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§51. INTRODUCTION

Basic theory for bifurcation problems with symmetry was developed by
Sattinger [1979] and Golubitsky and Schaeffer [(1979b]. A symmetry group
usually forces the bifurcation to be rather degenerate but simultaneously,
one caﬁ take advantage of the symmetry to render some interesting problems
computable.

Recent papers of Hunt (198131, [1982] make use of symmetries in what, at
first sight, appears to be a nonstandard fashion. This enables him to
arrive at a parabolic umbilic description for the buckling of a right circu-
lar cylinder under end loading (see also Hui and Hansen [1981]). The pur-
pose of this paper is to establish the following points:

1. The scheme of Hunt is consistent with the general theory of Golubitsky
and Schaeffer [1979].

2. There is a simple abstract procedure involving "hidden symmetries"
which enables one to simplify calculations and to arrive at Hunt's procedgre
as a special case in a natural way.

3. The scheme proposed by Hunt for the buckling of shells can be derived
by starting with, for example, the partial differential equations of Kirch-
hoff shell theory, and

4. The stability assignments can be computed for the bifurcation problem
considered by Hunt.

A crucial lz symmetry on a subspace is used by Hunt to obtain a descrip-

tion of the bifurcation in terms of the parabolic umbilic. This symmetry is
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derived by him in a heuristic way. We showlthat it arises by a natural
abstract construction that is verifiable for a Kiréhhoff shell model.

The name "hidden" symmetry arises from two facts. First, it is a symme-
try defined only on a subspace of state space. Second, this symmetry is
revealed by working in a larger space that does not fix the phases of the
relevant modes. This larger space is where the framework of Golubitsky and
Schaeffer [1979b] holds. We shall expiain these statements in more detail
shortly in §2.

As Hunt notes, there are other bifurcation problems that can be dea]f
with by the 'hidden symmetry method', such as the buckling of stiffened
structures. Another example is Schaeffer's [1980] analysis of the Taylor
problem. In particular, the use of hidden symmetries enables one to see
directly that certain terms in the bifurcation equation vanish. This was
done by direct calculation in Schaeffer [1980]. As will be noted later,
hidden symmetries also appear to play an important role in the analysis of
other bifurcation problems as well, such as the Bénard problem. This is
briefly discussed in Golubitsky, Swift and Knobloch [1984] and Ihrig and
Golubitsky [19847.

In some physical problems, solutions of a partial differential equation
on a bounded domain satisfying appropriate boundary conditions are in one-
to-one correspondence with periodic solutions on an infinite domain which
have additional reflection symmetries. The periodic problem is a mathema-
tical device which helps in the understanding of the given problem in the
finite domain. In particular, this device enables one to understand how
hidden symmetries in the problem can be understood in the abstract formula-
tion as symmetries on a subspace. This procedure shows why our abstract

formulation includes more cases than one might at first expect.’
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In Section 2 we explain in more detail how the periodic extensions give
rise to hidden symmetries by means of a simple example. Section 3 gives the
abstract infinite dimensionaj formulation of bifurcation problems with hidden
symmetries and Section 4 applies the methods developed to Hunt's problem of
buckling cylinders. Finally in Section 5 we discuss the stability and bifur-
cation diagrams for the cylinder problem.

In this paper we have had to make a choice between the variational
approach (based on an energy function) and the direct approach (based on the
equations). In the variational approach, one is given an energy functional
which is invariant under the action of the symmetry group. One then applies
the splitting lemma of Gromoll and Meyer to obtain a reduced function
f: R" > IR whose critical points are (locally) in one to one correspondence
with the critical points of the energy functional. (See Golubitsky and
Marsden [1983] and Buchner, Marsden, and Schecter [1983] for a general view
of this approach.) Moreover, the reduced function f inherits the symme-
tries of the original energy function and is, itself, invariant under the
group action.

The second way to obtain symmetries is to start with a differential equa-
tion whose associated differential operator has a linearization which is
Fredholm of index 0. Then one may use the Liapunov-Schmidt procedure to
obtain a (reduced) mapping g: R" + R" whose zeros are (locally) in one‘
to one correspondence with the solutions to the original differential equa-
tions. Moreover, if the original differential operator is equivariant with
respect to a group of symmetries, then (under suitable hypotheses), so is g.

The difference between the two approaches is significant when the
unfolding (or imperfection sensitivity) problem is studied. This latter

topic is discussed here only briefly. To be consistent with the spirit of
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Hunts paper and with elastic buckling in general, we shall adopt the varia-

tional (or catastrophe theory) point of view.

Acknowledgements. We thank Giles Hunt for stimu]atin§ conversations which
inspired this work. We also thank Stuart Antman, David Chillingworth, Ed

Ihrig, and Steve Wan for several useful comments.

§2. HIDDEN SYMMETRIES AND PERIODIC BOUNDARY CONDITIONS

In this investigation of the buckling of cylindrical shells, Hunt noted that
the parabolic umbilic, :x4 2 xyz, appeared in a context where some less
degenerate singularity (such as the elliptic or hyperbolic umbilic) seeming-
ly should have been expected. Taking the point of view that one should
attempt to explain unexpected degeneracies, Hunt Tooked for a context in

which the parabolic umbilic would occur naturally. He found one, which he

calls symmetries on a subspace. In this paper we give a context, namely

that of hidden symmetries, which reveals Hunt's symmetries on a subspace in

a natural way.

Let us first give a prototype example (due to Hunt) which shows how the
parabolic umbilic arises from the imposition of a symmetry on a subspace.
In the second half of this section we show how this situation can arise by
means of a simple example.

Let g(x,v) be a real-valued function satisfying

a) g(-x,v) = g(x,v) and g(0,-v) = g(0,v) , and.
2 (2.1)
(b) g(0) =0, (dg)(0) =0, (d°g)(0) =
Conditions (2.la) state that f has a ref]ectiona] Symmetry in the x-
variable and a ref]ect1ona] symmetry on the subspace consisting of the v-

axis. Cond1t1ons (2.1b) state that g has a degenerate s1ngu1ar1ty
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at the origin.

Note. The function g could arise via the splitting lemma from an infinite
dimensional variational problem. Conditions (2.1b) state that the kernel
of the Hessian of the original variational problem is two-dimensional, while
conditions (2.1d) reflect certain symmetry properties of this variational
problem.

Writing the first few terms of the Taylor expansion of f consistent

with (2.1) one finds

2 4

g(x,v) = Ax°v + Bv 2,2 4

+ Cx“vT + DX+ ..n...

The important point to note here is that x2v is the only cubic term which
can be non-zero. The symmetry on the subspace forces the coefficient of v3
to be 0. Now if A.B # 0 then f is right equivalent to the parabolic
umbilic (cf. Zeeman and Trotman [1975]1). More precisely, there exists a

2 2

diffeomorphism ¢: IR® » IR® such that

gle(x,v)) = ev? + X%y

3 were nonzero one would obtain

where ¢ = sgn B. If the coefficient of v
either the elliptic or hyperbolic umbilic.

To motivate the abstract set up in the following section, consider the
following simple example. Suppose that one has a bifurcation probiem in
variational form which is posed on the interval [-m,nm] with periodic and
possibly other boundary conditions assumed. Often such problems have 0(2)
as a symmetry group; the rotations S0(2) act by translation zm ¢ + @

1 and the orientation reversing ele-

where 6 1is an element of S0(2) =S
ment of 0(2) acts by flipping the interval ¢ » -z. Typically, the kernel

of the Tinearization of the bifurcation problem at an eigenvalue of this
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linearization will be the 2-dimensional space Vk generated by {cos kg,
sin kz}. Solutions to the original bifurcation problem which correspond to

V., by a splitting lemma argument are said to have wave number k. However

k
there is often an extra parameter in the original bifurcation problem, such

as an aspect ratio, which alters the eigenvalue structure. For special
values of this parameter it is possible to have an eigenvalue of multipli-
city 4. Typically, in such instances, the wave numbers are consecutive.
For definiteness, suppose the corresponding eigenspace is Vk ® Vk+1' In
the example below we study the case ]R4 = V1 ) V2 with explicit coordi-

nates gjven by
(X,y,V,W) + X cos ¢ + y sin g + v cos 2g + w sin 2g. (2.2)

We now discuss why one studies bifurcation problems on an interval

(-m,m] with periodic boundary conditions. Often one has a physical problem
posed on the finite interval which one tries to solve by solving a corres-
ponding problem on the infinite interval and looking for periodic solutions
of period 2p. This reformulation introduces 0(2) as a group of symme-
tries. However, in the original problem on the finite interval there may be
additional boundary conditions besides periodicify which 1imit the periodic
solutions allowable. For example, the only solutions to the transformed '
prbb]eh on the infinite interval which may be relevant are the ones which
start and end symmetrically; i.e., those solutions which are invariant under

the flip Yo(c) = -r. See Figure 2-1 which illustrates this for waves with

k = 2.
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flip invariant periodic but not flip invariant

Figure 2.1

A similar situation occurs in the analysis by Schaeffer [1981] of the Taylor
problem and, as we shall see, can be used as the basis for the analysis by
Hunt [1982] of the buckling of a cylindrical shell though the situation in
the Jatter case is yet more complicated.

The context hypothesized above allows hidden symmetries. Let IR4 =
V{ 0 VZ' The translation ¢ + ¢ + 6 of S0(2) acts on Vk by rotation
through the angle ko. The flip Yo acts on IR4 with the coordinates

(2.2) by
Yo(Xs¥sv,W) = (x,-y,v,-w).

Let A be the 2-element group generated by Yo Let FA’ the fixed

point set for A, be defined by

FA = {(x,0,v,0)} .

Note that FA corresponds to the periodic solutions x cos ¢ + v cos 2¢

which are exactly the periodic solutions which begin and end symmetrically.
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We are thus interested in the elements of FA' Consider the "naive symmetry
group" N(A) consisting of those elements of 0(2), which leave FA set-

wise invariant; that is, N(a) 1is generated by the flip Yo and the trans-
Jation by half a period, h(g) = ¢ + w. The action of h on FA is giyen

in the coordinates (x,v) by
h(x,v) = (-x,v).

We now ask, "Is there a hidden symmetry in this problem?", that is, is there
a symmetry on a subspace other than the elements of N(A)? The answer is

=z + be translation by a quarter period. Then q acts

S

yes. Let q(z)
on IR4 by q(x,y,v,w) = (y,-x,-v,-w). In particular, on the fixed point
subspace of N(A), namely Fn(A) = {(0,v)} ¢ FA’ q acts by q(0,v) =
(0,-v). '

Now one sees that if one were to solve the_hypothetica] problem above by
a splitting lemma argument one would be looking for the critical point struc-
ture of a function f: IR4 + IR which is invariant under the action of
0(2). By looking for "physically reasonable" solutions one tries to find

the critical point structure of g: IR2

+ IR where g =f | FA and g
satisfies the symmetry conditions (2.1a); in particular, g satisfies the
hypotheses of symmetry on a subspace studied by Hunt

As noted above, the analysis of the buck11ng of the cy11nder proposed by
Hunt [1982] is somewhat more complicated though the end result is similar.
The reason for this complication is that in the buckling problem two copies
of 0(2) act as symmetries. More precisely, one copy of 0(2) occurs
because the finite cylinder is replaced by the infinité cylinder with peri-

odfclboundary conditions imposed. The second copy of ' 0{2) acts on the

problem since the cylinder itself is invariant under rotation about its axis.
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§3. ABSTRACT FORMULATION

We begin with the following situation. Let T be a subgroup of O(n) and
assume g: IR" + IR is invariant under T: g(yx) = g(x) for x ¢ R" and
Y ¢ I'. Suppose we are interested in the critical points of g that possess
a given symmetry. That is, let A T be a given subgroup and let FA be

its fixed point set:
Fo={ye R"| sy =y forall & Al
we are interested in critical points of g that lie in FA' Let h = g[FA 3

Lemma 1. Let y ¢ F Then g has a critical point at y if and only if

A
h does,.

Remark. This lemma is a special case of the "principle of symmetric criti-

cality" due to Palais [1979]. We give a direct proof for the case at hand.

Proof. If g has a critical point at y ¢ FA’ then obviously y 1is also
a critical point for h. Conversely, let ¥y ¢ FA be a critical point for
h. To show y js a critical point of g, we use the following remark.
Let G6: IR" 5+ IR" be equivariant with respect to T: i.e. g(yx) = G(x)

for all y ¢ I'. Now G(FA) < Fy since for x ¢ F, and & ¢ 2, G(x) =

G(6x) = 8G(x) and so G(x) € Fy- Now let H GIFA: Fy + Fy. Then for

A
X € FA’ it is clear that

G(x) = 0 if and only if H(x) = 0 (3.1)

To complete the proof of the lemma, let G(x) w(x). Then since T < 0(n),

we have G(yx) = G(x) and H(x) = vh(x) for x ¢ FA’ The result there-

fore follows by (3.1). N

189



We shall call a subgroup A c T fixed point complete if

A={yeTl|lyy=y forall yc FA} (3.2)

If our symmetry subgroup A is not fixed point complete, we can always
enlarge A to symmetry subgroup A that is fixed point complete and for
which FA = qu This is reasonable since we are looking for critical points
in FA and augmenting A by group elements that pointwise fix FA does not
change the fixed point set. |

To study the critical points of h on FA, it is useful to find the

symmetries of h. To locate these, we first consider the subgroup N(A) ¢ T

defined by
N(a) = {y € I‘ly(FA) c FA] (3.3)

It is clear that h 1is invariant under N(A), so N(A) 1is a symmetry group

for h. The notation N(A) 1is used because of the next lemma.

Letma 2. N(A) is the normalizer of A in T.

Proof. Recall that if H is a subgroup of a group G, its normalizer is
defined by N, = {ge 6]g " Hg < H}.

First, suppose that y ¢ N(a). To show that vy ¢ Nps Tet 6 e A; we
must prove that Y-IGY € A. But if ye FA then vy e FA’. S0 ny = vy

and Y-IGYY = Y_IYY = y. Thus Y’lay e A since A is fixed-point complete.

Conversely, suppose vy ¢ NKu If ye FA and § ¢ A, then 7_167 e A,

S0 Y_ldyy =y or &yy =vyy forall §e aA. Thus y 1is fixed by all
§ € A, so by definition of FA = Fzy YY € FA' Thus vy e N(a) by (3.3).
Since A acts trivially on FA’ we can "discard" it from our symmetry

group of h. In view of lemma 2 one can do this by letting the group D{a)
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be defined by

D(a) = N(A)/a

and calling it (or N(A)) the naive group of symmetries of h. Notice that

there is a well defined action of D(A) on Fa and that h 1is invariant
under this action.

There is a second way h can inherit symmetries from T. Let I be a
proper fixed point complete subgroup of I and assume A < I. Thus,
Fz c FA' As above, N(Z) Tleaves FZ invariant and h]Fz is invariant

under D(E). The new symmetries obtained this way are the hidden symmetries.

Here is the formal definition.

Definition. A hidden symmetry of h is a nontrivial element of N(L) for

some proper subgroup I of T containing A4, which is not in N(4).

Remarks 1. One could take the view that one is searching for Fz as much

as for I; given F., I can be defined as the isotropy group of typical

Z’
In the example we shall see that I and Fz are found

~

points in Fz;
simultaneously.

2. If we are looking for zeros of a map H:FA > FA commuting with N(A)
(rather than critical points of an invariant function h), then the mere
existence of Fz ; FA can put restrictions on H. Indeed, H must map FZ
to itself, a fact that does not in general follow just from the equivariance
of H under N(A4).

3. In Hunt's.example we shall see that one can choose I = N(A). The
group theoretic reason for this is given in remark 4 below. In other

examples, one probably will need to understand the lattice of fixed point

complete subgroups of T and the lattice of isotropy subgroups. For
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examples involving convection, either the planar Bénard problem or spherical
convection, these lattices can be computed and in certain cases hiddep
symmetries are important in understanding solutions with a given symmetry
group A. For example, in Buzano and Golubitsky [1983] this occurs with the
rectangular solutions (see Golubitsky, Swift and Knobloch [1984], §IV for a
discussion). For the spherical Bénard problem, the lattice of isotropy sub-
groups for representations of 0(3) 1is worked out in Ihrig and Golubitsky
(1984]. They find that bifurcating solutions corresponding to fixed point
sets of dimension one (with maximal isotropy subgroups--these are found
using a theorem of Cicogns) are.often unstable. In this case one needs to go
to the next level in the lattice and there hidden symmetries may be import-
ant. See Golubitsky [1983] for a general introduqtion to ideas and examples
involving the lattice of isotropy subgroups. | |

4. We now ask whether there can be symmetries more subtle than hidden
symmetries. In general, ‘the answer seems to be yes. However, in Hunt's
example and in the case where A is a maximal isotropy subgroup these
subtle symmetries do not exist. This last fact was pointed out to us by
Ed Thrig, cf. Remark 5 below.

Before discussing subtle symmetries we review our description of hidden
symmetries. In our discussion we have assumed the existence of a function
g: R" > IR invariant under T and a fixed point complete subgroup A of
. Our interest lies in understanding the restrictions placed on h = g[FA.
So far we have observed two types of restrictions on h. The first obser-
vation states that h is invariant under the group N(A) which acts:
naturally on FA' We have called elements in N(A). "naive symmetries". In
the second observation we have shown, by iteration, that if g ; A is a

proper, fixed point complete subgroup of I then h|Fz is invariant under
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the subgroup N(r). We have called elements in N(r) "hidden symmetries".
Moreover, Hunt's symmetry on a subspace is just a specific instance of a
hidden symmetry.

We now question whether there are any additional group theoretic restric-
tions placed on h by the existence of the large group T. Such additional

symmetries we call subtle symmetries. The only way that subtle symmetries

may arise is as follows. Suppose there is an element y in T ~ N(aA) for

which
y'l(F )aF, 3F (3.4)
RN S

(Aside: FP is contained in each fixéd point space and all symmetries fix
vectors in FF' Thus (3.4) states that the intersection in the LHS of (3.4)
contains a nontrivial vector. Moreover, since vy ¢ N(a) the intersection
on the LHS of (3.4) is a proper subspace of FA.) Observe that when (3.4)
is valid, we obtain a further restriction on h. For if w e Y'l(FA) n FA

then both w and yw are in F,; thus h{(yw) = h(w). We call such elements

A’
y which are not hidden symmetries, subtle symmetries.

We may clarify the issue of subtle symmetries as follows. We claim that

FA n y-l(FA) is itself a fixed point subspace. Observe that

(a) F -1, =y7lFy), and
(3.5)

(b) F.nF,=F

G H <G,H>

where G, H are subgroups of T and <G,H> is the subgroup they generate.

To prove the claim, let T = <A,Y'1Ay>. It follows from (3.5) that

F.=F, n Y-I(F

T A A)

Moreover,
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A ; T ; r

since (3.4) is assumed valid and y ¢ N(a).
Thus, when searching for subtle symmetries we look for fixed point sub-

spaces FT satisfying

(a) F F F. o5

I ; T ; A
(b) Y(FT) c FA, and (3.6)

(c) Y(FT) ol S

Note that (3.6c) follows from the fact that Yy 1is not a hidden symmetry;
hence vy ¢ N(T).
- Thus we see that naive symmetries correspond to elements of T which

Teave 'FA invariant, hidden symmetries correspond to elements of T which

leave some subspace Fz of FA invariant, and subtle symmetries corres-

pond to elements y of T© which map a subspace FT of FA onto a differ-

ent subspace Y(FT) of F,.

5. There are no hidden symmetries and there are no subtle symmetries
when A 1is a maximal isotropy subgroup.(Proof due to Ed lhrig.) In order
to find a hidden symmetry or a subtle symmetry we would need to find a fixed

point subspace FT satisfying (3.6a). Now suppose that FT is any fixed

point subspace, then we claim that FT is the union of fixed point subspaces
of isotropy subgroups. First observe that if v ¢ FT then FZ c FT where

v
zv is the isotropy subgroup of v. (This follows from the fact that T

fixes v and thus is contained, by definition, in Zv.) Since v ¢ L, it

follows that Fr o= WUt FZV. Second, use (3.6a) to observe that sz < Fre

FA and hence that A c Ly By (3.6a) we can choose a vector v ¢ FT ~ Fr

and for such a v, L, #Tr. It now follows that if A 1is a maximal isotropy
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subgroup we must have A = Iy

second equality in (3.6a).

Hence FA = sz = FT which contradicts the
We now discuss how one reduces an infinite dimensional problem to the
situation of looking for critical points of a function g: R" 5 R invari-

ant under a group T < 0(n).
Let X be a Banach space and <, > a (not necessarily complete) inner
product on X. (In many examples X is a W5'P  Sobolev function space,

and <, > is an Lz, H1

o«

or H2 inner product).* let f:X+ IR bea C
function defined on a neighborhood of 0 ¢ X with f(0) = 0 and Df(0) = 0.
Eventually f will depend on parameters but this is suppressed for the
moment.

Let K be the kernel of sz(O); i.e.
K= {v e X|D?(0)-(v,w) = 0 for all we X}

Assume that f admits a smooth < , > gradient vf:X + X so vf(0) =0
and Tet T = Dyf(0):X = X. It is easy to check that <D(vf(0)).v,w> =
sz(O)-(v,w), so K=Ker T and T is <, > - symmetric.

Assume T is Fredholm of index zero; in particular, X admits the

following < , > —6rthogona1 decomposition into closed subspaces.
X =K® Range T .

Under these hypotheses, the critical points of f are in one to one

correspondence for those of a reduced function

g:K+ IR

*
The generalization to the case in which X 1is a manifold and <, > is a
weak Riemannian metric on X is routine.
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defined in a neighborhood 0 ¢ K. This correspondence is by means of the
graph of an implicitly defined function ¢:K + Range T ‘defined by solving
the equation Poyf = 0 where P 1is the projection to Range T. One can
also show that the problem of finding normal forms for f can be reduced
to that for g, which satisfies g(0) = 0, Dg(0) =0 and ng(O) = 0.
This is the splitting lemma, which is the variational analogue of the
Liapunov-Schmidt procedure (see Golubitsky and Marsden [1983] for details
and references).

Suppose that T 1is a group of isometries which act continuously on X

by linear transformations and leave f invariant; that is
f(yx) = f(x) for all xe X, yeT .

By differentiating this relation, it readily follows that I Tleaves K
invariant and g is invariant as well; that is, fx e K if y eI and

X ¢ K and =
glyx) = g(x) for yerT, xeK.

Aside. In the buckling problem of Hunt [1982], X  corresponds to a Sobolev
space of 2L-periodic displacements of a right circular-cylinder, where
periodic means with respect to movement along the z-axis{ the axis of the
cylinder, and T = 0(2) x 0(2) 1is the natural symmetry group of the problem.
We take [-L,L] as the fundamental interval along the cylinder's axis.

Hunt is interested in solutions which are symmetrjc with.respect to reflec-
tion about the midpoint of this interval. These solutions comprise the

fixed point set for a subgroup A of T. This and the discussion in §2
are motivations for the construction of FA given above.. Anothgr motivation

is provided by Schaeffer [19801, in which functions satisfying a desired set
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of boundary conditions for the Navier-Stokes equation on a fixed domain

Q x [-L,L], where Q c IRZ, can be characterized as periodic functions on

Q x IR which are invariant under reflection with respect to the planes

z = tL. Again the states satisfying these boundary conditions can be char-
acterized as the fixed point set for a subgroup A.

In many examples, including Hunt's, there is a further reduction in dimen-
sion that can be done by finding a cross section for the action. The method
is similar to that of Golubitsky and Schaeffer [1981] in which reduction
from a five dimensional kernel to a two dimensional subspace was important
(interestingly, in this example, the subspace was a fixed point set for the
group Dz).

Suppose V ¢ FA is a subspace satisfying:

(a) V saturates F ; that is, U Y =F , and
A A
yeN(a) (3.7)
(b) for each x ¢ V, Tox + U vV = FA
YeN(A)x

where 0, is the N(A) orbit of x in F_ and N(A)x is the isotropy

A

subgroup of x in N(A). By Lemma 1, we seek the critical points of h =
g|FA on FA' We npow show that the critical points of h are determined by

k = h|V.

Lemma 3. Let V satisfy (3.7) and let k = h|V. Then the critical points

of h are the N(A) orbits of the critical points of k.

Proof. By invariance of h under N(a), it is enough to show that for
X eV, x 1is a critical point of h if and only if it is one for k. From

h{yx) = h(x) we get, in terms of differentials,

dh(yx)ey = dh(x).
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(In terms of gradients, since the action is orthogonal we have Vh(yx) =
YWh(x).] Obviously if h has a critical point at x ¢ V so does k and
the orbit of x consists of critical points. Suppose x ¢ V is a critical
point of k. Then dh(x)|V =0 and so dh(x)|yV = 0 for vy ¢ N(A)x by
dh(yx)ey = dh(x). Since h 1is constant on 0, dh(x)|Tx0x = 0. Thus by
(3.7b), dh(x) = 0. By (3.7a) we have not missed any critical points. n
Thus, no information is lost by restricting attention to the cross-section

V. As in Golubitsky and Schaeffer [1981], we expect one can prove that no

information is lost in the unfolding theory as well:

§4. BUCKLING OF A CYLINDRICAL SHELL

We now describe a context in which one can in principle rigorously arrive
at Hunt's model for cylindrical shell buckling. We do not provide a complete
exposition, but only indicate a framework with enough details so the symme-
try groups become apparent and the hidden symmetry is revealed. We use a
shell model for simplicity, but one could in principle also use a three
dimensional model.

First we outline a framework for nonlinear Kirchhoff shell theory (cf.
Naghdi [1972], Marsden and Hughes [1983] and references therein). Let M
be a reference two manifold and C a space of deformations o:M -+ IR3.
Each ¢ ¢ C 1is required to be an embedding of M into IR3 and is.to
satisfy any relevant displacement boundary conditions. For each ¢, let
F = D¢ be the deformation gradient, FT its transpose; and C = FTF, a
positive definite symmetric two tensor on M, the Cauchy Green tensor.
(Apart from the positioning of tensor indices, C ..is the pull-back of the
Eucliden metric on IR to M). Let k denote.the (referential) second

fundamental form of the embedding ¢; i.e. k 1is the second fundamental

form of the deformed surface $(M), regarded as a symmetric two tensor on
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kirchhoff shell theory deals with elastic stored energy functions of the
form W(C,k). We shall assume that the shell is homogeneous, i.e. W is
independent of the reference point X ¢ M, 1is isotropic and is invariant
under isometries of M. The real shell being modelled has a finite thick-
ness which is incorporated into W(C,k).

If ) denotes a prescribed dead load on 3M, then the energy function is |

Vz\':c + IR

v, =f W(C,k) dA -f A-¢ ds
2 JM ' M~

Equilibrium configurations of the shell are the critical points of VA'

We choose the length scale so that the radius of the cylinder is unity.

For a cylindrical shell with periodic boundary conditions, we choose
2@l
M=5S5"x[0,L]

where S1 is the unit circle in the plane. We consider deformations ¢: M

) of Sobolev class HS, s > 4 which are immersions that map z =

- IR
constant planes to -z = constant planes and which remain H® when extended
periodically in z; thus letting ¢X, ¢y and ¢Z be the components of ¢,

the extension satisfies

6" (8,2+L) = ¢%(0,2), ¢'(8,2+L) = ¢”(6,2)

and

o7(8,2+L) = ¢%(8,2) + ¢7(8,L)

where 8 ¢ Sl.

199



Note that the deformed cylinder has a well-defined length, say alL.
We choose X to be the space of HS displacements u defined by

u(6,z) = ¢(6,z) - (cos 8, sin 6,z), so V., becomes defined on a neighbor-

>

hood of u = 0,

We assume that the linearized problem at (and hence near) u = 0 is
strongly elliptic (so the Fredholm alternative is available -- see for
example Marsden and Hughes [1983, Ch. 6]). The linearized equations are
fourth order and the linearized energy is quadratic in second derivatives
of u. Motivated by analogous examples for the Morse lemma (see Golubitsky
and Marsden [1983] and Buchner, Marsden and Schecter [1983]), we find that
<, > may be chosen to be the H2 inner product.

Let us assume that the linearized é]astic-modu]i, the length L and a
parallel end load of magnitude X are chosen so that the modes described

in Hunt [1982j (and references therein) comprise the kernel K of the
linearized equations in X. This kernel has dimension six. It contains the

two basic displacements shown in Figure 4-1 (adapted from Hunt [1982]).

The general element of the six dimensional space K has the form

N mZ nZ s s TZ
u = [al cos - cos 26 + a, €Os = sin 26, az sin - cos 20 +
«, sin IZ sin 26, B, cos "2 + g_ sin 2z (4.1)
4 L ’ 1 L 2 L ) ’
. . . ] _ 2,1/2
This function may be characterized by two amplitudes namely 9, = {Zai}.

2)1/2

and 9, = (Bi + 32 and various phases. The phases associated with the

four dimensional subspace corresponding to the o's are a little subtle
and fortunately do not matter for what follows. The case illustrated in
Figure 4-1 has a, = 03 = @y = 0. In this case all displacements vanish
for z = L/2, at which points the cross section is circular. In general

there is a plane where the displacements vanish if and only if a0y = Q03
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Z

L

Top view

first mode second mode

Figure 4-1

This fact will not be needed below, since we will shortly be restricting to
the subspace with by = o, = 0.

As we have hinted at in the preceding paragraph, a full bifurcation ana-
lysis directly on K 1is somewhat complicated. However, our interest is in
FA and the analysis on FA is greatly simplified by symmetries and hidden
symmetries,

The group 1 is taken to be 0(2) x 0(2); the first 0(2) consists of
rotations about the z-axis and reflections in vertical planes. The second
0(2) consists of (2L-periodic) translations along the z-axis and reflections
in z = constant planes. These 0(2) actions induce an actionof T on M

and IR3 and hence on X. Elements Y ¢ I' act on configurations ¢ and
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displacements u by y¢ = yo¢oy'1 and yu = YoUoY_l). It is clear that
the potential function VA is invariant under T. Note that T also acts
on K wusing the given representation.

We Tet A be the Z, subgroup of 0(2) x 0(2) consisting of the iden-
tity element and the vertical reflection in z = 0. This vertical reflec-
tion acts on oB-space by (al,az,a3,a4,31,82) f_(al,az,-a3,-a4.81,-82).
The fixed point set of A in K consists of disp]acgments u in (4.1)
whose third component vanishes on z = 0 and is 6dd in 'z a;d whose first
two components are even in z.

Note that FA consists of modes whose vertical phase is figed. Thus FA
is three dimensional and may be parametrized by a pair (g,qz) where
E=a1+ia2€¢ and q2=BleIR.

The normalizer N(A) 1is 0(2) corresponding to rotations about the z-

axis and reflections in the vertical planes g = 8- It acts on FA by

(£,9,) » (eies,qz) (rotation by an angle )
and

(E,qz) b (e216 E}qz) (reflection in the plane ¢ = eo)

2

Since g|FA is invariant under N(A) it must be a function of |g|° and

Q.

To look for hidden symmetries we look at the fixed point set FN(A) of
N(A). This is the set of axisymmetric displacement; that is, FN(A) =
{(E,qz) € FAIE = 0}. Observe using (4.1) that the quarter-period vertical
translation maps elements of FN(A) to their negatives. This is the hidden
symmetry in Hunt's problem.

The set V in Lemma 3 can be chosen to be the set in FA on which ¢

is real, i.e. a; = 0. By Lemma 3, we can restrict to V with no loss of
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information. Since FN(A) < V the hidden symmetry still restricts k = h|V.

2 2

Letting 9y = a; we see that k 1is a function of ay» 95 and qiqz. (we

note in passing that V 1is the fixed point set of the Zz action £ + ¢).

§5. REMARKS ON BIFURCATION AND STABILITY

Expanding k in a Taylor series, we get the form

2

_1 2 2 4 4 22
k=5 (ag] + bg,) + cqjq, + dg; + eq, + fqq

) + h.o.t.

where "h.o.t." means "higher order terms". At a bifurcation point such as

(2.1) k satisfies a =b = 0. Set

f = cqiq2 + dqi + qu + fqiqg + h.o.t.

As noted in §2, one sees that f 1is right equivalent to the parabolic umbi-
Tic, assuming c, e # 0. More precisely, f is right equivalent to

1,4, 2
g %9 * €49

g

where & = sgn e and e = sqn c. The universal unfolding of the parabolic
umbilic generally requires four parameters.

However, we consider here only those terms in the universal unfolding which
are consistent with the present symmetry. This leads to an unfolding with

Jjust two free parameters, of the form
~_ 1, 2 2 2 1 4 ;
G = 7(0-(]1 + qu) + quqz + 4 q2 <5'1)

~where we have chosen the + sign for the qg term. We expect one can show
that G is a universal unfolding for the parabolic umbilic in the context
of hidden symmetries. Formal calculations indicate this is in fact correct;
a rigorous argument may be possible directly or using the work of Damon
(19831.
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The bifurcation diagram for (5.1) is shown in Figure 5-1 for ¢ = +1.

In this figure the ag-plane is divided into 6 regions by the curves o = O,
g =0 and B = -az. The unfolding G has the same number of critical
points for any two pairs of (a,B) which lie in the same region. The number
of these critical points, along with the signs of'fhe eigenvalues of d2€
at those critical points, is given in Figure 5-1. We use s to indicate a
negative eigenvalue and u to indicate a positive eigenvalue.

If we now consider a bifurcation problem H(ql,qz,x) dgpending on the
distinguished parameter A for which H(ql,qz,Q) = g(ql,qz). Then the
unfolding theorem, which we assume valid in the context of hidden symmetries,
allows us to identify H(ql,qz,x) for fixed A with G(ql,qz,a(x),B(A))
where a(0) = B(0) = 0. Therefore, the bifurcation problem H(ql,qz,A) may
be identified with a smooth path (a(X),B(A)) in the unfolding space G.

Cf. Golubitsky and Schaeffer [1979a]. | |

For the particularproblem at hand we identify A with the load as in
Hunt [1982] and related bifurcation problems. Our reasoning is that the
load X should enter the potentjal VA of §3 as the coefficient of a
positive definite quadratic term p]us,~perhaps, higher order terms. Under
this assumption we identify V, with the path alr) = g(A) = -x; that is,

~

we consider the bifurcation problem

2 14
H(q1,q2’)\) =S %A(QE + Q§) + qIQZ + Eq (5°2)

Note we have taken ¢ = +1.

We now ask in which ways can the bifurcation problem H in (5.2) be
perturbed. Since the curve o(X) = g(A) = -A intersects each of the
dividing curves in Figure 5-1 trénsverse]y, it is likely that the universal

unfolding of H will depend on just one additional parameter o.
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Figure 5-1.
We rewrite the unfolding (5.1) as
1,2 2 2 2 4
G(qlaqz.k,o) = - '2_)\(q1 + q2) + %O(qi N qZ) + q1Q2 + %q (5-3)

where we have taken\ e = +1. We wish to think of (5.3) as an unfolding with
A as the distinguished parameter and ¢ as an imperfection parameter.

We now study the bifurcation diagrams associated with G for fixed values
of g. For the reasons stated above, we feel that it is likely that G 1is
a universal unfolding of H; however, we cannot prove this fact. In any
case, G, itself, will give us sample kinds of behavior which may be found
in Hunt's context.

By a bifurcation diagram we mean the set defined by qu = qu = 0 for
fixed g. These bifurcation diagrams are shown in Fig. 5-2 for o <O,

g =0 and g > 0. The stabilities may be computed directly (or recovered
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from Figure 5-1) and are shown schematically. Since G is even in gy we
show only the orbits of the branches. In this figure the labels s and u
refer to eigenvalues of the Hessian; s for a negative eigenvalue and u

for a positive one.

Ss SS

su SS

=20 g <0 ag>0

Figure 5-2

In the unperturbed problem (¢ = 0) notice that aé A increases, the
triviail (unbuck]gd) solution becomes unstable, the stabi]fty being picked up
by the q, mode alone with 4y = 0. Note that of the two axisymmetric
states which are possible, concave or convex buckling, only one is stable.
For the sake of argument we assume convex as in the first mode of Fig. 4-1.
An interesting perturbation occurs for g > 0. Here the shell buckles into
one of the two asixymmetric states either convex or concave. Should the
buckling be concave then the bifurcation diagram predicts that this solution
will loose stability with a snap-through bifurcation to a convex axisymme-
tric state. For g < 0 the existence of an interval in A with no stable

’

solutions suggests that the shell buckles to a state involving other modes,
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a situation not covered by this analysis.

As should be clear from the discussion above, we have not attempted to
develop the theory of universal unfoldings for potentials with hidden symme-
tries either with or without a distinguished parameter. What we have tried
to indicate is that such a theory might generate new and intersting beha-

vior.
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