Use Exercise 1.) 

(3) Show that the map (3.9) when restricted to Kx Q9 Kx is in fact a 
symmetric map; i.e., D(dfMkl' k 2) = D(dfMk2' k 1). Thus D(df)x induces a 
mapping 

(3.10) 

(where Kx 0 Kx denotes the symmetric product of Kx with itself). (Hint: Use 
Exercise 1.) 

(4) Letfbe a real valued function and let x be a critical point off Then 
Kx = TxX and Lx = R. Show that 

is just the Hessian off at x. (In Chapter II, Definition 6.5.) 

§4. The Sr ,s Singularities 

Letf: X -+ Y be one-generic. We will denote by Sr,s(f) the set of points 
where the mapf: Slf) -+ Y drops rank s. Note that co dim Sr(f) > dim X -
dim Y by Proposition 1.1, so dim Slf) < dim Y. Therefore, x E Sr,.(f) 
if and only if x E Sr(f) and the kernel of (df)x intersects the tangent space to 
Slf) in an s dimensional subspace. For example, for maps between 2-mani­
folds the points Sl,O(f) are fold points and the points Sl,l(f) are cusps. 
(See §2.) 

Our goal in this section is to show that the Sr,sCf) are generically manifolds 
(just like the sets Slf) and to compute their dimensions. The idea of the 
proof will be to construct universal Sr,s's in J2(X, Y) (analogous to the Sr's 
described in § 1) such that 

x E Sr.s(f) -¢> j2f(x) E Sr,s' 

To begin, recall the identification: Sr;:;; D(TX, TY). Given a E Sr 
with source at x and target at Y we now can attach to a the vector spaces 
K" = ker a and L" = coker a in TxX and Ty Y respectively. This defines for 
us vector bundles on Sr which we denote by K and L. As we saw in §3, the 
normal bundle to Sr in P(X, Y) is canonically isomorphic to Hom (K, L). 
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Now let S,<2) be the pre-image of ST in J2(X, Y). By Exercise 2 at the end of 
§3 the intrinsic derivative gives us a map of fiber bundles: 

(4.1) S,<2) --+ Hom (K 0 K, L) 

ST 

Moreover, the top arrow,is surjective. (This is clear from Exercise 1 in §3. 
The last two terms on the RHS of (3.8) are completely arbitrary except for 
the symmetry condition.) We will construct our universal Sr.:s from the 
diagram (4.1). The main step in the construction is a theorem about vector 
spaces similar to Proposition 1.1 of §1. Let V and W be vector spaces, 
let V 0 V be the symmetric product of V with itself, and let V 1\ V be the 
space of alternating tensors. Recall the standard algebraic fact that V 0 V = 

(V 0 V) EEl (V 1\ V), so that there is a canonical projection TT: V 0 V ~ V 0 V 
whose kernel is V 1\ V. Consider the map 

(4.2) Hom(Vo V, W)~Hom(V0 V, W)~Hom(V,Hom.(V, W» 

where the first arrow is given by A ~ A'TT and the second arrow is given by 
B ~ q,B where q,a(v)(v') = B(v ® v'). Let Hom (V 0 V, W). be the pre-image 
under (4.2) of U(V, Hom (V, W». (Note that Hom (V 0 V, W). is not the 
same as U(V 0 V, W).) 

Proposition 4.3. Hom (V 0 V, W). is a submanifold of Hom (V 0 V, W) 
of codimension 

(4.4) 
1 I 
- k(k + 1) - - (k - s)(k - s + 1) - s(k - s) 2 2 

where k = dim V and 1 = dim W. 

Proof We use the "Grassmannian trick" used to prove Proposition 1.1. 
Let G(s, V) be the Grassmannian of s planes in V. Let E be the canonical 
bundle over G(s, V) and let Q be the vector bundle over G(s, V) whose fiber 
at pis V/Ep. Let Hom (Q 0 Q, W) be the vector bundle over G(s, V) whose 
fiber at p is Hom (Qp 0 Qp, W). The set Hom (Qp 0 Qp, W)o is an open sub­
set of this fiber (being the inverse image under the continuous map (4.2) of 
an open set), and 

Hom (Q 0 Q, W)o = Up Hom (Qp 0 Qp, W)O 

is an open subfiber-bundle of Hom (Q 0 Q, W). 
The map TTp: V ~ Qp induces a map TTp ® TTp: V ® V ~ Qp 0 Qp. It is 

easy to see that TTp 0 7Tp: V 0 V ~ Qp 0 Qp and is onto. Just as in §1, this map 
induces a transpose map TT*: Hom (Q 0 Q, W) ~ Hom (Vo V, W) whose 
image is the set Ut;'8 Hom (Vo V, W)t. Moreover, its restriction to 
Hom (Q 0 Q, W)o maps this set bijectively onto Hom (Vo V, W).; so there 
is a canonical isomorphism (of sets) 

(4.5) Hom (Q 0 Q, W)o ~ Hom (V 0 V, W) •. 
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The left hand side is a manifold; so we can define a manifold structure on 
Hom (V 0 V, W)s by requiring (4.5) to be a diffeomorphism. To prove that 
Hom (Vo V, W)s is a submanifold of Hom (V 0 V, W) requires a little more 
work. We will need, in fact, the following proposition. 

Proposition 4.6. Let Ms = Ut>s Hom (Vo V, W)t. The map 

71"*: Hom (Q 0 Q, W)o -+ Hom (Vo V, W) - Ms 

is a 1: 1 proper immersion. 

The proof of this is almost identical with the proof of Proposition 1.2. 
For the details of that proof see the Exercises at the end of §1. 

Finally we have to compute the dimension of Hom (V 0 V, W)s' This is 
the same as the dimension of Hom (Q 0 Q, W). The fiber dimension of Q 
is k - s; so the fiber dimension of Hom (Q 0 Q, W) is (k - s)(k - s + 1)// 
2. The dimension of the base space (i.e., G(s, V)) is s(k - s); therefore, the 
total dimension is (k - s)(k - s + 1)//2 + s(k - s); and the co dimension 
is as asserted in Proposition 4.3. 0 

Proposition 4.3 is valid for vector bundles as well as vector spaces. Given 
two vector bundles E -+ X and F -+ X let Hom (E 0 E, F)s be the fiber 
bundle whose fiber at p in X is Hom (Ep 0 Ep, Fp)s. Then by Proposition 
4.3 Hom (E 0 E, F). is a fiber subbundle of Hom (E 0 E, F), and its codimen­
sion is given by (4.4) with k the fiber dimension of E and I the fiber dimension 
of F. 

Let us now go back to the map (4.1) described earlier in this section. 
Hom (K 0 K, L). is a submanifold of Hom (K 0 K, L), so its pre-image is a 
submanifold (of the same codimension) in S,'2) (since (4.1) is a submersion). 
We will denote this manifold by ST, •. Our main result of this section is 

Theorem 4.7. Let f: X -+ Y be one-generic. Then x E ST,S(f) -¢> Pf(x) E 

ST,S' 
Proof Let Pf(x) = a in Sr. The normal space to ST in J1(X, Y) at a is 

Hom (K", L,,); and the map 

(dPf)x : Tx X -+ T"J1(X, y) 

induces a map: 

(4.8) 

which is, as we saw in the last section, the intrinsic derivative of (df). This 
map is surjective since PfrFi ST by assumption, and its kernel is the tangent 
space to ST(f) at x. If x is in ST,.(f) the kernel of (4.8) intersects the kernel, 
K", of (df)x in an s dimensional subspace; that is, the restriction of (4.8) to 
K" has an s dimensional kernel. This means Pf(x) is in Hom (K" 0 K", L,,) •. 
The converse is equally easy to see, and this proves Theorem 4,7. 0 

Corollary 4.9. Let f: X -+ Y be smooth. If FfrFi ST,., then ST,.(f) is a 
submanifold of ST(f) whose codimension is given by the formula (4.4) where 
I = dim Y - dim X + k and k = r + max (dim X - dim Y, 0). 
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Thus ST,S(f) is a submanifold of X and dim ST,SCf) = dim X - r2 - er -
(codim ST,sCf) in ST(f)) where e = Idim X - dim YI. 

The Transversality Theorem says that the condition Pf?1 ST.S is satisfied 
by a residual set of mappings. A mapping for which this condition is satisfied 
for all r, s will be called 2-generic. 

Exercises 

(1) Show that the condition PFm Sr.s at x is a condition on the three jet 
offat x. 

(2) Let X and Y be 2-manifolds andf: X -+ Ya 2-generic map. Show that 
dim SI(f) = 1 and dim Sl,l(f) = O. 

(3) Let X and Y be two manifolds and let f: X -+ Y be one-generic. 
Let x in X be a cusp point. Show that if x is not a simple cusp there exist 
coordinates (Xl> x 2) centered at x, coordinates (Yl> Y2) centered at Y = f(x), 
and a mapping of the form 

(4.10) 

with the same 3-jet at 0 as f Hint: Use the coordinates in the proof of Theo­
rem 2.2. In these coordinatesfis of the form (Xl> x 2) -+ (Xl> h(x1' x 2)); and 
at a cusp point which is not simple 

(4) Let X and Y be 2-manifolds andf: X -+ Y be a 2-generic mapping. 
Show that its only singularities are folds and simple cusps. (Hint: Show that 
for the map (4.10) Sl.l is the whole X 2 axis. Now use Exercise 1 and Exercise 
2.) 

(5) Show that for 2-generic maps of n manifolds into n manifolds S2.1 

occurs for the first time in dimension 7 and S2,2 occurs for the first time in 
dimension 10. 

(6) Let A be an element of Hom (V 0 V, W)s' Using (4.2) A is associated 
with a linear mapping A of V -+ Hom (V, W) of corank s. Let K = ker A 
and let L = coker A. Since K c V, there is a natural mapping 

(4.11) K* ® V* -+ K* ® K* 

given by restnctlOn; i.e., k* ® v* -+k* ® (v*IK). Since Hom (V, W) is 
naturally identified with V* ® W, we can regard L as a quotient space of 
V* ® Wand obtain a natural map 

(4.12) K* ® V* ® W -+ K* ® L 

given by id ® 7T where 7T is the obvious projection of V* ® W -+ L. Let 
K* 0 V* be the pre-image of K* 0 K* with respect to (4.11), and let K* 0 L 
be the image of (K* 0 V*) ® W with respect to (4.12). Finally let NA be the 
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normal space of the point A to Hom (V 0 V, W)s in Hom (V 0 V, W). Show 
that there is a canonical identification 

(Hint: Use the same argument as in Exercise 6 of § I.) 
(7) Letf: X -7 R2 be a 2-generic mapping where X is a compact manifold. 

Show that S1C!) is a disjoint union of a finite number of circles and that 
S1.1C!) is a finite collection of points. Also show that no other types of 
singularities aside from fold points and simple cusp points occur. 

(8) Let f: X -7 X be 2-generic. How large must dim X be to allow the 
existence of an S3 singularity? Similarly for an S3.1 singularity? 

§5. The Thorn-Boardman Stratification 

It is clear, in principle anyway, how to define higher order versions of 
the Si./S. Iff: X -7 Y is 2-generic, Si.j.if) is defined to be the set of point~ 
in Si,tCf) where the map 

drops rank by k. This definition makes sense because, as we know from the 
previous section, Si,if) is a submanifold of X. If, by chance, Si.j.IcC!) turns 
out to be a manifold, we can define Si.j.Ic.lf) similarly. Thorn conjectured 
that for a residual set of maps this process could be continued indefinitely. 
This conjecture was proved by Boardman in his I.H.E.S. paper [6]. Specifi­
cally what Boardman proved is the following. 

Theorem 5.1. For every sequence of integers r1 ;::: r2 ;::: ... ;::: ric ;::: 0 one 
can define a fiber subbundle, ST1 ..... Tk of Jk(X, Y) (relative to the fibration 
Jk(X, Y) -7 X X Y) such that if if is transversal to all the manifolds SI1 •...• I, 

where I < k, then ST1 •.... Tk(f) is well-defined and 

x E ST1 ..... Tk(f) <? jkf(x) E ST1 ..... r •• 

Boardman's proof of this depends on characterizing the Srl ..... r:s by 
"Jacobean extensions" (A short description of Jacobean extensions can be 
found in Arnold's survey article [4].) An alternative proof was given by Michael 
Menn in [34]. His proof is based on the Grassmannian trick of propositions 
1.1 and 4.3. (The enterprising reader might try, as an exercise, to construct 
the Si.j.k'S by the Grassmannian trick, taking as his starting point Exercise 6 
of the previous section.) 

Remark. Though we won't attempt to prove the Boardman theorem 
here, we will prove in the next chapter that for maps f: X -7 Y between 
equidimensional manifolds the S1" .. , 1 singularities occur generically as 
codimension k submanifolds of X. These singularities are in some sense the 
most frequently encountered of the Thorn-Boardman singularities. For 
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example, they are the only singularities that occur in dimensions .$ 6 except 
for S2.0 (S2.1 occurs for the first time in dimension 7.) 

Assuming the Boardman Theorem we will call a mappingf: X -+ Ywhose 
k jet extension jkf is, for all k, transversal to the Srl ..... r/c's a Boardman map. 
It is clear from the Thorn transversality theorem that Boardman maps are a 
residual subset of C "'(X, Y). In particular if a map is stable it is a Boardman 
map. We might ask whether the converse is true? It turns out the converse is 
false, even locally (for rather subtle reasons which we will go into in the 
next section.) However, it is easy to see why it can't be true globally: Consider 
the submersion with folds depicted in Figure 1 of III, §4. It is clear from this 
example that for a Boardman map f: X -+ Y to be stable the restriction 

f: Srlo .... T/c(f) -+ Y 

must have "normal crossing" properties similar to those described in 
Chapter III §§3-4. We will now make this condition precise. 

Condition NC. Letf: X -+ Y be a Boardman map, and let 11 , ••• , I. be 
multi-indices (not necessarily distinct). Let Xl, ... , x. be distinct points of X 
with Xj in Sr,(f) and 

f(Xl) = ... = f(x.) = y. 

Let H j be the tangent space to Srif) at Xi' Then the subspaces 

(df)xIHb"" (df)x,H. 

are in general position in Ty Y. 
The condition NC implies among other things that the maps 

f: Srl ..... r/c_loo(f) -+ Y 

are immersions with normal crossings and that the images of these immer­
sions intersect transversally as immersed submanifolds. 

We will now prove 

Theorem 5.2. The set of Boardman maps satisfying the condition NC is 
residual in C"'(X, Y) (so, in particular, stable maps have to satisfy this con­
dition). 

For the proof we will need: 

Lemma 5.3. Let X and Y be manifolds and let Zl and Z2 be submanifolds 
of Y with Z2 c Zl' Let f: X -+ Y be transversal to Zl, and let Xl = f-l(Zl)' 
(Because of the transversality, this is a submanifold of X). Then f: X -+ Y is 
transversal to Z2 iff f: Xl -+ Zl is transversal to Z2' 

Lemma 5.4. Let the diagram 

w 
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commute, and let 17 be a submersion. Then f is transversal to Z c Y iff g is 
transversal to 17-l(Z). 

The proofs of both these lemmas are elementary, and are left to the 
reader. 

With some future applications in view, we will formulate the NC condition 
a little more generally: Let Tl , ... , Ts be submanifolds of JI'(X, Y) (not 
necessarily distinct). Suppose each Tj has the property that the target map: 
T j -3>- Y is a submersion. By the transversality theorem there is a residual set 
of maps, f: X -3>- Y, such that jkfm Tj for j = I, ... , s. For the moment 
just consider such maps, and let Tj(f) = (r.f) -l(Tj). (The transversality 
assumption assures that the T/f)'s are submanifolds of x.) Consider the 
following normal crossing condition, relative to Tr, ... , Ts: 

Let Xl, ... , Xs be distinct points of X with Xj in T/f) and 

f(x l) = ... = f(xs) = y. 

Let H j be the tangent space to T/f) at Xj' Then 

(5.5) 

are in general position in Ty Y. 
We will prove: 

Proposition 5.6. The above normal crossing condition relative to the T/s 
is satisfied for a residual set of maps f: X -3>- Y. 

(Note that Theorem 5.2 is a corollary of this proposition: just take the T/s 
to be the Sf/S.) 

Proof The target map f3: Tl x ... x Ts -3>- Y X ... x Y is a submer­
sion, so the pre-image ,8-l(L~Y) where ~Y is the diagonal in Y x··· x Y 
is a submanifold of Tl x ... x Ts. By the multi-jet transversality theorem 
there exists a residual set of maps f: X -3>- Y such that the multi-jet extension 
jskf is transversal to f3-l(~ Y). It is easy to see that if the usual k jet extension 
jkfis transversal to T j for j = 1, ... , s thenjs"fis transversal to Tl x ... x Ts 
and vice-versa. Suppose both these transversality conditions are satisfied. 
The pre-image of Tl x ... x Ts with respect to js'tis just the set T1(f) x ... 
x Ts(f) with the generalized diagonal X(S) deleted. Call this set W. By Lemma 
5.3 the map: 

j/f: W -3>- Tl X ..• x Ts 

is transversal to f3-1(~Y); so, by Lemma 5.4, the map 

f x ... x f: W -3>- Y X .•• x Y 

is transversal to ~ Y. We showed, however, in Chapter III, §3 that this is the 
same as the normal crossing condition. 0 

Let's now go back to the conjecture we made earlier (with the normal 
crossing condition added). 

Conjecture. f: X -3>- Y is stable -¢;> f is a Boardman map satisfying NC. 
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We will see in the next section that this conjecture is false for maps between 
9-manifolds. (In fact it is false for maps between n manifolds of dim > 3 
though in dimensions 4-7 it is "nearly right".) Nevertheless, let's attempt to 
give a proof of it. Iff: X -?>- Y is a Boardman map we can partition X into a 
disjoint union of subsets consisting of the nonsingular points: X - U Si (f) 
and the Boardman sets ST1 ..... Tk(f) with rk = O. 

The map 

is an immersion or a submersion depending on whether dim X :s; dim Yor 
dim X ~ dim Y; and if rk = 0 the map 

f: ST1 ..... Tk(f) -?>- Y 

is an immersion. This partition of X that we have just described is called the 
Thom-Boardman stratification. It has the property that f, restricted to each 
"stratum," is a particularly simple kind of stable map (either a submersion or 
an immersion with normal crossings). How do the various strata fit together, 
i.e., how do the closures of the higher dimensional strata intersect the lower 
dimensional strata? Obviously the story is quite complicated; but because of 
the transversality theorem, they might be expected to fit together in the same 
way that the universal strata ST1 .... ,Tk fit together in Jk(X, Y). Hence, if we 
perturb f, the Thom-Boardman stratification of the perturbed map should 
look like the Thom-Boardman stratification of the unperturbed map. This 
suggests a way to prove the conjecture: construct an isotopy of X carrying the 
first stratification into the second, and then adjust it so that it conjugates the 
first mapping into the second. 

This" proof" is unfortunately based on an erroneous assumption, namely 
that if we know the stratification and know that on each stratum f is either 
an immersion or submersion, then we have enough data at our disposal to 
describefin the large. In fact, this data doesn't even describe the Co structure 
of the mapping; e.g., compare the two Morse functions (x, y) 1--7 x2 + y2 and 
(x, y) 1--7 x2 _ y2. 

One might suppose that if we know f, the Thom-Boardman data give us 
enough information to determine the structure of small perturbations off; 
but even this isn't true as we will see in the next section. 

Our "proof" does however have an intriguing air of plausibility about it, 
and we might ask whether some refined conjecture is true. It turns out that 
if we just restrict ourselves to the Co stability problem (two maps being 
equivalent if they can be conjugated, one into the other, by homeomorphisms 
of the source space and target space) then there is a finer stratification of the 
jet space than the Thom-Boardman stratification for which the "proof" 
above can be made rigorous. Thom is able to conclude from this that for 
all X and Y the Co stable maps form a residual subset of COO(X, Y). A care­
ful proof of this can be found in a forthcoming book of John Mather [33]. 
See also [48]. In the next section we will see that the usual stable maps don't 
always form a residual subset of COO(X, Y) or even a dense subset. 
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§6. Stable Maps Are Not Dense 

We have seen that immersions with normal crossings are stable; so stable 
maps are dense in C<X>(X, Y) if dim Y ~ 2 dim X. Stable maps are also 
dense in C<X>(X, Y) if dim Y = 1 (Morse theory) and if dim X = dim Y = 2 
(the Whitney theory sketched in §2). For a time it was conjectured that stable 
maps are always dense in C<X>(X, Y). Thorn and Levine proved in [18] that 
this is not the case. In fact, they showed that for maps of 9 manifolds into 9 
manifolds, stable maps are not dense. In this section we will give their 
demonstration of this fact. We will first prove: 

Proposition 6.1. Let X and Y be manifolds of dimension n2 • Then there 
exists a one-generic map f: X -+ Y such that Sn(f) is nonempty. 

Proof It is enough to prove that a map f exists taking on an Sn singu­
larity transversely at a single point, say xo, because we can always find a 
nearby mapping which is one-generic. If this mapping is close enough to f 
it must also take on an Sn singularity at a point close to Xo by Exercise I of II, 
§4. 

Let N = dim X = dim Y. With choices of coordinate on Xand Ywe can 
identify C<X>(X, Y)P.q with C<X>(RN, RN)o.o; so to exhibit a map of X into Y 
taking on an Sn singularity transversely it is enough to construct a map germ 
f: (RN, 0) -+ (RN, 0) with this property. To do this we will need the following 
lemma. 

Lemma 6.2 Let V and W be vector spaces and let K be a subspace of V. 
If dim V ~ dim K·dim W, there exists an element A in (V* 0 K*) @ W such 
that the map 

(6.3) V-+K*@ W 

associated to A is onto. (For notation, see Exercise 6 of§4.) 

Proof The requirement that A be in (v* 0 K*) @ W means simply that 
A, regarded as a map of K @ K into W, is symmetric, otherwise A can be 
arbitrary. In particular, if H is a complement to K in V we can define A so 
that (6.3) is completely arbitrary on H. Since dim H ~ dim (K* @ W) -
dim K it is enough to show that there exists a B in (K* 0 K*) @ W such that 
the map 

(6.3), K-+K*@ W 

associated to B is injective. Let Wl be a one dimensional subspace of W. 
One can already construct a B in (K* 0 K*) @ W such that the induced map 
K -+ K* ® WI is injective. (Just take a nondegenerate bilinear form.) 0 

To prove Proposition 6.1, choosefas in Exercise 1 of §3 and identify A 
with the last two terms of expression (3.8). If A is chosen as in the lemma, 
then Pf (f) Sn at 0 by Proposition 3.7. 0 

We will now prove 
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Proposition 6.4. Let X and Y be manifolds of dimension n2 • Let f: X --+ Y 
be one-generic./f Sn(f) is nonempty and n > 2 thenfis not stable. 

Combined with Proposition 6.1 this shows that stable maps are not dense 
in COO(X, Y) when dim X = dim Y = n2 , n > 2. 

For the proof of Proposition 6.4 we will need 

Lemma 6.5. Let X and Y be manifolds and Wan open subset of C 00 (X, Y). 
Then the set Aw = {O' E Jk(X, Y) I 3fE Wand x E X with 0' = rf(x)} is open 
in Jk(X, Y). 

Proof. Let 0' = rf(x) be in Aw. Choose coordinate nbhds U and V 
about x andf(x) such thatf(i7) C V and let p be a function which is 1 near x 
and has support in U. Consider the set of maps g defined by 

g=ff+ph inU 
V inX- U 

where h is a polynomial map of degree :$; k. If the coefficients of h are suffi­
ciently small this is well-defined (i.e., g( U) c V) and is in W. The setjkg(y) 
for y near x and h with coefficients small define an open nbhd of Jk(X, Y) 
in Aw. 0 

Now let us go back to the diagram (4.1) of §4. 

S/2) --+ Hom (K 0 K, L) 

~/ 
Sr 

The groups Diff(X) and Diff( Y) act on Sr and on Sr(2) in obvious ways as 
subsets of Jl(X, Y) and J2(X, Y). They also act on the bundles K and Lin 
the following simple way. If u in Sr has source at x and target at y we can 
think of u as an element of Hom (TxX, Ty Y). Then by definition K" = kernel 
u and L" = cokernel u. If g is in Diff( Y) then g acts on u by sending it to 
u' = (dg)y'u; so (dg)y maps the cokernel of u onto the cokernel of u' and 
leaves the kernels fixed. Thus Diff( Y) acts on K trivially and on L by the 
tangent bundle action. Diff(X) acts similarly; i.e., by the tangent bundle 
action on K and trivially on L. 

Lemma 6.7. The mappings in the diagram 6.6 commute with the respective 
actions of Diff(X) and Diff(Y). 

A proof is sketched in the exercises. 
We will now prove Proposition 6.4. Letf: X --+ Ybe one-generic. By the 

dimension formula in Proposition 1.1 dim Sn(f) = 0, so Sn(f) consists of a 
countable number of isolated points, say xo, Xl, X2, •••• Let aO = j2f(xo), 
al = Pf(Xl), etc. 

Now supposefis stable. Then the orbit, W" offin COO(X, Y) is open; 
so by Lemma 6.5, the set 

(6.8) AWl = {u E Jk(X, Y) I 3g E W, and x E X with u = rg(x)} 

is open in J2(X, Y). If a is in the set AWl and is also in Sn(2) then it must 
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be conjugate to one of the (Xi'S. This means that the open set Awr II Sn(2) 

in Sn(2) is covered by a countable number of orbits of the action of the 
group Diff(Z) x Diff( Y). Let a = j1f(xo). Since the top arrow in (6.6) is 
surjective, this means there is an open set in Hom (Ka 0 Ka, La) covered by 
a countable number of orbits of the group GL(Ka) x GL(La)' Suppose all 
these orbits were of dimension less than the dimension of Hom (Ka 0 KI1 , L(1)' 
Since they are immersed submanifolds they would have to be of measure 
zero by II, Lemma l.5; and so would their union. We conclude that one of the 
orbits has to be open. We wiIl show this is impossible by showing: 

Lemma 6.9. Let V and W be vector spaces of dimension n. Let G be the 
group GL(V) x GL(W) acting on the space Hom (V 0 V, W) by its standard 
representation. (The action is given as follows: let C be in Hom (V 0 V, W) 
and let (A, B) be in G, then (A, B).C(u) = C·B·A-l(u)for u in Vo V. Note 
that A(vl <29 V2) = AVl <29 AV2 and V 0 V is an invariant subspace of V <29 V 
under this representation.) Then G has an open orbit only when n < 3. 

Proof. The dimension of Hom (V 0 V, W) is n2(n + 1)/2 and the 
dimension of Gis 2n2 • Note that an orbit of G is diffeomorphic to some homo­
geneous space GIH. SO the dim (orbit) = dim G - dim H ~ dim G. (See 
Theorem A.I3). 

Clearly n2(n + I )/2 ~ 2n2 only when n ~ 3; so if n > 3, the dimension 
of G is less than the dimension of Hom (V 0 V, W), and the assertion is 
trivial. When n = 3 the dimensions are equal; but G contains a one-dimen­
sional subgroup which acts trivially on Hom (V 0 V, W) namely 
{(c idv, c2 idw)}, c a nonzero real number; so the orbits are at least one 
dimension less than dim G. 0 

This concludes the proof of Proposition 6.4. 
One can prove a slightly stronger result by the same technique; namely, 

one can show that stable maps are not dense in C<Xl(X, Y) when dim X = 
dim Y:2:: 9. John Mather has recently proved a much more striking result 
using his theory of stable mappings. He has shown that if the two-tuple 
(dim X, dim Y) occurs inside the region A of Figure 4 or on its boundary 
then stable maps are not dense in C"'(X, Y); if it occurs outside this region 
they are. For the proof of this result see [31]. 

Let X be a compact n manifold and f: X -7- Rn a one-generic mapping. 
Let Z be a sub manifold of X of dimension = codim SiC!) = i 2 , such that 
SiC!) m Z. One can show that the number of points in the intersection 
SiC!) II Z is, modulo 2, a topological invariant of the pair (X, Z). (In fact 
this invariant doesn't even depend onf) It can be computed using the theory 
of characteristic classes. (See [46] and [13]). 

N ow one can considerably weaken the hypotheses of Proposition 6.4. 
One can show that if X and Yare n manifolds, then in the dimension range, 
i 2 ~ 11 ~ i 2(i - 1 )/2, a stable map, f: X -7- Y cannot take on an Si singu­
larity. This means that if in this dimension range one can find a pair of 
manifolds (X, Z) for which the topological invariant described above is 
nonzero there will exist no stable maps of X into Rn. (A case when this happens 
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is X = p19 and Z = P16, viewed as a subspace OfP19. Therefore, there are 
no stable maps of P 19 into R19 !) 

In fact, the stable maps of xn -+ ym are dense iff the pair (n, m) satisfies 
any of the following where q = m - 11 

(a) 
(b) 
(c) 
(d) 
(e) 

m = dim 
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35 L 
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11 = dim X 

Figure 4: The region where stable maps are not dense is the shaded region including the boundary. 
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Exercises 

(1) Let E, F, and G be vector bundles. Let p: E --7- F be a vector bundle 
morphism, and let T: E --7- G be a vector bundle isomorphism. Prove the 
chain rule formula for the intrinsic derivative: 

D(rop)x = ~.(Dp)x 

where T: Hom (ker p, coker p) --7- Hom (ker p, coker Tp) is the obvious map 
induced by T. 

(2) Determine the corresponding formula for a vector bundle isomor­
phism acting on the left. 

(3) Let f: X --7- Y be a smooth map, and g: Y --7- Y a diffeomorphism. 
Show: 

82(g·f) = (dg)f(X)·(82f)x. 

(For notation, see Exercise 3 in §3.) 
(4) Derive a similar formula for composition by a diffeomorphism on the 

left. 
(5) Prove that the mappings in the diagram (6.6) commute with the 

action of Diff(X) x Diff( Y). 



Chapter VII 

Classification of Singularities 
Part II: The Local Ring of a Singularity 

§1. Introduction 

The Thorn-Boardman theory gives us a way of breaking up a map into 
simple constituent pieces; however, from the Thorn-Boardman data alone 
we usually cannot reassemble the constituent pieces and see what the map 
itself looks like. Consider for example the maps 

and 
g: R2 -+ R, (Xl> x2) f-+ X1 2 - X22. 

fand g have isolated Sl singularities at the origin and are regular everywhere 
else. However, their map germs at the origin are not equivalent, even under 
homeomorphisms of R2 and R, sincefhas an extremum at 0 and g does not. 
From the Thorn-Boardman data alone there is no way of computing the 
Hessian of f at 0; and, of course, it is the signature of the Hessian which 
distinguishes f from g. (See II, Theorem 6.9.) 

In this chapter, we will be concerned with a more subtle invariant of a 
singularity-its local ring. To define this we recall some notation from Chap­
ter IV, §3. If X is a point in a manifold X then C: = C:(X) denotes the ring 
of germs of smooth functions at x. This is a local ring and its maximal ideal, 
vllx = vltx(X), is the ideal of germs of functions vanishing at x. A map germ 
f: (X, x) -+ (Y, y) induces a map f* : Cy'" -+ C: by pull-back; and this is a 
morphism of local rings. 

Definition 1.1. Let f: (X, x) -+ (Y, y) be a map germ. The local ring off 
is the quotient ring: C:/C:f*vlly • 

This ring will be denoted :!Ilf and its maximal ideal ilif. Iff: X -+ Y is a 
map, not just a map germ, then at each point x in X we get the local ring of the 
germ of f which we will denote :!Ilf(x) and call the local ring off at x. 

Example 1 (Immersions). If f: (X, x) -+ (Y, y) is the germ of an immer­
sion, we can choose coordinates centered at x and y so thatf is the immersion 

f*y, = x, 
f*y, = 0 

i=l, ... ,n 
i=n+l, ... ,m 

where n = dim X and m = dim Y. Then vllx = f*vlly and :!Ill = R. 

Example 2 (Submersions). If f: (X, x) -+ (Y, y) is the germ of a sub­
mersion we can choose coordinates so that f is the canonical submersion 

i=i, ... ,m. 
165 
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Then C':!*Jlty is the ideal generated by (x1o "" xm) and Pllf is the ring 
of germs of smooth functions in the remaining variables Xm + 10 ..• , X n• 

Example 3 (Morse functions). If f: X ---+ R is a Morse function with 
critical point at x, the product operation in the local ring Pllf induces a linear 
map 

(1.2) 

The kernel of the map (1.2) turns out to be one-dimensional, and is, in 
fact, all scalar multiples of the Hessian. (See Exercise 5 below.) Therefore up 
to scalar multiple the Hessian can be computed from Pllf • 

Example 4 (Generic maps between 2 manifolds). At a fold, we can 
write such a map in the form (Xl' X2) 1-7 (X1o X22). If we divide C[{' by the 
ideal (Xb X22) we get the truncated polynomial ring R[x2]/(X22), so f?Jtf ~ 
R[t]/(t 2 ). 

At a simple cusp we can choose coordinates so that the mapping is 
(Xl' X 2) 1-7 (Xl' X l X2 + X23). If we divide Co'" by the ideal (Xl' Xl X2 + X 23). 

(which is just the ideal (Xl' X 23)), we get the truncated polynomial ring 
R[X2]f(X23). Hence Pllr ~ R[t ]/(t 3). 

We recommend that you try a few other examples on your own. The ring 
f?Jtr has been around a long time in algebraic geometry. For example, if 
f: X ---+ Y is a morphism between schemest, Pllf is in a natural sense the 
"fiber" of fat x. From the algebraic geometer's point of view, f?Jtf(X) is a 
much more natural invariant to attach to a singularity than, say, its Boardman 
data. I ts use in differential geometry is fairly recent, however; and is mainly 
due to Malgrange, Mather, and Tougeron. Its importance is indicated by the 
following theorem of Mather. (See [29].) 

Theorem 1.3. Let f, g: (X, x) ---+ (Y, y) be germs of stable maps. Then f 
and g are equimlent if and ollly if2llr and!?Jlg are isomorphic as rings. Note that 
f and g are eq uivalerit if there exist germs of diffeomorphisms h: (X, x) ---+ ex, x) 
and k: ( Y, y) ---+ ( Y, y) such that g = k I h - 1 near x. 

The proof of this theorem is beyond the scope of this book. We will, 
however, see it corroborated by the simple examples we are going to discuss 
in the following sections. 

Exercises 

(1) Let f: (X, x) ---+ (Y, y) be map germs. Then f induces a map 
f*:C:/jt~+l---+C,:/J!t~+l for each k. Let g:(X,x)->-(Y,y) be another 
map germ. Show that j~f(x) = }"g(x) iff!* = g*. Thus!* is the k-jet off at 
x in algebraic disguise. (Hint: Let (Yl' ... , Ym) be coordinates centered at Y 
and .h, ... , Ym be the associated elements of the quotient ring. Show that 
!*Yt is the k-jet of the ith coordinate function off) 

t Whatever that means. 
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(2) Let y: C;: lAy Ie + 1 ---» C; jJlx Ie + 1 be a ring homomorphism. Show that 
y = f* for some map germ f. 

(3) From Exercises 1 and 2, deduce an isomorphism (of sets) 

Jk(X, Y)x,y;;:; Hom (Cy"'jJI/+\ C;jJlxle+l) 

(Hom meaning homomorphisms of rings). 
(4) Identify JlyjAy2 with the cotangent space of Y at y. Compare with 

IV, Lemma 3.3. Show that f* : AyjJly 2 ---» JlxjJ(" 2 is just the transpose of 
(df)x: TxX ---» Ty Y. 

(5) Letf: Rn ---» R be the Morse function given by (xb ... , xn) 1-+ X1 2 ± 
X 2 2 ± ... ± xn2 • Show that at the origin ~;zrl?Jz? is just the space of linear 
functions in Xl, ... , Xn; and mf2fm/ is the space of quadratic functions with 
X1 2 ± X 22 ± ... ± xn2 identified to zero. Conclude that the kernel of the map 
(1.2) is the one-dimensional space spanned by Xl ® Xl ± ... ± Xn ® Xn-

(6) Verify that nonconjugate map germs can have the same local ring. 
(Hint: Try (Xl' X2) 1-+ (Xl' XIX2 + X2 3) and (Xl' X 2) 1-+ (Xl' X 23).) Why 
doesn't this contradict Mather's theorem? 

(7) Prove that the dimension of mf(x)/mf2(x) is equal to the dimension of 
Ker (df)x: TxX ---» Tf(x) Y. (Hint: Use Exercise 4.) 

§2. Finite Mappings 

Letf: X ---» Y be a smooth map. We say thatfisfinite at X if: 

(2.1) 

f is finite if it is finite at every point. Note that if dim X > dim Y, then 
dimR~rCx) = 00, (i.e., even formally the functionsfb" .,fn cannot generate 
an ideal of finite codimension in the formal power series ring R[[Xb ... , xm]] 
if m > n. See [61].) Therefore, in talking about finite maps, we are implicitly 
assuming dim X :S; dim Y. "Finiteness" implies among other things that the 
map f is locally" finite-to-one" at x. In fact, we have 

Proposition 2.2. Iff is finite at x, and a = f(x) then there exists an open 
nbhd U of X such that X is the only point in U mapping onto a. (In particular, 
iff is finite, it is "finite-to-one" on compact subsets of X.) 

Proof We can assume that X and Yare Rn and Rm respectively and that 
X = a = O. Let fb .. . ,fm be the coordinate functions of f The assumption 
(2.1) means that some power of the maximal ideal in Co'" is contained in the 
ideal (f1, ... ,fm). Therefore, there exists an open set U and an integer N 
such that on U, XiN = 2']'= 1 aijjj, the ai/s being smooth functions on U. 
Therefore, if the f,.'s vanish on U so do the coordinate functions Xi' In other 
words, zero is the only pre-image of zero. 0 

Remark. The converse is not true. The map f: R ---» R, given by t---» 
exp ( -1/t 2 ) is "finite-to-one" but dim ~f(O) = 00. 
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Suppose f is finite at x. Let Pl> ... , Pk be elements of C:' projecting onto a 
basis of ~f(X) over R. Then the Malgrange Preparation Theorem says that 
Pl> ... , Pk generate C:' as a module over Cyoo . Conversely, if Pl> ... , Pk 
generate C:' as a module over C;: it is clear that they project onto a spanning 
set of vectors for ~r<x) viewed as a vector space over R. We will use this to 
prove 

Proposition 2.3. dimR ~r<x) is an upper semi-continuous function of x. 
In particular, iff is finite at x, it is finite near x. 

Proof Let Xl, ... , Xn be a coordinate system centered at X, andYl> ... , Ym 
a coordinate system centered at the image point. We can assume that the 
functions PI, ... , Pk above are polynomials in xt's of degree < N. We will 
show that there exists a fixed open set, U, about X such that on U every poly­
nomial in the x;'s can be written as a linear combination of the Pi'S with 
smooth functions of the y;'s as coefficients. First note that this statement is 
true for some U and for all polynomials of degree :5: N. (Note that for any 
monomial we can find an open set U since the statement is true for germs at 
x. Thus we can find an open set U which works for all monomials of degree 
:5: N. By linearity U works for all polynomials of degree :5: N). Now consider 
a polynomial of the form XfXp where deg P = N. XfXp can be written as a 
linear combination of the XfXp;'S and, hence, by induction as a linear combina­
tion of the l's themselves. Thus U works for all polynomials of degree> N 
as well. 

This proves that for all x' in U, C; is formally generated by the Pt's as a 
module over C;. Therefore, by the Malgrange Preparation Theorem, it is 
actually generated by them. 0 

In some sense, dimR ~f(X) measures the multiplicity of the point X as a root 
of the equation f(x) = a. Over the complex numbers this vague statement 
can be made precise (see Remark 1 below), but over the reals we have to 
content ourselves with: 

Proposition 2.4. Let dimR ~f(X) = k. Then there exists a neighborhood, 
U, of x such that every Y sufficiently close to f(x) has at most k pre-image points 
in U. 

Proof Choose U and Pl, ... , Pk as in the proof of Proposition 2.3. Let 
Xl> ... , Xr be pre-image points of Y in U, and let S = {Xl' ... , xr}. Let C; = 
EtX=l C;; be germs of COO functions on S, and let ~f(S) be the quotient ring 
C; I C;f* .Ay • Csoo is a finitely generated module over C;: with generators 
Pl, ... , Pk (by the same reasoning as in the proof of Proposition 2.3), so ~f(S) 
is a finite dimensional vector space over R with the images of Pl> ... , Pk as 
spanning vectors. On the other hand, the restriction map ~r<S) 1-+ 

If=l ~r<Xi) is bijective; so r :5: dimR ~r<S). 0 

Remark 1. If X and Yare complex manifolds of the same dimension, 
andf: X -+ Ya holomorphic mapping satisfying (2.1) then a much sharper 
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form of Proposition 2.4 is true. Namely, there exists an open nbhd U of x 
such that for every y close to I(x) the sum 

(2.5) 

over the pre-image points of y contained in U is constant. (See [38].) 

Remark 2. In the complex analytic category the converse of Proposition 
2.4 is true; namely, if I: X -+ Yis locally "finite-to-one" then dime ~f(x) < 
00. (See [14].) 

We conclude this section by mentioning a result of Tougeron: 

Theorem 2.6. If dim X .$ dim Y the finite maps are a residual subset 01 
COO(X, Y). 

In fact, Tougeron proves they are much larger than just a residual set. 
The complement is, in a sense which we won't try to make precise, of "in­
finite codimension" in COO(X, Y). (See [51].) 

Exercises 

(1) Consider the Whitney map given by I: (Xl> X2) -+ (Xl> X1X2 + t X23) 

of R2 into R2. Given a in R2 what values can the sum 

(2.7) .2: dimR~f(p), 
pef- 1(a) 

take on? 
(2) Consider the analogous problem for the complex Whitney map 

I: (Xl> X2) -+ (Xl' X 1X 2 + t X23) of C2 into C 2. 
(3) Call dimR ~tCx) the multiplicity of the point X (with respect to the 

mapping I: X -+ Y). Prove Proposition 2.4, counting pre-image points 
with multiplicity. (Hint: Confirm that we did prove this stronger result in the 
text.) 

(4) Prove Tougeron's Theorem 2.6 for maps between two-manifolds 
using the Whitney theory. 

(5) Let X and Y be manifolds of dimension n and let I: (X, x) -+ (Y, y) 
be a map exhibiting an Si singularity. Show that dimR ~f > i(i + 1)/2. 
(Hint: Choose coordinates Xl> ..• , Xn centered at X and Yl> .•• , Yn centered at 
Y such that I has the form 

I*Yi = iJ j .$ i 
I*Yi = Xi j> i 

where the leading term ofiJ is quadratic. Show that ml/m/ is the space of all 
quadratic polynomials in Xl, • •• , Xi with the quadratic terms of 11, ... , It 
identified to zero.) 
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§3. Contact Classes and Morin Singularities 

We shall now attempt to give some insight into the geometric content of 
the local ring !?4?f(P) defined in §2. This will be accomplished through the 
notion of contact equivalence. 

Let Z be a manifold with p in Z. There is an obvious way to define a 
submanifold germ of Z near p; namely, two submanifolds are equivalent if 
they are identical in a nbhd of p and a submanifold germ is one of these 
equivalence classes. (Clearly we may think of a submanifold germ as a small 
piece of a submanifold.) 

Definition 3.1. Let A, Bl , and B2 be equidimensional submanifold germs 
ofZ near p. Then Bl and B2 have the same contact with A if there exists a germ 
of a diffeomorphism <P: (Z, p) --+ (Z, p) such that <PIA = idA and <p(Bl) = B2. 

Next we define the local ring associated with the contact of two manifold 
germs A and B of Z near p. Define 

~(B) = {g E C;(Z) I g(B) = O}. 

Let iA : A --+ Z be the canonical inclusion map. Define ~(A, B) to be the ideal 
i1(.JiB)) where i1: C;(Z) --+ C;(A) is the ring homomorphism induced 
by iA • Finally, let 

!?4?A,B = C;(A)/~(A, B). 

It is clear that !?4?A,B is an invariant of the contact of B with A. 

Definition 3.2 !?4?A,B is called the local ring of the contact of B with A. 

Theorem 3.3 Let A, Bl , and B2 be equidimensional submanifold germs of 
Z near p. Then Bl and B2 have the same contact with A iff !?4?A,Bl = !?4?A,B2' 

First we present three lemmas. 

Lemma 3.4. There exists a trivial tubular nbhd U of A in Z such that 
both Bl and B2 intersect the fiber of U at p transversely. 

Proof We can choose a tubular nbhd U of A in Z which is a trivial 
vector bundle since A is a submanifold germ. Thus by choosing coordinates 
we may assume that U = Rk X Rl where k = dim A, I = codim A, A is 
identified with Rk x {O}, and p is identified with O. In this local situation it is 
clear that we can rotate the Rl factor of U so that both Bl and B2 intersect 
{O} x Rl transversely. 0 

Lemma 3.5. Let G and H be linear maps ofRI --+ Rl. Then there exists a 
linear map F: Rl --+ Rl such that K = F(Iz - G H) + H is invertible. 

Proof Choose subspaces V and W of Rl so that V EEl Ker H = Rl and 
H(V) EEl W = Rl. Choose F so that F(V) = 0 and F: Ker H --+ W is an 
isomorphism. It is now easy to check that with these choices, Ker K = O. 0 
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Lemma 3.6. Let b: (R"', 0) --+ (RI, 0) be a map germ where b(x) = 
(b1(x), ... , bl(x)), (We assume that the coordinates on R'" are x and the co­
ordinates on RI are y.) Then ~o.olR'" x {O}, graph b) = (b 1 , •.. , bl) where 
R'" x {O} and graph bare submanifold germs of R'" x RI near (0, 0). 

Proof The functions blx) - Yi clearly vanish on graph bi in R'" x RI. 
Also i;kx (O}(ht(x) - Yi) = ht(x). So ~o.olR'" x {O}, graph b) ::> (bb"" bl)' 
Conversely, suppose that f: R'" x RI --+ R vanishes on graph b. Then we 
may write f(x, y) = (b 1(x) - Yl)fl(X, y) + ... + (Mx) - YI)fz(X, y) where 
each}; is a smooth function. (To see this, let g(t) = f(x, (1 - t)y + tb(x)) 
for t in R. Then f(x, y) = g(O) - g(1) = f~ dg/dt(t) dt. Expanding dg/dt by 

the chain rule gives the desired result.) Thus Mkx (Od)(x) = b1(x)fl(X,0) + 
... + Mx)fz(x, O) and is in the ideal (b 1 , ••• , bl)' 0 

Proof of Theorem 3.3. As noted above, it is easy to see that contact 
equivalent submanifold germs give rise to identical local rings. So we assume 
that :Jlt,4 , B, = :JltA •B2 • Choose a tubular nbhd U = Rk X RI of A = Rk X {O} 
as in Lemma 3.4. The transversality assumptions imply that we can find 
smooth maps b1 and b2 : Rk --+ Rl so that Bi = graph (bi) (near p, of course). 
Let b1i , ... , bli be the coordinate functions of bi. Then ~(A, Bi) = 
(b 1i , ..• , b/) by Lemma 3.6. 

Now the assumption that :JltA •B, = :JltA ' B2 implies that Jp(A, B l ) = 

Jp(A, B2). Thus the calculation that ~(A, Bi) = (b I i , ... , b/) implies that 
there exist smooth functions gaP and hpy where 1 ::::; ex, (3, y ::::; I so that 

I I 

b,/ = 2: g"pbp2 and bp2 = 2: hi3yb/. 
P=1 y=l 

Let G and H denote the matrices (gan) and (hi3Y)' We claim that we may choose 
the h{3/s so that H(x) is invertible for all x near O. Using Lemma 3.5, there 
exists a matrix F whose entries are smooth functions (smoothness is obtained 
by looking at the proof of Lemma 3.5 and noting that the choices which are 
made can be made smoothly) such that the matrix K = F(I - GH) + His 
invertible for all x near O. A simple computation shows that b{32 = 
2:~=1 kpyb/ so we may replace H by K. Now define cp: U = R'" X RI--+ U 
by cp(x, y) = H(x)y. By (*), cp: BI --+ B2 • Since cp is linear on fibers of U, 
cpiA = cpiRk x {O} = idR k x {O}. Finally, cp is a diffeomorphism on a nbhd of p 
since H(O) is invertible. The mapping cp shows that BI has the same contact 
with A as B2 • 0 

We now specialize this construction of contact equivalence to obtain 
results on 2l2f (p) where f: (X, p) --+ (Y, q). 

Lemma 3.7. Mf(p)=cJ)*Plxx{q}.graPhf \l'here j:X--+graphf is the 
canonical map and the ambient manifold Z is taken to be X x Y. 

Proof Choose coordinates Xl, ... , Xn near p and h, ... , Ym near q. 
Then Lemma 3.6 states that 

~P.q><X x {q}, graph f) = (fl> ... ,fm), 
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where fI. .. . ,fm are the coordinate functions off (having identified X with 
X x {q}). Since/*(fI. ... ,fm) = (fI. ... ,fm) and rJilf(p) = Cp 00 (Rn)/(fl, ... ,fm) 
the lemma is proved. 0 

We now make the obvious definition. 

Definition 3.8. Two map germs J, g: (X, p) -l>- (Y, q) are contact equiva­
lent if graph f and graph g have the same contact with X x {q} as submanifold 
germs of X x Y near (p, q). 

Notes. (1) Theorem 3.3 says thatfand g are contact equivalent as germs 
near p iff rJilf(p) = rJilg(p). We thus have a geometric interpretation of what it 
means for two map germs at a point to have the same local ring. 

(2) We would like to generalize the definition of contact equivalence so 
that we can interpret what it means for two map germs to have isomorphic 
local rings. For example, we could weaken the definition of contact equiva­
lence to allow germs of diffeomorphisms 4> which leave A invariant and not 
demand that 4>IA = idA' It is then easy to see that if graphf is "contact 
equivalent" to graph g with respect to X x {q} with this new definition, then 
rJilrCp) is isomorphic to rJilg(p). The problem is in the converse statement. 
Suppose that rJilf(p) ~ rJilg(p), then what we would like to know is whether 
there exists a germ of a smooth diffeomorphism 4>: (Z, p) -l>- (Z, p) such 
that 4>* induces the isomorphism between rJilf(p) and rJilg{p). The thrust of the 
proof of Theorem 3.3 is, of course, the construction of such a 4>. Let us 
spend a moment to reflect on the problem. Suppose that there is no obstacle to 
lifting the isomorphism of rJilf(p) -l>- rJilg{p) to an isomorphism tjJ: C;'(X)-l>­
C;'(X). With a choice of coordinates we may <assume that tjJ: CO'(Rn)-l>-
CO'(Rn). Question: Is tjJ = 4>*? Since we know what tjJ(Xl)' ... , tjJ(xn) are, 
there is only one possibility for 4>, namely, 4>(x) = (tjJ(Xl)' ... , tjJ(xn». It is 
easy to show that 4>* = tjJ on any analytic function. The problem is that tjJ is 
not uniquely defined on flat functions, so 4>* does not have to equal tjJ. But 
we are saved by the Malgrange Preparation Theorem and Mather's Theorem 
(V, Theorem 1.2) that a stable map germ is determined by only a finite portion 
of its Taylor series. Thus to circumvent our problem we need only "jetify" 
our result and work with the local ring rJilrCp)/~pk(X) (for some appropriate 
k). It should be clear that any isomorphism between these finite dimensional 
local rings is induced by a smooth mapping. 

We introduce some terminology. A k-jet of a submanifold at p of a mani­
fold Z is an equivalence class of submanifold germs at p where two germs A 
and B are equivalent if every smooth function of Z -l>- R which when re­
stricted to A vanishes to kth order at p also, when restricted to B, vanishes to 
kth order at p. To analyze submanifold k-jets at p, we can assume by choosing 
coordinates that Z = Rn and p = O. Let H{;.! be the set of k-jets of I-dimen­
sional submanifolds of Rn at O. First we claim that two equidimensional 
submanifold germs at 0, A and B, are in the same I-jet equivalence class iff 
ToA = ToB eRn. This is clear since a function tjJ: Z -l>- R vanishes to first 
order at p in the A (respectively, B) directions iff (dtjJMToA) = 0 (respectively, 
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(dif!MToB) = 0). Thus we may identify Hr.l with the Grassmann manifold of 
I-planes in n-space by assigning, to each A in Hr.!> ToA in Gl.n • In this way 
Hr.l is a manifold. In fact, we have the following: 

Lemma 3.9. HT:.1 is a smooth manifold. Moreover, HT:.1 ~ Gl.n given by 
peA) = ToA makes HT:.1 into afiber bundle over Gl.n whose typical fiber is the 
fiber F of the bundle P'(RI , Rn-l)o.o --+ peRl, Rn-l)o.o. 

Proof Recall how the manifold structure of Gl •n is obtained. We assume 
that Rn comes equipped with an inner product. Then a nbhd of V in Gl.n 
is given by @y = {W E Gl •n l7Ty: W --+ V is a bijection} where 7Ty: Rn --+ V 
is just orthogonal projection. We then identify Hom (V, Vol) with @v by the 
mapping A f-+ graph A. We claim that we can identify p-l(@y) with @y x F 
(where V = Rl in the definition of F). Given a submanifold germ A, there 
exists a unique germ of a smooth map f: ToA --+ (ToA)ol such that A = 
graphf Now just note that two submanifold germs A and B which are 
tangent at 0 yield the same sub manifold k-jet iff the corresponding f and g 
satisfy jkf(O) = jkg(O). (Note that since A = graphf and B = graph g, 
Pf(O) = pg(O) = 0.) The "iff" is clear since if!: Rn --+ R vanishes to kth 
order at 0 when restricted to A iffr(if!·f)(O) = 0, butr(if!·f)(O) = r(if!·g)(O) 
iffrf(O) = rg(O). Now let A be in p-l(@y). Then the maps 7Ty : ToA --+ Vand 
7Ty.l: (ToA)ol --+ Vol are bijections. The map a: p-l(@v) --+ @v x F given by 
A f-+ (ToA, projection of r(7Tv.l·f·7Ty -1)(0) into F) where A = graphf is a 
bijection. We topologize HT:.1 by demanding that all such a be homeomor­
phisms and give HT:.1 a manifold structure by demanding that all such a are 
diffeomorphisms. We leave it to the reader to check that everything works 
right on overlaps. 0 

Definition 3.2'. Let A, Bl , and B2 be equidimensional k-jet submanifold 
germs of Z near p. Then Bl and B2 are contact equivalent with respect to A 
if there exists a germ of a diffeomorphism </> : (Z, p) --+ (Z, p) such that </>(A) = 
A and </>(Bl ) = B 2. 

Let ~lB = C;(A)/(~(A, B) + .A~+l(A)). Then we have 

Theorem 3.3'. The k-jets of submanifolds Bl and B2 are contact equiva­
lent with respect to A iff ~~.Bl is isomorphic with ~~.B2' 

Definition 3.7'. Two k-jets of maps jkj(p) and rg(p), both with target q, 
are contact equivalent iff graphf and graph g are contact equivalent with 
respect to X x {q} as k-jet submanifolds of X x Y at (p, q). 

Let ~/(p) = ~f(P)/.A~+l(X). If a is a k-jet with source atp, then define 
~~ = ~/(p) where rf(p) = a. Then the following is immediate. 

Proposition 3.10. Let a and T be in Jk(X, Y)p,q. Then a and T are contact 
equivalent iff ~~ ~ ~,. 

Definition 3.11. Let ~ be a local ring. The contact class Sge c Jk(X, Y) 
is given by 

Sge = {a EJk(X, Y) I ~~ ~ ~}. 
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Remarks. (1) Let a and T be equivalent k-jets, then clearly £!il(J ~ £!il. 
so a and T are contact equivalent. Thus the contact class of a singularity is 
an invariant of that singularity type. 

(2) John Mather has proved that two stable k-jets are equivalent (with 
k = dim Y) iff they are contact equivalent. This result clearly demonstrates 
the importance of contact classes. (For the details see [29].) 

Tn the Thom-Boardman Theory one of the crucial technical tools is given 
by showing that the sets Si.i .... ,k are in fact submanifolds of the appropriate 
jet bundle. The same is true for contact classes. 

Theorem 3.12. Let £!il be a local ring. The contact class SGl is an im­
mersed submanifold of Jk(X, Y). 

Note. In fact, Sge is a submanifold but, as before, we shall not need this 
fact. 

Proof As in previous theorems of this type, the crucial part of the proof 
is in showing that Sge n Jk(X, Y)P.q is a submanifold since SGl is clearly a 
subfiber bundle of Jk(X, Y) over X x Y. For this purpose, we may choose 
coordinates so that X = Rn, Y = Rm, and p = q = O. 

Now there is a natural action of the Lie group Gk(Rn)o (=invertible k­
jets on Rn at 0) on H~.l' Let (r(/»o be in Gk(Rn)o and let A be in H~.l' Then 
<p(A) is a submanifold germ of Rn at 0 in H~.l' This gives a well-defined 
smooth action. Similarly, the action of Gk(Rn x R1n)(o.o) on H~.-+;,m is a smooth 
action. Let G be the isotropy subgroup of this action whose fixed point is the 
submanifold germ Rn x {O}. By Theorem A.7 in the Appendix, G is also a 
Lie group. 

It is now a tautology to see that the orbits of G acting on H~.l consist 
precisely of those k-jets which are contact equivalent. See Definitions 3.2' 
and 3.7'. 0 

The other crucial data needed in our analysis of the Thom-Boardman 
singularities was the codimensions of the submanifolds Si.i ..... k. Here, too, 
that is the case. In general, it is a difficult combinatorial problem to compute 
the codimensions of the contact classes. To complete this section, we analyze 
one important class of examples. 

The simplest local rings of finite dimension over R are the truncated 
polynomial rings R[t]/(tk+l). A smooth map f: X --+ Y has a Morin singu­
larity at p if !?ll/p) ~ R[t]/(tk+l) for some k. We denote by Slk the contact 
class in Jk(X, Y) determined by the ring R[t]/(t k+I ). The main results about 
these singularities are due to B. Morin [39] and H. Levine [20, 21]. We will 
not discuss their results in complete detail, but will confine ourselves to the 
equidimensional case: dim X = dim Y. 

We denote by Slk(f) the points where f takes on a Morin singularity of 
type k; i.e., Slk(f) = (rf)-I(SIJ. 

Proposition 3.13. Sllc is a submanifold of jk(X, Y) of codimension k. 
(Assuming that dim X = dim Y.) 
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Corollary 3.14. For a residual set of map sf, Slk(f) is a submanifold of X 
of codimension k. 

Proof Just apply the Thorn Transversality Theorem. 0 

Proof of Proposition 3.13. It is enough to prove that Slk II ]k(X, Y)P.q is a 
codimension k submanifold of Jk(X, Y)v,q' Moreover, we can assume that 
X = Y = Rn and p = q = O. Given ao in Slk with source and target at 0 we 
will show that a nbhd of ao in Slk II ]k(Rn, Rn)o,o is a codimension k sub­
manifold, Clearly, we can assume ao has the form (Xl,.' ., Xn) 1-+ (f(X), 
X2, ... , xn). Then ao in Slk is equivalent to the condition 

(*) 

Now let 7T:Rn-?-Rn-1 be the submersion 7T(XI, ... ,xn) = (X2,''''Xn) 
which induces a fiber mapping 7T *: ]k(Rn, Rn)o,o -?- Jk(Rn, Rn-l)o,o. Let U be 
the open subset of Jk(Rn, Rn-l)o,o consisting of all k-jets of maps of the form 
(Xl> ... , xn) 1-+ (f2(X), ... , fn(x)) having the property that dXI, df2, ... , dfn are 
linearly independent at O. This is an open subset of Jk(Rn, Rn-l)o,o containing 
the image of ao. To each a in U we can associate an invertible k-jet {j in 
Jk(Rn, Rn)o,o-namely the k-jet of the map (Xl' ... , xn) 1-+ (Xl' f2, ... , fn). 

Let 2; be the vector space of all polynomials of degree ::; k in Xl, ... , Xn 
with zero constant term. 2; is the" typical fiber" of the fibration 7T *. 

We will show that the fibration 7T* is trivial over U by constructing an 
explicit trivialization 

Given p in 2; let k p be the k-jet of the map (Xl' ... , xn) 1-+ (p, X2, ... , xn). 
Then we define T(p, a) == kv' {j for p in 2; and a in U. It is easy to see that 
this is a diffeomorphism between 2; x U and (7T *) -l( U). 

Let 2; l k be the set of p in 2; satisfying :p (0) = ... = :kPk (0) = O. These 
uXI uXI 

conditions are independent so 2; l k is a codimension k subspace of 2;. We let 
the reader check that T gives us a smooth identification 

2;lk X U ~ (7T*)-I(U) II Slk' 
-+ 

Hint: use (*) 0 

Finally we shall show that the Morin singularities are actually singu­
larities of the type studied in Chapter VI. We recall that for a map f: (X, p) -+ 

(Y, q), P is in Sl(f) ifffhas corank 1 at p and that p is in Sl.l(f) ifff!SI(f) has 
corank 1 at p (assuming-naturally-that Sl(f) is a submanifold). We can 

k 

continue this inductive construction of SOC!) as long as at each stage 
k-l 

SOC!) is a submanifold of X. The Boardman Theorem states that this is the 
case for a residual set of f We will prove this theorem in the special case of 
the Morin singularities by proving the following. 
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Proposition 3.15. If jkf(f) Slk for all k ::;; dim X + 1, then Slk(f) = 
k 

SO(f)· 
Proof We need only prove this locally. Let p be in Slk(f). By choosing 

coordinates on X based at p and on Y based at f(p) we may assume that 
p = f(p) = 0 and thatf(x1, ... , xn) = (h(x), X2, ... , xn) where 8sh/8x1S(0) = 
o for s ::;; k. In fact, SIJf) is given by the equations 8h/8xI = ... = 8I<h/8x/ 
= O. (Recall the proof of Proposition 3.13.) We proceed by induction. In 
case k = 1, SI(f) = Sll(f) as both are given by the equation 8h/8x1 = O. 
The transversality hypothesis guarantees that Sl(f) is a submanifold. Now 

1<-1 

assume inductively that SO(f) = Slk_1Cf) and that this set is a submani-

" fold. Let q be in Slk_l(f). We claim that q is in SO(f) iff 8j8x1!Q 
is in TqSIk_,(f) since Ker d(f!Slk_l(f»q = Ker (df)q (l TqSIk_1(f) and 

I< 

Ker (df)q = (8/8x1!q). The proof is complete if we can show that SO(f) = 
" {q E Slk_,(f) ! 8"h/8x/(q) = O} for then SO(f) = Sl/f) and the trans-

versality hypothesis guarantees that these are submanifolds. Define 
H:Rn-+R"-1 by H(q)=(8h/8x1(q), ... ,8"-lh/8x~-I(q». Then clearly 
H-I(O) = Slk_l(f). Moreover H is a submersion at the points in H-1(0). 
This follows from the transversality hypothesis and the way SI,'_l is defined 
locally as a submanifold of JI< -1(Rn, Rn). (Again see the pr,oof of Proposition 
3.13 and apply II, Lemma 4.3.) Since H is a submersion TqSIk_1Cf) = 
Ker (dH)q. It is a trivial calculation to see that 8/8xI!q is in Ker (dH)q (for q 
in H-1(0» iff 8"h/8x/(q) = O. 0 

Exercises 

(1) Prove that the mapping of R3 -+ R3 is defined by the equations: 

Y1 = X1X2 + X12X3 + X14 

Y2 = X2 
Ya = Xa· 

has a generic SI3 singularity at the origin. 
(2) In Exercise 1, what are the equations for the fold surface SI(f) and 

the locus of cusps, Sl.l(f)? Draw a sketch of them. 
(3) For the map in Exercise 1 show that the image of SI(f) has the appear­

ance of a "swallow's tail." (See Figure 5.) 
(4) Show that the map f: Rn -+ Rn given by f(XI' ... , xn) = (f1(X), X2, 

... , xn) takes on an Slk singularity transversely at 0 if 

and (b) d (:tJ (0), ... , d (:~) (0) 

are linearly independent. Hint: Look at the proof of Proposition 3.15. 
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Figure 5: The Swallow's Tail 

§4. Canonical Forms for the Morin Singularities 

We will show that two Morin singularities are equivalent provided they 
are displayed transversally (i.e., provided the hypotheses of Proposition 3.5 
are satisfied) and provided their local rings are isomorphic. We will prove 
this by showing that a Morin singularity which is displayed transversally has 
a simple canonical form. As in §3 we will just consider the equidimensional 
case: dim X = dim Y (though we will discuss one non-equidimensional 
example at the end of this section.) 

Theorem 4.1. Iff: X ~ Y satisfies the transversality condition:j"fffi Slk' 
and Xo E Slk(f), then there exist a coordinate system Xl> ... , Xn centered at Xo 
and a coordinate system Yl, ... , Yn centered at f(xo) such that f has the form 

(4.2) 
f*Yl = X2XI + ... + X"XI"-l + Xl"+l 
f*Y2 = X2 

The result is due to B. Morin (See [39]). Note that in dimension 2 it gives 
both Whitney canonical forms of Chapter VI, §2. 

Proof We can choose coordinates Xl> ... , xncenteredatxoandYl>" .,Yn 
centered at f(xo), so that f(xl> ... , xn) = (h(x), X2, ... , xn). Since Xo is an 
Slk singularity the local ring 8flxo) is generated as a vector space over R 
by 1, Xl, ... , Xl'" By the Malgrange preparation theorem every germ of a 
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function at Xo can be written as a linear combination of 1, Xb ... , Xl lc with 
smooth functions of the y's as coefficients; so in particular, we can write 

(4.3) Xllc + l = f*al + (f*a2)xI + ... + (f*alc+l)xllc 

or 

(4.3)' f*al = -(f*a2)xI - ... - (f*alc+l)xllc + Xlk+l 

the a;'s being smooth functions of y. Furthermore we can assume alc+l = 0 
(Proof: replace Xl by Xl + (l!k)f*alc+l and leave X2,"" Xk fixed.) By com­
paring the two sets of (4.3) we see that al(O) = a2(0) = ... = aiO) = O. 

Let us now set X 2 = ... = Xn = Y2 = ... = J'n = 0 in (4.3) and expand 
both sides in powers of Xl' By assumption f*h = h(xl' 0, ... ,0) = 
CXllc+ I + .. " C being a nonzero constant and the dots indicating terms of 
degree> k + 1 in Xl' Therefore, if the Xllc+l terms in (4.3) are to be equal, 
we must have al(h, 0, ... ,0) = (l!C)YI + .. '. In particular oal!oh of. O. 
This means that the map: 

(YI. ... , Yn) f-+ (al(Y), Y2, ... , Yn) 

is a legitimate coordinate change in Y space. In other words we can assume to 
begin with that our x;' sand Y;' s satisfy: 

f*YI = f*a2xI + ... + f*alcxllc-1 + x/+ l 

(4.4) 

i = 2, ... , n. 

(We have changed at to -ai to make the first line more visually appealing.) 
Since the map f has the form of Exercise (4) of §3, the transversality 

condition says that 

( of*Y) (olcf*Y) d OXI (0), ... , d ox/ (0) 

are linearly independent. This implies that 

are linearly independent. So this means that the differentials of the functions 

a2(0, Y2, ... , Yn), ... , alc(O, Y2, ... , Yn) 

are linearly independent at O. Permuting, if necessary, the y;'s we can assume 
the matrix 

( oai (0») 
°Yi 

2 ::; i,j ::; k 

is nonsingular. Therefore the mappings 

(Xl"", Xn) f-+ (xI.f*a2, ... ,f*alc, Xk+l,"" Xn) 
and 
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are legitimate coordinate changes. With respect to the new coordinatesfhas 
the form (4.2). 0 

Morin obtained canonical forms for all the" Morin" singularities of §3, 
not just the equidimensional ones. Here we shall confine ourselves to dis­
cussing one nonequidimensional example, the "cross-cap" for maps of n 
manifolds into 2n - 1 manifolds. This canonical form is due to Whitney [57], 
though the derivation we will give of it is due to Morin. First of all we need: 

Definition 4.5. Let X be an n man(fold, Ya 2n - 1 manifold, andf: X -+ Y 
a smooth map. A point Xo in SI(!) is called a cross-cap if Pf(f1 SI at Xo. 

Note that for these dimensions, codim SI = n (See VI, Proposition 1.1) 
so cross-caps occur as isolated points of X. 

Whitney's result is: 

Theorem 4.6. Iff: X -+ Y has a cross-cap at x o, there exists a coordinate 
system Xl, ... , Xn centered at Xo and Yb ... , Y2n -1 centered at f(xo) such that 
f has the form: 

(4.7) 
f*Y1 = X12 

f*Yi = Xi 
f*Yn+i = XlXi 

;=2, ... ,n 
j= 1, ... ,n - 1. 

Proof We can choose coordinates Xl, ... , xn centered at Xo and 
Yb ... , Y2n -1 centered at f(xo) such that f*Yi = Xi for i = 2, ... , n. The set 
Sl(f) is the locus of points for which 

(4.8) alI = ofn+l = ... = Of2n-l = 0 
oXI OXI OXI 

where}; = f*Yi' We let you check that the transversality assertion is equiva­
lent to the assertion that 

(4.9) 

are linearly independent at the points where (4.8) holds. (Hint: Use the 
" D - BA -Ie" lemma of Chapter II, Lemma 5.2. See also Exercise (7) of 
VI, §l.) This means in particular that one of the differentials (4.9) must be 
nonzero when evaluated on OjOXI' By a linear transformation of the Y co­
ordinates we can arrange: 

(4.10) 

It is clear from (4.10) that the local ring 8?tCxo) is generated by 1 and Xl' 

By the Malgrange preparation theorem we can write 

(4.11) 
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a1 and az being smooth functions of the Y variables. If we make a change of x 
variables, substituting Xl + f*az/2 for Xl and leaving the other x/s fixed, 
we can make a2 = 0 in (4.11); that is, we can assume 

(4.11), 

Now let us set X2 = ... = Xn = Y2 = ... = Yn = 0 and expand the left 
hand side of (4.11)' in powers of Xl' By (4.10), f1 = f*Y1 = CX12 + . " and 
!s(x1, 0, ... ,0) = 0(X1 3) for s > n, with C #- 0, so we must have 
a1(Yl> 0, ... ,0) = (l/c)Y1. In particular, oa1/oY1 #- 0, so the map 

(Yl>"" Y2n-1) ~ (a1(y), Y2,···, Y2n-1) 

is a legitimate coordinate change. Replacing the old Y coordinates by the 
new Y coordinates, we have f*Y1 = X1 2 and we continue to have f*Yi = Xi 
for 2 :s; i :s; n. The remaining coordinate functions ,J; = f*Yi' i > n, can be 
written in the form (using the Malgrange Theorem) 

If we replace Yi by YI - gi(Yb"" Yn) for i = n + I, ... , 2n - 1 and 
leave the other y/s as before, we obtain the system of equations 

f*Y1 = X1 2 
f*YI = Xi i = 2, ... , n 

f*Yn+j = x1hn+lx12, X2,···, Xn) j=l, ... ,n-l. 

This is almost the form we want. In fact if we can show that the following are 
legitimate changes of coordinates: 

(Xl>"" xn) ~ (Xl' hn+1(X12, ... , Xn),·.·, h2n_1(X12, ... , Xn», 
and 

(Yl>"" Y2n-1) ~ (Yl, hn+1(y), ... , h2n - 1(y), Yn+l>"" Y2n-l) 

then we will have precisely the set of equations (4.7). To show this we must 
go back to the transversality condition (4.9). At Xl = 0 this reduces to the 
condition that 

be linearly independent at 0, or, in other words, that the matrix 

( ohl )n+l':IS2n-l 
OXj 2.:1sn 

be nonsingular. This however is precisely what is needed to make the changes 
of coordinates above legitimate. 0 

Remark. We showed in Chapter II that for every n manifold X we can 
find an immersionf: X -+ R2n. Cross caps arise as obstructions to lowering 
the dimension of this immersion by 1. In (60] Whitney proved that every n 
manifold can be immersed in R2n-1, the idea of the proof being to delete 
cross caps, two at a time, from a generic mapping. Pictures of cross-caps in 
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R3 can be found in classical books on topology in connection with the prob­
lem of immersing p2 topologically in R3 (See exercise 3.) 

Exercises 

(1) Let f: X -+ R2n be an immersion of the n manifold X. Let v be a 
regular value of the induced map 

(df) : TX -+ R2n 

and let 7T: R2n -+ R2n-1 be a surjective linear map with v in its kernel. Show 
that 7T·f has no singularities except cross-caps (Compare with II, §1, Exer­
cise 1.) 

(2) Describe the image of the map (Xl> X2) ~ (XI2, X2, XIX2). What are 
the images of the curves Xl = const and X2 = const. Show that this map is 
1-1 except along the "double line" X2 = 0 (See Figure 6). 

L 

Figure 6: The Cross Cap 

\ 
\ 

I 

(3) Construct a topological immersion of p2 into R3 whose image is a 
"cross cap". (See Figure 7.) 

Ob 

b a 

Figure 7: The Topological Cross Cap 
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§5. Umbilics 

From Exercise 5 of §2 we know that S2 singularities cannot occur with 
multiplicity 1, 2, or 3. An S2 singularity which occurs with multiplicity 4 is 
called an umbilict. Umbilics are the simplest Sz singularities, and are the only 
ones that can occur stably in dimensions < 6. We will begin our study of 
them by showing that for singularities of multiplicity 4, the only local rings 
that are allowable are those on the following list: 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

R[t]J(t4) 

R[x, y]J(x2 - y2, xy) 

R[x, y]J(x2, y2) 

R[x, y]J(x2, xy) 

R[x, y, z]J(x2, y2, Z2, xy, xz, yz). 

In fact we will prove 

Proposition 5.6. Let fJJl be a local ring over R with dimR f!il = 4. Then fJJl 
is isomorphic to one of the rings on the above list. 

Proof Let j/ be the maximal ideal of fJJl. Suppose first that dimR j(/j(2 
= 1. Let t be an element of j( - j(2. j(i = {cti} + j(i+l, so the mapping of 
R[t] into fJJl is onto. The kernel is generated by a polynomial p(t), which we 
can write as tkq(t), q(t) having a nonzero constant term. The image of q(t) 
in fJJl is invertible, so the kernel is also generated by tk. Hence fJJl is isomorphic 
to R[t]/Ctk). Since dimR fJJl = 4, k = 4. Next suppose dimR j(Jj(2 = 2. 
We note that 

(5.7) 

by Nakayama's lemma. (If j(i = j(i+l then j(l = 0.) Therefore if fJJl is 4 
dimensional, dim jf2/jf3 = 1 and jfl = 0 for i > 2. 

Consider now the bilinear map 

jf/jf2 ® jfJjf2 -+ jf2 

induced by the product operation on the local ring. We will, for the moment, 
fix a basis vector in jf2 and regard this as a map: 

(5.8) 

i.e., as a symmetric bilinear form on jf/j{2. This form cannot be identically 
zero otherwise jf2 = 0; therefore there are three possibilities for it: it can be 
nondegenerate and definite, nondegenerate and indefinite, or degenerate. 
We will show that if the first is the case then fJJl is isomorphic to the ring 
(5.2). In fact if (5.8) is definite we can find a basis for jf/j{2 such that X·X = 

t Because the "umbilical points" of a surface in R3 are the points where its 
normal bundle map exhibits this kind of singularity. 
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y.y and x·y = O. Therefore, [Jf is isomorphic to the polynomial ring in two 
variables divided by the ideal of relations (X2 - y2, xy). A similar argument 
shows that if (5.8) is nondegenerate and indefinite then [Jf is the ring (5.3) and 
if (5.8) is degenerate, [Jf is the ring (5.4). Finally if dim jtjjt2 = 3, j/2 = 0 
by (5.7) and [Jf is the ring (5.5). 0 

(5.1) is the local ring of an Sl3 singularity (a "swallow's tail"). In the 
equidimensional case, which is the only case that we shall consider here, the 
local ring (5.5) cannot occur (by Exercise 5 of §2.) (5.2) (5.3) and (5.4) are all 
possible candidates for umbilics. 

Definition 5.9. An umbilic is called hyperbolic if its local ring is (5.3), 
elliptic if its local ring is (5.2) and parabolic if its local ring is (5.4). So the 
name for an umbilic is given by the name of the associated quadratic form (5.8.) 

Our main theorem about umbilics will be that two generic umbilics are 
equivalent (as map germs) if and only if they are of the same type. For sim­
plicity we shall just prove this for the elliptic and hyperbolic umbilics. (The 
parabolic case will be treated in the exercises.) Specifically, we will prove: 

Theorem 5.10. Let X and Y be n dimensional manifolds, n ~ 4. Let 
f: X -+ Y be a smooth map exhibiting either an elliptic or hyperbolic umbilic at 
Xo in X. Suppose jIf7fl S2 at Xo. Then we can find coordinates, Xl, ... , Xn 
centered at Xo and YI, ... , Yn centered at f(xo) such that f has one of the follOlv­
ing two canonical forms: 

(5.11) 

(5.12) 

Hyperbolic case 

f*YI = Xl2 + X3X 2 

f*Y2 = X22 + X4Xl 

f*Ya = X3 

Elliptic case 

f*Yl = X12 - X22 + X3Xl + X4X2 
f*Y2 = XIX2 + X4Xl - X3X2 

f*Y3 = X3 

f*Yn = Xn 

Note that the assumption n ~ 4 is essential. The transversality condition 
cannot be satisfied in dimensions < 4. 

In the proof of (5.11) we will need the following 

Lemma 5.13. Let 

(5.14) 
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be a quadratic form whose coefficients are smooth functions of a set of param­
eters: Z = (Zl' .•• ' Zm). Suppose that Ivhen Z = 0 (5.14) is equal to X1 2 - X22. 
Then one can find a rotation, 

whose coefficients are smooth functions of z, such that S(O) is the identity, and 
such that in the rotated coordinate system (Xl> X2) (i.e., Xl = SllXl + S12X2, 
X2 = S21Xl + X22X2) (5.14) has the form OX12 + 5x? where 0(0) = 1 and 5(0) 
= -1. 

Proof Solve for the eigenvalues of the matrix A = [: !]. Since A 

is close to [~ ~ 1] for Z small the eigenvalues are distinct and are close to 1 

and -1. Moreover they depend smoothly on z. For the eigenvalue close to 1 
we can find an eigenvector (1, T) with T a smooth function of z and T(O) = o. 
Since A is symmetric the other eigenvector will be (- T, 1). Let S be the 
rotation 

vI ~ T2 (~T ;). 
Note that 0 and 5 are the eigenvalues of A. 0 

We will now derive the normal form (5.11). Since Xo is in S2 we can choose 
a coordinate system Xl> ••• , Xn centered at Xo and Yl, ... , Yn centered at 
f(xo) such thatfhas the form 

(5.15) (Xl> ... , xn) ~ (J;.(X),f2(X), X3, ... , xn) 

where the linear terms in f1 and f2 vanish and the quadratic terms are of the 
form 

(5.16) 
fl = Xl2 + .. . 
f2 = X22 + .. . 

the dots indicating quadratic terms like X3Xl, X32, etc. and higher order terms 
in all the x's. Therefore the local ring will be generated over R by 1, Xl, X2, 
and X1X2. By the Malgrange preparation theorem every germ of a function at 
o can be written as a linear combination of 1, Xl> X2 and X1X2 with smooth 
functions of Y as coefficients. In particular we can write: 

(5.17) 
Xl2 - X22 = f*al + f*blXI + f*CIX2 + f*dIXIX2, and 
Xl2 + X22 = f*a2 + f*b2x I + f*C2X2 + f*d2XIX2 

where the a's, b's etc. are smooth functions of Y vanishing at.y = O. Replacing 
Xl by Xl + f*d2/2 and leaving the other coordinate fixed we can arrange that 
d2 == o. Applying the lemma to Xl2 - X22 - f*dlXIX2 we can also arrange 
that dl == O. Note that since the change of coordinates (Xl> X2) -+ (Xl> X2) 
is given by a rotation we have that Xl2 + X22 = Xl2 + X22. Dropping the 
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-'s on j\ and X2 and using the fact that il(O) = I and 5(0) = -1 we may 
solve for X12 and X22 to get 

and 

X22 = J*a2 + J*(32X1 + J*Y2X2 

the a's, (3's and Y's being functions of y. One last simplification is possible. 
Replacing Xl by Xl + J*(31/2 and X2 by X2 + J*Y2/2 we can assume (31 and Y2 
are zero. Therefore, with Y = -Y1 and (3 = -(32' we have 

J*a1 = Xl2 + J*YX2 
J*a2 = X22 + J*(3Xl 

(5.18) 

We continue, of course, to haveJ*Yi = Xi for i > 2 since we have not made 
any changes in these coordinates. Now we will set X3 = Y3 = ... = Xn = Yn = 
o in (S.18). Comparing the quadratic terms on both sides and using (S.16) we 
see that: 

al(YI. Y2, 0, ... ,0) = Yl + .. . 
a2(YI. Y2, 0, ... , 0) = Y2 + .. . 

the dots indicating terms of degree> I in Yl and Y2' (Now in the coordinate 
changes above Xl = Xl + ... and x2 = X2 + ... where· .. stands for higher 
order terms so that (S.16) is still applicable.) This implies that the map 

(YI."" Yn) f-+ (al(Y), a2(Y), Y3,"" Yn) 

is a legitimate coordinate change. In the new coordinates we have 

(5.19) 

J*Yl = Xl 2 + J*YX2 
J*Y2 = X22 + J*(3Xl 
J*Y3 = X3 

This is nearly the canonical form we want. In fact if we can show that 

and 

are legitimate coordinate changes, then in the new coordinates (S.19) will have 
the form (S.lI). We will show that these coordinate changes are allowable 
precisely because of the transversality hypotheses. In fact letting hl(x) and 
h2(X) denote the right hand terms on the first two lines of (S.19), the set S2(f) 
is defined by the set of 4 equations 

(5.20) 8hl = 8h2 = 8hl = 8h2 = 0 
8Xl 8Xl 8X2 8X2 . 



186 Classification of Singularities Part IT 

Use exercise 7, VI, §1 to show that the transversality hypothesis reduces 
to the assertion that on the set defined by (5.20) the differentials 

(5.21) 

are linearly independent. When we replace hl and h2 by X 12 + f*YX2 and 
X22 + f*f3x l this condition reduces to the condition that 

dXb dx2, d(f*f3), d(f*rx) 

be linearly independent at 0 which is precisely what is needed to legitimatize 
the above coordinate changes. 

This concludes our proof for the hyperbolic case of Theorem 5.10. The 
derivation of the canonical form (5.12) for the elliptic case is similar. We 
will indicate what changes need to be made in the proof above: 

(1) Lemma 5.13 has to be replaced by the following "elliptic" analogue: 

Lemma 5.22. Let 

(5.23) 

be a quadratic form whose coefficients are smooth functions of a set of param­
eters, z. Suppose that for z = 0 (5.23) is just the form X 12 - X22. Then there 
exists a function ,\ depending smoothly on z such that '\(0) = I and such that 
with respect to the coordinates Xl = ,\xl' X2 = (l/,\)x2 (5.23) has the form 
a(x12 - X22). 

Proof This is much easier than Lemma 5.13. Just take ,\ to be 
(aJ(a - b))1/4 

(2) Now choose the coordinates (5.15) such that 

fl = X12 - X22 + ... 
f2 = X1X2 + ... 

and show that the local ring is generated over R by Xl, x2 and X22. 

(3) Using the Generalized Malgrange Preparation Theorem show that 

X1 2 - X22 = f*a l + f*blXl + f*C1X2 + f*d1X22 

and 

X1 X2 = f*a2 + f*b2Xl + f*C2X2 + f*d2X22 

where the a;'s, b;'s etc. are smooth functions of y vanishing at O. Replace 
Xl by Xl + f*d2X2 to make d2 = 0 and apply the lemma to make dl = O. 

(4) By a linear change of coordinates makes CI = b2 and bi = C2' 
The rest of the proof is as before. 0 

Exercises 

(1) Show that over the complex numbers there are just 4 local rings with 
dime:Jf = 4. 
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(2) Let z and w be complex numbers. Show that the map of C 2 into C 2 

defined by 
(5.24) (z, w) 1-+ (Z2 + ZW, w) 
has an elliptic umbilic at 0 when viewed as a map of R4 --+ R4. (Hint: Com­
pare with the canonical form (5.12).) For w fixed and real sketch the curve: 
u = Z2 + ZW, Izl = canst., in the u plane. Show that it has the appearance 
indicated in Figure 8. 

Izl = canst < M Izi = lcl Izl lcl = canst> 
2 2 2 

(a) (b) (c) 

Figure 8 

(3) Show that for the map (5.24) the image of Sl in the 3 dimensional 
plane: 1m w = 0 has the appearance of the cusped surface depicted in 

Figure 9: The elliptic Umbilic 
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Figure 9. (Hint: Show that Sl is given by the equation Izl = Iw1/2. Use the 
identity 

(
OU1 0U2) 
OXl oX2 lou 12 lou \2 det = - - --:: 
OU10U2 OZ OZ 
OX2 0X2 

where U = Ul + iU2 and Z = Xl + iX2. Now look at Figure 8(b). 
(4) Let/: R4 -+ R4 be the mapping 

(5.25) 

(Compare with 5.11.) Sketch the images of some of the lines Xl = const., 
X3 = const., X4 = const., and of some of the lines X2 = canst., X3 = 
canst., X4 = const. 

(5) Show that for the map (5.25) the image of Sl in the 3 dimensional 
plane Y4 = 0 has the appearance of the surface depicted in Figure 10. 

Figure 10: The Hyperbolic Umbilic 
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(6) Letf: Rn -+ Rn be the mapping 

(Xl> ... , xn) 'r-+ (fl(x),f2(X), X3, ..• , xn) 

where 

and 

f2 = a2(Xl> X2) + ... 
the dots indicating quadratic terms in XIX3, X32, etc. plus higher order terms 
in Xl> ... , Xn• al and a2 are assumed to be homogeneous quadratic polynomials 
in Xl and X2 alone. Show 

(a) 0 is a parabolic umbilic -¢> al and a2 have a common linear factor. 
(b) 0 E S2,l => at = Ct(SlXl + S2X2)2, i = 1,2. 
(c) 0 E S2,2 => al = a2 = O. 

(7) Let Q be the vector space consisting of all pairs (ai, a2) where al 

and a2 are homogeneous quadratic polynomials in (Xl> x2). Let P be the subset 
of Q consisting of all (ai, a2) for which al and a2 have a common linear 
factor. Let U be the subset of P consisting of all (al> a2) for which al and a2 
have a common quadratic factor (i.e., are constant mUltiples of each other.) 
Let W be the subset U consisting of all (ai' a2) for which 

Prove: 

i = 1,2. 

(a) P - U is a submanifold of Q of codimension 1. 
(b) U - W is a submanifold of Q of codimension 2. 
(c) W - {O} is a submanifold of Q of codimension 3, 

(An elegant way to do this exercise is to define these sets using the result­
ant, R(al> <;(2), of the polynomials al and a2' See van der Waerden, [52], 
Vol. 1, Chapter IV, §27.) 

(8) Let PA be the local ring: 

R[xl> X2]/(X12, xl, X12X2, X1X22). 

If X and Yare n dimensional manifolds show that the contact class, SUI, 
in J 2(X, Y) is a submanifold of codimension 7. Iff: X -+ Y has the property: 
Pfm S2, show that X E S2,l(f) -¢> j2f(x) E SUI. (Hint: Use Exercises 6 and 7, 
and the same kind of trick as in the proof of Proposition 3.l3.) 

(9) Let PA be the local ring: 

R[Xl, x21/(x13, X12X2, X1X22, X23). 

If X and Yare n dimensional manifolds show that the contact class SUI 
in J2(X, Y) is a submanifold of codimension to. Iff: X -+ Y has the prop­
erty: Pf(fi S2, show that X E S2.2(f) -¢> Pf(x) E SUI. Hint: Use exercises 6 
and 7, and the same kind of trick as in the proof of Proposition 3.13. 

(to) Show that the map f: R4 -+ R4 by 
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has an S2,O singularity at the origin and satisfies the transversality condition 
Pfm S2' Show it is not an umbilic. Hint. Use Exercise 7, VI, §l. 

Also show by an example that a small perturbation of f will yield an 
umbilic at O. 

(11) Let X and Y be n manifolds. Show that if n < 6, the set of maps, 
f: X -+ Y, which exhibit only Morin singularities and umbilics, is residual. 
(Hint: Show that the phenomenon illustrated by exercise 10 occurs generically 
only in dimensions ;:::6. Use part (b) of Exercise 7, and the same sort of 
trick as in the proof of Proposition 3.13.) 

(12) Let SE, SH and Sp be the contact classes in J2(X, Y) associated with 
the rings (5.2), (5.3) and (5.4) respectively. Show that the codimension of the 
submanifolds SH and SE in J2(X, Y) is 4 and that Sp is a submanifold of 
codimension 5. (Hint: For Sp, use part (a) of Exercise 7.) 

(13) Prove the following: 

Theorem 5.26. Iff: X -+ Y has a parabolic umbilic at Xo and Pfm Sp 
at Xo, then there exist a system of coordinates XI. ... , Xn centered at Xo and 
YI. ... , Yn centered at f(xo) such that f has the canonical form: 

(5.27) 

f*Y1 = X12 + X2XS + X22X4 

f*Y2 = X1X2 + X2XS 

f*ys = Xs 

f*Yn = Xn• 
(Note that for the transversality condition to hold the dimension of X must be 
~5.) 

Hint: Assumefis in the form (5.15) with 

f1 = X12 + .. . 
f2 = X1X2 + .. . 

the dots indicating terms in XSX1' X4X2, XS2 etc. and higher order terms. Show 
that the local ring is generated over R by 1, XI. X2, and X22. Using the 
Malgrange Preparation Theorem show that 

X12 = f*a1 + f*b1X1 + f*C1X2 + f*d1x22 
and 

X1X2 = f*a2 + f*b2X1 + f*C2X2 + f*d2x22 

the a's, b's etc. being smooth functions of Y vanishing at O. Use algebraic 
tricks to make b1 = b2 = d2 = 0, and finally make a coordinate change in 
Y1. Y2 so that f has the form 

f*Y1 = X12 + f*f3X2 + f* 8x22 
f*Y2 = XIX2 + f*YX2 
f*ys = Xs 

f*YrI = Xn• 
Finally use the transversality condition to show that f3, 8 and y can be 

introduced as new coordinates in place of Ys. Y4 and Ys. 
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§6. Stable Mappings in Low Dimensions 

Using the results of this chapter it is not hard to get a picture of what 
stable mappings look like in low dimensions. For simplicity we will restrict 
ourselves to the equidimensional case: dim X = dim Y. We will first make 
a list of the kinds of "nonremovable" singularities that can occur in dimen­
sions ::;4. (By "nonremovable" we mean they can occur transversely, and 
therefore cannot be eliminated by small perturbations.) 

(6.1) 

dim 1 
dim 2 
dim 3 

dim 4 

S1 (folds) 
Sl, S12 (folds, cusps) 
S!> S12, S13 

{ S1' S12' S13' S14 
elliptic and hyperbolic umbilics (S2,0) 

That the Slk singularities which we have listed are the only ones that can 
occur is clear from Corollary 3.14. In §5, exercises 11 and 12, we indicated 
how to prove analogous results for the S2 singularities on the list above. 
S3 singularities are, of course, removable as long as dim X < 9. 

In particular, for dimensions ::; 4, a stable map can only exhibit the above 
singularities; and, being stable, it must exhibit them transversely. Sum­
marizing we have: 

Proposition 6.2. In dimensions ::; 4, for a map germ to be stable it is 
necessary and sufficient that it exhibit only singularities on the list (6.1), and 
that it exhibit these Singularities transversely. 

Remark. It is instructive to verify directly from Mather's criterion that 
the canonical forms described for the singularities in the list (6.1) which are 
given in Theorems 4.1 and 5.10 do indeed represent infinitesimally stable 
germs. For example, we verify this criterion for the Morin singularities 
where f(x!> ... , xn) = (f1(X), X2, ... , xn) and f1(X!> ... , xn) = X2X1 + ... + 
XkX/-1 + X1k+1. Locally the equation T = (df)a) + YJ ·ftranslates to the 
system of functional equations 

[

T1 = (X2 + 2X1X3 + ... + (k - 1)X1k-2Xk + (k + 1)X1k)~1 
+ X1~2 + ... + X1k-1~k + YJ1 • f 

(*) T2 = ~2 + YJ2 • f 

Tn = ~n + YJn • f 

where we must solve for the functions ~i(X) and YJi(Y) given the functions Tj(X). 
By V, Theorem 1.2, we need only solve the equations (*) to order n and by 
Arnold's criterion (V, Proposition 1. 13) we need only solve equations (*) when 
TZ = Xs and Ti = 0 for i f= I. When I > 1, let ~z = xs, ~i = 0 i f= I, and YJi = 0 
for all i to solve (*). So we assume that T1 = xs, and Tj = 0 for i > 1. If 
T1 = Xl, then let ~2 = 1, YJ2 = -1, ~1 = ~3 = ... = ~n = 0, and YJ1 = YJ3 = 
... = YJn = O. If T1 = Xs for s > 1 then let YJ1(y) = Ys (so that YJ1 ·f(x) = x s), 
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~l = ... = ~" = 0, and 7]2 = ... = 7]" = O. We leave it to the reader to check 
that umbilics are infinitesimally stability. 

We will now try to find global criteria for stability. We made a tentative 
investigation of this problem in §5 of Chapter VI. We will apply our con­
clusions there to maps in low dimensions. There are at most six distinct types 
of singularities on the list (6.1); so for a map f: X -+ Y, with dim X = 
dim Y :s; 4, we can partition the set of singularities of f into six disjoint 
subsets: Xl>"" Xe. We showed in VI, §5 that for f to be stable it must 
satisfy the following "normal crossing" condition. 

Condition NC. Given distinct points XI, in Xf,. r = 1, ... , k such that 
f(x!) = ... = f(x!k;) = y then the subspaces 

(df)x"(Tx,,X!,) for r = 1, ... , k 

of Ty Yare in general position. 
(See VI, Proposition 5.2.) Inter alia, this condition implies that J, re­

stricted to each "stratum" Xi> is an immersion with normal crossings, and 
that the images of these strata intersect transversely. For example it implies. 
that a point cannot simultaneously be the image of an umbilic and of an Sl 
singularity. 

Theorem 6.3. Let dim X = dim Y:s; 4 and letf: X -+ Y be a map which 
exhibits only the singularities on the list (6.1) and exhibits these transversely. 
Then a necessary and sufficient condition for f to be stable is that it satisfy the 
condition NC described above. 

We will deduce this from a slightly more general result. 

Theorem 6.4. Let X and Y be n dimensional manifolds, andf: X -+ Ya 
map which is of rank ;::: n - 1 everywhere. Then f is stable if and only if it 
satisfies the transversality conditions of Morin: 

k=I, ... ,n+l 

and, in addition, satisfies the condition NC,Jor the stratification, Xk = Slk;(f), 
k = 1, ... , n + 1. 

Proof The necessity is obvious. To prove the sufficiency we only have 
to show that Mather's criterion for infinitesimal stability is true on the multi­
jet level. (V, Theorem 1.6.) 

The specific result we are going to prove is the following "canonical 
form" lemma. 

Lemma 6.5. Letf: X -+ Y be a map satisfying the hypotheses of Theorem 
6.4. Let Pl, ... , P. be points of X such that P! is in Sl,,(f) for i = 1, ... , s 
and such that f(Pl) = ... = f(p.) = q. Then we can choose a coordinate system 
Yl>"" y" centered at q and coordinate system Xl(l), ••• , x,,(t) centered at each 
of the p;' s such that f has the canonical form (4.2) Simultaneously in each of 
these coordinate systems. 
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Proof For simplicity we will just consider the case s = 2 (to spare the 
reader rather than the authors; the general case is not any harder, but there 
are more indices to keep track of.) Let P = PI and P' = P2; and for the 
moment let us just consider f in the vicinity of p. If p is an S:f.k singularity we 
can choose coordinate systems centered at p and at q such that f has the 
canonical form (4.2). Let Xl be the first coordinate function in the coordinate 
system at p, and Yl, ... , Yk the first k coordinate functions in the coordinate 
system about q. Then the tangent space to Slk(f) at p is characterized by the 
equations 

dXI = df*Y2 = .•• = df*Yk = 0 

(Compare with §3, Exercise 4) and the image space by the equations 

(6.6) dYI = dY2 = ... = dYk = O. 

If we make a similar choice of coordinates relative to p' and q, then the 
tangent space to Sk,(f) at p' is characterized by the equations 

dx~ = df*y; = ... = df*Y~' = 0 

and the image space by the equations 

(6.6), dy~ = ... = dy~ = O. 

By assumption the subspaces (6.6) and (6.6)' are in general position. This 
means that the differentials dYb ... , dYk, dy~, ... , dy~, are linearly indepen-
dent at q, and, therefore, that Yb ... , Yk, y~, ... , y~, can be introduced as the 
first k + k' coordinate functions of some coordinate system. In this coor­
dinate system we will simultaneously have the Morin canonical form for an 
Sl1< singularity at p and the Morin canonical form for an Sik singularity 
atp'. 0 

From this it is easy to prove Theorem 6.4. One merely checks that the 
multijet conditions of (t) in V, Theorem 1.6 are satisfied using the multijet 
canonical forms given in Lemma 6.5. The details are similar to the argument 
in the remark following proposition 6.2 and we leave them to the reader. 
To prove Theorem 6.3 we observe that since the condition NC is satisfied 
no multi-germ can have a source consisting of an umbilical point and another 
singular point since the umbilics occur as isolated points (in dimension 4) or 
not at all (in dimension < 4). Therefore, to verify the multi-jet criterion for 
stability we only have to verify it for multi-jets involving singular points of 
type Slk; so we are back in the situation of Theorem 6.4. 0 
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§A. Lie Groups 

The theorem that we need states that the orbits of a Lie group action are 
immersed submanifolds. First we define and sketch some facts about Lie 
groups. 

Definition A.I. Let G be both a group and a smooth manifold. Then G is a 
Lie group if the mapping of G x G --+ G given by (a, b) 1-+ ab- 1 is smooth. 

Examples 
(a) Rn where the group operation is addition. 
(b) Sl where the group operation is addition of angles. 
More generally Tn = Sl X ... X Sl = n-torus is a Lie group where the 

group operation is coordinate-wise addition. 

Note. The only abelian connected Lie groups are Rn x Tm (no proofl). 
(c) All matrix groups. For example GL(n, R) = group of n x n invertible 

real matrices, O(n) = group of n x n orthogonal matrices, and SL(n, R) = 
group of n x n real matrices with determinant equal to 1. All of these groups 
are submanifolds of Rn2. (See Theorem A.7.) Also GL(n, C) = group ofn x n 
invertible matrices with complex entries. Here we view GL(n, C) as a sub­
manifold of Rn2 EEl Rn2. 

(d) Let X be a manifold with p in X. Let a be a k-jet (k > 0) in 
Jk(X, X)p,p. Then a is invertible if any representative of a is a diffeomorphism 
on a nbhd of p. The invertible k-jets form a group under composition and 
a manifold since they are an open subset of Jk(X, X)PoP' We shall denote 
the set of invertible k-jets at p by Gk(X)po To see that Gk(X)p is a Lie group, 
we choose coordinates near p and inspect Gk(Rn)o. Further we may identify 
Jk(Rn, Rn)o,o with polynomial functions from Rn --+ Rn of degree::; k mapping 
o to O. Under this identification Gk(Rn)o is the open subset of polynomial 
mappings f for which (df)o is nonsingular. Here we see that the group opera­
tion is given by composition of the polynomial mappings but throwing away 
all terms in the composition of degree> k. This is clearly a smooth operation. 
It is also not hard to see that the mapping b 1-+ b- 1 in G"(Rn)o is a smooth 
operation. 

The tangent space to a point in a smooth manifold is always locally 
diffeomorphic to the manifold (using chart mappings). On a Lie group, G, 
there is a naturally defined identification exp: TeG --+ G which is a diffeo­
morphism on a nbhd of O. We shall construct this mapping. 

Let v be in TeG. Then v along with the group action defines a vector field 
on G. For a in G let La: G --+ G be defined by LaCg) = a·g. Clearly La is a 

194 
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diffeomorphism. Define ~av = (dLaMv). The smoothness of the group action 
guarantees that~V is a vector field on G. Also ~v satisfies (dLa)b~bV = ~~.b for all 
a, bin G. 

Definition A.2. A vector field ~ satisfying (dLa)~ = ~ for all a in G is 
called left invariant. 

Lemma A.3. Let ~ be a left-invariant vector field on G. Then ~ is the 
infinitesimal generator of a globally defined one parameter group. 

Proof Let o/t: U -+ G (I t I < e, U a nbhd of e in G) be a locally defined 
one parameter group near e in G as given by I, Lemma 6.2. As we saw in the 
case that G is compact (I, Theorem 6.5), the trick in showing that there is a 
globally defined one-parameter group is to show that o/t is globally defined on 
G for It I < e. Now since ~ is left-invariant (dLg)~ = ~. Thus (d/dt)go/t(a) = 
(d /dt)o/tCga) for all g, a, and ga in U. Hence (*) go/tea) = o/t(ga). In particular, 
o/t(g) = go/tCe) for g in U. Thus we can clearly extend o/t to be globally defined 
and smooth on G. The left invariance of ~ guarantees that o/t (It I < e) is still 
a one-parameter group for ~ on all of G. 0 

Remark. Given a vector v in TeG, let ~v be the left invariant vector field 
that it generates. Let o/V be the globally defined one parameter group whose 
existence is assured by the last Lemma. We can think of 0/ as a mapping of 
(TeG) x G x R -+ G given by (v, g, t) f-+ o/tV(g). Thus we have the following: 

Proposition A.4. The mapping 0/ is smooth and satisfies 
(1) o/tV(ga) = go/tV(a), and 
(2) ifJs!V = o/tsv• 

Proof For fixed v, o/V is just a one-parameter group and is thus smooth. 
Varying v just varies the initial conditions to the first order system of ODE's 
which define o/v. Since solutions to such a system vary smoothly with the 
initial conditions, 0/ is a smooth mapping. Note that (1) isjust a restatement of 
(*) in the proof of Lemma A.3. For (2), note that o/stv and o/st are both one­
parameter groups on G for fixed t and v. Now o//v has infinitesimal generator 
~tv and 

!!.. o/stV(g) I = t!!'" o/r V(g) I = t~gV = ~gtv. 
ds 8=0 dr r=O 

Thus the infinitesimal generator of o/stV is also ~tv. Applying the fact that one­
parameter groups are unique we have o//v = o/stv. 0 

Define exp: TeG -+ G by exp (v) = o/lv 

Theorem A.5. exp : TeG -+ G is smooth and is a diffeomorphism on a 
nbhd ofO. Infact (d exp)o = identity. (Note: we identify To(TeG) with TeG.) 

Proof Clearly exp is smooth. Using (2) in the last Proposition, we have 

(d expMv) = dd (exp tv) \ = dd o/ltV(e) \ = dd o/tV(e) \ = ~/ = v. 
t t=O t t=o t t=o 

So (d exp)o = idTGc ' 0 
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Exercise: We may identify TeGL(n, R) with M(n, R) = vector space of 
n x n real matrices. Using this identification show that exp A = Exp A 
where A is in N(n, R) and 

co AI 
ExpA = 2:"7[' 

i=O 1. 

Corollary A.6. Let Vand W be subs paces ofTeG such that V EB W = TeG. 
Define y: TeG --+ G by y(v, w) = exp v·exp w for v in V and win W. Then if> 
is a diffeomorphism on a nbhd ofO in TeG with a nbhd of e in G. 

Proof Certainly y is smooth. Moreover (dY)ol V = (d exp)ol V = idv by 
Theorem A.5. Similarly for W. So (dy)o is invertible. 0 

Definition AS. Let G be a Lie group. Then He G is a Lie subgroup if 
(i) H is a subgroup of G; 

(ii) H is an immersed submanifold of G; and 
(iii) H is a Lie group with the group operation assumed in (i) and the mani­

fold structure assumed in (ii). 

Note. Lie subgroups are not, in general, submanifolds. For example, 
let G = T2 viewed as the decomposition space R21 Z2 where Z2 = the sub­
group of integer lattice points in R2. Let H' be a line in R2 through the origin 
with irrational slope and let H = 7T(H') where 7T: R2 --+ T2 is the obvious 
projection. Then 7TIH' is a 1: 1 immersion so that H is an immersed sub­
manifold and a Lie subgroup. But H is not a submanifold of T2 since H is 
dense. 

One of the more interesting facts about Lie subgroups which indicates 
the strong connection between the geometry and algebra on a Lie group is 
the following. 

Theorem A.7. Let H be a subgroup of the Lie group G which is a topo­
logically closed subset. Then H is a Lie subgroup. 

Remark. The content of this theorem is that any closed subgroup of a 
Lie group is an immersed submanifold and thus a sub manifold. 

First some lemmas. 

Lemma A.B. Let II be a norm on TeG. Suppose that Vb V2, ... is a 
sequence of nonzero vectors in TeG such that Liml-> <Xl VI = 0, exp V; E H for all 
i, and Limi-tco (l/lvd)vl = v. Then exp tv E H for all t in R. 

Proof Liml-><Xl (t!lVd)Vi = tv. Choose integers ki so that kdvill--+ t. 
Then exp (kiv;) 1--+ exp (tv). But 

exp (kivi) = .flk!v!(e) = .fk,V'(e) = (.flv!(e))k, = (exp ViY' 

is in H, using Proposition A.4. Since H is closed exp (tv) is in H. 0 

Lemma A.9. Let V = {v E TeG I Vt E R, exp (tv) E H}. Then Vis a vector 
subspace of TeG. 
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Proof Clearly V is closed uuder scalar multiplication so we need only 
show that V is closed under addition. Let v and w be in V and suppose v + w 
=/: O. Consider exp (tv).exp (tw) which is in H. Using Theorem A.S, we see 
that for all small t there exists a unique f(t) such that exp (tv).exp (tw) = 
expf(t). Moreoverfis a smooth curve in G. 

Using Proposition A.4, 

exp (tv).exp (tw) = ifiltV(e)'ifiltW(e) = ifitV(e)'ifitW(e) = ifitV(ifitW(e)). 

So 

dd exp (tv).exp (tw) I = dd ifitV(e) I + dd ifitW(e) I = v + w. 
t t=o t t=o t t=O 

Now 

dd exp t(v + w) I = v + w. 
t t=o 

So in local coordinates near e, exp (J(t)) - exp t(v + w) = OCt). Since exp 
is a diffeomorphism near 0, Limt .... of(t)jt = v + w. Apply Lemma A.8 with 
Vt = f(1/i) and v = (v + w)!lv + wi to show that v + w is in V. 0 

Proof of Theorem A.7. Let W be a vector space complement to the V 
of Lemma A.9 in TeG. Consider the local diffeomorphism y: TeG ~ G as 
in Corollary A.6. We claim exp (V) is a nbhd of e in H. Suppose not. Then 
there exists a sequence hI> h2' . .. of points in H with Limt .... <Xl hi = e such 
that hi 1: exp (V). Choose points VI in V and Wt in W such that exp VI' exp WI = 
hi' Thus exp WI is in H for all i and by restricting to a subsequence we may 
assume that wdlw;! 1-+ win W. Apply Lemma A.8 to show that w is in V. 
But then w E V () W = {O} and I wi = 1 is a contradiction. Thus exp V is a 
nbhd of 0 in H. Hence there is an open nbhd of 0 in V mapped diffeomor­
phically onto an open nbhd of e in H by expo exp -1 is then a chart for the 
manifold structure of H near e. Via the translations Lg we can obtain an atlas 
of charts for Hand H is a manifold. The inclusion mapping of H ~ G is 
clearly an immersion. 0 

We need one more Theorem before getting to the result mentioned in the 
beginning of this appendix. Let H be a closed subgroup of G. Then the space 
of cosets G/H has a natural Hausdorff topology-namely, the weakest 
topology which makes the obvious projection 7T: G ~ G/H continuous. Since 
H is also a Lie subgroup we can say more. 

Theorem A.I0. Let H be a closed subroup of a Lie group G. Then GjH 
is a smooth manifold with dim G/H = dim G - dim H. Moreover7T: G~ G/H 
is smooth and for each q in G/H, there exists a nbhd Q of q and a smooth 
mapping T: Q ~ G such that 7T'T = idQ • 

Proof Let W be a vector space complement to TeH in TeG. Let U be a 
nbhd of 0 in TeG such that exp U is a diffeomorphism. Then 7T·exp: U () W ~ 
G/H is a local homeomorphism. Certainly 7T·exp (U () W) is open in G/H. 
It is easy to compute (7T.exp I U () W)-l and to check continuity. This is a 
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chart for G / H near the identity coset. Use the translation Lg to move this chart 
to the coset gH. In this way G/H is a manifold and dim G/H = dim W = 
dim G - dim H. Moreover 7T is smooth. The smooth mapping 
exp (7T' exp I U n W) -1 is the desired local "section". 0 

Definition A.n. Any manifold of the form G/H with the differentiable 
structure as given in Theorem A.I0 is called a homogeneous space. 

Example. Let G = GL(n, R) and fix a k-plane V in Rn. Let H = 
{A E GL(n, R) I A(V) = V). Clearly H is a closed subgroup of G. So G/H 
is a differentiable manifold. In fact, G/H = Gk,n-the Grassmann manifold of 
k-planes in n-space. 

Definition A.12. Let X be a smooth manifold and let G be a Lie group. 
(a) An action of G on X is a homomorphism: T: G ---+ Diff(X) such that 

the mapping G x X ---+ X given by (g, x) f-+ T(g)(X) is smooth. 
(b) Let p be in X. Denote by {!} p == {T(g)(P) I g E G} the orbit (of the action 

of G on X) through p. 
(c) Let Hp == {g E G I T(g)(p) = p} = the isotropy subgroup at p. 

Note. Hp is a closed subgroup of G and thus a Lie subgroup of G. 

Example. Let X be a compact manifold. Let i: be a vector field on X and 
let 1ft be the corresponding globally defined one parameter group on X. 
Then the mapping t f-+ 1ft defines an action ofR on X. The orbits ofthis action 
are just the integral curves of the vector field. Conversely, an action of Ron 
X is just a one-parameter group. 

Theorem A.13. Let G be a Lie group acting on a manifold X. Then the 
orbits of the action of G on X are immersed submanifolds of X. 

Proof Denote the action of G on X by p and let p be in X. Consider the 
mapping a: G ---+ X given by a(g) = p(g)(p). Clearly 1m a = {!}p. Moreover 
a is constant on cosets of G/ Hp and so induces a 1: 1 onto mapping ,\ : G/ Hp ---+ 
{!}p. Locally ,\ = a'T where T is the local "section" given in Theorem A.lO. 
So'\ is a 1: 1 smooth mapping of the manifold G/Hp onto {!}p. We claim that'\ 
is an immersion and thus that {!}p is an immersed submanifold of X. It is 
enough to show that (d'\)(j is 1: 1 where e = eHp in G/Hp since the mapping 
Lg: G ---+ G induces a smooth mapping Sg: G/Hp ---+ G/Hp and (d'\)g = 
(dp(g»p • (d'\)e'(dSg)g -1. 

Let w be in TeG/Hp such that (d'\).(w) = O. Then (da)e(v) = 0 where 
v = (dT)e(W) E TeG, since ,\ = a'T near e. Let 7JtCq) = p(1ft(e». Then 7Jt is a 
one-parameter group on X since 1ff+s(e) = 1ftV(e) '1fsV(e) using Proposition 
A.4. Let i: be the infinitesimal generator of 7Jt. Since 7Jt(P) = a(1ftv(e», we see 
that 

!:p = dd 7Jt(P) I = dd a'1ftV(e) I = (da)p(v) = O. t t~o t t~O 

Applying Note (2) after I, Theorem 6.4, we see that 7JtCP) = P for all t. Thus 
cpU) is in Hp for all t and v = (dT).(W) is in TeH. 
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So w = (d7T)e(dT).,(w) = ° and (dA). is injective. 0 

Note. An orbit is not, in general, a submanifold of X. For example, it is 
easy to construct an action of R on T2 whose orbit through (0, 0) is dense. 

If G is a Lie group, let G denote the connected component of e in G. 
Clearly G is a Lie subgroup of G. 

Lemma A 0140 Let G be a Lie group acting on a manifold X and let p be in 
X. The connected component of lDp containing p is Gop == {T(g)(p) I g E G} 
where T denotes the action. 

Note. We speak of the topology on lDp induced from G/Hp by A, not the 
topology induced on lDp by X. 

Proof Clearly Gop is connected. If G' is any other connected component 
of G, then G'op 11 Gop = 0 or bop. So Gop is both open and closed in lDp and 
is thus a component of lDp• Clearly p is in Gop. 0 
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