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Bifurcations from Synchrony in Homogeneous Networks: Linear Theory∗
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Abstract. A regular network is a network with one kind of node and one kind of coupling. We show that a
codimension one bifurcation from a synchronous equilibrium in a regular network is at linear level
isomorphic to a generalized eigenspace of the adjacency matrix of the network, at least when the
dimension of the internal dynamics of each node is greater than 1. We also introduce the notion of
a product network—a network where the nodes of one network are replaced by copies of another
network. We show that generically the center subspace of a bifurcation in product networks is the
tensor product of eigenspaces of the adjacency matrices of the two networks.
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1. Introduction. The fundamental result in this paper, Theorem 2.7, states that the
center subspace of a codimension one synchrony-breaking bifurcation in a regular network is
isomorphic to a generalized eigenspace of the adjacency matrix of that network, at least when
the dimension of the network nodes is greater than 1. Moreover, the action of the Jacobian
matrix on that center subspace is conjugate to the action of the adjacency matrix on the
associated generalized eigenspace. We now discuss the various terms in these statements.

Stewart and coworkers [13, 21, 16] developed a theory for the dynamics of a network of
coupled systems based on network architecture. In this theory a network consists of a finite
number of nodes or cells C = {c1, . . . , cr} and a finite number of arrows. The cells represent
systems of differential equations, and the arrows represent coupling between those systems.
More precisely, a cell consists of a state space, usually taken to be a Euclidean space Rk, and
a system of differential equations associated with that cell. The system associated with cell j
has the form

ẋj = fj(xj , xi1 , . . . , xim),

where the first argument in fj represents the internal dynamics of the cell and the remaining
variables represent coupling. Note that xp appears in fj only if cell p is coupled to cell j. The
general theory allows for self-coupling (some iq equals j) and multiple arrows (some subsets
of indices iq are equal). The network of a coupled cell system is a graph that shows which
cells have the same equations and which cells are coupled to which.
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Examples of such networks have been considered previously by a number of authors;
we mention, in particular, Pecora and Carroll [19]. These papers discuss the stability of
fully synchronous solutions. In this context the tensor structure of the linearization given
in (2.2) has been observed. The master stability function, which recovers the eigenvalues
of the Jacobian matrix in terms of the eigenvalues of the adjacency matrix, is related to our
Lemma 2.3. Pecora and Carroll use this structure to discuss stability, that is, to determine the
maximum real part of the eigenvalues or, in a more general context, the Liapunov exponents.
In this paper we use the tensor structure to discuss the surprisingly nontrivial Jordan structure
of the Jacobian restricted to center subspaces that is sometimes forced by network architecture.
This issue is relevant for bifurcations from synchrony. For example, it has been shown in [10, 8]
that the length of Jordan blocks determines the amplitude of certain bifurcating solutions
obtained by Hopf bifurcation in feed-forward chains.

It is well known in the pattern formation literature that symmetry-breaking bifurcations
from a stable fully symmetric equilibrium in a single reaction-diffusion equation are not possi-
ble. Such bifurcations can occur only in systems consisting of several equations. For example,
Ermentrout and Lewis [9] show the need for three species to obtain a Turing symmetry-
breaking Hopf bifurcation. A similar issue occurs in bifurcation from synchrony in coupled
cell systems, where the role of the number of equations in reaction-diffusion systems is replaced
by the dimensionality k of the internal cell dynamics. In section 7 we show that when the
eigenvalues of the adjacency matrix are real, then all such steady-state synchrony-breaking
bifurcations are possible when k ≥ 2 (Theorem 7.1) and all such Hopf bifurcations are possi-
ble when k ≥ 3 (Theorem 7.2). The last theorem (proved by Amit Vutha) generalizes, in the
context of coupled cell systems, the observation in [9].

In this paper we consider only networks in which all cells are identical ; that is, the state
spaces are all identical (Rkj = Rk for all j), and the systems of differential equations are all
equal (fj = f for all j); that is,

(1.1) ẋj = f(xj , xi1 , . . . , xim).

Definition 1.1. A homogeneous coupled cell network is a network in which all cells are
identical.

The diagonal Δ0 = {x : x1 = · · · = xr} consists of points where the coordinates in each
cell are identical and is always flow-invariant in homogeneous cell systems. Solutions in Δ0

can be found by solving the single system of differential equations

(1.2) ẏ = f(y; y, . . . , y).

Synchronous equilibria, zeros of f in (1.2), occur naturally in homogeneous cell systems. In
particular, it is reasonable to assume that there is an equilibrium of an admissible vector field
in Δ0 which we can assume, without loss of generality, is at the origin.

A homogeneous network can be depicted by a graph, which consists of nodes and arrows.
This graph has identical node symbols but can have different types of arrows. However, for
the network to be homogeneous each node must receive the same number of inputs of each
arrow type. Examples of homogeneous three-cell rings are given in Figure 1. Observe that in
the third figure there are two types of coupling indicated by solid and dashed arrows.
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Figure 1. Three-cell homogeneous networks: (left) unidirectional ring; (center) bidirectional ring; (right)
directionally coupled ring.

Each network architecture has associated with it a class of admissible vector fields, as
described above. The classes of admissible vector fields associated with each of the networks
in Figure 1 are given by

ẋ1 = f(x1, x3),
ẋ2 = f(x2, x1),
ẋ3 = f(x3, x2),

ẋ1 = g(x1, x2, x3),
ẋ2 = g(x2, x3, x1),
ẋ3 = g(x3, x1, x2),

ẋ1 = h(x1, x2, x3),
ẋ2 = h(x2, x3, x1),
ẋ3 = h(x3, x1, x2).

The overbar in g indicates that the two couplings to a given cell are identical and, because of
this, the coupling arguments can be interchanged; that is, g(x, y, z) = g(x, z, y). The theory
in [21, 16] explains how the assignment of admissible vector fields to network architecture can
be done in a functorial way (the admissible vector fields are just those that commute with the
symmetry groupoid of the graph).

Definition 1.2. A homogeneous network is regular if all couplings are of the same type.
The valency of a regular network is the number of arrows that input to each cell.

Note that the first two networks in Figure 1 are regular, whereas the third is not.
This paper considers the structure of synchrony-breaking bifurcations from a fully syn-

chronous equilibrium in a homogeneous cell system. More specifically, suppose that

ẋ = F (x)

is an admissible system for a homogeneous network with F (0) = 0. By a synchrony-breaking
bifurcation we mean that at the origin there is a critical eigenvector in the center subspace
Ec of the Jacobian J = (dF )0 that is not in Δ0. One goal of this paper is to describe
the Jordan normal form that J |Ec takes at a generic (codimension one) synchrony-breaking
bifurcation from a synchronous equilibrium. We will show that for regular networks (section 2)
synchrony-breaking bifurcations can be identified with the Jordan structure of the adjacency
matrix associated with the network architecture.

Definition 1.3. The adjacency matrix of a regular network is the matrix A = [aij ], where
aij is the number of arrows from cell j to cell i.

Note that the each row sum of the adjacency matrix equals the network valency.
We prove (Theorem 2.7) that when the dimension of the internal dynamics of each cell k

is at least 2, then the center subspace at bifurcation is isomorphic to a generalized eigenspace
of the adjacency matrix. This theorem generalizes observations by Leite and Golubitsky [18],
who studied bifurcations in three-cell systems. There is a striking analogy between eigenspaces
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of the adjacency matrix in synchrony-breaking bifurcations in regular cell networks and irre-
ducible representations in symmetry-breaking bifurcations for equivariant dynamical systems
(see Remark 2.9).

Leite and Golubitsky [18] and Elmhirst and Golubitsky [8] analyzed the codimension one
steady-state and Hopf synchrony-breaking bifurcations in valency one and two regular three-
cell networks. It was shown in [18] that there are 34 different such networks and that all manner
of center subspaces are possible in codimension one bifurcations. For simplicity assume that
the dimension k of the internal dynamics phase space is 1. Then [18] shows that there are
networks where the center subspace Ec at a synchrony-breaking bifurcation is one-dimensional,
or is two-dimensional with two independent eigenvectors, or is two-dimensional with only
one independent eigenvector (the nilpotent case). It is even possible for a codimension one
bifurcation to have two simultaneously critical eigenvectors, with one in the subspace Δ0 and
one not in that subspace (see network 12 in [18]). In particular, the Jordan structure of
the Jacobian at a synchronous equilibrium in a regular system can be quite complicated in
codimension one bifurcations.

After discussing the relationship between synchrony-breaking bifurcations in regular net-
works and symmetry-breaking bifurcations in equivariant bifurcation theory, we focus on
networks that are networks of networks. The product of two regular networks is defined in
section 3, and such networks are homogeneous. Product networks have two types of coupling
(one from each regular network) and two adjacency matrices. Theorem 5.5 states that gener-
ically the center subspaces of codimension one synchrony-breaking bifurcations for product
networks are isomorphic to tensor products of eigenspaces of adjacency matrices, one from
each of the regular networks.

The remainder of the paper is devoted to discussions of partial results for the nonlinear
bifurcations whose linear parts have been described in the beginning sections. In particular,
sections 6 and 8 discuss examples of (nonlinear) synchrony-breaking bifurcations for regular
networks and for product networks. A discussion of a general strategy for analyzing synchrony-
breaking bifurcations is given in section 9.

2. Center subspaces in regular networks. In this section we discuss the generic structure
of critical eigenspaces of regular networks. We fix a regular network with r cells and, as before,
assume that an admissible vector field F has a synchronous equilibrium at the origin; that is,
F (0) = 0. Suppose that the internal dynamics of each cell has dimension k = 1. Then

(dF )0 = αI + βA,

where A is the adjacency matrix. Every eigenvalue of J = (dF )0 has the form α + βμ,
where μ is an eigenvalue of A. It also follows that generalized eigenspaces of J are generalized
eigenspaces of A. In this section, we will prove that generically center subspaces at synchrony-
breaking bifurcations are isomorphic to the real parts of generalized eigenspaces of A, but this
conclusion is valid in general only when k > 1.

Remark 2.1. Suppose k = 1. Then the real parts of the eigenvalues of J are just α +
Re(μj)β. So, if two of the A eigenvalues have the same real part, say Re(μ1) = Re(μ2), then
the real parts of α + μ1β and α + μ2β will be equal for all α and β. As an example consider
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Figure 2. Four-cell network whose adjacency matrix has eigenvalues 2, 0,±i.
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Figure 3. Branching feed-forward network that can exhibit the degenerate Jordan normal form J in (2.1)
in a codimension one bifurcation from a synchronous equilibrium.

the four-cell network shown in Figure 2 whose adjacency matrix is

A =

⎡
⎢⎢⎣

1 1 0 0
0 0 1 1
1 0 1 0
1 0 1 0

⎤
⎥⎥⎦ .

The eigenvalues of A are 2, 0,±i. At a codimension one steady-state synchrony-breaking bi-
furcation, the center subspace is three-dimensional—the sum of the eigenspaces corresponding
to the eigenvalues 0 and ±i.

Remark 2.2. Every Jordan structure J associated to a 0 eigenvalue can be the Jordan
structure of a real eigenvalue of an adjacency matrix of a regular network. For example,
suppose that

(2.1) J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then an example of a network whose adjacency matrix has the the Jordan structure J (cor-
responding to the zero eigenvalue) is given in Figure 3. We see that in the general case we
can always choose that network to be a branching network of feed-forward subnets.
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Next assume that the internal dynamics of each cell is k-dimensional, where k > 1. At
a fully synchronous state, the Jacobian is determined by two k × k matrices: the linearized
internal dynamics α and the linearized coupling β. These matrices are found by differenti-
ating F , as defined in (1.1), with respect to the first two variables. Using the discussion of
linearizations given in [18, section 3], we have

(2.2) (dF )0 = α ⊗ Ir + β ⊗ A.

To see this, first consider the linearization when the coupling matrix β is zero. Then the
linearization has the form α⊗Ir as in [18]. Assume next that the linearized internal dynamics
α is zero to obtain the second term. Again this proceeds as in [18].

Let μ1, . . . , μs be the distinct eigenvalues of A. Moreover, let

Mμi = α + μiβ.

Lemma 2.3. The kr eigenvalues of the Jacobian J are the union of the eigenvalues of the
k × k matrices Mμj for 1 ≤ j ≤ s. Specifically, suppose v ∈ Cr is an eigenvector of A. Then

(2.3) J(u ⊗ v) = (Mμu) ⊗ v.

Therefore, if u ∈ Ck is an eigenvector of Mμ, then u ⊗ v is an eigenvector of J .
Proof. Suppose that μ ∈ C is an eigenvalue of A with eigenvector v ∈ Cr. Let

Yv = {u ⊗ v : u ∈ Ck} ⊂ Ck ⊗Cr.

We claim that the subspace Yv is J-invariant and that J |Yv = Mμ. It then follows that the k
eigenvalues of J |Yv are eigenvalues of J . To verify the claim, calculate

J(u ⊗ v) = (αu) ⊗ v + (βu) ⊗ Av
= (αu) ⊗ v + μ(βu) ⊗ v
= ([α + μβ]u) ⊗ v
= (Mμu) ⊗ v,

thus verifying (2.3). Specifically, J |Yv is the matrix Mμ. The fact that u⊗ v is an eigenvector
of J whenever u is an eigenvector of Mμ follows directly from (2.3).

Our primary goal is to classify the center subspaces that occur at codimension one bifur-
cations in regular networks. Let

(2.4) ρ1, . . . , ρp and η1, . . . , ηq

be distinct eigenvalues of A. The ρj are the distinct real eigenvalues, and the ηi are the
distinct complex eigenvalues of A whose imaginary parts are positive.

Definition 2.4. A pair of real k×k matrices α, β is a codimension one pair if the real parts
of the eigenvalues of the matrices Mρ1 , . . . ,Mρp ,Mη1 , . . . ,Mηq are distinct (except for complex
conjugate pairs of eigenvalues of the Mρj ). The set of all codimension one pairs is denoted by
M2(k).
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It is clear that M2(k) is an open set of L(k)2, where L(k) is the space of real k × k
matrices. In Proposition 2.5 we prove that when k > 1 the set M2(k) is also a dense subset.
Therefore, the generic codimension one bifurcation will occur with a Jacobian J associated
to a codimension one pair, and J will have a center subspace that corresponds to one critical
eigenvalue.

Proposition 2.5. For k > 1, M2(k) ⊂ L(k)2 is open and dense. For k = 1, M2(k) is open
and dense when the eigenvalues of A in (2.4) have distinct real parts.

The second main result in this section states that over the complex numbers generically
the generalized eigenspace of the Jacobian matrix J is isomorphic to a generalized eigenspace
of the adjacency matrix A. We begin with a straightforward lemma.

Lemma 2.6. Let μ ∈ C be an eigenvalue of A, and let GA(μ) ⊂ Cr denote the associated
complex generalized eigenspace. Then Ck ⊗ GA(μ) is invariant under J .

Proof. Let Aμ = A − μI and write

J = α ⊗ Ir + β ⊗ A = Mμ ⊗ Ir + β ⊗ Aμ.

Clearly both summands leave the space Ck ⊗ GA(μ) invariant, and hence so does J .
Let σ ∈ C be an eigenvalue of J , and let GJ(σ) denote the generalized eigenspace of

Jσ = J − σI restricted to the invariant subspace Ck ⊗ GA(μ).
Proposition 2.5 allows us to assume that all eigenvalues of Mμ are simple and have distinct

real parts. It follows that for each μ there is a basis of eigenvectors u1, . . . , uk of Mμ in Ck.
In order to state the next theorem we must impose further genericity assumptions on the
coupling matrix β as follows. For each eigenvalue σ of Mμ with associated eigenvector u write

(2.5) βu =
∑

j

ζjuj .

Assume that all of the

(2.6) ζj �= 0 for j = 1, . . . , k.

Observe that the set of β that satisfy (2.5), (2.6) for a fixed σ is open and dense. Since there
are a finite number of σ, the set of β that satisfy (2.5), (2.6) for all σ is also open and dense.

Theorem 2.7. Assume (2.5), (2.6). Let μ ∈ C be an eigenvalue of A, and let σ ∈ C be a
simple eigenvalue of Mμ. Then there exists an isomorphism

η : GA(μ) → GJ(σ)

such that on GA(μ)

(2.7) Jσ ◦ η = η ◦ Aμ.

Remark 2.8. A similar situation occurs if we study synchrony-breaking bifurcations from
a fully synchronous limit cycle. Observe that each time dependent matrix in the variational
equation has a tensor structure as in (2.2). It follows that the autonomous Floquet system
keeps this tensor product structure, which leads to invariant subspaces as in Lemma 2.6.
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Since the critical Floquet multiplier corresponds to the trivial eigenvalue of the adjacency
matrix, this tensor product structure is inherited by the Poincaré map of the limit cycle. If
the linearization of the Poincaré map satisfies the genericity conditions (2.5) and (2.6), then
the result of Theorem 2.7 holds in this context as well. Although we do not have a formal
proof for this last statement, we believe it is true.

Elmhirst and Golubitsky [8] proved that the amplitude growth of periodic solutions ob-
tained from codimension one synchrony-breaking Hopf bifurcations in feed-forward networks
can be unusual. Recently, Comanici [4] showed that a similar effect can be found in codi-
mension one period-doubling bifurcations in maps. These results strongly suggest that the
codimension one bifurcations from synchronous limit cycles in feed-forward networks will lead
to solutions with interesting amplitude growth. However, here we have not attempted to work
out the nonlinear theory that is needed to establish such a result.

Remark 2.9. Proposition 2.5 and Theorem 2.7 provide an analogy between synchrony-
breaking bifurcations in regular networks and symmetry-breaking bifurcations in equivariant
theory; however, to see this analogy clearly, we must discuss center subspaces of the real Jaco-
bian J , not just eigenspaces of the complexification of J . In this analogy, center subspaces of J
associated with real eigenvalues of A correspond to absolutely irreducible representations, and
center subspaces of J associated with complex eigenvalues of A correspond to non–absolutely
irreducible representations.

Proposition 2.5 implies that generically, at a synchrony-breaking bifurcation, the center
subspace of J is determined by the eigenspace corresponding to one eigenvalue μ of A and
one simple critical eigenvalue σ of Mμ. It then follows, as we explain next, that the center
subspaces of J , and hence the codimension one synchrony-breaking bifurcations, divide into
three types, which are described best by considering separately the cases when μ is real and
when μ is not real.

(a) μ is real. In this case the matrix Mμ is an arbitrary real k × k matrix. As J varies
with a parameter, so does Mμ, and a critical eigenvalue σ of Mμ is either 0 or purely
imaginary.
Suppose that σ = 0. In this case all of the constructions in Theorem 2.7 are real, and
the real subspaces GJ(0) and GA(μ) are isomorphic. Hence Ec(J) ∼= GA(μ).
Suppose that σ is purely imaginary. Theorem 2.7 states that the complex vector space
GJ(σ) and the complexification of GA(μ) are isomorphic. However, the fact that Mμ

is a real matrix implies that σ is also a critical eigenvalue of Mμ. Since the center
subspace Ec(J) is the real part of GJ(σ)⊕GJ(σ), it follows that Ec(J) ∼= GA(μ)⊕GA(μ).

(b) μ is not real. In this case the matrix Mμ is an arbitrary complex k × k matrix. As J
varies with a parameter, so does Mμ, and a critical eigenvalue σ of Mμ is generically
purely imaginary. Note, however, that generically σ is not an eigenvalue of Mμ, though
it is always an eigenvalue of Mμ. Hence Ec(J) ∼= Re(GA(μ) ⊕ GA(μ)).

In Γ-equivariant bifurcation theory, steady-state bifurcations correspond to absolutely
irreducible representations, and Hopf bifurcations correspond to Γ-simple representations
(see [15]). Recall that Γ-simple representations are either the direct sum of two copies of
an absolutely irreducible representation or a single copy of a nonabsolutely irreducible repre-
sentation. As we have seen, generically there can be synchrony-breaking steady-state and Hopf
bifurcations in regular networks that correspond to real eigenvalues of A and Hopf bifurcations
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that correspond to complex eigenvalues of A.
As an immediate consequence of Remark 2.9 we have the following characterization of

center subspaces for codimension one bifurcations in regular networks.
Corollary 2.10. Generically in α, β, the center subspace Ec(J) at a codimension one steady-

state bifurcation in a regular network is isomorphic to GA(μ) for some real eigenvalue μ
of A. At a Hopf bifurcation, Ec(J) is isomorphic to GA(μ) ⊕ GA(μ) if μ is real or to
Re(GA(μ) ⊕ GA(μ)) if μ is not real.

Proof of Proposition 2.5. To prove the proposition we must establish that a certain finite
number of sets in the pairs α, β are open and dense. The intersection of these sets will be
open and dense and contain the desired pairs of matrices.

To begin, take two eigenvalues νa, νb of A from the set (2.4) and consider the two sets of
matrix pairs α, β:

(2.8)
Da = {(α, β) ∈ L(k)2 : Mνa has eigenvalues with distinct real parts},

Ea,b = {(α, β) ∈ Da ∩ Db : Mνa ,Mνb
have eigenvalues with different real parts}.

Note that the sets Da and Ea,b are open and that M2(k) consists of matrices in the intersection
of the sets Ea,b. Moreover, if the sets Da are dense in L(k)2, then proving that Ea,b is dense
in Da ∩ Db suffices to prove that Ea,b is dense in L(k)2.

From the point of view of this proposition the distinct eigenvalues of the adjacency matrix
A in (2.4) just form a finite set of real and complex numbers. This set can be shifted by any
real number c, since

Mμ = (α + cβ) + (μ − c)β.

It follows that the sets in (2.8) are open and dense for νa, νb if and only if they are open and
dense for the set νa − c, νb − c. Similarly, we can scale the set of eigenvalues, since

Mμ = α + (cμ)
(

1
c
β

)

for any real constant c �= 0.
Thus, when we consider the sets Da we may assume, without loss of generality, that νa = 0

or νa = i. In the first case, Mνa = α. Using real Jordan normal forms, it is easy to show
that the small perturbations of α have eigenvalues all of whose real parts are unequal. In the
second case, Mνa = α + iβ, which is an arbitrary complex matrix. Now using the basis whose
existence is guaranteed by complex Jordan normal form, we can see that small perturbations
of α and β will move, arbitrarily, the real parts of the eigenvalues of Mνa . Hence, in all cases,
Da is dense.

To prove the density of the sets Ea,b we need to consider pairs of eigenvalues νa and νb in
(2.4). These eigenvalues either have real parts unequal or real parts equal. Therefore, we can
shift and scale these eigenvalues so that they are equal to one of the pairs:

(2.9)
(νa, νb) Re(νa) = 0; Re(νb) �= 0,
(i, iω) 0 ≤ ω < 1.

The sets Ea,b can be shown to be dense by explicit constructions in each case. Since α
and β are in Da ∩ Db, the matrices Mνa and Mνb

have distinct eigenvalues and a basis of
eigenvectors.
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Case Re(νa) = 0; Re(νb) �= 0. In this case we keep α fixed and perturb β to β + εIk.
This perturbation shifts the eigenvalues of Mνa by ενa, which is purely imaginary; hence the
perturbation keeps the real parts of the eigenvalues of this matrix fixed. This perturbation
also shifts the eigenvalues of Mνb

by ενb. Since Re(νb) �= 0, this perturbation shifts the real
parts of the eigenvalues by εRe(νb). Thus, the sets Ei,νb

are dense.
Case νa = i; νb = iω; 0 ≤ ω < 1. When k = 1 the real parts of the eigenvalues of Mνa

and Mνb
are always equal, and separation of the real parts of the eigenvalues is impossible.

So we assume k ≥ 2.
The matrix Mνa = α + iβ is an arbitrary complex matrix. We can assume, as above,

that the eigenvalues of Mνa are distinct and, by an arbitrarily small perturbation, that these
eigenvalues are all complex. Fix an eigenvalue λa of Mνa with eigenvector y = yR+iyI . We can
also assume, after an arbitrarily small perturbation, that yR and yI are linearly independent
so that the subspace Y = R{yR, yI} is two-dimensional. Let p + iq be a perturbation matrix
for which

(2.10) (p + iq)y = 0.

Note that (Mνa +(p+iq))y = λay. So the real part of the perturbed eigenvalue of Mνa +(p+iq)
is the same as the real part of the eigenvalue λa of Mνa .

Next assume that Mνb
= α + iωβ (where ω �= 1) has an eigenvalue λb with eigenvector

z = zR + izI and Re(λa) = Re(λb). Assume that p, q also satisfy

(2.11) (p + iωq)z = εz

for some nonzero ε ∈ R. Equation (2.11) implies that the real part of the eigenvalue of
Mνb

+ (p + iωq) associated with the eigenvector z is λb + ε. Thus the sets Ei,ωi are dense if
the perturbation constraints (2.10) and (2.11) can hold simultaneously.

Assume that p is invertible, and let B = p−1q. Then (2.10) can be written as

(I + iB)y = 0

or as By = iy. Since yR and yI are linearly independent, we can choose B to satisfy ByR = −yI

and ByI = yR. Note that the eigenvalues of B on Y are ±i. It follows that we can choose
B so that I + ωiB is invertible (both on and off Y ), since ω �= ±1. Next observe that (2.11)
reduces to

p−1z =
1
ε
(I + iωB)z.

Since I + iωB is invertible, we can choose an invertible p to satisfy this equation. Then we
set q = pB.

Note that the only place where we needed to assume k > 1 was in the second case, the
case where two eigenvalues of the adjacency matrix A have equal real parts.

Proof of Theorem 2.7. Proposition 2.5 allows us to assume that all eigenvalues of Mμ are
simple and have distinct real parts. Then for each μ there is a basis of eigenvectors u1, . . . , uk

of Mμ in Ck. By assumptions (2.5) and (2.6) we assume that all of the ζj are nonzero.
For the remainder of the proof we fix the eigenvalue μ. Let σ be an eigenvalue of Mμ and

hence an eigenvalue of J . Let GJ(σ) ⊂ Ck ⊗ GA(μ) denote the generalized eigenspace corre-
sponding to the eigenvalue σ of J . We prove the theorem by constructing the isomorphism η.
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In fact, we need only show that η is an injection. If it is, then dimGJ(σ) ≥ dimGA(μ).
Indeed, if some η were not a surjection, then it would follow that

k∑
i=1

dimGJ(σi) > k dimGA(μ),

where σ1, . . . , σk are the eigenvalues of Mμ. However, since

GJ(σ1) ⊕ · · · ⊕ GJ(σk) = Ck ⊗ GA(μ),

it follows that
k∑

i=1

dimGJ(σi) = k dimGA(μ).

Hence, η must be surjective as well as injective. Observe that as a consequence of the dimension
count, we have also proved that all of the eigenvalues of J are the ones that came from the
Mμ’s in Lemma 2.3. Since generically the real parts of all of the eigenvalues σ are distinct
(Proposition 2.5), it follows that Ec = Re(GJ (σ)).

Next we choose a basis in GA(μ) for which A is in Jordan normal form. Let

Gj
A(μ) = ker(Aj

μ)

for j = 1, . . . , s, where s is the smallest integer for which Gs
A(μ) = GA(μ). Let P 1 = G1

A(μ)
consist of the eigenvectors of A with eigenvalue μ, and choose subspaces P j for j = 2, . . . , s
so that

Gj
A(μ) = P j ⊕ Gj−1

A .

Let dj = dim P j and note that ds ≤ · · · ≤ d1. Moreover, we can choose bases {vj,1, . . . , vj,dj
}

of P j so that
Aμ(vj,m) = vj−1,m.

We define η on Jordan blocks of A restricted to GA(μ). More precisely, each string of
generalized eigenvectors v1,m, v2,m, . . . , v�,m (where d�+1 < m) is a basis for a Jordan block of
A. The construction of η proceeds inductively on each string.

To simplify the notation denote the string with single subscripts by V1, . . . , V�. We claim
that there exist vectors W1, . . . ,W� in Ck ⊗ GA(μ) such that W1 �= 0, Jσ(W1) = 0, and

Jσ(Wj) = Wj−1

for 2 ≤ j ≤ � ≤ s. We then define η(Vj) = Wj and extend by linearity. By construction η
satisfies (2.7). Moreover, the set of Wj so constructed is linearly independent. Note that none
of the Wj equals zero. Next suppose that

W = ρ1W1 + · · · + ρsWs = 0,

where ρj ∈ C. It follows that Js−1
σ (W ) = ρsW1 = 0. Hence ρs = 0 since W1 �= 0. Since

ρs = 0, it follows that Js−2
σ (W ) = ρs−1W1 = 0. Hence, ρs−1 = 0. Proceed inductively.
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It is also straightforward to show that the union of vectors Wj that come from all the
different strings are also linearly independent. Thus the map η : GA(μ) → GJ(σ) is an
injection. We now continue with the construction of the Wj .

Since the eigenvalues of Mμ are simple, we can write

(2.12) Ck = C{U} ⊕ Q,

where MμU1 = σU1 is an eigenvector and Q is the sum of the eigenspaces corresponding to
eigenvalues other than σ. Let Mμ,σ = Mμ − σIk. Observe that Mμ,σ : Ck → Q and Mμ,σ

restricted to Q is invertible.
Let U be an eigenvector of Mμ with eigenvalue σ. We claim that we can choose U j

1 = γjU

where γj ∈ C is nonzero and U j
2 , . . . , U j

j ∈ Q so that Wj has the form

(2.13) Wj = U j
1 ⊗ Vj + · · · + U j

j ⊗ V1.

To begin, define W1 = U1
1 ⊗ V1, where U1

1 = U . Since the vector V1 is an eigenvector of
A with eigenvalue μ, Lemma 2.3 states that W1 �= 0 is an eigenvector of J with eigenvalue σ;
that is, Jσ(W1) = 0.

Next we find γ2 ∈ C, U2
2 ∈ Q, and W2. Compute

Jσ(W2) = Jσ(U1
1 ⊗ V2 + U2

2 ⊗ V1)
= γ2(Mμ,σU) ⊗ V2 + γ2(βU) ⊗ (AμV2) + (Mμ,σU2

2 ) ⊗ V1 + (βU2
2 ) ⊗ (AμV1)

= γ2(βU) ⊗ V1 + (Mμ,σU2
2 ) ⊗ V1

since Mμ,σU = 0, AμV1 = 0, and AμV2 = V1. It follows that to solve Jσ(W2) = W1 = U ⊗ V1

we must solve the equation

(2.14) γ2βU + Mμ,σU2
2 − U = 0

for U2
2 ∈ Ck and γ2 ∈ C. Using the genericity condition (2.5), we can set γ2 = ζ−1

j , where
uj is the eigenvector in (2.5) that corresponds to the eigenvalue σ. It follows that (2.14) can
now be written in the form

Mμ,σU2
2 = q,

where q ∈ Q. Since Mμ,σ is invertible on Q, this equation can be solved for U2
2 ∈ Q.

Next, we assume that Wj−1 has been defined in Ck⊗GA(μ) so that Jσ(Wj−1) = Wj−2. To
complete the induction, we must find Wj ∈ Ck ⊗ GA(μ) and γj ∈ C so that Jσ(Wj) = Wj−1.
Let Wj have the form in (2.13). Compute

Jσ(Wj) = Jσ(U �
1 ⊗ Vj + · · · + U j

j ⊗ V1)
= Jσ(U j

1 ⊗ Vj) + · · · + Jσ(U j
j ⊗ V1)

= γj(βU) ⊗ Vj−1 +
∑j−1

p=2((Mμ,σU j
p) ⊗ Vj+1−p + (βU j

p ) ⊗ Vj−p) + (Mμ,σU j
j ) ⊗ V1

=
∑j−1

p=1 (βU j
p + Mμ,σU j

p+1) ⊗ Vj−p.

Recall that Wj−1 has the form

Wj−1 = U j−1
1 ⊗ Vj−1 + · · · + U j−1

j−1 ⊗ V1,
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where U j−1
1 = γj−1U for some γj−1 ∈ C. Thus to solve for Wj such that Jσ(Wj) = Wj−1, we

need to solve the system of equations

(γjβ − γj−1)U + Mμ,σU j
2 = 0,

βU j
2 − U j−1

2 + Mμ,σU j
3 = 0,

... =
...

βU j
j−1 − U j−1

j−1 + Mμ,σU j
j = 0,

for U j
2 , . . . , U j

j ∈ Q and γj ∈ C. As in the case j = 2 we can solve the first equation by
choosing γj so that (γjβ − γj−1)U ∈ Q. Then one can invert Mμ,σ to solve for U j

2 ∈ Q. The
remaining equations have the form

Mμ,σU j
3 = q3,

... =
...

Mμ,σU j
j = qj,

where q3, . . . , qj ∈ Q, and can also be solved for U j
3 , . . . , U j

j ∈ Q by inverting Mμ,σ.

3. Product networks. Suppose that N1 and N2 are two regular networks of sizes r1 and
r2 with cells c1, . . . , cr1 and d1, . . . , dr2 , respectively. Form the product network N = N1 � N2

of size r = r1r2, where each node ci in network N1 is replaced by a copy of network N2.
Let pij be the jth cell in the copy of network N2 that replaces cell ci. So pij is a copy of
cell dj . Examples of product networks from the point of view of symmetry were considered
by Dangelmayr, Güttinger, and Wegelin [6] and Dionne, Golubitsky, and Stewart [7]. The
stability of synchronous dynamics in products of bidirectional graphs (without self-coupling
or multiple arrows) was also considered by Atay and Biyikoğlu [2]. In particular, these au-
thors calculated the eigenvalues of the Laplacian matrix which, in the kinds of graphs they
considered, is directly related to the eigenvalues of the adjacency matrix.

We assume that there is an arrow from cell pij to cell p�j if and only if there is an arrow
from cell ci to cell c� in network N1. We also assume that there is an arrow from cell pij to cell
pi� if and only if there is an arrow from cell dj to cell d� in network N2. Finally, we assume
that these two types of arrows are different. So there are two arrow types in the homogeneous
network N—those arrows that connect cells within a given copy of N2 and those arrows that
connect cells between copies of N2. In this sense, the product networks we consider differ from
product networks in the graph theory literature.

As an example, consider the three-cell feed-forward network N1 pictured in Figure 4(left).
Let N2 be the unidirectional ring pictured in Figure 1(left). Then N = N1 � N2 is the 9-cell
network in Figure 4(right). Note that N is homogeneous with two types of coupling. The
locomotor central pattern generators modeling the gaits of n legged animals introduced in [14]
provide a second example. Those networks are the product of a unidirectional ring of n cells
with a ring of two cells.

It is easy to write the adjacency matrices corresponding to the two types of coupling in
terms of tensor products. Let A1, A2 be the adjacency matrices for the networks N1, N2. For-
mally, write pij = ci⊗dj . Then the adjacency matrix of couplings in network N corresponding



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS IN NETWORKS: LINEAR THEORY 53

1

2

3

11

1213

21

2223

31

3233

Figure 4. (Left) three-cell feed-forward network; (right) nine-cell product of three-cell feed-forward network
with three-cell unidirectional ring.

to the couplings in network N1 is A1 ⊗ Ir2, and the adjacency matrix corresponding to the
couplings in network N2 is Ir1 ⊗ A2.

Similarly, if we assume that the internal dynamics of cells in N is one-dimensional, it is
convenient to write the state space of N as

Rr = Rr1 ⊗ Rr2 .

Let u1, . . . , ur1 be the standard basis for Rr1 and v1, . . . , vr2 be the standard basis for Rr2 .
Then ui ⊗ vj is the standard basis for Rr.

Next suppose that ż = F (z) is an admissible vector field for the product network with
F (0) = 0. Then the Jacobian has the form

(3.1) (dF )0 = αIr1 ⊗ Ir2 + β1A1 ⊗ Ir2 + β2Ir1 ⊗ A2,

where α is the linearized internal dynamics and β1, β2 are the linearized coupling strengths
for the couplings in networks N1, N2. It follows that if v ∈ Rr1 is an eigenvector of A1 with
eigenvalue μ and w ∈ Rr2 is an eigenvector of A2 with eigenvalue ν, then v⊗w is an eigenvector
of (dF )0 with eigenvalue α + β1μ + β2ν.

The assumption that the product network internal dynamics is one-dimensional is con-
venient because we can then identify the phase space Pij for cell i, j in the product network
with P 1

i ⊗P 2
j , where P 1

i is the phase space for cell i in network N1 and P 2
j is the phase space

for cell j in network N2. This identification, which is possible because R = R ⊗ R, allows
us to write the linearization of a vector field at a synchronous equilibrium in the simple form
given in (3.1). However, the assumption of one-dimensional internal dynamics is restrictive,
because many generic codimension one Hopf bifurcations cannot occur unless the dimension
of the internal dynamics is at least 2.

In the theory of coupled cell systems developed in [21, 16] the dimensions of cell phase
spaces are fixed but arbitrary. In homogeneous networks, these phase spaces all have the same
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dimension. However, in a product network, where the dimension of Pij is k > 1, there is no
natural way to think of this space as a tensor product. Said more strongly, there is no natural
way to think of the admissible vector fields on a product network as tensor products of vector
fields on the original networks.

We now assume that Pij = Rk, where k ≥ 1. The full phase space of a coupled system
corresponding to the product network consists of r1r2 copies of Rk. Thus, we can write the
total phase as

P = Rk ⊗ Rr1 ⊗ Rr2 ,

and we can use this tensor product decomposition of phase space to compute the Jacobian of a
general admissible vector field at a synchronous equilibrium. To begin, recall from [16] applied
to a product network that an admissible vector field has the form

ẋij = f(xij , xIij),

where xij ∈ Rk are the coordinates associated to cell i, j; Iij is an index set consisting of cells
connected to cell i, j; and the function f is independent of i, j since the product of homogeneous
networks is homogeneous. However, there are two types of coupling in product networks. We
can denote the indices of those cells that are coupled to cell i, j using the couplings in network
N1 by Ii, j, where Ii consists of those cells in network N1 that are coupled to cell i. Similarly,
those that are coupled to cell i, j using the couplings in network N2 can be denoted by i, Jj .
Thus, a product network admissible vector field has the form

(3.2) ẋij = f(xij, xIi,j, xi,Jj),

where the function f is invariant under permutation of the coordinates under an overbar.
At a fully synchronous state, the Jacobian is determined by three k × k matrices: the

linearized internal dynamics α, the linearized coupling β1 due to the couplings in network N1,
and the linearized coupling β2 due to the couplings in network N2. These matrices are found by
differentiating f in (3.2) in the first, second, and third types of variables, respectively. Using
the discussion of linearizations given in [18, section 3], we can now generalize the formula for
the Jacobian in (3.1) to the case k > 1. Specifically,

(3.3) (dF )0 = α ⊗ Ir1 ⊗ Ir2 + β1 ⊗ A1 ⊗ Ir2 + β2 ⊗ Ir1 ⊗ A2.

To see this first consider the linearization when the coupling matrices βj are zero. Then the
linearization has the form α ⊗ Ir1 ⊗ Ir2 as in [18]. Assume next that the linearized internal
dynamics α and one of the coupling matrices are zero to obtain the second and third terms.
Again this proceeds as in [18].

It is possible to rewrite (3.3) in a more convenient form for later calculations. Let μ and
ν be complex numbers and let

(3.4) Mμ,ν = α + μβ1 + νβ2, A1,μ = A1 − μIr1, A2,ν = A2 − νIr2.

Let J = (dF )0. Then

(3.5) J = Mμ,ν ⊗ Ir1 ⊗ Ir2 + β1 ⊗ A1,μ ⊗ Ir2 + β2 ⊗ Ir1 ⊗ A2,ν .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS IN NETWORKS: LINEAR THEORY 55

To verify (3.5) compute

J = α ⊗ Ir1 ⊗ Ir2 + β1 ⊗ A1 ⊗ Ir2 + β2 ⊗ Ir1 ⊗ A2

= α ⊗ Ir1 ⊗ Ir2 + β1 ⊗ (A1,μ + μIr1) ⊗ Ir2 + β2 ⊗ Ir1 ⊗ (A2,ν + νIr2)
= (α + μβ1 + νβ2) ⊗ Ir1 ⊗ Ir2 + β1 ⊗ A1,μ ⊗ Ir2 + β2 ⊗ Ir1 ⊗ A2,ν

= Mμ,ν ⊗ Ir1 ⊗ Ir2 + β1 ⊗ A1,μ ⊗ Ir2 + β2 ⊗ Ir1 ⊗ A2,ν .

Proposition 3.1. Let G1(μ) be the complex generalized eigenspace of A1 corresponding to
the eigenvalue μ, and let G2(ν) be the complex generalized eigenspace of A2 corresponding to
the eigenvalue ν. Then the following hold:

(a) the complex subspace

(3.6) Vμ,ν = Ck ⊗ G1(μ) ⊗ G2(ν) ⊂ Ck ⊗ Cr1 ⊗ Cr2

is invariant under J , where the Jacobian matrix J is defined in (3.5).
(b) Let A1v = μv and A2w = νw. Then

(3.7) J(u ⊗ v ⊗ w) = (Mμ,νu) ⊗ v ⊗ w.

Hence every eigenvalue of Mμ,ν is an eigenvalue of J .
Proof. (a) Let u ⊗ v ⊗ w be in Vμ,ν , and use (3.5) to compute

J(u ⊗ v ⊗ w) = (Mμ,νu) ⊗ v ⊗ w + (β1u) ⊗ (A1,μv) ⊗ w + (β2u) ⊗ v ⊗ (A2,νw).

Since A1,μv ∈ G1(μ) and A2,νw ∈ G2(ν), invariance of Vμ,ν is established.
(b) By assumption, A1,μv = A2,νw = 0. Therefore

J(u ⊗ v ⊗ w) = (Mμ,νu) ⊗ v ⊗ w.

So every eigenvalue of Mμ,ν is an eigenvalue of J .
Remark 3.2. Suppose that μ and ν are both real. Then Mμ,ν is a real matrix. Let

GR
1 (μ) and GR

2 (ν) denote the real generalized eigenspaces of A1 and A2 corresponding to the
eigenvalues μ and ν, respectively. Then the real subspace

(3.8) V R
μ,ν = Rk ⊗ GR

1 (μ) ⊗ GR
2 (ν) ⊂ Rk ⊗ Rr1 ⊗ Rr2

is invariant under J .
Let μ1, . . . , μs1 be the distinct eigenvalues of the adjacency matrix A1, and let ν1, . . . , νs2

be the distinct eigenvalues of the adjacency matrix A2.
Definition 3.3. A triple of real k×k matrices α, β1, β2 is a codimension one triple if, except

for complex conjugate eigenvalues, the real parts of the s1s2k eigenvalues of the matrices Mμj ,νi

are all distinct. We denote the set of all codimension one triples by M3(k).
It is clear that M3(k) is an open set of L(k)3, where L(k) is the space of k × k matrices.

In Proposition 3.4 we prove that when k > 1, the set M3(k) is also a dense subset. There-
fore, the generic codimension one bifurcation will occur with a Jacobian J associated with
a codimension one triple, and J will have a center subspace that corresponds to one critical
eigenvalue.
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Proposition 3.4. For k > 1, M3(k) ⊂ L(k)3 is open and dense. If k = 1, M3(k) is open
and dense unless either A1 or A2 have eigenvalues with equal real parts.

Proof. Let μ1, μ2 be eigenvalues of A1 and ν1, ν2 be eigenvalues of A2. Assume that k = 1.
Then the corresponding eigenvalues are

Mμ1,ν1 = α + μ1β1 + ν1β2 and Mμ2,ν2 = α + μ2β1 + ν2β2,

and they have equal real part if and only if

(3.9) β1(Re(μ1) − Re(μ2)) + β2(Re(ν1) − Re(ν2)) = 0.

Identity (3.9) can hold for an open set of β1, β2 if and only if both

(3.10) Re(μ1) = Re(μ2) and Re(ν1) = Re(ν2).

Suppose that μ1 and μ2 have equal real parts and ν1 = ν2. Then the real parts of the
eigenvalues Mμ1,ν1 and Mμ2,ν1 will be the same independent of the choice α, β1, β2. A similar
conclusion holds if the ν’s have equal real parts and the μ’s are equal (or, indeed, if both the
μ’s and ν’s have equal real parts).

We can now assume that k ≥ 2. Suppose now that two eigenvalues σ1 from the matrix
Mμ1,ν1 and σ2 from the matrix Mμ2,ν2 have equal real part. We can perturb β1 to β1 + ε1Ik

and β2 to β2 + ε2Ik. The perturbed eigenvalues σj + ε1μj + ε2νj can have equal real parts for
an open set of εj if and only if (3.10) is valid. Thus we have reduced the proof to two cases:

(a) Re(μ1) = Re(μ2) and ν1 = ν2, where μ1 �= μ2, or the reverse in the μ’s and ν’s.
(b) Re(μ1) = Re(μ2) and Re(ν1) = Re(ν2), where μ1 �= μ2 and ν1 �= ν2.
Case (a). As in the proof of Proposition 2.5, we can shift and scale the eigenvalues ν

so that ν1 = ν2 = 0 or ν1 = ν2 = i. In the first case, the matrices are Mμ1,ν1 = α + μ1β1

and Mμ2,ν2 = α + μ2β1. For these matrices we can apply Proposition 2.5 directly to perturb
the matrices α, β1 to separate the real parts of the eigenvalues of Mμ1,ν1,Mμ2,ν2. So we can
assume

Mμ1,ν1 = α + μ1β1 + iβ2 and Mμ2,ν2 = α + μ2β1 + iβ2.

Choose vectors v1, v2 so that Mμ1,ν1v1 = σ1v1 and Mμ2,ν2v2 = σ2v2. Moreover, we can perturb
β2 so that the vectors β2v1 and β2v2 are linearly independent over C. Note that C = α + iβ2

is an arbitrary complex matrix and that

Cv1 = −(σ1 + β2)v1 and Cv2 = −(σ2 + β2)v2.

It follows from linear independence that we can perturb C so that Cv2 is unchanged whereas
Cv1 = −(σ1 + ε + β2)v1. It follows that the real parts of the eigenvalues σ1, σ2 are separated.

Case (b). Write
Mμν = α + μβ1 + νβ2

and use the scaling argument as before to write

Mμ,ν = (α + c1β1 + c2β2) + (μ − c1)β1 + (ν − c2)β2.
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This way we can achieve that the coefficients of βj are purely imaginary. By the second
scaling,

μβ1 → (cμ)
1
c
β1,

and a similar argument for the second coefficient we have

μ1 = 0 or μ1 = i

and similarly
ν1 = 0 or ν1 = i.

Applying the same scalings to μ2 and ν2 gives us

μ2 = si and ν2 = ti

for some real numbers s, t �= 0, 1. We have three cases to distinguish:
1. μ1 = ν1 = 0, μ2 = ν2 = i.
2. μ1 = 0, ν1 = i and μ2 = i, ν2 = ti, 0 �= t �= 1.
3. μ1 = i, ν1 = i and μ2 = si, ν2 = ti, 0 �= s, t �= 1.

In the first case we consider

Mμ1,ν1 = α and Mμ2,ν2 = α + i(β1 + β2).

In this case our perturbation argument is the same as in part (a).
In the second case we look at the matrices

α + iβ2 and α + isβ1 + itβ2,

where s, t are as before. Again the first matrix is an arbitrary complex matrix. We can apply
the argument from νa = i; νb = iω given in the second part of the proof of Proposition 2.5.

In the third case, we look at matrices

Mμ1,ν1 = α + i(β1 + β2) and Mμ2,ν2 = α + isβ1 + itβ2

with s, t �= 0, 1. Again we can use the argument given in the second part of the proof of
Proposition 2.5 to show that a perturbation exists which splits the real parts of the eigenval-
ues.

4. Center subspaces for product networks. As we have seen, the eigenvalues σ of the
Jacobian J of an admissible system of differential equations associated with a product network
are the union of the eigenvalues of Mμ,ν , where μ, ν vary over the sets of eigenvalues of the
adjacency matrices A1 and A2, respectively. Recall that the matrix Mμ,ν is defined in (3.7).
We assume that the k×k matrices α, β1, β2 that define J form a codimension one triple. Note
that

Mμ,ν = Mμ,ν,

so that there may be some redundancy in the enumeration of eigenvalues of J . To eliminate
possible redundancies, let P be a set of eigenvalue pairs that includes precisely one of the
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eigenvalue pairs μ, ν and μ, ν. It follows from Proposition 3.4 that the eigenvalues σ corre-
sponding to Mμ,ν with the pair μ, ν in P all have distinct real parts, at least when k > 1,
which we now assume. It is also the case that generically σ is a simple eigenvalue of Mμ,ν and
generically σ is not real if either μ or ν is not real.

Given these genericity assumptions, the center subspace of J is the real part of the gener-
alized eigenspace of J corresponding to an eigenvalue σ with 0 real part. To make the content
of this observation more transparent we distinguish two cases:

(a) σ = 0,
(b) σ = ωi, where ω �= 0.
In case (a) μ and ν are real, and the matrix Mμ,ν is also real. Proposition 3.4 implies

that generically there are no other pairs μ′, ν ′ such that 0 is an eigenvalue of Mμ′,ν′ and that
no other eigenvalue of J has zero real part. Remark 3.2 shows that the real subspace V R

μ,ν

defined in (3.8) is J-invariant. Let UR ⊂ Rk be the real one-dimensional kernel of Mμ,ν ; then
the center subspace of J is the generalized eigenspace corresponding to the eigenvalue 0 and
is given by UR ⊗GR

1 (μ)⊗GR
2 (ν) ∼= GR

1 (μ)⊗GR
2 (ν). The last isomorphism is valid because UR

is real one-dimensional.
Case (b) itself divides into two parts: either μ and ν are both real or at least one of μ, ν

is not real. In the first part Mμ,ν is a real matrix and −ωi is also an eigenvalue of Mμ,ν .
So the pair ±ωi are both eigenvalues of J , and there are no other eigenvalues of J with
0 real part. Then the real subspace V R

μ,ν is invariant under J . Let UR be the two-dimensional
invariant subspace of Rk corresponding to the simple eigenvalues ±ωi of Mμ,ν ; then the center
subspace of J is the invariant subspace of J corresponding to these eigenvalues and is given
by UR ⊗ GR

1 (μ) ⊗ GR
2 (ν) ∼= (GR

1 (μ) ⊗ GR
2 (ν))2. The last isomorphism is valid because UR is

real two-dimensional.
In the second part either μ or ν or both are not real. Then −ωi is an eigenvalue of

Mμ,ν = Mμ̄,ν̄ , and the center subspace of J corresponds to the generalized eigenspaces of
the eigenvalues ±ωi of J , since no other eigenvalue of J has 0 real part. More precisely,
let U ⊂ Ck be the complex one-dimensional subspace of Ck that consists of eigenvectors of
Mμν corresponding to the eigenvalue ωi, and let U be the subspace of eigenvectors of Mμ̄,ν̄

corresponding to −ωi. Then the space

(U ⊗ G1(μ) ⊗ G2(ν)) ⊕ (U ⊗ G1(μ̄) ⊗ G2(ν̄))

is invariant under J , and its real part

(4.1) {w + w̄ : w ∈ U ⊗ G1(μ) ⊗ G2(ν)} = Re(U ⊗ G1(μ) ⊗ G2(ν)) ∼= Re(G1(μ) ⊗ G2(ν))

is the generalized eigenspace of J corresponding to the eigenvalues ±ωi. The last isomorphism
is valid because U is complex one-dimensional.

5. Jordan structure on center subspaces. Before we prove a result similar to Theorem 2.7
for product networks, we need to develop a deeper understanding of tensor products of Jordan
blocks. Specifically, we consider

A : G1(μ) ⊗ G2(ν) → G1(μ) ⊗ G2(ν),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS IN NETWORKS: LINEAR THEORY 59

q=0
q=1

q=2 q=3

q=4

q=5

q=6

Figure 5. Rectangle of lattice sites in R2 with � = 5 and m = 3.

where
A = A1,μ ⊗ Ir2 + Ir1 ⊗ A2,ν .

We can write

G1(μ) =
q1⊕

s=1

J1
s(μ) and G2(ν) =

q2⊕
s=1

J2
s(ν),

where Jj
s stands for a Jordan block in Gj . Each block has dimension ds(μ) or ds(ν), and we

see easily that the tensor products
J1
s(μ) ⊗ J2

t (ν)

are invariant under A. Moreover,
⊕
s,t

J1
s(μ) ⊗ J2

t (ν) = G1(μ) ⊗ G2(ν).

It is important to observe that the tensor products J1
s(μ) ⊗ J2

t (ν) are not the Jordan blocks
corresponding to A.

Fix Jordan blocks J1(μ) for A1 and J2(ν) for A2. Let v0 be an eigenvector of A1 in J1(μ),
and let � be the smallest positive integer for which A�

1,μ is identically zero on J1(μ). Similarly,
let w0 be an eigenvector for A2 in J2(ν), and let m be the smallest positive integer for which
Am

2,ν is zero on J2(ν). A basis for the space G1(μ) ⊗ G2(ν) is given by the tensors vj ⊗ wr,
where 0 ≤ j ≤ �− 1 and 0 ≤ r ≤ m− 1. For each q = 0, . . . , � + m− 2, let Zq be the subspace
spanned by the tensors vs ⊗ wt with s + t = q. Then for q ≥ 1

A : Zq → Zq−1.

We say that a vector in Zq has order q.
A good way to think about the subspaces Zq is to look at the rectangle of lattice sites in

R2 (see Figure 5). The pairs (j, r) for which j + r = q, which lie on lines with slope −1 in
that figure, form a basis for the subspace Zq. Without loss of generality assume � ≥ m. Then
we have a sequence of maps

(5.1) Z�+m−2 → Z�−m−3 → · · · → Z�−1 → · · · → Zm−1 → · · · → Z0.

Writing A in coordinates with respect to the basis, we see that A has maximal rank as a
mapping of Zq → Zq−1 for all q.
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Looking at the geometric picture in Figure 5, we see that

1 = dim Z�+m−2 < dimZ�+m−3 = 2 < · · · < dim Z�−1 = dim Z�−2 = · · · = dimZm−1

and
1 = dimZ0 < · · · < dim Zm−1.

Therefore, A : Zq → Zq−1 is
• surjective for q ≤ m,
• an isomorphism for m + 1 ≤ q ≤ �, and
• injective for � + 1 ≤ q.

So it remains to describe precisely the Jordan blocks. For each 0 ≤ q ≤ m− 1 we have to give
a vector in the kernel of A, and in a similar way we have to give vectors in the complement
to the range of A, or the cokernel of A, for q > �.

Proposition 5.1. The kernel of A is spanned by the vectors

zq =
q∑

j=0

(−1)jvj ⊗ wq−j,

where 1 ≤ q ≤ m − 1, and a basis for the cokernel of A is

zq =
q∑

j=0

(−1)jαjv�−j−1 ⊗ wm−q+j−1,

with appropriately chosen αj . Moreover, we have

(5.2) A�+m−2(1+q)−1zq = zq.

Remark 5.2. Observe that the vectors for the complement of the ranges are not uniquely
determined. We could set all αj = 1; however, for (5.2) to hold, we need the freedom to choose
the αj .

Proof. Observe that A1,μ, A2,ν are nilpotent, allowing us to use representation theory for
sl(2,R). We decompose the representation, on the tensor product into representations, and
we obtain the length of the Jordan blocks from this Clebsch–Gordan decomposition; compare
[20, 5].

In order to describe the way that this decomposition carries over to the decomposition
into Jordan blocks for Jσ we need some auxiliary results.

Lemma 5.3.
U ⊗ J1(μ) ⊗ J2(ν)

is invariant under Jσ.
Proof. Let us write

Mμ,ν(σ) = Mμ,ν − σI.

Then, for u ∈ U , v ∈ J1(μ), w ∈ J2(ν) we have

Jσ(u ⊗ v ⊗ w) = (Mμ,ν(σ)u) ⊗ v ⊗ w + β1u ⊗ A1,μv ⊗ w + β2u ⊗ v ⊗ A2,νw.
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All three summands are in U ⊗ J(μ) ⊗ J(ν), thus proving the invariance.
So we can reduce our attention to tensor products of Jordan blocks. We need one result

about being able to solve certain equations up to terms of lower order, which we will state
first. Assuming that all eigenvalues of Mμ,ν are simple (cf. Proposition 3.4), we can write each
u ∈ U uniquely as

u =
k∑

i=1

ξiui,

where each ui is an eigenvector of Mμ,ν . Fix an eigenvalue σ of Mμ,ν and denote the corre-
sponding eigenvector by u0.

Lemma 5.4. Given p + 1 vectors xj ∈ U and p real numbers ζ1, . . . , ζp, where for each
vector xj the u0 component is zero. Then for

z =
p∑

j=0

(−1)jxj ⊗ vj ⊗ wp−j

there exist vectors
y0, . . . , yp ∈ U

such that

Y =
p∑

j=0

yj ⊗ vj ⊗ wp−j

solves the equation
JσY = z

up to terms of lower order. That is,

z − JσY =
p−1∑
j=0

hj ⊗ vj ⊗ wp−1−j,

with the additional property that the u0-component of each hj is ζju0.
Proof. We begin with the case p = 1; then we have two vectors x1, x2, neither having a

component in the direction of u0. We look at

z = x0 ⊗ v1 ⊗ w0 − x1 ⊗ v0 ⊗ w1.

Make the ansatz
Y = y0 ⊗ v1 ⊗ w0 − y1 ⊗ v0 ⊗ w1

and compute JσY − z:

Jσ(y0 ⊗ v1 ⊗ w0 − y1 ⊗ v0 ⊗ w1) − x0 ⊗ v1 ⊗ w0 − x1 ⊗ v0 ⊗ w1.

We find (up to terms of lower order)

Jσ(y0v1 ⊗ w0 − y1 ⊗ v0 ⊗ w1) − z = (Mμ,ν(σ)y0 − x0) ⊗ v1 ⊗ w0 + (Mμ,ν(σ)y1 − x1) .
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Solving this equation requires the partial invertibility of Mμ,ν(σ). Using the definition of Q as
in (2.12), we find that Mμ,ν restricted to Q is invertible. We write Mμ,ν(σ)−1 for this partial
inverse if we obtain solutions

ya = Mμ,ν(σ)−1xa

for a = 0, 1. Observe for any ta ∈ R

Mμ,ν(σ)(ya + tau0) = xa.

Now consider the application of the remaining part of Jσ to

(y0 + t0u0) ⊗ v1 ⊗ w0 + (y1 + t1u0) ⊗ v0 ⊗ w1.

We obtain for the terms of order p − 1

(β1y0 + t0β1u0) ⊗ v0 ⊗ w0 + (β2y1 + t1β2u0) ⊗ v0 ⊗ w0.

Now, if we make the nondegeneracy assumption that βju0 has a component in the direction
of u0, we choose t0, t1 so that the u0-component in this expression is ζju0.

Repeating this computation for general q gives the induction, and we have proved the
claim.

Theorem 5.5 needs an assumption on β1, β2 that is similar to the genericity assumptions
(2.5) and (2.6). Its precise form will be given in the proof.

Theorem 5.5. Let μ, ν be eigenvalues of A1, A2, and let σ be a simple eigenvalue of Mμ,ν.
Then generically in α, β1, β2 the corresponding eigenspace of J is isomorphic to Re(G1(μ) ⊗
G2(ν)). The isomorphism sends each eigenvector zq of A to an eigenvector z̃q of Jσ, where
the top part of z̃q is given by u0 ⊗ zq.

As in the case of regular networks we can immediately describe the generic center subspaces
for codimension one bifurcations in product networks.

Corollary 5.6. Assume k > 1. Let Ec be the center subspace corresponding to a codimension
one bifurcation from a fully synchronous equilibrium in a product network. Then, generically
in α, β1, β2, Ec is as a vector space isomorphic to Re(G1(μ)⊗G2(ν)) or to Re(G1(μ)⊗G2(ν))⊕
Re(G1(μ) ⊗ G2(ν)).

Example 5.7. We consider the case of a product of the three-cell feed-forward network
with a unidirectional ring with three cells and a two-dimensional internal dynamics leading to
Hopf bifurcation. The eigenvalues of A1 are 0, 0, 1 with a geometrically simple eigenvalue 0.
The eigenvalues of A2 are 1, ζ, ζ2 with ζ3 = 1. We consider μ1 = 0 and ν1 = 1 (any other
choice here gives similar results). Then we can find real 2× 2-matrices α, β1, β2 such that the
corresponding eigenvalue σ is purely imaginary and equal to i. Then the critical eigenvalues
are ±i which are algebraically double and geometrically simple.

Proof. The proof of the theorem is more involved than that of Theorem 2.7. We concen-
trate on one tensor block. In a first step, we show that for each element in the kernel of A
there is an eigenvector of J corresponding to the eigenvalue σ.

The spaces Zq give a grading of the space J1(μ) ⊗ J2(ν). We will use this structure and
Lemma 5.4 to solve equations recursively on the various levels.
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Now let us consider the kernel vectors of A within Zq, for q > 1. For the eigenvector we
make the ansatz

z̃q =
q∑

j=0

αju0 ⊗ vj ⊗ wq−j +
∑
p<q

p∑
j=0

xp
j ⊗ vj ⊗ wp−j, xj ∈ U.

We have to show that we can solve the equation Jσ z̃q = 0.
In a first step we consider the first term (of order q), and we describe how to adjust the

other terms p < q in a second step. Applying Mμ,ν(σ) to the first term gives 0 since u0 is
an eigenvector of Mμ,ν for the eigenvalue σ. Therefore we just have to apply the other two
operators. This gives a term of the form

p−1∑
j=0

(αjβ2u0 − αj+1β1u0) ⊗ vj ⊗ wp−1−j.

Observe that we can choose the αj to adjust the u0 contribution in each term to be 0. Set

z =
p−1∑
j=0

(αjβ2u0 − αj+1β1u0) ⊗ vj ⊗ wp−1−j.

By the induction step we can choose vectors yj such that JσY − z is zero on level q − 1,
and the terms in level q − 2 have no u0 contribution. We can iterate this procedure to solve
the equation Jσ z̃q = 0. This proves the result on eigenvectors.

Lemma 5.8. Let Q(λ) be a smooth family of nilpotent matrices, where dim ker Q(α) is
constant. Then the kernel varies smoothly with λ. If the length of all chains of generalized
eigenvectors are different, then the generalized eigenvectors vary smoothly in λ.

Proof. First, we solve the equation Q(λ)x = 0 using a Liapunov–Schmidt decomposition.
Without loss of generality we consider the problem near λ = 0. For this, let K be the kernel
of Q(0), let M be a complement to K, let R be the range of Q(0), and let N be a complement
to N . Let E : Rn → R and (I −E) : Rn → N be projections. Write u for the variable in the
kernel, w for the variable in M . Then Q(λ)x = 0 is equivalent to

f(u,w, λ) ≡ (I − E)Q(λ)(u + w) = 0,
g(u,w, λ) ≡ EQ(λ)(u + w) = 0.

Then gw : M → R is an isomorphism which leads to a smooth solution of

g(u,w, λ) = 0

as w = w(u, λ), where w(u, 0) = 0 and w is linear in u. Then we have the equivalent equation

(I − E)Q(λ)(u + w(u, λ)) = 0.

From the hypotheses we know that the solution set of this equation has the same dimension
as the kernel of Q(0). Therefore, the kernel of Q(λ) is given by

ker Q(λ) = {u + w(u, λ) : u ∈ K}.
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This is a smooth deformation of K. Especially we find a smooth family of projection operators
P (λ) mapping Rn onto ker Q(λ).

Secondly we look at the generalized eigenvector g for Q which has the longest chain. There
is a positive integer q with

Qqg = 0

and
Qi �= 0

for 1 ≤ i < q. Now we want to solve an equation of the form

Qq(λ)(w) = 0.

We solve the equivalent equation

P (λ)Qq−1(λ)x (λ) = 0

for some x(λ) near g. Qq−1 is an isomorphism from a complement of the kernel to its range.
Write w for the coordinate in the complement of the kernel. Then the implicit function
theorem tells us that we can solve the equation

P (λ)Qq−1(λ)(g + w) = 0

uniquely by some w(λ). Since w(0) = 0, we have that Qi(λ)g + w(λ) is uniformly near the
points Qig. This means that the element g + w(λ) defines a chain of the required length.

By restriction of the problem to a complement of the longest chain, we can iteratively
prove the result.

Corollary 5.9. Generically, the generalized eigenspaces of Jσ are in 1:1 correspondence with
those of A.

Proof. We note that if β1 = β2, the result follows from Theorem 2.7, because there
the matrix A is the adjacency matrix for the regular network obtained from N1 � N2 by
setting the couplings equal. Next we perturb β1, β2 near the diagonal β1 = β2. Theorem 5.5
guarantees that the kernel contains at least the given set of vectors. Generic perturbations will
not increase the dimension of the kernel, and therefore the dimension stays locally constant.
Since the Jordan blocks for Jσ in the case of β1 = β2 have the same structure as those for
A, which is given by the Clebsch–Gordan theorem, all the length of the chains are different.
Therefore the hypotheses of the previous Lemma 5.8 are satisfied, and we obtain that the
Jordan structure is the same for ‖β1 − β2‖ small.

Remark 5.10. The Jordan structure within the center subspace EQ(λ1 + λ2) can be com-
plicated. Proposition 3.1 gives a bound on the maximal length of Jordan blocks within this
space; however, it does not enumerate the number of Jordan blocks. Consider the matrices

A1 =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ and A2 =

[
0 1
0 0

]
.

Since A3
1 = 0 and A2

2 = 0, Proposition 3.1 states that Q4 = 0. In this case the lengths
of the Jordan blocks are �1 = 3 and �2 = 2. Observe that the Jordan block structure of
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Q contains two blocks—one of length 4 and one of length 2. In general, when A1 and A2

are Jordan blocks of lengths �1 ≥ �2, the tensor product will consist of �2 blocks of length
�1 − �2 + 1, �1 − �2 + 3, . . . , �1 + �2 − 1.

6. Branching of solutions. In this section we prove an analogue of the equivariant branch-
ing lemma [15] in the context of homogeneous cell systems.

Definition 6.1. Let y in phase space be given. The isotropy subspace containing y is the
smallest synchrony subspace Δy that contains y.

The subspace Δ = {(y, . . . , y)} consists of fully synchronous points. Suppose that ẋ =
F (x, λ) is a coupled cell system and x0 ∈ Δ is a fully synchronous equilibrium at λ0; that is,
F (x0, λ0) = 0. We call x0 a synchrony-breaking bifurcation point if

K = ker(dF )x0,λ0 �= 0 and K ∩ Δ = {0}.
Without loss of generality, we can assume that λ0 = 0. At a synchrony-breaking bifurcation
(dF )x0,0|Δ is nonsingular. Therefore, the implicit function theorem guarantees that there is
a parameterized family of fully synchronous equilibria x(λ), where x(0) = x0. Again, we can
assume, without loss of generality, that x(λ) = 0. It follows that x0 = 0 and F (0, λ) = 0.

Definition 6.2. An isotropy subspace Δy is axial if dim(Δy ∩ K) = 1.
Theorem 6.3. Let Δy be an axial polydiagonal, where Δy ∩ K = R{v}. Then generically

there exists a unique branch of zeros of F in Δy.
Proof. Let A be the r × r adjacency matrix of an network with r nodes. Let �� be the

equivalence relation corresponding to input equivalence. Considering A as a linear mapping
on Rr (or Cr), we have an invariant linear subspace S corresponding to ��. We do not
distinguish between the real and complex versions of S. Let μ be an eigenvalue of A, GA(μ)
be the corresponding generalized eigenspace, and EA(μ) the kernel of A − μI.

Next we consider the case of a k-dimensional internal dynamics for the network. The state
space is isomorphic to Rk ⊗ Rr. Let

S = Rk ⊗ S,

which is invariant under the map I ⊗ A. We have

Mμ = α + μβ

for real k × k matrices α, β. Let σ be a simple eigenvalue of A. Let

J = α ⊗ Ir + β ⊗ A.

Then Theorem 2.7 implies that there exists an isomorphism η,

η : GA(μ) → GJ(σ).

We can also consider the spaces
GS

A(μ) = S ∩ GA(μ)

and
GS

J (σ) = S ∩ GJ (σ).
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1

23

Figure 6. Three-cell network with multiple eigenvalues in the adjacency matrix.

If we apply this same construction, we conclude that in the case that σ is a simple eigenvalue
of Mμ, then

ηS : GS
A(μ) → GS

J (σ)

is an isomorphism. Especially we have that

dimES
A(μ) = dim ES

J (σ).

Let F̂ = F |Δy. Observe that F̂ (0, λ) = 0 and that (dF̂ )0,0 has a one-dimensional kernel
equal to Δy ∩ K = R{v}. Let G : R × R → R be the reduced equation obtained by
Liapunov–Schmidt reduction of F̂ to R{v}. Observe that G(0, λ) = 0. Therefore, by Taylor’s
theorem,

G(t, λ) = tH(t, λ).

Generically, H(0, 0) is nonzero, and the implicit function theorem guarantees the existence of
a branch of solutions to H(t, λ) = 0 parametrized by t.

Example 6.4. Network 6 in [18], shown in Figure 6, provides an example where Theo-
rem 6.3 can be applied when 0 is a multiple eigenvalue of the adjacency matrix and therefore
of dF . The adjacency matrix is

A6 =

⎡
⎣ 1 0 1

1 1 0
1 1 0

⎤
⎦

with a double zero eigenvalue and a single nullvector v = (1,−1,−1).
Observe that setting cell 2 equal to cell 3 leads to a balanced coloring and that Δv ∩K =

R{v} is one-dimensional. Therefore, Theorem 6.3 implies the existence of a branch of equilib-
ria with x2 = x3. We note that [18, Theorem 4.11] also proves the existence of an asynchronous
branch of solutions emanating from this bifurcation.

Suppose that the coupled cell system has a symmetry group Γ, and suppose that Σ is an
axial subgroup for the action of Γ on K. Then FixK(Σ) = Fix(Σ) ∩ K is one-dimensional,
and Theorem 6.3 reduces to the equivariant branching lemma.

Example 6.5. The four-cell network pictured in Figure 7 shows that in principle Theo-
rem 6.3 gives more refined information than does the equivariant branching lemma.

To see this, observe that the adjacency matrix of this network,

A =

⎡
⎢⎢⎣

0 2 0 0
2 0 0 0
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ ,
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1 2

3 4

Figure 7. A homogeneous four-cell network with Z2 symmetry.

has eigenvectors

(1, 1, 1, 1)t , (1,−1,−1, 1)t, (0, 0, 1,−1)t, (0, 0, 1, 1)t,

corresponding to the eigenvalues 2,−2,−1, 1. Bifurcations associated with the corresponding
center subspace, which are covered by Theorem 6.3, lead to synchronous solutions. The first
eigenvector leads to a fully synchronous solution, and the remaining three eigenvectors lead to
solutions in the synchrony subspace corresponding to the balanced colorings in Figure 8. Note
that the equivariant branching lemma discusses only the pattern of synchrony corresponding
to the eigenvector (0, 0, 1, 1)t, which is associated with Fix(Z2).

����
����
����
����
����
����

����
����
����
����
����
����

Figure 8. Three nontrivial balanced colorings of the four-cell network with Z2 symmetry in Figure 7.

If the internal dynamics is one-dimensional, the center subspace corresponding to the
eigenvalues −1, 1 cannot occur as the first bifurcation. However, if two-dimensional internal
dynamics is assumed, then a bifurcation corresponding to each eigenvalue of A can be the
first one to undergo bifurcation. Observe that the eigenvalues of (dF )0 that correspond to the
eigenvalues 2,−2,−1, 1 of A are the eigenvalues of the matrices α + 2β, α − 2β, α − β, and
α + β, respectively. So to find a bifurcation associated with the eigenvalue 1 of A, we must
find α and β so that the six eigenvalues of the three 2 × 2 matrices α + 2β, α − 2β, α − β all
have negative real part, and one eigenvalue of α + β is 0, whereas the other one is negative.
The matrices

α =
[ −1 −2
−2.5 −4.5

]
and β =

[
0 −1
1 0

]

give such an example.
Theorem 6.6. Suppose that bifurcations with axial polydiagonals in EA1 and EA2 lead to

solutions with balanced colorings ��1 and ��2. Then bifurcations in the product network cor-
responding to the axial polydiagonal EA1 ⊗ EA2 will lead to solutions with balanced coloring
�� = ��1 � ��2.

A general theorem for networks that is analogous to the equivariant Hopf theorem [15]
(EHT) is difficult to state. The issue concerns spatio-temporal symmetries. The EHT uses
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the fact that Hopf bifurcation itself induces a natural S1 action corresponding to phase shift
and the interaction of this S1 symmetry with the spatial symmetries of the system. In the
general network context there is mounting evidence that periodic solutions with (robust) phase
shift synchrony can occur only if an associated quotient network has nontrivial symmetry. See
Stewart and Parker [22, 23, 24, 25]. However, it is not clear how to state a worthwhile analogue
of EHT using this conjecture. Even in the special context of interior symmetries [11], where
the analogue of EHT can easily be stated, the proof remained elusive and was given only
recently by Antoneli, Dias, and Paiva [1].

Two examples illustrate some of the simpler difficulties: the three-cell unidirectional ring
(Figure 1(left)) and the three-cell feed-forward network (Figure 4(left)).

Hopf bifurcation from a synchronous equilibrium in the unidirectional ring can occur with
one-dimensional internal dynamics and leads, because of the Z3 symmetry, to solutions where
any two cells oscillate a third of a period out of phase. It is a curious fact that bifurcation
to synchronous oscillation can occur only if the internal dynamics is at least two-dimensional.
These facts follow trivially from the center subspaces associated with the adjacency matrix,

(6.1) Audr =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ .

The eigenvalues of Audr are μ1 = 1, μ2 = (−1+i
√

3)/2, and μ2 with associated real eigenspaces

(6.2) V1 = R{(1, 1, 1)t} and V2 = {(x1, x2, x3) : x1 + x2 + x3 = 0}.
It was shown in [10, 8] that synchrony-breaking Hopf bifurcation in the feed-forward

network leads to two branches of periodic solutions. The amplitude of the solutions on one
branch grows at the expected rate of λ

1
2 (where λ is the bifurcation parameter), and the

amplitude of solutions along the other branch grows at the unexpected rate of λ
1
6 . Neither

the existence of multiple solutions nor the rapid growth rate is due to symmetry; rather they
are due in part to multiple eigenvalues in the adjacency matrix caused by network architecture.
The adjacency matrix of the feed-forward network is

(6.3) Aff =

⎡
⎣ 1 0 0

1 0 0
0 1 0

⎤
⎦ .

The eigenvalues of Aff are ν1 = 1 and ν2 = 0 with algebraic multiplicity 2 and geometric
multiplicity 1. The associated real (generalized) eigenspaces are

(6.4) W1 = R{(1, 1, 1)t} and W2 = R{(0, 1, 0)t, (0, 0, 1)t}.
The nontrivial Jordan structure of Aff is responsible for the existence of multiple solution
branches in synchrony-breaking Hopf bifurcations in this network, but the complete picture
is even more complicated. Elmhirst and Golubitsky [8] show that there are other regular
networks that have Jordan structures in their adjacency matrices that are identical to that in
the feed-forward network, but whose nonlinear bifurcations generate solutions with different
multiplicities and different growth rates.

Nevertheless, once these solution structures are understood, they seem to lead naturally
to solution structures in the product network, as we discuss in the next section.
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7. Bifurcations from stable synchronous solutions. Until now we have classified the
center subspaces of possible codimension one bifurcations from a fully synchronous equilibrium
that can occur in regular cell systems, but we have not discussed whether these bifurcations can
lead to stable solutions. More precisely, suppose that μ1, . . . , μr are the distinct eigenvalues
of the adjacency matrix. A synchrony-breaking bifurcation associated with the eigenvalue μj

can lead to stable solutions only if there exist k × k matrices α, β such that all eigenvalues of
the matrices Mμi for i �= j have negative real part and all noncritical eigenvalues of Mμj have
negative real parts. If this necessary condition is satisfied at a codimension one bifurcation,
we call that bifurcation a first bifurcation.

We conjecture that if k is large enough, there can be a codimension one synchrony-breaking
first bifurcation associated with any eigenvalue μj of the adjacency matrix. However, we can
prove this conjecture only for those regular networks whose adjacency matrices have real
eigenvalues.

Theorem 7.1. Assume that all eigenvalues of the adjacency matrix A of a regular network
are real. Let μ1 < · · · < μr be the distinct eigenvalues of A. Suppose that k = 2. Then, for
any 1 ≤ j ≤ r, there exist 2 × 2 matrices α and β such that the eigenvalues of Mμi have
negative real part for all i �= j and the eigenvalues of Mμj are 0 and negative.

Proof. Without loss of generality we can translate the numbers μi by the same constant
c. More precisely,

α + μβ = (α + cβ) + (μ − c)β.

So, without loss of generality, we may assume that μj = 0.
The theorem is easily seen to be valid for j = 1, even when k = 1. Just take α = 0 and

β = −1. Similarly, when j = r, set α = 0 and β = 1. So we can assume 1 < j < r. In this
case (when k = 2) we must find matrices α, β so that tr(Mμi) < 0 for all i and det(Mμi) > 0
for all i �= j. We claim that this can be done by setting

α =
[

0 0
0 a

]
and β =

[ −1 b
1 0

]
,

where

(7.1) a < μ1

and

(7.2) b < − a

μj−1
.

Observe that
tr(α + μβ) = a − μ and det(α + μβ) = −aμ − bμ2.

So assumption (7.1) implies that

tr(Mμi) = a − μi < a − μ1 < 0

for all i, since μ1 ≤ μi. We claim det(Mμi) > 0 if i �= j. To verify this point, note that for
i �= j, det(Mμi) > 0 if and only if

b < (−a)
1
μi

,
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which is equivalent to
− a

μi
− b > 0

for all i �= j. Since −a > 0, we need to choose b sufficiently negative, namely, less than −a
times the largest negative value of 1

μi
. Because of the ordering of the μi, that value is 1

μj−1
,

which we have assumed in (7.2).
Suppose that the eigenvalues of the adjacency matrix of a regular network are real. When

the dimension of the internal dynamics is k ≥ 2, Theorem 7.1 implies that there is a codi-
mension one steady-state first bifurcation associated with any eigenvalue μ. This statement
is not true for Hopf bifurcations, at least when k = 2.

Suppose that a regular network has an adjacency matrix A with a negative eigenvalue
μ1, a zero eigenvalue, and a positive eigenvalue μr. Suppose also that k = 2. Then a Hopf
bifurcation associated with the 0 eigenvalue of A cannot be a first bifurcation.

To verify this point, note that if the 2×2 matrix M0 = α has purely imaginary eigenvalues,
it follows that tr(α) = 0 and hence that

tr(M1) = μ1 tr(β) and tr(Mr) = μr tr(β).

If tr(β) �= 0, then the traces of the 2 × 2 matrices M1 and Mr have opposite sign, and one of
them must have an eigenvalue with positive real part. So the eigenvalue 0 of the adjacency
matrix cannot correspond to a first (Hopf) bifurcation. If tr(β) = 0, then tr(M1) = 0 and
the bifurcation is either not codimension one (if det(M1) ≥ 0) or not a first bifurcation (if
det(M1) < 0). In short, to have a first Hopf bifurcation associated to a general adjacency
matrix eigenvalue μ, one must assume that k ≥ 3. Observations such as these have been made
previously in the pattern formation literature (see, for example, [9]). On the other hand, if
k ≥ 3, then all types of Hopf bifurcation can occur as first bifurcations. The following theorem
was proved by Amit Vutha [26].

Theorem 7.2. Assume that all eigenvalues of the adjacency matrix A of a regular network
are real. Let μ1 < · · · < μr be the distinct eigenvalues of A. Suppose that k = 3. Then, for
any 1 ≤ j ≤ r, there exist 3 × 3 matrices α and β such that the eigenvalues of Mμi have
negative real part for all i �= j and the eigenvalues of Mμj are purely imaginary and negative.

Proof. We begin by recalling the Routh–Hurwitz criterion. Given a polynomial of degree 3,

λ3 + a1λ
2 + a2λ + a3 = 0.

All roots of this polynomial have negative real part if and only if

a1 > 0, a3 > 0, a1a2 > a3.

The polynomial has a pair of purely imaginary roots if and only if

a1 > 0, a3 > 0, a1a2 = a3.

We prove that the eigenvalue μj can have a first Hopf bifurcation when k = 3. As in the
proof of Theorem 7.1, we may translate all of the eigenvalues μi so that μj = 0. We wish to
find 3 × 3 matrices α and β such that
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(i) α + μiβ has all eigenvalues with negative real parts for i �= j,
(ii) α has a pair of purely imaginary eigenvalues and a real negative eigenvalue.
We proceed by first choosing a > 0 satisfying a > |μi| for all i. Then let

α =

⎡
⎣ −a a −a

0 0 −a
1 0 0

⎤
⎦ and β =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ .

Then

α + μiβ =

⎡
⎣ −a a + μi −a

0 0 −a + μi

1 0 0

⎤
⎦ ,

whose characteristic polynomial is

(7.3) λ3 + aλ2 + aλ + (a2 − μ2
i ) = 0.

For i = j we have μi = 0, and (7.3) has roots −a and ±i
√

a, whereas for i �= j, (7.3) has all
roots with negative real part by the Routh–Hurwitz criterion.

8. An example of bifurcation in a product network. In this section we discuss the
codimension one synchrony-breaking bifurcations in the nine-cell product network shown in
Figure 4(right). For simplicity we assume that the internal dynamics is one-dimensional, even
though this restricts some of the bifurcation types that are possible in the general case.

The adjacency matrices for this network are Audr ⊗ I3 and I3 ⊗ Aff defined in (6.1) and
(6.3). Suppose that a system of differential equations associated with this network is denoted
by Ẋ = F (x) and that J = (dF )X0 is the Jacobian of this system at a synchronous equilibrium,
which we can take to be X0 = 0. From (3.1) it follows that

(8.1) J = αI3 ⊗ I3 + β1Audr ⊗ I3 + β2I3 ⊗ Aff ,

where α is the linearized internal dynamics and β1, β2 are the linearized coupling strengths
for the couplings in the unidirectional ring and the feed-forward networks, respectively. It
follows from the discussion in section 3 that the eigenvalues of J are α + β1μ + β2ν, where μ
is an eigenvalue of Audr and ν is an eigenvalue of Aff . As noted in section 6, the eigenvalues
of Audr are μ1 = 1, μ2 = (−1 + i

√
3)/2, and μ2, and the eigenvalues of Aff are ν1 = 1 and

ν2 = 0 with algebraic multiplicity 2 and geometric multiplicity 1.
The real parts of the eigenvalues of the 9 × 9 matrix J are

σ11 = α + β1 + β2,
σ21 = α − 1

2β1 + β2,
σ12 = α + β1,
σ22 = α − 1

2β1,

with multiplicities 1, 2, 2, and 4. It is possible to choose α, β1, β2 so that any one of the
σij = 0 and the other three are negative. Sample values are given in the following table:

(8.2)

α β1 β2 σ11 σ21 σ12 σ22

−4 2 2 0 −2 −1 −3
−3 −2 2 −3 0 −5 −2
−2 2 −2 −2 −5 0 −1
−1 −2 −2 −5 −2 −3 0
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It follows that each of the four types of bifurcations can lead, in principle, to branches of
stable solutions.

If σ11 is the critical eigenvalue, then the bifurcation occurs in the fully synchronous sub-
space with all coordinates equal. Generically we expect a saddle node bifurcation and no
synchrony-breaking.

If σ21 is the critical eigenvalue, then the bifurcation occurs in the synchrony subspace
where all cell coordinates in each ring are equal. In this case the quotient network is the
feed-forward network, and the generic (steady-state) bifurcation was analyzed in [18]. Indeed,
[18, Theorem 4.6] proves that two nontrivial branches of solutions bifurcate from the trivial
branch, one transcritical and one a pitchfork. Moreover, when the internal dynamics is one-
dimensional, generically, the bifurcating solutions are unstable. Note that if the product
network has two-dimensional internal dynamics, then Hopf bifurcation associated with this
center subspace is possible and periodic solutions with the λ

1
6 growth rate may occur.

If σ12 is the critical eigenvalue, then the bifurcation occurs in the synchrony subspace
where all cell coordinates in each feed-forward network are equal. In this case the quotient
network is the unidirectional ring, and we have purely imaginary eigenvalues at criticality.
Hopf bifurcation to discrete rotating waves occurs.

If σ22 is the critical eigenvalue, then bifurcation occurs with four purely imaginary eigen-
values, and the center subspace is a four-dimensional real subspace. This is an example of
(4.1) where U is complex one-dimensional, G1(μ) is complex two-dimensional, and G2(ν) is
complex one-dimensional. The tensor product in (4.1) is complex two-dimensional, and the
center subspace is real four-dimensional.

The Jordan form at bifurcation is identical to the Hopf bifurcation in the feed-forward
network. Of course, the nonlinear bifurcation need not be identical—but it is. In particular,
there are two solution branches. The first is found by setting the coordinates in the first two
rings to 0. Then there is a standard Hopf bifurcation to a branch of discrete rotating waves
in the third ring (because of the Z3 symmetry), whose amplitude grows at rate λ

1
2 . Second,

setting the coordinates in the upper ring to 0 implies that the middle ring equations undergo
a standard Hopf bifurcation to a branch of discrete rotating waves (again because of the Z3

symmetry), whose amplitude also grows at rate λ
1
2 . Finally, the equations in the third ring are

forced by the periodic solutions in the middle ring, and just as in the three-cell feed-forward
network there is a unique branch of periodic solutions in the bottom ring. These solutions
also form a discrete rotating wave (because of symmetry and uniqueness) with amplitude
growth λ

1
6 . This may be checked using [8] or by a numerical experiment (we did the latter).

Simulations using the cell vector field

f(y1, y2, y3) = −0.3y1 − y2 − y3 − y3
1 ,

that is, β1 = β2 = −1, α = −0.5, and λ = 0.2, are shown in Figure 9.

9. Conclusions. The number of different regular networks grows superexponentially in
the number of cells r (even for fixed valency). Therefore, the bifurcation analysis for three-
cell systems given in [18, 8] cannot be repeated for r-cell systems if the bifurcation analysis
is truly different for each network. The results of this paper and those in [8] give some hope
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Figure 9. Simulations from product network. (Left, center) Discrete rotating waves are seen in second and
third rings. (Right) Time series from cells in the first feed-forward network; note the increase in amplitude
from the second to the third cell in that chain.

that bifurcations in general cell systems can be understood in a way analogous to equivariant
bifurcation theory.

In equivariant bifurcation theory [15, 3, 12] it is known that each irreducible representation
of a given group Γ leads to a type of Hopf bifurcation and that each absolutely irreducible
representation of Γ leads to a type of steady-state bifurcation theory. Each of these bifurcations
is analyzed using a set of techniques that have now become standard (normal form theory,
singularity theory, equivariant branching lemma, the EHT, etc.). The important point is that
the number of different bifurcations that need to be analyzed is indexed by the number of
distinct irreducible representations of Γ and not by the number of representations of Γ.

Here we suggest that the number of bifurcations in regular networks that need to be an-
alyzed is indexed by the number of Jordan structures of adjacency matrices and not by the
number of networks. But the situation is not so clear as in the equivariant case. Elmhirst and
Golubitsky [8] study nilpotent Hopf bifurcations, that is, those Hopf bifurcations where the
algebraic multiplicities of the critical eigenvalues are each two but the geometric multiplicities
are one. They show that there are (at least) three or four different (nonlinear) bifurcation
scenarios in regular networks that can occur with such a fixed center subspace structure. We
conjecture that each type of center subspace leads to just a small finite number of different
bifurcation scenarios (unlike in equivariant bifurcations, where each irreducible representa-
tion leads to one bifurcation scenario), and we explain our reasoning using nilpotent Hopf
bifurcations.

The codimension one nilpotent Hopf bifurcation scenarios for regular networks analyzed
in [8] can be described by the number of bifurcating branches of periodic solutions and the
growth rate of the amplitudes of solutions along these branches. The four possibilities are

(a) two branches with growth rates λ
1
2 and λ

1
6 ,

(b) two branches each with growth rate λ1,
(c) two or four branches each with growth rate λ

1
2 , and

(d) two branches with growth rates λ
1
2 and λ

1
4 ,

where λ is the bifurcation parameter. The three-cell feed-forward network in Figure 4(left) is
an example of (a). Other examples are given in [8]. The five-cell network in Figure 10(left)
is an example where scenario (b) occurs. The three-cell network in Figure 10(right) is an
example of scenario (c); other examples are given in [8]. As of now no examples of a network
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Figure 10. Regular networks that exhibit nilpotent Hopf bifurcations in codimension one.

that yields scenario (d) are known.
Krupa [17] observed that if one analyzes the normal form of the center manifold reduction

to the four-dimensional center manifold of a nilpotent Hopf bifurcation, then all scenarios
can be seen in the third order truncation. This suggests more strongly that generically, for
any network, codimension one nilpotent Hopf bifurcations occur in at most four types in any
regular network, but we have no proof of this fact. Moreover, the stability of these solutions is
sometimes determined at order greater than 3. Nevertheless, these results together give some
credence to the conjecture we have made in this section.
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