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Preface

Bifurcation theory studies how the structure of solutions to equations changes
as parameters are varied. The nature of these changes depends both on the
number of parameters and on the symmetries of the equations. Volume 1
discusses how singularity-theoretic techniques aid the understanding of tran-
sitions in multiparameter systems. In this volume we focus on bifurcation
problems with symmetry and show how group-theoretic techniques aid the
understanding of transitions in symmetric systems.

Four broad topics are covered: group theory and steady-state bifurcation,
equivariant singularity theory, Hopf bifurcation with symmetry, and mode
interactions. The opening chapter provides an introduction to these subjects
and motivates the study of systems with symmetry. As in Volume I, detailed
Case Studies which illustrate how group-theoretic methods can be used to
analyze specific problems arising in applications are included. In particular,
the intriguing subject of pattern-formation in fluid systems and its relation to
symmetry is discussed in Case Study 4 on Bénard convection and Case Study
6 on the Taylor-Couectte system. All three Case Studies demonstrate the
importance of spontaneous symmetry-breaking. The deformation of an in-
compressible elastic cube under traction, analyzed in Case Study 5, illustrates
this topic so clearly that in the introductory chapter we have also used it to
motivate the idea of spontaneous symmetry-breaking.

This volume may be used as a basis for two somewhat distinct one-semester
courses, which may be summarized as “Equivariant Singularity Theory” and
“Equivariant Dynamics.” Only the first of these depends heavily on material
from Volume I. More specifically, if the singularity-theoretic material in
Volume I, Chapters -V, IX, X, can be assumed, then equivariant singularity
theory and its applications to bifurcation problems can be covered using
Chapters XI-XV. If basics of steady-state and Hopf bifurcation can be assumed,
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as in Volume I, Chapters IT and VIII, then a course on equivariant dynamics
(as it relates to bifurcation theory) can be taught by omitting Chapters XIV
and XV.

It has not escaped our notice that this volume contains much material. One
reason is that we have worked out, in detail, the bifurcation theory for a
number of symmetry groups and, where possible, have described specific
applications based on those groups. To understand the theory of bifurcations
with symmetry it is not necessary to work through the details of all of these
examples. For this reason we have marked with a dagger (f) those sections
that deal with examples of specific groups which are not needed later. In the
same vein, sections which either develop aspects of the theory that are not
needed elsewhere or contain proofs of theorems whose statements are all that
is needed are marked with an asterisk (x). We suggest that these marked
sections should be skimmed briefly on a first reading.

This volume has benefited greatly from discussions with many individuals.
These include Giles Auchmuty, Pascal Chossat, Andrew Cliffe, John David
Crawford, Jim Damon, Benoit Dionne, Gerhard Dangelmayr, Bill Farr,
Bernold Fiedler, Terry Gaflney, Stephan van Gils, John Guckenheimer, Ed
Ihrig, Gérard looss, Barbara Keyfitz, Edgar Knobloch, Martin Krupa, Bill
Langford, Reiner Lauterbach, Jerry Marsden, Jan-Cees van der Meer, lan
Melbourne, James Montaldi, Mark Roberts, David Sattinger, Pat Sethna,
Mary Silber, Jim Swift, Harry Swinney, Randy Tagg, and Andre Vander-
bauwhede. We are grateful to them all and, indeed, to others too numerous
to mention. We thank Wendy Aldwyn for drawing the figures. Our research
in bifurcation theory has been generously supported by the National Science
Foundation, NASA-Ames, the Applied Computational Mathematics Program
of DARPA, the Energy Laboratory of the University of Houston, and the
Science and Engineering Research Council of the United Kingdom.

Walter Kaufmann-Biihler provided us with constant encouragement and
editorial expertise. We acknowledge our debt to him here and dedicate this
volume to his memory.

Houston, Warwick, and Durham MARTIN GOLUBITSKY
September 1987 IAN STEWART
DaAvID G. SCHAEFFER
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CHAPTER XI

Introduction

§0. Introduction

In Volume I we showed how techniques from singularity theory may be
applied to bifurcation problems, and how complicated arrangements of bifur-
cations may be studied by unfolding degenerate singularities. Both steady-
state and Hopf bifurcations proved amenable to these methods.

In this volume we extend the methods to systems with symmetry. There are
many reasons for wishing to make such an extension. Many natural phe-
nomena possess more or less exact symmetries, which are likely to be reflected
in any sensible mathematical model. Idealizations such as periodic boundary
conditions can produce additional symmetries. Certain mathematical contexts
reveal unanticipated symmetry: for example, we saw in Chapter VIII that
Hopf bifurcation can be treated as steady-state bifurcation with circle group
symmetry S*.

In this chapter we attempt to explain why and how the occurrence of
symmetries in systems of differential equations affects the types and multiplicity
of solutions that bifurcate from an invariant steady state.

The chapter divides into three main sections, together with a final overview.
In the first we explain what we mean by symmetries of a differential equation,
and symmetries of a solution, either steady or time-periodic. We use these
symmetries to define the problem of spontaneous symmetry-breaking. The
discussion is motivated by two physical examples (suitable for “thought
experiments”): the traction problem for deformation of an elastic cube and the
oscillation of a circular hosepipe.

In §2 we briefly describe three techniques, which together form the basis of
the theory that we present for analyzing symmetric systems of differential
equations. They are:
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Restriction to fixed-point subspaces,
Invariant theory,
Equivariant singularity theory.

We apply each technique to the traction problem, to illustrate the kind of
information that it can provide.

In §3 we describe what is meant by mode interactions and indicate some of
the bifurcation phenomena that they can lead to. We again illustrate the ideas
with two examples. The first, exemplifying steady-state mode interaction, is
the buckling of a rectangular plate (originally presented in Case Study 3). The
second, illustrating the interaction between steady and periodic states, or
between distinct periodic states, is the Taylor—Couette problem. This concerns
the flow of fluid between two concentric rotating cylinders.

Finally in §4 we provide a brief overview of the structure of the main part
of the book.

The theory of bifurcations with symmetry is very rich, combining methods
from several areas of mathematics. It will take some time to draw all of these
threads together. The aim of this chapter is to sketch, with a very broad brush,
the main features of the overall framework; to describe a small number of key
examples which motivate the point of view to be adopted; and to hint at some
of the applications. We hope that such a preview will make the main part of
the book easier to follow. Of course, this approach has a cost: we cannot expect
the reader to appreciate the fine details of many of the arguments—though
we hope that their spirit will be comprehensible.

§1. Equations with Symmetry

Bifurcation of steady-state and periodic solutions for systems of ODEs
with symmetry differs from bifurcation in systems without symmetry. When
studying specific model equations it is often possible to ignore any symmetries
that may be present and to determine the bifurcation behavior directly.
However, it is then impossible to disentangle those aspects of the analysis that
depend on the specifics of the model from those that are model-independent,
that is, due to symmetry alone. In addition, explicit use of symmetry-based
principles may make the analysis easier, or at least more coherent.

This section is divided into four subsections. In the first we introduce sym-
metries of ODEs and discuss some simple implications for steady-state and
periodic solutions. We illustrate this discussion in the next two subsections
using two physically motivated examples: the deformation of an elastic cube
under dead-load traction and the oscillation of a hosepipe induced by internal
fluid flow. Finally we abstract some general principles from these examples
and phrase them in the language of group theory. This last step allows us to
introduce the fundamental notion of spontaneous symmetry-breaking—that
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equations may have more symmetry than their solutions—and state the basic
problem of spontaneous symmetry-breaking in a general framework.

(a) Symmetries of Equations and of Solutions

We begin with some definitions and observations which are simple but funda-
mental. Let

dx/dt = f(x) (1.1)

be a system of ODEs, where f: R" — R" is smooth, and let y be an invertible
n x n matrix. We say that y is a symmetry of (1.1) if

Syx) = yf(x) (1.2)

for all x e R". An easy consequence of (1.2) is that if x(¢) is a solution to (1.1),
then so is yx(¢). In particular if x(t) = x, is a steady state of (1.1), then so is
7Xo- Either yx, # x,, in which case we have found a “new” steady state; or
YXo = Xo, in which case we say that y is a symmetry of the solution x,. When
enumerating steady-state solutions of (1.1), it makes sense to enumerate only
those that are not related by symmetries of f, since the remaining equilibria
may be found by applying these symmetries.

There is a similar consequence for periodic solutions: if x(t) is a T-periodic
solution of (1.1), then so is yx(t). However, in the periodic case it is natural
to widen the definition of a symmetry of a solution. Uniqueness of solutions
to the initial value problem for (1.1) implies that the trajectories of x(t) and
yx(1) are either disjoint, in which case we have a “new” periodic solution, or
identical, in which case x(t) and yx(¢) differ only by a phase shift. That is,

x(t) = yx(t — to) (1.3)

for some t,. In this case we say that the pair (7, to) is a symmetry of the periodic
solution x(t). Thus symmetries of periodic solutions have both a spatial com-
ponent y and a temporal component t,,.

(b) Deformation of an Elastic Cube

The first example is an incompressible elastic body in the shape of a unit cube,
subjected to a uniform tension A normal to each face, as in Figure 1.1. For
small values of A the undeformed cube is a stable equilibrium configuration
for the body. But for large 4 this shape, though still an equilibrium configura-
tion, is unstable. What new equilibrium shapes should we expect to occur as
a result of this loss of stability? Our discussion of this question is based on
results of Ball and Schaeffer [1983].

First we must prescribe which deformations of the cube are permitted in
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At i A

(a) (b)

Figure 1.2. Possible equilibrium configurations of a deformed cube with two sides of
equal length: (a) rod-like; (b) plate-like.

our model. For pedagogical purposes we consider only deformations whereby
the cube becomes a rectangular parallelepiped. The consequences of symmetry
already manifest themselves in this very restricted class of deformations. See
Ball and Schaeffer [1983] for a more general setting.

Equilibrium configurations of the body may then be described completely
by the (positive) side lengths I, [, [y subject to the incompressibility constraint

1112l3 = 1 (14)

Clearly any sensible mathematical model for the deformations of the cube
should remain unchanged by permutations of the lengths of the sides. Thus if
(1;,1,,13) represents an equilibrium configuration for a given load 4, then so
do (I, 1;,13), (13, 13,1;), and so on. We can use this observation to classify the
possible types of equilibria. After permuting the I, we may assume that

O0<li<l, <. (1.5)
Should all the [; be equal, then by (1.4) we must have
L=L=1=1, (1.6)

the trivial undeformed cube. There are two possible ways in which two of the
[; might be equal:
(@ I,=1,<lI
e (1.7)
by I, <=1

These equilibria are pictured in Figure 1.2. In (1.7a) one side is longer than
the other two, yielding a “rodlike” deformation; in (1.7b) one side is shorter
than the other two, yielding a “platelike” deformation.
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The remaining possibility is that all sides are of unequal length:
I <1, <. (1.8)

The symmetries of the equilibria (1.6-1.8) are easily found. There are six
permutations of the [, of which five are nontrivial. All six are symmetries of
the trivial solution (1.6). The rodlike and platelike equilibria (1.7) have only
one nontrivial permutational symmetry (interchanging (12) for rods and (23)
for plates). Equilibria (1.8) have no nontrivial symmetries. These symmetries
imply that solutions of the type (1.7) occur in threes whereas solutions of type
(1.8) come six at a time.

We can now refine the question posed earlier. At a loss of stability of the
fully symmetric cubic shape, do we expect to find deformations having two equal
sides, or deformations in which all sides are of unequal length? This question is
by its nature model-independent. If we knew the exact model then we could
in principle solve the model and answer the question without any speculation.
What we are asking is, given a typical f in (1.1) having as symmetries all
permutations on three symbols, what kinds of equilibria do we expect to see?

There is an incorrect approach to this question which illustrates some of
the difficulties. In some sense, in the “typical” case all of the /; are unequal:
imagine selecting them “at random.” It is thus tempting to imagine that a
typical branch of solutions bifurcating from the cubic state will consist of
rectangular parallelepipeds whose sides have three different lengths. However,
this argument applies “typicality” in the wrong context, because we are not
asking the question for arbitrary f, but for functions f with certain specified
symmetries. And in fact we show in §2 that generically bifurcating solutions
will correspond to either rodlike or platelike equilibria. This is what we mean
by a model-independent result depending only on the symmetries of the
problem.

(c) Oscillation of a Hosepipe

Our second example concerns bifurcation to periodic solutions rather than
steady states as previously. Consider a flexible hose of circular cross section
suspended vertically, with water flowing through it at a rate A. See Figure 1.3.

by

Figure 1.3. A circular hose suspended vertically.
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(a) (b)

Figure 1.4. Standing waves (a) and rotating waves (b) in the motion of a hosepipe.

Assume that the stiffness is large compared to the gravitational restoring force,
so that the effect of gravitation may be ignored. When the flow rate is small
the hose remains steady, but when the rate is large the hose begins to oscillate.
The hose is circular, and we assume a circularly symmetric model. That is, the
ODE will have as symmetries all rotations and reflections about the origin in
the horizontal plane.

As shown in Bajaj and Sethna [1982] the occurrence of circular symmetry
does affect the expected types of oscillation. They show that there are two
types of periodic solution that bifurcate from the invariant steady state (at the
same value of A). These are a standing wave, where the end of the hose swings
like a pendulum in a fixed plane containing the vertical axis, and a rotating
wave, where the end of the hose traverses a circle in a horizontal plane. See
Figure 1.4. In both cases the shape of the hose is approximately that of a
cantilever beam in its second mode.

These two types of oscillation may be distinguished by their symmetries.
The standing wave has a spatial symmetry: reflection across the plane in which
the hose oscillates. There is also a spatiotemporal symmetry: reflection in the
vertical axis of the plane of oscillation coupled with a phase shift of half a
period. As remarked in subsection (a), the overall symmetry of the equations
(circular) implies that if one standing wave solution is found, then there must
exist a family of such solutions (related by applying the circular symmetries
of the system). This yields one standing wave solution for each plane con-
taining the vertical axis. The set of all such solutions glues together in phase
space to form an invariant 2-torus.

The rotating waves exhibit a mixture of spatial and temporal symmetry.
The oscillation of the end of the hose takes a very special form. We can
imagine—as is indeed the case—that the time t evolution of the hose is
identical to rotation of the hose through an angle kz in the horizontal plane,
where k is some constant. Now the overall circular symmetry implies that if
a counterclockwise rotating wave solution occurs, then a clockwise rotating
wave must also be present.
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Bajaj and Sethna [1982] show that either of these periodic solutions can be
stable. Which solution is stable depends on the system parameters, in particu-
lar the mass ratio—the ratio of the masses per unit length of the fluid and of
the solid pipe.

At this stage we shall not attempt to explain why these two modes of
oscillation appear, or why no other mode of oscillation is expected. What we
stress at this point is that there is a theory of Hopf bifurcation with symmetry
which gives model-independent information about periodic solutions, de-
pending only on the symmetry assumed in the system. Chapter XVI contains
the theoretical development, and Chapter XVII applies it in particular to the
circularly symmetric case.

(d) Abstraction to the Language of Groups

The purpose of group theory is to provide a language for making rigorous
statements about symmetry, so it is not surprising that groups play a promi-
nent role in the sequel. In particular we note that for any given f the invertible
matrices y satisfying (1.2) always form a group. To see this we must show that
if y and ¢ are invertible matrices that satisfy (1.2), then

(a) 7! satisfies (1.2), and

. (1.9)
(b) yd satisfies (1.2).
It is easy to check (1.9b), because
J(ox) = 3f(6x) = pof(x).
To check (1.9a) set y = yx in (1.2) to obtain
J) =267y (1.10)

and multiply (1.10) by y~*.

We are thus led to define the group of symmetries T of the ODE (1.1). The
symmetries of any particular steady-state solution X, form a subgroup of I’
called the isotropy subgroup of x,, defined by

L, ={reliyxg=x,}. (1.1

Observe that in the traction problem of subsection (b) earlier the group of
symmetries is S, the six-element group of all permutations on three symbols.
The isotropy subgroup of the trivial undeformed solution (1.6) is S, itself. The
isotropy subgroup of rod- or platelike solutions (1.7) is a two-element sub-
group. The isotropy subgroup of solutions (1.8) is the trivial subgroup 1
consisting only of the identity permutation.

The distinct solutions to (1.1) forced by symmetry may also be described
group-theoretically. For x, € R" we define the group orbit through x, to be

Ixo = {yxo:y€T}. (1.12)
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If x, is an equilibrium solution to (1.1) then so is every point in its group orbit.
In other words, a mapping f satisfying (1.2) for all y € I must vanish on (unions
of) group orbits. Elements yx, and dx, of a group orbit are equal if and only
if 671yxo = x,, thatis, 671y e 2., In particular, if T" is a finite group, then the
number of distinct equilibria forced on (1.1) by the existence of one equilibrium
solution x, is

ICIAZ |

where | | indicates the number of elements, or order, of the group. The reader
may verify this formula for the different types of equilibrium in the traction
problem.

Next we rephrase, in general terms, the question concerning which types of
solution to the traction problem can be expected to occur. Suppose that the
ODE (1.1) depends on a bifurcation parameter A, and that the equation has
asymmetry group I"for all 1. Further assume that there is a [-invariant steady
state (that is, one whose isotropy subgroup is I'), which for convenience we
take to be x, = 0. Thus we have an ODE

dx/dt = f(x, 4)
where
Jox,4) = 3f(x, 2)
forallyeT, and
f0,2) =0.

Finally assume that f has a singularity at A = 0, so that
det(df )y, = 0.
The fundamental question is:

Generically, for which isotropy subgroups X should we
expect to find bifurcating branches of steady states,
having ¥ as their group of symmetries?

We think of the full symmetry group I of the I'-invariant steady state breaking
to the symmetry group X of the bifurcating solution branch. This process is
called spontaneous symmetry-breaking.

For the traction problem the answer will turn out to be the following: we
expect symmetry to break from the permutation group S, to the two-element
subgroup Z,, rather than to the trivial subgroup 1.

The whole discussion may be repeated for Hopf bifurcation of a I'-invariant
steady state to periodic solutions. However, we must enlarge I' to accommo-
date phase shifts. Two phase shifts ¢,, ¢, € R will have the identical effect if
they differ by an integer multiple of the period T, so the “correct” group of
phase shifts is R modulo TZ, the circle group S* for period T. The pairs (y, t,)
of symmetry operations for T-periodic solutions thus lie in the group I' x 8!
rather than I'.
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For the hosepipe the group of symmetries is O(2), the rotations and reflec-
tions of the plane that keep the origin fixed. Thus the symmetries of periodic
solutions obtained by Hopf bifurcation are isotropy subgroups inside O(2) x
S!. The standing waves have a Z, reflectional symmetry inside O(2), and also
a Z, spatiotemporal reflection inside O(2) x S'. The rotating waves have the
symmetry group

SO(2) = {(h,0): 0 S"}

where we identify S! with the rotations in O(2). For further details and fine
points on O(2) Hopf bifurcation see Chapter XVIIL

It is worth remarking that this subsection contains the germ of an important
idea, worth bearing in mind throughout. There is an analogy between steady-
state and Hopf bifurcation, in which T is replaced by I' x S!.

§2. Techniques

The study of bifurcation problems with symmetry is complicated because
symmetry often forces eigenvalues of high multiplicity. Thus, even after a
Liapunov-Schmidt reduction (see Chapter VII), it is necessary to study bifur-
cation problems with several state variables. The main theme of this volume
is that techniques exist to simplify the analysis of symmetric bifurcation
problems, and that these techniques exploit the very same symmetries that
cause the initial complication.
The three basic techniques are:

(a) Restriction to fixed-point subspaces,
(b) Invariant theory,
(c) Equivariant singularity theory.

In this section we illustrate these techniques by applying them to the traction
problem described in §1b. We begin by discussing why symmetry forces
multiple eigenvalues and then proceed to the three techniques.

Consider a bifurcation problem

®(y, 1) =0, ®0,4)=0 (2.1
with symmetry group I, so that
®(yy, 1) = y®(y,1) forallyeTl. (2.2)

Without loss of generality we may assume that a bifurcation occurs along the
trivial solution y = 0 at 4 = 0; that is, we let L = (d®), o and assume that

ker L # {0}.
By definition, we have a multiple eigenvalue whenever

dimker L > 2. (2.3)
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Recall two facts from VII, §3:

(i) Matrices in I' map ker L into itself (see Lemma VII, 3.2).
(i) The Liapunov-Schmidt reduced bifurcation equation g: kerL x R —
ker L may be chosen to commute with the matrices in I', so that

glyx, Ay = yg(x,A) forallyeTl. (2.4)
(See Proposition VII, 3.3)
The generalities of the Liapunov—Schmidt reduction imply that

(d9)o,0 = 0. (2.5)

Thus, in the abstract study of bifurcation with symmetry, we may assume that
the bifurcation problem g(x, 1) satisfies (2.4, 2.5).

The occurrence of multiple eigenvalues is intimately related to the notion
of irreducible group actions. We say that a subspace V < ker L is [-invariant
if each matrix y € [ maps V to itself. The group I" acts irreducibly on ker L if
there are no nonzero proper I'-invariant subspaces of ker L. It is not difficult
to prove (see XIII, §3 later) that generically, for bifurcation problems with
symmetry group I', the action of I" on ker L is irreducible.

When the group is trivial, that is, [' = 1, every subspace is I'-invariant, and
irreducibility implies that dim ker L = 1. Thus, when no symmetry is present,
generically we expect simple eigenvalues. That is, we expect bifurcation prob-
lems with only one state variable (after Liapunov—Schmidt reduction). Much
of Volume 1 was devoted to a study of this important “special case.” In fact
we showed in Chapter IX that the simplest muitiple eigenvalue problems for
bifurcation without symmetry occur in codimension three.

All (compact Lie) groups except Z, and 1 have irreducible actions on vector
spaces of dimension greater than one. Thus, when symmetries are present, we
may expect to find bifurcation problems where ker L has dimension greater
than one. Similar remarks apply in the case of Hopf bifurcation: again multiple
eigenvalues are commonplace.

In the remainder of this section we outline the three basic techniques
mentioned earlier.

(a) Restriction to Fixed-point Subspaces

It is possible to reduce the effective dimension of ker L by prescribing in
advance the symmetries of solutions being sought. Suppose we want to find
steady states with symmetry Z, a subgroup of T'. Such solutions must lie in

Fix(Z) = {yekerL:gy = yforallo e z, (2.6)

the fixed-point subspace for Z. (Note that Fix(Z) is a vector subspace of ker L
since it is defined by a system of linear equa‘tions.) To find such steady states
it suffices to solve the restricted system of equations
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g|Fix(Z) x R = 0.

This task is made easier by the fact that fixed-point subspaces are invariant
for g; that is,

g: Fix(Z) x R - Fix(X). 2.7)
To verify (2.7), suppose that y € Fix(Z) and ¢ € Z. Then
ag(y,4) = g(oy,4) = g(y,4)

so ¢ fixes g(y, ), and g(y, 4) € Fix(Z). Thus, even though g may be a highly
nonlinear mapping, symmetry forces g to have invariant linear subspaces.
By (2.7) the system of equations

g(y,4) =0,  yeFix(Z)

consists of m = dim Fix(X) equations, and m may be considerably smaller than
dimker L. The extreme case is when

dim Fix(Z) = 1. (2.8)

Then (2.7) is a bifurcation problem in one state variable.

The fundamental observation about one-dimensional fixed-point subspaces
is the equivariant branching lemma, which asserts that generically, for each
satisfying (2.8), there exists a unique branch of nontrivial steady-state solutions
to g = 0 lying in Fix(X) x R. The proof of this lemma, first stated in this
abstract form by Vanderbauwhede [1980], is elementary (see Theorem XIII,
3.2, and also Cicogna [1981]). The lemma’s usefulness is based on the fact that
an analytic statement (the existence of a branch of solutions with certain
symmetry properties) is replaced by an algebraic one (the existence of sub-
groups with one-dimensional fixed-point subspace). The equivariant branching
lemma provides one instance where symmetry complicates a bifurcation
analysis (by forcing eigenvalues of high multiplicity), yet these same symmetries
help simplify the search for solutions.

We consider here an example which enables us to show that generically
rod- and platelike solutions occur in the traction problem of §1. We first
discuss this example and then return to the traction problem later.

Identify R? with C and consider the dihedral group D; of all symmetries of
an equilateral triangle. More precisely, D5 is a six-element group generated
by an element of order 2 and an element of order 3:

@ ze—z
. (2.9)
(b) zr>e2miByg,
The action of D5 on C is irreducible. For if V is a nonzero proper D;-invariant
subspace it must be a line through the origin, but no line can be fixed by a
2n/3 rotation.
It is easy to find a subgroup of D, that has a one-dimensional fixed-point

space. Let £ be the two-element group generated by (2.9a). Then Fix(Z)
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consists of all z for which z = z; that is, Fix(Z) = R. The equivariant branching
lemma implies that generically there exist branches of solutions, to bifurcation
problems with D5 symmetry, that have at least a reflectional symmetry.

We now relate this result to the traction problem. Recall from §1b that the
symmetry group of the traction problem is the permutation group S;, and
that equilibria are determined by a bifurcation problem defined on the space
of side lengths (I, 1,, I3) of the body, subject to the incompressibility constraint

Ll =1 (2.10)
We seek solutions that bifurcate from the “trivial” cubic shape
L=L=I;=1.

We claim that such a problem is abstractly isomorphic to the D, bifurcation
problem discussed previously. To see this observe that S, and D, are iso-
morphic groups. The isomorphism maps z — 7 to the permutation (/,, I, 13)
and z — e?™z to the permutation (I,, 5, 1,). Next, observe that the traction
problem is posed on a two-dimensional submanifold of R? defined by (2.10).
Locally near (1, 1, 1) we can pose this bifurcation problem on the tangent plane

to the manifold (2.10). It is a simple exercise to show that S, acts on the plane
(2.11) as symmetries of an equilateral triangle (whose sides lie on the inter-
section of the plane (2.11) with the coordinate planes [ =0)

These identifications, coupled with the D, result stated previously, show
that generically we expect a unique branch of solutions to the traction prob-
lem whose solutions are symmetric under the permutation (/,,1,,/;). That
is, rod- and platelike solutions are to be expected. (The original convention
I, <1, < I is best abandoned at this stage: the two cases should be thought
ofas i, =1, <lyand I, =1, > l;.) In the next subsection we use invariant
theory to show that generically no other solutions occur near bifurcation.

We summarize the discussion. There is an algebraic criterion which gives a
partial answer to the problem of spontaneous symmetry-breaking. Given a
group of matrices I" acting on R” find all isotropy subgroups £ whose fixed-
point subspace is one-dimensional. Then (generically) the equivariant branching
lemma lets us associate to each such isotropy subgroup a unique branch
of steady-state solutions. The general problem of spontaneous symmetry-
breaking—for which subgroups X do we generically have solutions?—remains
unsolved; nevertheless this technique provides us with much information. In
Chapter XIII we present several examples, the most interesting being bifurca-
tion problems with spherical symmetry.

The same complications of high multiplicity occur in Hopf bifurcation for
symmetric systems, since the purely imaginary eigenspace of dg is again
invariant under I'. There is a result, analogous to the equivariant branching
lemma, which guarantees the existence of branches of periodic solutions
corresponding to isotropy subgroups of I' x S! with two-dimensional fixed-
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point subspace. See Theorem X V1, 3.1. Indeed the rotating and standing waves
describing oscillations of the hosepipe in §1b may be understood from this
point of view; see X VII, §2.

(b) Invariant Theory

It is well known that every even function in x is a function of x? and that
every odd function is the product of an even function with x. These statements
are trivial instances of two important theorems from the invariant theory of
compact groups, theorems that provide a theoretical basis for many of the
calculations presented in this volume. In particular, invariant theory lets us
organize, in a rational way, the Taylor expansion of mappings satisfying the
commutativity condition (2.4).

We begin our discussion with a definition. A function f:kerL — R is
I-invariant if

f(yx) = f(x) forallyerl.

For example, if I' = Z, = {+1} acting on R by multiplication, then the
invariant functions are just the even functions. Moreover, if f is a Z,-invariant
polynomial, then there exists a polynomial p such that

f(x) = p(x?).

In general, the Hilbert—-Weyl theorem (XII, 4.2) implies that for compact
groups I' there always exist finitely many (homogeneous) I'-invariant poly-
nomials uy, ..., ug such that every I'-invariant polynomial f has the form

J(x) = puy(x),..., uy(x)) (2.12)

for some polynomial p.
Similarly, g: ker L — ker L is I"-equivariant (or commutes with T') if

g(yx) = yg(x) forallyeT.
The Z,-equivariant mapping are just odd functions, having the form
g(x) = p(x?)x.

The theorem on invariant functions (2.12) may also be used to show that

there exists a finite set of I -equivariant polynomial mappings X,, ..., X, such
that every I'-equivariant polynomial mapping has the form
g= X+ -+ X, (2.13)

where each f; is a I'-invariant polynomial. See Theorem XII, 5.2. Both theo-
rems (2.12) and (2.13) may be generalized from polynomials to smooth germs
(without changing the u; or the X, ): see Theorems XII, 4.3, and 5.3.

Having stated these general facts, we consider D5 acting on C as in (2.9). It
is easy to check that
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u=zz and v=Re(z?) (2.14)
are D;-invariant, and that
X(zy=z and Y(z) =722 (2.15)

are D;-equivariant. A longer but still elementary calculation shows that every
D;-invariant polynomial f has the form

f(z) = plu,v) (2.16)
and that every D,-equivariant polynomial mapping g has the form
9(2) = p(u,0) X (2) + q(u, ) Y(2). (2.17)

See Examples XII, 4.1¢c and 5.4c.
Observe that (2.17) lets us enumerate the terms in the Taylor series of g. In
particular there is

one linear term z,
one quadratic term z2,
one cubic term uz.

Their coefficients are p(0,0), g(0,0), and p,(0, 0), respectively.

We discuss the implications of (2.17) for the traction problem. In particular
we show that generically only rod- or platelike solutions bifurcate from the
cubic shape. To establish this, observe that (2.17) implies that the traction
problem leads to a bifurcation problem of the form

g(z, A = p(u,v, )z + q(u,v,)z?2 =0 (2.18)

where the trivial cubic shape corresponds to z = 0. At a bifurcation point
{which we take to be A = 0) the linear term in (2.18) vanishes, so

p(0,0,0) = 0.
Generically in (2.18) the coefficient of the quadratic term is nonzero; that is,

q(0,0,0) # 0. (2.19)

Using the special form (2.18) we now attempt to solve g = 0. If z and z? are
linearly independent (as vectors in R?) then g = 0 has a solution only if
p = q = 0. The genericity assumption (2.19) preciudes such solutions near
z = 0. Thus all solutions bifurcating from the trivial solution must have z a
real multiple of z2; that is, Im(z3) = 0. It is easy to check that points z with
Im(z3) = 0 are those with a Z, symmetry. (Note that there are three Z,
subgroups of D,, corresponding to the three reflectional axes of an equilateral
triangle: our previous analysis refers to a particular one of these.) These points
correspond to rod- or platelike solutions, which perforce are the generic
possibilities.

Up till now we have not discussed whether, in our theory, the rod- and
platelike solutions can be asymptotically stable. In the next subsection we
show that generically they are unstable near bifurcation. Thus stable solutions
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can be found only globally, and we use singularity-theoretic methods to
achieve this.

For general groups I' it is a difficult task to find explicitly the generators
uy,...,u;and X,, ..., X, whose existence is asserted in (2.12, 2.13). There are,
however, many examples of group actions where such generators can be found
explicitly. In these cases the technique of writing the general I'-equivariant
mapping g in the form (2.13), and then using this form to analyze the zero-set
g = 0, is a useful one. Even when explicit generators cannot be found, it may
be possible to analyze the form of a I'-equivariant mapping up to some
particular order (say cubic or quintic) in the Taylor series, and to proceed
from that description.

(c) Equivariant Singularity Theory

Until this point we have discussed only issues concerning the generic behavior
of bifurcation problems with symmetry. In Volume I we described situations
where the study of degenerate bifurcations proved useful, and we showed that
singularity theory is an appropriate tool for such studies. As might be expected,
the study of degenerate bifurcation problems with symmetry can be equally
profitable, and here equivariant singularity theory is appropriate. We motivate
our discussion by returning to the traction problem.

The rod- and platelike solutions to the traction problem which we have
found previously are unstable (Exercise 2.1). In particular the genericity as-
sumption (2.19) is precisely what is needed to prove these solutions unstable.
Hence, to find asymptotically stable solutions with local methods, we must
consider degenerate bifurcation problems and their universal unfoldings. (We
note that the instability of the rod- and platelike solutions can be obtained
by a general group-theoretic argument; see Theorem XII, 4.3.) We now pro-
vide a short summary of equivariant singularity theory, apply it to the least
degenerate bifurcation problems with D, symmetry, and interpret the results
for the traction problem.

A singularity theory analysis depends on having a class of mappings, and
a notion of equivalence sufficiently robust for the determinacy and unfolding
theorems to hold. Such a setting exists for symmetric bifurcation problems.
The class of mappings is the space of I'-equivariant mappings. The notion of
equivalence is I'-equivalence, defined as follows: two I'-equivariant bifurcation
problems g and h are I'-equivalent if

g(x, 2) = S(x, Wh(X (x, 4), A(%) (2.20)

where S is an invertible matrix, X is a difffomorphism depending on 4, and
A is a difffomorphism. Certain equivariance conditions are imposed on §
and X in order to preserve I'-equivariance. See Definition XIV, 1.1, for
details. Chapters X1V and XV present equivariant singularity theory, includ-
ing examples.

We now preview the discussion of D; symmetry in XV, §4. Suppose that
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Figure 2.1. Least degenerate D, bifurcation diagram.

(2.19) fails, so that
q(0,0,0) = 0.

Then a normal form for the least degenerate D,-equivariant bifurcation
problem with g = 0 is

h(z,2) = (eu + 64)z + (ou + mv)z? (221

where ¢, 3,0 = +1 and m # 0 is a modal parameter (see Chapters V and X).
This normal form is obtained subject to certain nondegeneracy conditions on
terms of order 3, 4, and 5 in the general D,-equivariant bifurcation problem
g (see Theorem X1V, 4.4). If we assume that the trivial solution is asymptotically
stable for 4 < 0 and that the Z,-symmetric solutions bifurcate supercritically,
thene = 1 and d = — 1. A schematic bifurcation diagram is shown in Figure
2.1

Two branches of Z,-symmetric solutions bifurcate from the trivial solution.
These correspond to rod- and platelike solutions, respectively. The sign of the
fourth order coefficient ¢ determines which is stable. We assume, for argument’s
sake, that the platelike solutions are asymptotically stable.

Of course our real interest lies not in the degenerate bifurcation problem
itself, but in its perturbations. The universal unfolding for (2.21) in the world
of D, symmetry is obtained by adding one perturbation term az2. The notable
qualitative features of the perturbed bifurcation diagrams are the changes in
the stability of the Z,-symmetric solutions and the introduction of solutions
with no nontrivial symmetry via secondary bifurcation. Moreover, depending
on the sign of the fifth order coefficient m, these solutions with trivial symmetry
may be asymptotically stable. Figure 2.2 shows the schematic bifurcation
diagrams when o = 1.

Finally, we interpret these diagrams for the traction problem. Suppose that
by varying a parameter we find a degenerate D, bifurcation problem in which
the fifth order coefficient m happens to be positive (Figure 2.2b). Then, when
the trivial cubic shape loses stability as the tension A on the faces is increased,
we see a jump to a platelike shape. As A is increased further, the platelike shape
loses stability and the body deforms into a rectangular parallelepiped with
three unequal sides. Eventually, as 4 is increased still further, the body deforms
into a rodlike shape. In Case Study 5 we show, following Ball and Schaeffer
[1983], that this scenario does occur in equations modeling an elastic body
made of “Mooney-Rivlin material.”

We end this section by noting that degeneracies can also be important for
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Figure 2.2. Universal unfolding of a D, bifurcation problem.

Hopf bifurcation with symmetry, just as in the asymmetric case (VIIL, §5). For
example, recall the oscillations of a hosepipe from §1b. There are two possible
dominant motions: rotating and standing waves. Either mode can be asymp-
totically stable, depending on the mass ratio 5. Bajaj and Sethna [1982] show
that there are critical values of f§ at which a transition of stability (or a
degeneracy) occurs. This type of degeneracy will be studied in X V11, §5, using
singularity-theoretic methods. The main result is the existence of an invariant
2-torus in the dynamics.

EXERCISES

2.1. Show that generically both rod- and platelike solutions to the traction problem

22

23.

24.

must be unstable. Hint: Write the g of (2.18) in real coordinates (x, y) where
z = x + iy. Compute the Jacobian matrix (dg) at (x,0), a typical point with Z,
symmetry, and show that the eigenvalues are p + 2xq. Finally observe that solu-
tions (x,0) to g = 0 satisfy p + xg = 0. Hence show that the eigenvalues p + 2xq
are of opposite sign when g # 0.

Verify that u and v in (2.14) are D,-invariant and that X and Y in (2.15) are
D;-equivariant.

Consider the action of D, on C defined in (2.9). Show that points z € C with
isotropy subgroup isomorphic to Z, satisfy Im(z3) = 0, z # 0.

Let S; act on (I;,l,,1;)-space by permuting coordinates. Show that the S;-
invariant polynomials are generated by the elementary symmetric polynomials

uy=L+L+1
uy =1l + 1,15+ 1L,

uy =151
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§3. Mode Interactions

The simplest kinds of degeneracy occur in the linear terms of bifurcation
equations. A linear degeneracy occurs when, at an equilibrium, the Jacobian
matrix has eigenvalues on the imaginary axis. Steady-state bifurcation corre-
sponds to zero eigenvalues, and Hopf bifurcation to purely imaginary eigen-
values. Of course, nondegeneracy conditions involving higher order terms
must be satisfied in order to have the simplest steady-state bifurcation (the
limit point x? + 1) and the simplest Hopf bifurcation. See Table IV, 2.3, and
Theorem VIII, 3.2.

The standard dynamical systems theory of local bifurcation (see Guckenhei-
mer and Holmes [1983]) counts codimension by the number of degeneracies
that must be satisfied in order for a given singularity to occur. From this point
of view (where no distinguished bifurcation parameter is present) limit points
(or saddle-nodes) and Hopf bifurcations have codimension one. The codimen-
sion two singularities occur either through a degeneracy in the higher order
terms or through a second linear degeneracy.

In Volume I we gave an account of a theory for organizing nonlinear
degeneracies at simple eigenvalues. In the last two chapters of this volume we
discuss phenomena associated with double linear degeneracies. Chapter XIX
treats aspects of these double degeneracies in systems without symmetry, and
Chapter XX deals with the same issues when circular O(2) symmetry is present.
In this section we preview some of the points raised in those chapters.

The eigenspaces associated with eigenvalues of the Jacobian matrix are
often called modes. In this language we may speak of “modes going unstable”
as the corresponding eigenvalues cross the imaginary axis. Of course, the
codimension two linear degeneracies then correspond to two modes going
unstable simultaneously. Such degeneracies are interesting because nonlinear
terms often couple the modes to create behavior more complicated than might
be expected from them individually. These complications are said to be
produced by nonlinear interactions of the two modes; more briefly, by mode
interaction.

We divide mode interactions into three types:

(i) Steady-state/steady-state,
(ii) Steady-state/Hopf,
(iii) Hopf/Hopf.

We discuss briefly some notable features of these interactions. In (i) we see
immediately a difference between the steady-state and dynamic theories of
ODEs. A double zero eigenvalue can occur in a steady-state equation only in
codimension three (see Chapter I1X); however, the steady-state/steady-state
mode interaction (two zero eigenvalues) occurs in codimension two. This
apparent inconsistency is resolved by recalling that a 2 x 2 matrix with a
double zero eigenvalue need not be zero. Consider the system of ODEs
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Sl AU (VU 2 3.1
x_[o O]x+ (x € R?). (3.1
Locally, the steady states of this system may be found by Liapunov-Schmidt
reduction. Since the Jacobian matrix is nonzero the system reduces to a
bifurcation problem in one state variable where only limit points are expected.
However, under perturbation the singularity (3.1) produces interesting dy-
namic behavior, namely periodic and homoclinic orbits. See Bogdanov [1975],
Takens [1974], and Guckenheimer and Holmes [1983].

The most notable feature of steady-state/Hopf mode interactions is the
occurrence of an invariant 2-torus in the dynamics. For Hopf/Hopf interac-
tions it is the occurrence of an invariant 3-torus. In our subsequent discussion
we emphasize those aspects of the dynamics that can be obtained by “steady-
state” techniques. For example, the existence (but not the stability) of the
2-torus can be deduced from a change of stability along a branch of periodic
solutions, and these periodic solutions can be found by static bifurcation
techniques as in Chapter VIIL Thus “steady-state” techniques can find many
states that are not steady.

Our discussion in §2 shows that when symmetries are present, multiple
eigenvalues may be expected. This happens because the symmetries leave the
associated eigenspace invariant. The multiplicity of eigenvalues is least when
this action is irreducible, and this is the generic situation. It is then convenient
to speak of the entire (irreducible) eigenspace as a single mode.

As we might expect, the high multiplicity causes complicated behavior in
mode interactions. For example, when symmetry is present, just the enumera-
tion of the possible mode interactions is complicated, because each irreducible
representation of a group produces its own type of steady-state and Hopf
bifurcation. Thus the mode interactions must be indexed according to the
irreducible representations of the group. See Chapter XX, where details of
mode interaction with O(2) symmetry are presented.

Mode interactions with symmetry usually lead to large numbers of eigen-
values on the imaginary axis. For example, when O(2) symmetry is present we
expect to find, among other things, Hopf/Hopf interactions of codimension
two, having eight purely imaginary eigenvalues. Thus in systems with circular
symmetry and two parameters, we may expect to find parameter values where
eight eigenvalues of the Jacobian lie on the imaginary axis. Despite this, the
complications generated by these large numbers of critical eigenvalues often
remain amenable to the techniques inspired by symmetry, as described in the
previous section.

We mention two applications of mode interactions with symmetry: the
buckling of a rectangular plate and the Couette—Taylor system. We showed
in Case Study 3 that a steady-state/steady-state mode interaction occurs in
the buckling of a rectangular plate, when only two parameters are varied. In
the experiment, the plate is subjected to an end load A. As A is increased the
undeformed state loses stability and the plate buckles. The buckled state has
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a well-defined wave number, the number of maxima of the deformed plate
along its midline. The value of this wave number depends on the aspect ratio
a, the ratio of width to length. At certain critical values of o the plate loses
stability simultaneously to buckling patterns with two consecutive wave
numbers. The Z, @ Z, symmetry permits this double eigenvalue to occur in
codimension two. One product of this nonlinear interaction is the existence
of mixed mode buckled states.

One of the most famous experiments in fluid mechanics, the Couette-Taylor
system, provides another physical example where mode interactions with sym-
metry occur. We summarize some of the results here; details are in Case Study
6. The experimental apparatus consists of a fluid contained between two
independently rotating coaxial cylinders. The flow is described by the Navier—
Stokes equations, in which the velocity field is the principal unknown. A
solution of these equations is time-independent (or a steady state) if the
velocity field does not vary in time (even though the fluid moves). For example,
Couette flow, in which fluid particles move in circles around the axis at a speed
depending only on the radius, is time-independent. Although, strictly speaking,
Couette flow is only a mathematical idealization which treats the apparatus
as infinitely long, nonetheless it is the basis of the bifurcation analysis.

Both time-independent and time-dependent transitions from Couette flow
have been observed experimentally. G.I. Taylor [1923] noticed that when the
outer cylinder is held fixed and the speed A of the inner cylinder is increased,
Couette flow loses stability to a time-independent state now known as Taylor
vortices; see Figure 1.1(b) of Case Study 6. In his experiments Taylor also
found that in the counterrotating case, when the outer cylinder is set in motion
at a fixed and sufficiently large speed a < 0, then as A > O is increased, Couette
flow loses stability to a time-dependent state called spirals. See Figure 1.1(c)
of Case Study 6 and Andereck, Liu, and Swinney [1986]. It is not surprising,
then, that there is a critical speed of counterrotation for which Couette flow
loses stability simultaneously to two modes as 4 is increased. That is, there is
a codimension two steady-state/Hopf interaction. Moreover, because of vari-
ous symmetries in the mathematical models for this experiment, the eigenvalues
are double.

Many other states have been observed for different speeds of the cylinders.
We mention two here: wavy vortices and twisted vortices, illustrated in Figures
1.1(d, e) of Case Study 6. These states can be produced mathematically from
this mode interaction, as we show in Case Study 6.

Hopf/Hopf mode interactions also occur in the Couette—Taylor system.
The spiral state has an associated azimuthal wave number m defined by the
number of distinct spirals that intertwine in the apparatus. When Couette flow
loses stability to spirals, the actual wave number depends on the speed a of
counterrotation. In fact, there are critical speeds a where Couette flow loses
stability simultaneously to spirals with wave numbers m and m + 1. Since Fhe
bifurcation to spirals is a Hopf bifurcation, we have a Hopf/Hopf interaction
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(with eight eigenvalues on the imaginary axis). These interactions have been
studied by Chossat [1985a] and Chossat et al. [1987].

§4. Overview

Bifurcations of systems without symmetry occur generically at a simple eigen-
value, and may be of steady-state or Hopf type, corresponding respectively
to zero or imaginary eigenvalues. Degeneracies are of two basic types: linear
degeneracies (or multiple eigenvalues) leading to mode interaction and non-
linear degeneracies in higher order terms leading to complicated branching
patterns.

When symmetry is present, a similar picture applies, although multiple
eigenvalues are commonplace even in the generic case. Instead, the basic
“unit” of which bifurcations are built is an irreducible representation of the
group I" (or of I' x S! in the Hopf case). Again it is necessary to understand:

(a) The generic case (steady-state or Hopf),

(b) Nonlinear degeneracies (steady-state or Hopf),

(c) Linear degeneracies (steady-state/steady-state, steady-state/Hopf, and
Hopf/Hopf mode interaction).

The behavior depends on the choice of the representations involved, so that
many more individual cases arise, even for a fixed group I'.

The mathematical methods employed may be described as being either
geometric or algebraic. Geometric methods center around the group-theoretic
features of the analysis: representation theory and the yoga of fixed-point
subspaces and isotropy subgroups. In a sense, these methods attempt to
extract as much information as possible from linear data. They apply especially
to the generic case, and to finding the correct setting for mode interactions.

The algebraic methods are invariant theory and equivariant singularity
theory. They are designed to deal with the effects of higher order terms—
“genuine nonlinearities.” They occur in their purest form in the study of
nonlinear degeneracies. In practice the boundaries are not so clear-cut, and
both methods tend to become intertwined.

The pattern of development of the remainder of this volume is as follows.

Geometry (Chapters X 11-X111). Chapter XII is a relatively concrete introduc-
tion to Lie groups and their representations, and to invariant theory, con-
centrating on those results (mainly the simpler ones) that prove useful in the
sequel. Chapter XIII describes the geometry of group actions and proves the
equivariant branching lemma, a fundamental result in steady-state bifurca-
tion. The groups D,, (symmetries of a regular n-gon), SO(3) (rotations in R?),
and O(3) (rotations and reflections in R3) are discussed as examples, the latter
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two at some length since they have an infinite family of irreducible representa-

tions. These geometric ideas are applied in Case Study 4 to the problem of
Bénard convection in the plane.

Algebra {Chapters XIV-XV). Chapter XIV sets up equivariant singularity
theory, concentrating on the recognition problem, tangent spaces, and intrinsic
ideals, by analogy with Chapter I1. Similarly Chapter XV develops unfolding
theory, by analogy with Chapter IIl, and includes proofs of the main theorems,
promised from Volume 1. The ideas are illustrated using the dihedral group
D, (the symmetry group of an equilateral triangle) and its relation to the
spherical Bénard problem via spherical harmonics of order 2. Case Study 5
shows how to apply the algebraic methods to the traction problem for an
elastic cube, continuing the analysis outlined previously in §2.

Hopf Bifurcation (Chapters XVI-XVIII). At this stage the theory moves
away from static bifurcation and begins to acquire dynamic aspects. Chapter
X VI develops a general theory of equivariant Hopf bifurcation, concentrating
on existence and stability resuits. Chapter XVII applies this methodology to
Hopf bifurcation with circular symmetry (the group O(2)), considering both
the generic case and nonlinear degeneracies (by a trick: reduction to amplitude
equations). Quasi-periodic motion on a torus occurs here. The closely related
groups SO(2), Z,, and O(n) (acting on R") are also discussed. More com-
plicated examples are dealt with in Chapter XVIII. Hopf bifurcation with
dihedral group symmetry D, is studied in detail and applied to oscillators
coupled in a ring. Hopf bifurcation with spherical symmetry and Hopf bifur-
cation on the hexagonal lattice (relevant to doubly diffusive systems) are
sketched.

Mode Interactions (Chapters XXX X). Chapter XIX discusses mode inter-
actions without any prescribed symmetry, concentrating on the steady-state/
Hopf and Hopf/Hopf cases. Because of the natural St symmetry of Hopf bifur-
cation, these problems acquire Z, and Z, @ Z, symmetry during the analysis
(rendering results from Volume I applicable). Finally Chapter XX considers
mode interactions with O(2) symmetry.

The results are applied to Taylor—Couette flow inlong cylinders (i.c., subject
to periodic boundary conditions) in Case Study 6, which brings together
~ virtually all of the ideas developed in this volume. The outcome is a coherent
description, in symmetry terms, of some of the prechaotic behavior observed
in this much-studied experiment.



CHAPTER XII

Group-Theoretic Preliminaries

§0. Introduction

The basic theme of this volume is that the symmetries of bifurcating systems
impose strong restrictions on the form of their solutions and the way in which
the bifurcation may take place. There are two major subthemes, which we
might term “geometric” and “algebraic.” These lead us to introduce two pieces
of mathematical machinery: group representation theory and equivariant
singularity theory. The aim of this chapter is to describe, in a fairly concrete
fashion, the requisite mathematical background. In this manner we hope to
make the methods accessible to a wide audience.

A symmetry of a system % is a transformation of & that preserves some
particular structure. The set I of all such transformations has seveal pleasant
properties, which can be summarized by saying that I" is a group. In this book
Z is a real vector space R", the transformations are linear mappings y: R" - R",
and the structure to be preserved is a particular bifurcation problem. For
example, consider the static bifurcation problem

g(x,4) =0 0.1)

where g: R" x R - R" is a smooth (C®) mapping, 4 being the bifurcation
parameter. By “preserved” we mean that forallye I’

g(yx, ) = yg(x, 4) (0.2)

so that every y € I' commutes with g. It follows that x is a solution if and only
if yx is, so the solution set to g = 0 is preserved by the symmetries y. The
“geometric” subtheme is the study of how I' transforms R"; the “algebraic”
subtheme deals with the use of (0.2) to restrict the form of g.

We therefore begin in §la with some group theory. We introduce the idea
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of a Lie group I acting on a space R” and describe fundamental examples
including the orthogonal group O(n), the circle group S!, the dihedral group
D, and the n-torus T”. A given abstract group I" can act as transformations
of a space in many ways; this is discussed in §1b and leads to the ideas of an
action and a representation of I'. These are two slightly different ways of
looking at the same basic idea: a group of n x n matrices that is isomorphic,
as an abstract group, to I'.

A Lie group has topological as well as algebraic properties, and the im-
portant ones for this book are compactness and, to a lesser extent, connected-
ness. The representation theory of a compact Lie group is especially well
understood, and we shall confine attention throughout to the compact case.
(Every finite group is compact, and so are O(n), S!, and T".) In §1c we discuss
the existence on a compact Lie group of an invariant (Haar) integral, which
is important in a number of situations because it allows us to average over
the group. For example, it permits us to assume that I' acts by orthogonal
transformations of R".

In §2 we describe the decomposition of a given representation into simpler
ones, called irreducible representations. In fact, if I' is a compact Lie group
acting on V = R", then we can write V as a direct sum

V=V, @V, @V,

of subspaces V;, each invariant under T, such that ¥; has no I'-invariant
subspaces other than {0} and V}. These “irreducible components” of V are the
fundamental building blocks of representation theory. The process of decom-
posing V' is in a sense analogous to that of diagonalizing a matrix and is done
for the same purpose—to simplify the mathematics.

In §3 we discuss /inear maps R" — R” that commute with an action of T".
This discussion has important implications for bifurcation problems (0.1) that
satisfy (0.2), because the linearization (dg), must commute with I'. Two main
points are made. The first is that there is a notion stronger than irreducibility,
absolute irreducibility, which ensures that only scalar multiples of the identity
commute with T'. The second is that certain uniquely defined subspaces must
be invariant under any mapping that commutes with I'. We shall use these
ideas to restrict the form of (dg),.

§§4-6 develop the “algebraic” subtheme. In §4 we consider invariant func-

tions f: R" — R, that is, functions such that
fyx) = f(x), (xeR",yel)

There are two main results. The first, due to Hilbert and Weyl, states that
(when T is compact) the polynomial invariants are generated by a finite set of
polynomials u,, ..., u;. The second, due to Schwarz, states that every smooth
invariant f is of the form h(uy,...,u,) for a smooth function h. We give ex-
amples for the main groups of interest: the proofs are postponed until §6.

In §5 we describe analogous results, due to Poénaru, for equivariant map-
pings, that is, mappings g: R" > R" that commute with T" as in (0.2). We
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emphasize the simple but crucial fact that if f(x) is invariant and k(x) is
equivariant, then f(x)k(x) is also equivariant. In more abstract language, the
space &(I') of equivariant mappingsisa module over the ring &(I') of invariant
functions. These results are needed in Chapters XIV-XV to set up equivariant
singularity theory.

In §6 we discuss the proofs of four theorems from §§4-5: the Hilbert—Weyl
theorem, Schwarz’s theorem, and their equivariant analogues. This section
may be omitted if desired.

In §7 we return to group theory and present three results about torus groups
which will be needed in Chapters XIX-XX on mode interactions. This section
may be omitted on first reading.

§1. Group Theory

In order to make precise statements about symmetries, the language and point
of view of group theory are indispensable. In this section and the next we
present some basic facts about Lie groups. We assume that the reader is
familiar with elementary group-theoretic concepts such as subgroups, normal
subgroups, conjugacy, homomorphisms, and quotient (or factor) groups. We
also assume familiarity with elementary topological concepts in R" such as
open, compact, and connected sets. See Richtmeyer [1978]. Fortunately we
do not require the deeper results from the theory of Lie groups, so the material
presented here should prove reasonably tractable. We have adopted a fairly
concrete point of view in the hope that this will make the ideas more accessible
to readers having only a nodding acquaintance with modern algebra.

We treat three main topics in this section. The first consists of basic defini-
tions and examples. The second is the beginnings of representation theory.
The third is the existence of an invariant integral, allowing us to employ
averaging arguments which in particular let us identify any representation of
a compact Lie group with a group of orthogonal transformations.

(a) Lie Groups

Let GL(n) denote the group of all invertible linear transformations of the
vector space R" into itself, or equivalently the group of nonsingular n x n
matrices over R. For our purposes we shall define a Lie group to be a closed
subgroup I of GL(n). In the literature these are called linear Lie groups, and
the term Lie group is given a more general definition. However, it is a theorem
that every compact Lie group in this more general sense is topologically
isomorphic to a linear Lie group; see Bourbaki [1960]. By closed we mean the
following. The space of all n x n matrices may be identified with R"*, which
contains GL(n) as an open subset. Then I' is a closed subgroup if it is a closed
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subset of GL(n) as well as a subgroup of GL(n). A Lie subgroup of I is just a
closed subgroup in the same sense.

By defining Lie groups as closed groups of matrices we avoid discussing
some of their topological and differentiable structure. However, we often wish
to refer to a Lie group by the name of its associated abstract group, a practice
that is potentially confusing. For example, the two-element group Z,={+1}
is isomorphic as an abstract group to the subgroup {I,, —1,} of GL(n) for any
n, where I, is the n x n identity matrix. Usually, the precise group of matrices
in question will be specified by the context. We often use a phrase such as “Z,
is the Lie group { +1,}” rather than the more precise but cumbersome phrase
“Z, is isomorphic to the Lie group {+1,}.” This practice should not cause
confusion.

We now give some examples of Lie groups which will prove useful through-
out the book.

EXAMPLES 1.1.
(a) The n-dimensional orthogonal group O(n) consists of all n x n matrices A
satisfying

AA ' =1,.

Here A' is the transpose of A.

(b) The special orthogonal group SO(n) consists of all 4 € O(n) such that
det A = 1. The group SO(n) is often called the n-dimensional rotation group.
In particular SO(2) consists precisely of the planar rotations

R9=,:Cosg —sm9]’ (w1

sinf  cosé@

In this way, SO(2) may be identified with the circle group S!, the identification
being Ry— 6. The group O(2) is generated by SO(2) together with the flip

1 0
x=[o _1]. (1.2)

(c) Let Z, denote the cyclic group of order n. (Recall that the order of a finite
group is the number of elements that it contains). We may identify Z, with
the group of 2 x 2 matrices generated by R,,,; thus Z, is a Lie group.

(d) The dihedral group D, of order 2n is generated by Z,, together with an
element of order 2 that does not commute with Z,. For definiteness, we iden-
tify D, with the group of 2 x 2 matrices generated by R,,,, and the flip
(1.2). This clearly exhibits D, as a Lie group. Geometrically D, is the sym-
metry group of the regular n-gon, whereas Z, is the subgroup of rotational
symmetries.

(e) All finite groups are isomorphic to Lie groups; see Exercise 1.2.

(f) The n-dimensional torus T" = S x -+ x 8! (n times) is isomorphic to a
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Lie group. To show this, identify 6 € T" with the matrix

Ry, O o ... 0
0 Ry, 0 ... O
0 0 Ry, ... O
0 0 0 ... Ry
in GL(2n).
(g) R"isisomorphic to the group of matrices of the form
1 a, a, ... a,
o 1 0 e GL(n + 1)
0 0 1
where g; e R,j=1,...,n

It is important at the outset to eliminate one potential source of confusion.
We have already seen that it is possible for a single abstract group to occur
in more than one way as a group of matrices. The question that must be
addressed is, when should two matrix groups which are isomorphic as abstract
groups be considered as essentially the same? This question leads directly into
representation theory and is dealt with in subsection (b). To illustrate what is
involved, observe on the one hand that changing the basis in R"” will change
the actual matrices that appear in a given Lie group—surely just a cosmetic
change. On the other hand, consider the following two groups of matrices
isomorphic to Z,:

{I,, =1} (1.3)

ot &

There is a definite geometric distinction between (1.3), where the element of
order 2 in Z, is a rotation, and (1.4), where it is a reflection. Such a distinction
is often important in the theory.

Because R™ is a topological space, we can talk about topological properties
of Lie groups as well as algebraic ones. In particular we say that a Lie group
I" is compact or connected if it is compact or connected as a subset of R"’.
Equivalently, I' is compact if and only if the entries in the matrices defining
I' are bounded. It follows that O(n), SO(n), T" and all finite groups are
compact; but R" and GL(n) are not. Compactness is crucial for much of the
theory we develop here. It would be of great significance for applications to
modify the theory so that it extends to suitable noncompact groups. For an
example, see Case Study 4.

and
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The identity element of I is denoted by I. In fact, if I' = GL(n) we must
have I = I,, the n x nidentity matrix. The trivial group {I} = {I,} is denoted
by 1,, or more commonly by 1 when the size of matrix is clear from the context.

As a subset of R™, the group I splits into connected components. The
connected component that contains I is denoted I'°. For example

0O(n)° = SO(n).

Being a connected component, I'® is a closed subset of I'. Since I is closed in
GL(n), so is I'°. Thus I'° is a Lie subgroup of I' and is compact if T is.
Moreover, I'? is a normal subgroup of I'. To see why, recall that £ < T is
normal if for each y e I we have = yXy~! as a set of matrices. Now yI'% !
is a connected component of I since matrix multiplication is continuous, and
it contains yIy~' = I. Therefore, yI'® ™! = I'° so I'° is normal.

It is not difficult (Exercise 1.3) to show that a compact Lie group I has a
finite number of connected components, and hence that I'/T"° is finite.

(b) Representations and Actions

Let T be a Lie group and let ¥ be a finite-dimensional real vector space. We
say that " acts (linearly) on V if there is a continuous mapping (the action)

I'xV-V
(1.5)
()= yv
such that:
(@) For each y e T the mapping p,: V' — V defined by
p,(0) =7y v (1.6)
is linear.
(b) If y,, y, € I' then
1727 0) = (1172) 0. (1.7)

The mapping p that sends y to p, € GL(V) is then called a representation of
I" on V. Here GL(V) is the group of invertible linear transformations ¥V — V.
By abuse of language we will also talk of “the representation V.” In the sequel
we shall often omit the dot and write yv for y - v, but for the remainder of this
section we retain the dot for clarity. As illustrated shortly, linear actions and
representations are essentially identical concepts, differing only in viewpoint.
In fact, both (1.5) and p must be analytic; see Montgomery and Zippin [ 1955].

For example, there is an action of the circle group S* on C = R? given by

0z = e VeS8 ze).

We verify that this is an action. Clearly (a) holds. To check (b), calculate
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6, (0, 2) = 0, (e%22) = ere'2z = ¢'®1*027 = (0, + 6,)-z,

where by an accident of notation 8, + 6, is the “product” in the group S'.
This action gives rise to a representation p of S! for which p, is the rotation

matrix

cosf —sinf

sinf cosf
on R? = C. The difference in viewpoint is that an action tells us how a group
element y transforms a given element v € V, whereas a representation tells us
how y transforms the entire space V. More technically, p defines a homo-
morphism of I' into GL(V); see Exercise 1.4. An action of I" on V may be

defined by specifying (1.5) only on generators of I', as long as this action is
consistent in the sense that (1.7) is satisfied.

ExaMPLEs 1.2.
(a) Every linear Lie group I is a group of matrices in GL(n) for some n. As
such, " has a natural action on V = R" given by matrix multiplication.

(b) Every group I" has a trivial action on V = R" defined by y-x = x for all
xeR"yel.

(c) For every integer k the circle group S! has an action on V = C = R?
defined by

0z = e'*oz, (1.8)

Notice that k = 0 corresponds to the trivial action of example (b). The action
for k = 1 is the one discussed previously in the text.

(d) Each action of S* = SO(2) defined in (c) extends to an action of O(2) on
C by letting

Kz=% (1.9)
where « is the flip (1.2).

(e) Each Lie group I' @ GL(n) acts on the space of n x n matrices 4 by
similarity: y- 4 = yAy~L.

It is often possible to give two different descriptions of “the same” action.
More precisely, the two actions may be isomorphic in the following sense. Let
V and W be n-dimensional vector spaces and assume that the Lie group I'
acts on both ¥ and W. Say that these actions are isomorphic, or that the spaces
V and W are I'-isomorphic, if there exists a (linear) isomorphism A: V - W
such that

A(y-v) =y (Av) (1.10)

for all v e V, y e I'. Note that the action of y on the left-hand side of (1.10) is
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that on ¥, whereas on the right it is on W. Another way to say this is that we
get the same group of matrices if we identify the spaces V and W (via the linear
isomorphism A4). To avoid cumbersome terminology we say that ¥ and W are
T-isomorphic. 1t is easy to extend these ideas to the case where I acts on V
and a group A, isomorphic to I, acts on W.

For example, the actions (1.8, 1.9) of O(2) for k and —k are isomorphic. To
see why, denote the two actions by the symbols - and *. Define 4 by A(z) = Z.
Then for y € SO(2) we have

Ay z) = e*2z = 707 = ¢ A7) = y % (Az2),
and further
Ak 2)=Z=z=k*Z = K*(Az),

so (1.10) holds.

In the same way, the groups SO(2) and S! are isomorphic, and the action
(1.8) of S! on C with k = 1 is isomorphic to the standard action of SO(2)
defined in Example 1.2a.

(c¢) Invariant Integration

Every compact Lie group I' in GL(n) can be identified with a subgroup of the
orthogonal group O(n). Since it is often useful to assume this, we sketch the
proof. The identification is made using Haar integration, a form of integration
that is invariant under translation by elements of I'. In this subsection we
define Haar integration, show how its existence leads to the identification of
I with a subgroup of O(n), and give explicit examples of Haar integration.

Haar integration may be defined abstractly as an operation that satisfies
three properties. Let f: T — R be a continuous real-valued function. The
operation

J fy) or jf or deye[R
yel r r

is an integral on I if it satisfies the following two conditions:

(a) Linearity. [r(Af + pg) = Aef +ufrg

where f, g: I’ - R are continuous and 4, p e R. (L.11)
(b) Positivity. If f(y) = 0 forally e I then [/ > 0.

It is a Haar integral if it also has the property
(c) Translation-Invariance. {,.r f(07) = §,er S(?)

for any fixed 6 e I'. (1.12)

The Haar integral can be proved to be unique. Because I' is compact, frlis
finite. We may therefore scale the Haar integral so that fr1 = L. This yields
the normalized Haar integral. For compact groups the Haar integral is also
invariant under right translations; i.e.,



§1. Group Theory 31

j f(yd) = J fly) foralldoerl. (1.13)
yel vyell

The proof of existence and uniqueness of the Haar integral is in Hochschild
[1965], p. 9. Vector-valued mappings may also be integrated, by performing
the integration separately on each component.

Propesition 1.3. Let I be a compact Lie group acting on a vector space V and
let p, be the matrix associated withy € I. Then there exists an inner product on
V such that for all y € T, p, is orthogonal.

Remark. Proposition 1.3 implies that we may identify compact Lie groups in
GL(n) with closed subgroups of O(n).

PrOOF. The idea is to use the Haar integral to construct an invariant inner
product { , >ron V, that is, one that satisfies

{psts psWr = 0, Wr (1.14)

for all 6 € I'. The construction proceeds as follows. Let ( , > be any inner
product on V¥ and define

<v,w>r=j {pyo, pyw). (1.15)

This is also an inner product by (1.11). Invariance of the Haar integral (1.12)
shows that the inner product (1.15) satisfies (1.14). O

ExaMPLES 1.4.

(a) LetI" be a finite Lie group of order |I'|. Then the normalized Haar integral
onTis

1 .
Lf= T 2 f). (1.16)

yell

(b) Let I' = SO(2). Every continuous function f: SO(2) — R uniquely deter-
mines a continuous 2n-periodic function f: R — R such that

10) = f(Ry).
The normalized Haar integral on SO(2) is
1 2
J E_j f(6)ds. (1.17)
r 2n Jo

The abstract definition of the Haar integral that we have given is sufficient
for our purposes, because we use it only as a tool to prove abstract results
such as Proposition 1.3. There is, however, an explicit definition of the Haar
integral that uses the manifold structure of Lie groups; see Exercise 1.8.
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EXERCISES

L1

1.2,

1.3.

1.4,
1.5

1.6.

1.7.

1.8.

Two elements o, f of a Lie group I are conjugate in T" if o = y ™! By for some y e T.
Show that all elements of O(2) ~ SO(2) are conjugate in O{2).

Two subgroups H, K of a Lie group T are conjugate in " if H = y~* Ky for some
yeT.
(a) Show that the closed subgroups of O(2) are conjugate to SO(2), D,, or Z,,.

(b) Find up to conjugacy all subgroups of D,, n > 3. (Hint: consider separately
the cases n even, n odd.)

Show that every finite group G is isomorphic to a Lie group. (Hint: if y € G then
the map d+ 74 is a permutation of G. Now consider the corresponding permuta-
tion matrix.)

Show that every compact Lie group has a finite number of connected components.

Let p: T — GL(V) be a representation of the group I' as defined by (1.6, 1.7).
(a) Show that p is a group homomorphism.
(b) Show that ker p is a normal subgroup of I'.

Let p and o be representations of the Lie group I" on the same space V. Show that
if p and o are isomorphic then ker p = ker ¢. Conclude that if ker p # ker o then
p and o are distinct.

Let f: V — R be continuous, and let a compact Lie group I" act on V. Show that
fo) = j fx)
yell

has the property that f(yx) = f(x) forallyeT.

(Warning: This exercise requires knowledge of the elementary theory of manifolds.)
To define the Haar integral explicitly we must use the fact that every Lie group
I is a smooth manifold. Let U be an open neighborhood of 0 in R* where
k = dimI andlet Z: U — I' be a smooth parametrization satisfying Z(0) = 1. Let
f: T — R be continuous with the support supp(f) of f contained in Z(U). Define
i f as follows.

Let L;: T — T be left translation by J; that is, Ls(y) = éy. For 0 € Z(U) the
composition

Ly=%toLsed
is a smooth mapping on a neighborhood of 0 in R*. Let
J(8) = det{dLs)o.

Now define
f f=J f[Zw)]J ()" du. (1.18)
r U
Suppose that ¢ € T" and a(supp(f)) = Z(U). Show that

J fleZw)]1J(ow) " du =J f.

r
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(Comment: When the Lie group T has a single parametrization 2 such that
Z2U)=T

then (1.18) defines a Haar integral on I since I' ~ Z(U) has “measure zero” and

fr = Lr(v)-)

§2. Irreducibility

The study of a representation of a compact Lie group is often made easier by
observing that it decomposes into a direct sum of simpler representations,
which are said to be irreducible. We describe the basic properties of this
decomposition in this section. The main result, Theorem 2.5, states that the
decomposition always exists. In general it is not unique, but the sources of
nonuniqueness can be described and controlled.

Let " be a Lie group acting linearly on the vector space V. A subspace
W < V is called T'-invariant if yw € W for all we W, y e I'. A representation
or action of I" on V is irreducible if the only I'-invariant subspaces of V are
{0} and V. A subspace W < V is said to be I'-irreducible (or irreducible if it is
clear which group T is intended) if W is I'-invariant and the action of I" on
W is irreducible. For example, the actions of SO(2) and O(2) on R? defined
in Example 1.2c, d are irreducible when k # 0.

One of the fundamental features of actions of compact Lie groups is that
invariant subspaces always have invariant complements. More precisely:

Propesition 2.1. Let I be a compact Lie group acting on V. Let W = V be a
I-invariant subspace. Then there exists a I'-invariant complementary subspace
Z < V such that

V=Wa®Z

Proor. By Proposition 1.3 there exists a I'-invariant inner product { , >-on
V. Let Z = W' where

Wt ={veV:{(w,o)r =0forallwe W}.

The TI-invariance of the inner product implies that W' is a I'-invariant
complement to W. O

It follows directly from this proposition that every representation of a
compact Lie group may be written as a direct sum of irreducible subspaces:

Corollary 2.2 (Theorem of Complete Reducibility). Let T be a compact Lie group
acting on V. Then there exist I'-irreducible subspaces V,, ..., V, of V such that

V=V® - a@V. @1
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PrOOF. We may assume V nonzero. Then there exists a nonzero I'-irreducible
subspace ¥V, < V (take V; to be of minimal dimension among the nonzero
I'-invariant subspaces). By Proposition 2.1 there is a ['-invariant complement
Z to V; in V. Now repeat the process on Z, choosing a nonzero I'-invariant
subspace V, = V. Since V is finite-dimensional this process must terminate,
yielding the desired decomposition (2.1). O

Some specific examples may help to clarify the implications of this resuit.

EXAMPLES 2.3.
(a) Define an action of O(2) on R? as follows. Let the rotations R, € SO(2)
act by rotating the (x, y)-plane through angle 20 and leaving the z-axis fixed:
that is, define

0-(x,y,z) = (xcos 26 — ysin 26, xsin 20 + ycos 20, z).
Let the flip k € O(2) act by
K (x,2) = (x, =y, —2).
Observe that
Vi =R? x {0} = {(x,,0)}
V, = {0} x R ={(0,0,2)}
are O(2)-invariant subspaces and that O(2) acts irreducibly on each.

(b) There is a standard irreducible action of O(3) on R3. Let V be the vector
space of symmetric 3 x 3 matrices of trace zero. Such matrices have the form

a b c
b d e
¢ e —(a+4d)
so dim V = S. Define
y A =7y'4y
for y € O(3) and A € V. Thus O(3) acts on V by similarity.
Next view O(2) = O(3) as follows. Identify the matrix § € O(2) with

o |0
0
0 0|1

in O(3). In this way, we can view O(2) as acting on V. It is a straightforward
calculation to show that
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[0 0 ¢
V,={0 0 d}|, and
¢ d O
[a 0 0
V=10 a O

[0 0 —2a

are invariant irreducible subspaces of V under the action of O(2). Since
V,®V,® V, =V we have decomposed V as in Corollary 2.2.

In general, the decomposition of V in (2.1) is not unique. It will be useful in
later sections to understand the sources of nonuniqueness and to find condi-
tions under which the decomposition (2.1) is unique. In particular, such a
discussion will simplify the computation of linearized asymptotic stability for
solutions of differential equations. The remainder of this section is devoted to
the issue of nonuniqueness, beginning with an example.

EXAMPLE 2.4. Let V be the four-dimensional space of 2 x 2 matrices and let
SO(2) act on V by matrix multiplication on the left. That is,

0-A=RyA
where 8 € SO(2) and A € V. Observe that V = V; @ V, where

a 0 0 ¢
o R A P

and that SO(2) acts irreducibly on V; and V,.
However, we also have V = V, @ V;, where (say)

8 ¢
V, =
2 LdJ
and SO(2) acts irreducibly on V5.

It will turn out that the reason for nonuniqueness in the decomposition of
Corollary 2.2 is the occurrence in V of two isomorphic irreducible representa-
tions. Recall the definition (1.10) of I'-isomorphism. We state this more pre-
cisely in Corollary 2.6 later. The main result of this section is as follows:

Theorem 2.5. Let I be a compact Lie group acting on V.

(a) Up to T-isomorphism there are a finite number of distinct I'-irreducible
subspaces of V. Call these Uy, ..., U,.

(b) Define W, to be the sum of all T'-irreducible subspaces W of V such that W
is T'-isomorphic to U,. Then

V=W,® ®W, 2.2)
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Remark. The subspaces W, are called the isotypic components of ¥, of type U,,
for the action of I'. The name is chosen to reflect that fact that all irreducible
subspaces of W, have the same isomorphism type. By construction the isotypic
decomposition (2.2) is unique.

Before proving Theorem 2.5 we show how it implies that the nonuniqueness
in the choice of irreducible summands in Proposition 2.1 is directly related to
the repetition of irreducible representations among the ¥ in (2.1).

Corollary 2.6.

(@) If W c Vis T-irreducible then W < W, for a unique k , namely, that k for
which W is T -isomorphic to U,.

(b) Let I" be a compact Lie group actingon V.Let V=V, @ - @V, be a
decomposition of V into a direct sum of T'-invariant irreducible subspaces. If the
representations of T on the V; are all distinct (not I'-isomorphic) then the only
nonzero I'-irreducible subspaces of V are V,,..., V..
PROOF. Part (a) follows directly from Theorem 2.5 since if W is I'-irreducible
then it is T'-isomorphic to some unique U,, and then by definition W < W,.
It is useful, however, to have (a) stated explicitly.

For (b), consider the isotypic components W, of V. Each V; is isomorphic to
some U, hence lies in W, for some k. It follows that the W, are just the V},
perhaps written in a different order. If W # 0 is a T'-irreducible subspace of
V then by part (a) we have W < W, for some k. But W, = V}for suitable j, and
irreducibility of V; implies that W = V. O

The proof of Theorem 2.5 depends on two lemmas, which we deal with first.

Lemma 2.7. Let T be a compact Lie group acting on W. Suppose that
w=>YU,

where each U, is a T-invariant subspace that is T-isomorphic to some fixed
irreducible representation U of T'. Then every I'-irreducible subspace of W is
I-isomorphic to U.

Remark. Because of nonuniqueness, a ['-irreducible subspace of W may not
be one of the U,. The lemma says that, provided all the U, are I'-isomorphic,
every I-irreducible subspace of W is I'-isomorphic to any one of the U,.

PrOOF. Because of our intended application, the theorem is stated in a way
that allows the index « to run over an infinite set. In fact this represents no
real increase in generality, since we first show that

W=U,® ®U,, (2.3)

a direct sum of a finite subset of the U,. The proof is by induction. Suppose
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we have found a subspace
W' = Ual @@ Ua“'_1 c W

If W =W we are done. If not, some U, is not contained in W', Thep
U, n W' < U, must be {0} by irreducibility. Therefore the sum W’ + U,, is
direct and we have a subspace

Wn= Ua1®“.®Ua,‘

By finiteness of dimension, (2.3) must hold for large enough s.
Now let X be a [-irreducible subspace of W. There exists t < s such that

X¢eU, @@L, (2.4)
XcU, ®@U,. (2.5)

There is only one such t. By irreducibility of X,
XnU,@® @U, )=0. (2.6)

Let = be the projection
U, @ @y, -,

Then (2.6) implies that 7| X is a I'-isomorphism of X onto n(X); and n(X) = U,
implies that n(X) = U, by irreducibility of U, . Therefore X is I'-isomorphic
to U,,, hence to U. O

Lemma 2.8. Let I" be a compact Lie group acting on V. Let X, Y be I'-invariant
subspaces of V such that no two T-irreducible subspaces W <« X, Z < Y are
I"-isomorphic. Then:

(a) XnY={0},
(b) If W =« X @ Y is T-irreducible, then W < X or W < Y.

PROOF.

(a) Since X n Yis I'-invariant, any I'-irreducible subspace of X n Y would be
in both X and Y, contrary to the assumptions on X and Y. Thus X n Y has
no nonzero I'-irreducible subspaces, and this is possible only when X " Y =
{0}; see Corollary 2.2.

(b) The subspaces W X and W Y of W are -invariant. By the irreduc-
ibility of W, either W n X = {0} or W < X and similarly for Y. If W ¢ X and
W ¢ Y then Wn X = {0} = Wn Y. Let ny and =, denote the projections of
X @ Y onto X and Y, respectively. Then W is I'-isomorphic to ny(W) and to
ny(W) as in the proof of Lemma 2.7. But this contradicts the hypotheses on
X and Y. a

PrOOF OF THEOREM 2.5. Choose a I'-irreducible subspace U; < V. Let W, be
the sum of all T'-invariant subspaces of V that are I'-isomorphic to U,. If
Wy # V,thenchoose a I'-invariant complement Z to W, and repeat the process



38 XII. Group-Theoretic Preliminaries

on Z to obtain W;. By finiteness of dimension this process terminates with
V=W OWa W @7

where each W, is the sum of a set of T'-isomorphic I-irreducible subspaces of
V, say isomorphic to U, = V; and if i # j then U, is not I'-isomorphic to U,.
We do not yet know that W} is the sum W, of all I'-invariant subspaces of '
that are ['-isomorphic to U,, because we defined W, in Z, not in V. We shall
quickly see that in fact W, = W,.

Suppose that U is a I'-irreducible subspace of V. By Lemma 2.8(b) and a
simple inductive argument, it follows that

Uc W, (2.8)

for some k. By Lemma 2.7, U is T'-isomorphic to U,. This proves part (a). But
now we see that

Wi = W, (2.9)
as defined in the statement of Theorem 2.5b, and (2.7) implies (2.2), proving
part (b). O

EXERCISES

2.1. (a) Show that every two-dimensional irreducible representation of St is isomorphic
to
pi(z) = "z (2.10)
for some integer k > 0.
(b) Show that the representations p* and p' in (2.10) are not isomorphic if
k > | > 0. (Hint: Use Exercise XII, 1.6.)

(c) Show that the only one-dimensional irreducible representation of S! is the
trivial representation.

2.2. Let O(2) act on the four-dimensional space V of 2 x 2 matrices by similarity:
yA=y"4y  (yeO@Q)AeV)
Show that V = V, @ V, @ V; where

n={ls o
=0 T
-l L

Show that

(a) The O(2)-action on V; is trivial. . ' .

(b) The O(2)-action on V, is the nontrivial one-dimensional representation, i
which y € O(2) ~ SO(2) acts as — I and y € SO(2) acts as I , .

(c) The O(2)-action on V; is isomorphic to the standard action on R? = C.
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2.3 In the notation of Exercise 2.2, let O(2) act on V by matrix multiplication:
A =7yA.
Show that V = V, @ V,, where

w={lE )
w={lo o)

and that the O(2)-action on each of V;, V; is isomorphic to the standard action.
Hence show that V has only one isotypic component, namely V itself. Find an
irreducible subspace of V that is not equal to V; or ;.

§3. Commuting Linear Mappings and Absolute
Irreducibility

In later sections when we compute linearized asymptotic stability of steady-
state solutions to ODEs we will need to understand the structure of linear
mappings that commute with the action of a compact Lie group. We explore
this issue here. The main result is Theorem 3.5, which lets us put commuting
linear mappings into a certain block diagonal form.

Let I be a compact Lie group acting linearly on V. A mapping F: V>V
commutes with T or is I'-equivariant if

F(yv) = yF(v) (3.1
forallyel,ve V.

ExaMPLEs 3.1.
(a) Consider the standard action of I' = SO(2) on V = R? defined by rotation

through angle 6. That is,
R, = Cf>s 0 —sinf
sinf  cos8

{[' ]}
y
by matrix multiplication.

We claim that the linear mappings that commute with this action of SO(2)
all have the form c¢R, where c € R is a scalar; that is, such linear maps have

the matrix form
a —-b 19
b a * ( . )

acts on
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Certainly such matrices commute with SO(2) because SO(2) is a commutative
group, that is SO(2) satisfies

RGR(p = RQ,RQ.

The proof of the converse is a straightforward calculation. Suppose that

b b
Rgl:z d} - [‘c’ d] R, (3.3)

for all 6. Equate matrix entries on the first row of (3.3) to obtain

(@) acos® —csinf = acosf + bsinb

: . (3.4)
(b) bcosf — dsinf = —asinf + bcosé.

Since (3.4) holds for all 6 it follows that b = —c and a = d. Therefore, the
matrix has the desired form.

(b) Now consider the standard action of O(2) on R2. We claim that the only
linear mappings that commute with O(2) are cl, ¢ € R. Note that scalar
multiples of the identity commute with any group representation since they
commute with any matrix. To prove the claim let M be a matrix commuting
with O(2). Since it commutes with SO(2) it must have the form (3.2). It is now
a simple matter to show that if M commutes with

o -]

Definition 3.2. A representation of a group I' on a vector space V is absolutely
irreducible if the only linear mappings on V that commute with I" are scalar
multiples of the identity.

then b = 0.

To justify the terminology we prove:

Lemma 3.3. Let T be a compact Lie group acting on V. If the action of T is
absolutely irreducible then it is irreducible.

PRrROOF. Suppose the action of T is not irreducible. Then there is a proper
T-invariant subspace W # {0} having a [-invariant complement W+, by
Proposition 2.1. Define n: W @ W' - V to be projection onto W with kern =
WL, 1t is easy to check that # commutes with I" and is not a scalar multiple
of the identity. Hence V is not absolutely irreducible. O

Remark. We hasten to point out that if we work with complex represen.tatio.ns
of compact Lie groups then Schur’s lemma (Adams [1969], 3.22, p. 40) lplplles
that the complex versions of irreducibility and absolute irreducibility are
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equivalent concepts. However, this is not true for real representations, as
Example 3.1(a) shows. We provide further discussion at the end of this section.

We now discuss several points about linear maps that commute with
nonirreducible representations. The following observation is quite useful.

Lemma 3.4. Let T be a compact Lie group acting on V,let A: V — V be a linear
mapping that commutes with T, and let W < V be a T-irreducible subspace. Then
A(W) is T-invariant, and either A(W) = {0} or the representations of T on W
and A(W) are isomorphic.

ProoF. To show that A(W) is T-invariant let z € A(W), so that z = A(w) for
w € W. Since A commutes with [" we have

7z = yA(w) = A(yw)

so yz € A(W).

Similarly, ker A is I'-invariant since A(v) = 0 implies that A(yv) = yA(v) =
y0 = 0. Then ker A n W is a T'-invariant subspace of W, and irreducibility
implies that either W < ker 4 or ker 4 n W = {0}. In the first case A(W) =
{0}. In the second, A(W) is isomorphic to W as a vector space, the isomorphism
being A; but I commutes with 4 so A is a I'-isomorphism between A4 and
A(W). O

Lemma 3.4 implies:

Theorem 3.5. Let T" be a compact Lie group acting on the vector space V.
Decompose V into isotypic components

V=W e @®W,.
Let A: V — V be a linear mapping commuting with I'. Then
AW = W, (3.5)
fork=1,...,s.
ProoF. Write W, =V, @ --- @ V,, where all V; are I'-isomorphic to an irre-

ducible U,. By Lemma 3.4 either A(V}) = {0} or A(V))is also I'-isomorphic to
Uy. In either case A(V)) = W,. By linearity, 4(W,) c W,. |

Finally we return to the question of irreducible but not absolutely irreducible
representations. Suppose I” acts irreducibly on V and let
9 = {A:V > V|Alinear, Ay = yA forally e I'}

be the set of all commuting mappings. The real version of Schur’s lemma
(Kirillov [1976], Theorem 2, p. 119) states that 2 is an associative algebra
over R and is isomorphic to one of R, C, or H, where H is the four-dimensional
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algebra of quaternions. The reason is that by Lemma 3.4 2 is a skew field, and
skew fields may be classified into the preceding three types. The case 2 =~ R
occurs if and only if V is absolutely irreducible. The example of SO(2) acting
on R? is a case where 2 =~ C. To verify this, recall that the commuting
mappings are the matrices

a —b

b

The isomorphism 2 = C identifies such a matrix with a + ib € C. Note that

[a b][c d] [ ac—bd ad+bc
—b a]|l ~d c:l B [~(ad + be) ac — bd:l
and (a + ib)(c + id) = (ac — bd) + i(ad + bc), so this map is an isomorphism.
The case 2 =~ H can also occur; see Exercise 3.1. The distinction between C
and H is a basic one when considering nonabsolutely irreducible representa-
tions. Most representations discussed in this book will in fact be absolutely

irreducible, 2 > R; but the case @ = C arises repeatedly in the context of Hopf

bifurcation. We have found no such natural context for representations with
2 =H.

EXERCISES
3.1. Let I be the group SU(2) of unit quaternions
{a+bi+c+dka®+b*+c?+d? =1}
Show that T is a compact Lie group. Let " act on R* = H by left multiplication,
PoX = PX.
Prove that 2 consists of mappings dq, g € H, acting as right multiplication,
8q(x) = xq.
Hence show that 2 = H.

3.2. Let I' be a Lie group acting irreducibly on a space V. Let A4: ¥V — V be a nonzero
linear map commuting with . Show that A is invertible and that A™' commutes
with I,

3.3. Let A, B be commuting matrices. Let E be an eigenspace, or a generalized
eigenspace, of 4. Show that B leaves E invariant.

3.4. Ifa 2 x 2 matrix A commutes with k = [§ _9] then show that A is diagonal. If
a diagonal matrix commutes with a rotation matrix R,, where € is not an integer
multiple of 7, show that it is a scalar multiple of the identity. Hence show that the
standard action of D, n > 3, is absolutely irreducible.

3.5. Let T act on V =V, @ V, where V; and V, are absolutely irreducible and non-
isomorphic. Let A: ¥ — V commute with I'. Prove that A has real eigenvalues and
that at most two distinct eigenvalues occur.
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3.6. Let O(3) act on the space
V = {3 x 3 symmetric trace 0 matrices}
by similarity:
y-A =y Ay

Show that V is absolutely irreducible. (Hint: Let D be the set of diagonal matrices
in V)) Observe that

D={A:0,A=A,0,A=A} (3.6)
where

-1 1

0, = 1 , 0, = -1

Let «: V — ¥V commute with I'. Use (3.6) to show that a(D) < D. Since every
symmetric matrix can be diagonalized, show that « is uniquely determined by its
effect on D. Let f = a|D. Show that f commutes with the permutation matrices
S,, and that the S;-action on D is absolutely irreducible. Deduce that the action
of O(3) on V is absolutely irreducible.

3.7. Let T act on V and let H be a subgroup of I'. If V/ is absolutely irreducible for H,
prove that it is absolutely irreducible for I'.

§4. Invariant Functions

The goal of this section and the next is to present an efficient way of describing
nonlinear mappings that commute with a group action. We begin with a
discussion of invariant functions. There are two, main results: the Hilbert—
Weyl theorem, which gives a theoretical foundation for describing invariant
polynomials, and Schwarz’s theorem (Schwarz [1975]), which builds on
Hilbert and Weyl’s result, yielding a description of invariant C* germs. See
I1, §1, for a definition and discussion of germs.

Let T be a (compact) Lie group acting on a vector space V. Recall that a
real-valued function f: V — R is invariant under I if

Jx) = f(x) (4.1)

for all y e I, x € V. An invariant polynomial is defined in the obvious way by
taking f to be polynomial. Note that it suffices to verify (4.1) for a set of
generators of I'.

ExAMPLES 4.1.

(a) LetI' = Z, act nontrivially on V = R. Thatis, —1-x = —x, where Z, =
{+1}. For this example the invariant functions are just the even functions
since (4.1) becomes f(—x) = f(x). It is easy to see that if f is an invariant
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polynomial then there exists another polynomial h such that
f(x) = h(x?). 4.2)

(b) Let S! act on R? = C in the standard way; that is, 8z = ¢z for § € S.
Equation (4.1) states that f(e'%z) = f(z) for every 6 € S*. Since 0+ e traces
out a circle centered at 0 with radius |z| we see that S'-invariants are functions
that are constant on circles. We now show (as is already plausible) that if f is
an S'-invariant polynomial on C then there exists a polynomial i: R — R such
that

f(z) = h(z%). 4.3)

(This observation is contained in the proof of Proposition VIII, 2.3; we give
a different proof here.) The proof of (4.3) will be carried out using complex
notation, a trick that is often useful. Write f as a polynomial in the “real”
coordinates z, Z on C in the form

f@) =Y a,2°z* 4.4)

where a,; € C. (They are “real” coordinates in the sense that they coordinatize
C as a real vector space. However, for z = x + iy we have x = (z + 2)/2,
y = —i(z — Z)/2, so the coefficients required may be complex. Thus we have
to impose on all polynomials a reality condition: their values must be in R.)

Here the reality condition is that f is real-valued; that is, f = f. So the
coefficients a,, satisfy

up = Apy- 4.5)
Direct computation from (4.4) shows that
fle?z) =Y a,ze Pz’ (4.6)
Since f(e®z) = f(z) as polynomials, they have identical coefficients. From
(4.4,4.6) we obtain the identity
a5 =€ Pay, (4.7)
Now (4.7) holds for all 8 € S* only if « = § or a,5 = 0. Thus Sl.invariance
implies that
f(2) = Y aglzz)*
where, by (4.5), a,, € R. If
h(x) =) a,x*
then (4.3) is satisfied.

(c) Let T = D, in its standard action on C. We claim that for every D,-
invariant polynomial f(z) there exists a polynomial g: R? — R such that

f(z) = g(zZ,2" + Z"). 4.8)
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We verify (4.8) in a similar way to (4.3). We may again assume f has the form
(4.4) and satisfies the reality condition (4.5). Since the action of D, is generated
by

0z =e%z (@=2n/n) and kz=72

we need verify (4.1) only for these elements. The restriction placed on f by the
first generator is (4.7) when 6 = 2n/n. The restriction placed by « is

Aup = Apys 4.9)

and from (4.5,4.9) we conclude that a,; € R. In summary, we require

(@) a,€eR

(b)  a,; = ag, (4.10)

() a,=0 unless o= p(modn).
Using (4.10) we may rewrite (4.4) as

flz) = Zﬂ Anp(z°2? + 772")

where

P LY L
# a2 if a=p

Next, we factor out the largest powers of zz and use (4.10c) to arrive at the form

f(2) =Y Bu(zz)(z*" + z*7) 4.11)
ik

for certain coefficients B;,. Finally we use the identity
an + Ekn — (Zn + E")(Z(k_l)n + E(k—l)n) _ ZE(Z(k_Z)n + E(k-Z)n)
inductively, to write the polynomial in the form
fi2) =} Culz2)'(" + 2"
for certain real coefficients C,,,. Now define

h(x’y) = Z Clmxlym'

We make one very important observation about the invariant polynomials
in Examples 4.1. There is a finite subset of invariant polynomials u,, ..., u,
such that every invariant polynomial may be written as a polynomial function
ofu,,...,u, This finite set of invariants (which is not unique) is said to generate
the set of invariants, or to form a Hilbert basis. We denote the set of invariant
polynomials by 2(I'). Note that 2(TI') is a ring since sums and products of
I'-invariant polynomials are again I'-invariant. The existence of this finite set
of generators is a general phenomenon. The main theoretical result, initiated
by Hilbert and proved by Weyl [1946], is as follows:
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Theorem 4.2 (Hilbert—Weyl Theorem). Let I” be a compact Lie group acting
on V. Then there exists a finite Hilbert basis for the ring ().

Remarks.

(a) The actual computation of a generating set for 2(I') can be extremely
difficult. In many cases, such as those in Examples 4.1, a set of invariant
generators may be obtained by a combination of tricks and direct calculation.
(b) Since I is a compact Lie group, we may assume it is a subgroup of the
orthogonal group Q(n) by Proposition 1.3. In this case, the norm

2 = x7 4+ 4 x2

is always I[-invariant.

We prove this theorem in §6; similar proofs are given in Weyl [1946]
and Poénaru [1976]. In individual examples, such as those of Examples 4.1,
we may verify Theorem 4.2 explicitly by exhibiting a finite set of invariant
generators.

Itis not surprising that a similar result to Theorem 4.2 holds for real analytic
functions. It is perhaps more surprising, however, that this sort of result
remains true for C* germs, and it is in this category that we wish to work.
Although a finitude theorem for C* germs was known in special cases (see
Whitney [1943] for Z, acting on R, and Glaeser [1963] for the symmetric
group S, acting as permutations on R") it was not until Schwarz [1975] that
the C* germ result was proved for general compact Lie groups. We state
Schwarz’s theorem here and sketch its proof in §6. We use the notation &(I')
for the ring of I'-invariant germs V — R.

Theorem 4.3 (Schwarz [1975]). Let I be a compact Lie group acting on V. Let
uy,...,usbe a Hilbert basis for the T-invariant polynomials #(I). Let f € &(I').
Then there exists a smooth germ h € &, such that

Sx) = h(uy(x),...,udx)) 4.12)
Here &, is the ring of C* germs R® — R.

We conclude this section with a discussion of some special structure often
found in the ring ('), which is quite useful when making explicit calculations.
It implies in particular that when f in (4.12) is polynomial then there is a
unique choice of the polynomial h.

More precisely, say that a set of I'-invariant polynomials has a relation if
there exists a nonzero polynomial r(y,...,y;) such that

ru (x),...,ulx)) = 0. 4.13)
The ring 2(I') is a polynomial ring if it has a Hilbert basis without relations.

(Warning: A polynomial ring is not just a ring of polynomials.) o
An example of a group action for which Z(I') is not a polynomial ring is



§4. Invariant Functions 47

given by I = Z, acting on R?, where the action of —1€ Z, is defined by
x> —x. It is easy to see that #(Z,) is generated by all monomials of even
total degree. The polynomials

uy = xi, Uy = Xy Xy, Uy = X3
form a Hilbert basis for 2(Z,), but there is a relation
uuy —u3 = 0.

Indeed it can be shown that no choice of Hilbert basis can eliminate all
relations, so #(Z,) is not a polynomial ring.

There is a simple test to determine whether a given Hilbert basis u,, ..., u
for #(I') makes it into a polynomial ring. Define the mapping p: V — R?, called
the discriminant of I', by

p(x) = (U (x),...,ulx)). 4.14)

Lemma 4.4. If the Jacobian (dp), is onto for some x, then (') is a polynomial
ring.

Proor. If (dp), is onto, then by the implicit function theorem p(V') contains
an open subset of R®. Hence any polynomial mapping r: R®* — R is uniquely
determined by r|p(V). Now suppose r satisfies (4.13); that is, r|p(V) = 0. It
follows that r = 0 and that there are no nontrivial relations. O

Note that in the preceding example of Z, p(x,,x,) = (x?,x,x,,x2) and
(dp),: R? > R3. Hence it is impossible for (dp), to be onto. (However, the
converse of Lemma 4.4 has not been proved, so this does not show that 2(I')
is not a polynomial ring.)

We may use Lemma 4.4 to check that for Examples 4.1, 2(T) is a polynomial
ring. For instance, consider Example 4.1c, where I" = D,, acts on C. Recall
from (4.8) that

u,(z,z) = zz, u,(z,z)=z"+7z"
is a Hilbert basis. Then

p(z,z) = (z2,2" + 2")

z z
dp = .
p !:nz"‘1 nE"‘1:|

It follows that detdp = n(z" — z"), which is (often) nonzero. By Lemma 4.4,
2(D,,) is a polynomial ring.

so that

Remarks.
(a) When 2(I') is a polynomial ring in the Hilbert basis u;, ..., u,, then every
invariant polynomial f has uniquely the form
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f(X) = h(ul(x)a e us(x))'

To prove this, suppose not. Then also [ = k(u,(x),...,u,x)). If r = h — k then
r(uy(x),...,u(x)) = 0, so r is a relation. This is a contradiction.

(b) Even when 2(I') is a polynomial ring, uniqueness need not hold in (4.12)
for C* germs. For example, let Z, act on R in the standard way. Then
u,(x) = x? is a Hilbert basis. By Theorem 4.3 every invariant germ f € &(I")
has the form f(x) = h(x?) for some h € &,.. However, define

~yx
k(x) = e Tf x<0
0 if x=0.

Then k is smooth, and
S(x) = h(x?) + k(x?)

so uniqueness fails. More generally, if Im p in Lemma 4.4 does not contain a
neighborhood of the origin in R® then uniqueness in (4.12) fails in &(I).

(c) It is, however, true that if 2(I') is a polynomial ring then the Taylor
expansion of h in (4.12) at the origin is uniquely defined. Since in our analysis
of bifurcation problems we consider only finitely determined situations (that
is, those in which the problem may be reduced to a finite part of the Taylor
expansion of f), it follows that to all intents and purposes uniqueness in &(I')
does hold.

(d) Another test to show that 2(I') is a polynomial ring, even simpler than
Lemma 4.4, is give in XIII, §1.

EXERCISES

4.1. Let S! act on C" by (z,,...,2,) (€°z,,...,e"z,). Show that a Hilbert basis is
{Re(z/7,), Im(z,7,)}.

42. Let S! act on C2 by (z,,2,) > (€*?z,,e"%z,) where k, | are coprime. Show that a
Hilbert basis is {Re(z}z5), Im(z} 2%), |z, %, |z,1*}-

4.3. Let (0, 9) € T? act on C? by (z,,2,) > (€122, e"9¥121%z2,) where ky, [, and
k,, I, are coprime. Find a Hilbert basis. (Hint: Apply Exercise 4.2 to the -action
and observe the action of ¢ on a Hilbert basis. Or use brute force on monomials
2§z{2373)

4.4. Which of the preceding rings of invariants are polynomial rings?

4.5. Let the symmetric group S, consisting of all permutations of {1,2, 3},acton R3
by permuting a basis. Show that the invariant functions are generated by s; =
Xp + Xy + X3, 85 = X Xy + XpX3 + X1 X3, and s, = x,x,x3. Prove that the ring
of invariants &(S,) is a polynomial ring.

4.6. Prove results analogous to the preceding for S, acting on R".

4.7. Let T be the group of all symmetries, including reflections, of a cube cente‘red at
the origin of R* = {(x,y, z)} with edges parallel to the axes. (In the notation of
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XIII, §9, this is the group O @ Z5.) Prove that the ring of I'-invariants is
generated by

u=x2+y*+z2*
v =x2y? + y2z? + x?22
w = x2y?z?

and that it is a polynomial ring.

The next group of exercises investigates conditions under which a function Fix(Z) - R
extends to a ['-invariant function.

4.8.

4.9.

4.10.

4.11.

4.12.

§5.

Let T act on ¥ and let T be an isotropy subgroup. Let f: ¥V — R be I'-invariant

and let ¢ = f|Fix(X). Let N = Np(%).

(a) Show that ¢ is N-invariant. Hence a necessary condition for a function
¥: Fix(Z) - R to extend to a I'-invariant function on V is that y be N-
invariant.

(b) ¢ has the following more general hidden symmetry property: If there exist
y e I' ~ N and v € V such that v, yv € Fix(Z) then ¢(v) = @(yv).

(c) If Y: Fix(X) > R is N-invariant, then a necessary condition that ¢ should
extend to a I'-invariant function l/;: V - R is that ¢ satisfies the hidden
symmetry condition.

Find an example where the hidden symmetry condition is violated, showing that
the condition in Exercise 4.8(a) is not sufficient for an extension to exist.

If : Fix(¥) » R is N-invariant and satisfies the hidden symmetry condition
prove that there exists a continuous I'-invariant extension !// V - R.(Hint: Work
inside a suitable closed ball center 0. Define 2 = { J, .y Fix(Z). Prove that Z'is
a closed subset of V and that y extends uniquely to a I'-invariant function y on
% . Use the Tietze extension theorem to extend  from & to V, and average over
I" by Haar integration.)

Let I = Ds acting on C, £ = Z,(x), and ¥/(x) = x3 (x € Fix(Z) = R). Observe
that i trivially satisfies the hidden symmetry condition and is N-invariant. By
considering 3-jets (Taylor expansions to degree 3) show that i has no smooth
extension to a ['-invariant function C —» R.

Investigate analogous results to Exercises 4.8-4.11 for the extension of N-
equivariant mappings on Fix(X) to I'-equivariant mappings on V.

Nonlinear Commuting Mappings

As usual we let I" be a compact Lie group acting on a vector space V. Recall
that a mapping g: V — V commutes with " or is ['-equivariant if

g(yx) = yg(x) (5.1

forally e I', x € V. In §3 we discussed some of the restrictions placed on linear
mappings g by (5.1). In this section we describe the restrictions placed on
nonlinear g.
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The main observation is that the product of an equivariant mapping and
an invariant function is another equivariant mapping.

Lemma 5.1. Let f: V — R be a I'-invariant function and let g: V — V be a
I'-equivariant mapping. Then fg: V — V is T-equivariant.

Proor. This follows from an easy calculation. For ally € I" and x € V we have:

(J9)(yx) = f(yx)g(yx)
= f(x) vg(x)
=/ (x)g(x)
= fg(x). (5.2)

The first and fourth equalities in (5.2) use the definition of fg; the second
equality follows by I'-invariance and I'-equivariance; and the third follows
because y acts linearly on V and f(x) is a scalar. O

For example, when I' =Z, acts on R by —1-x = —x, then the Z,-
equivariant mappings are just the odd functions; that is, they satisfy g(—x) =
—g(x). It is well known that every odd function may be written as an even
function times x. This was proved in Corollary VI, 2.2; nevertheless we
reproduce the argument here. Since g(0) = 0 we use Taylor’s theorem to write
g(x) = f(x)x. Since g is odd,

f(=x)x = f(x)x,

so f is even. Moreover, we know that f(x) = h(x?) for a suitably chosen
smooth h, by (4.3) and Theorem 4.2 (or by Lemma VI1.2.1). Hence

g(x) = h(x?)x. (5.3)

We now abstract some general principles from the preceding observations.
Let 2(I') be the space of ['-equivariant polynomial mappings of V into ¥, and
let &) be the space of I'-equivariant germs (at the origin) of C* mappings
of Vinto V. Lemma 5.1 implies that Z(I') is a module over the ring of invariant
polynomials 2(I'), and equally that &(I') is a module over the ring of invariant
function germs &(I'). This means that if f e Z(I')and g € () then fg € Z(I),
with a similar statement for &, and this is the content of Lemma 5.1.

The results for I = Z, can be stated in symbols:
(@) PZy) = P(Ly){x},
(b) &(Z,) = E(Z,){x}.

In words, the module &(Z,) (or Z(Z,)) is generated over the ring &(Z,) (or
#(Z,)) by the single Z,-equivariant mapping x. In general, we say that the
equivariant polynomial mapping g, ..., g, generate the module P(T) over the
ring #(I') if every T'-equivariant g may be written as

(5.4)
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g=figi+ -+ 14, (5.5

—

for invariant polynomials f,,.. ., f,. A similar definition may be made for &(I').
The next theorem follows from, and is similar in spirit to, the Hilbert—Weyl
theorem. A proof is given in §6.

Theorem 5.2. Let " be a compact Lie group acting on V. Then there exists a
finite set of T-equivariant polynomials g, . .., g, that generates the module Z(I').

The I'equivariant version of Schwarz’s theorem (Theorem 4.3) is proved in
Poénaru [1976]. We present this proof in §6 too.

Theorem 5.3 (Poénaru [1976]). Let T be a compact Lie group and let g, ...,
g, generate the module (I) of T-equivariant polynomials over the ring 2(T).
Then g, ..., g, generate the module &(T') over the ring &(T).

The implications of Theorems 5.2 and 5.3 are illustrated by the following
examples.

EXAMPLES 5.4.
(@) Let I' = S! in its standard action on V = C. We claim that every S’-
equivariant mapping g € &(S!) has the form

g(z) = p(22)z + q(zz)iz (5.6)
where p and q are real-valued S!-invariant functions. This has already been
proved in Proposition VIII, 2.5 in slightly different notation; we give a different
proof here.

Let g: C — C be an S'-equivariant polynomial. In the coordinates z, Z it has
the form

g =Y byzizt (57)

where by, € C. The equivariance condition (5.1) can be restated as an invariance
condition

g(x) =y 'g(yx), (5.8)
which is often more convenient to use. In the case I' = S! we have
g=eY b,eli™izizk =% p, Uk~ Difzizk (5.9)

Hence b, = O unless j = k + 1. Thus
g(z) = Z bk+l,k(ZE)kz
and g has the form (5.6), where
p(y) = ) Re(bs ) y",
q(y) = Y Im(bsy W)¥"
Now apply Theorem 5.3.
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(b) Let I' = O(2) in its st_aimdard action on C. We claim that every O(2)-
equivariant mapping g € £(0(2)) has the form

g(2) = p(zz)z. (5.10)

To prove this, observe that g is in particular S!'-equivariant, hence has the

form (5.6). But O(2) is generated by S' = SO(2) and the flip x, which acts by
Kz = z. Now compute

9() = p(z2)z — q(z%)iz. (5.11)

The only way that g(z) can equal g(z) is if ¢(zZ) = 0, thus proving the claim.

(c) LetI’ = D, inits standard action on C. We claim that every D,-equivariant
germ g € &(D,) has the form

g9(2) = p(u,v)z + q(u,0)z"™! (5.12)
where u = zzand v = z" + Z".
We begin again with a D,-equivariant polynomial g of the form
glz) =Y by z'z* (5.13)

where b, € C. We first obtain restrictions on the by, by using the equivariance
of g with respect to x, where kz = z. Now

9(z) =Y b zz".
Hence g(Z) = g(z) implies that b, is real.

Recall that D,, is generated by x and { = 2xn/n, which acts as multiplication
by e®. Now equivariance with respect to { implies that

g(z) = e""g(e*2)
=Y byet kit izk, (5.14)

Hence b, = 0 unless j = k + 1(mod n). (It is here that the analysis begins to
differ from the case I' = S§'))

We now show that z and Z"~! generate the module Z(D,) over 2(D,). In
individual terms in (5.13) we can factor out powers of zz, which are D,-
invariants, until we are left either with j = 0 or k = 0. Since j = k + 1 (mod n)
the terms z""*! and zU*V""! [ =0, 1, 2, ..., generate the module Z(D,).
However, the identities

(a) z(l+2)n+1 — (Zn + E")Z(‘+1)n+1 — (zz)nzln+1

(5.15)
(b) E(l+3)n—1 — (Zn + En)E(l+2)n—1 _ (ZE)nz(l+1)n—1
show that the generators z"*!, ZU*1"~! are redundant for | > 2. Similarly
() z"*'=(z"+z")z — (z2)2"7",
d) z'=("+ZMz" — (2 e

Hence the generators z"*! and z2"~! are redundant. This proves the claim.
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To end this section we discuss when the representation of a I'-equivariant

g in (5.5) in terms of given generators g,, ..., g, is unique. We say that gy, ...,
g, freely generate the module &(I') over &(I') if the relation
figr + -+ £, =0, (5.16)
where f; € £(I'), implies that
fi==f=0. (5.17)
We also say that &(I') is a free module over &(I). (This definition is the module
version of linear independence in vector spaces.) It is clear that if g,, ..., g,

freely generate &(I') then every g € &(I') may be written uniquely as g =

fig, + -+ + f,9, where f; € £(I).
Each module discussed in the preceding examples is free. We show this for
Example 5.3(c), where I = D,,. Suppose that

p(zz,z" + 2"z + q(zZ,z" + z")z" ' = 0. (5.18)

Suppose there exists z € C at which g(zz,z" + z") # 0. By continuity g # 0 in
a neighbourhood of z. Multiply (5.18) by z and solve for

Z" = p(zz,z" + 2")2Z/q(2Z,z" + Z"). (5.19)

The right-hand side of (5.18) is real, but Z" is never real-valued on an open set

(or else it would be everywhere real) so we have a contradiction. Hence g = 0.

But (5.18) now implies p = 0. Hence &(D,,) is a free module over the ring £(D,)
with free generators z and z"7 1.

EXERCISES

5.1. Let S! act on C" as in Exercise 4.1. Prove that the equivariants are generated as
a module over the invariants by the mappings z+— z,, z+— iz, fork = 1,...,n.

5.2. Let S! act on C? as in Exercise 4.2. Prove that the equivariants are generated as
a module over the invariants by the mappings (z,,z,)—

(z,,0), (iz,,0), (z/7'23,0), (iz{"'23,0),

(0,2,), (0,iz,), (0,21 Z¥71), (0,izi Z5 ).
5.3. Let T? act on C? as in Exercise 4.3. Find generators for the equivariants.
5.4. Which of the preceding modules of equivariants are free?

5.5. LetI' = O @ Z be the symmetry group of a cube acting on R? as in Exercise 4.7.
Prove that the module of I'-equivariants is generated by the mappings

X x3 y2z2x

- 3 2,2
X, =|vy Xo=1vy Xy=|z°x%y |,

z z3 x2y?z

and is a free module over the ring of invariants.
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§6.* Proofs of Theorems in §§4 and 5

In this section we present the promised proofs of four theorems from the
previous two sections, namely:

(a) The Hilbert-Weyl theorem, Theorem 4.2,
(b) Schwarz’s theorem, Theorem 4.3,

(c) Z(I)is finitely generated, Theorem 5.2,
(d) Poénaru’s theorem, Theorem 5.3.

However, the proof of Theorem 4.3 is only sketched, because a complete proof
would involve too much extra machinery.

(a) Proof of Theorem 4.2

The proof of the Hilbert—Weyl theorem follows by an induction argument
from the Hilbert basis theorem, which we state later. First we recall some
standard facts about polynomials. Let R be a commutative ring. An expression
of the form

FaX" 4 o X" ry (6.1)

with rg, ..., r, € Ris a polynomial in the indeterminate x with coefficients in R.
If r, # 0 then the polynomial (6.1) has degree n. The set of all polynomials in
x with coefficients in R is also a ring, with addition and multiplication of
polynomials being defined in the obvious way. Denote this ring by R[x].
Inductively define

Rlx,,...,xXys] = R[x4,.+-sXp-1 1 [X,], (6.2)

the ring of polynomials over R in n indeterminates x,, ..., x,.

Theorem 6.1 (Hilbert Basis Theorem). Let R be a commutative ring such that
every ideal in R is finitely generated. Then every ideal in the ring R[x] is finitely
generated.

Before proving this we derive the Hilbert—Weyl theorem. We need:

Corollary 6.2. Every ideal of R[x,,...,x,] is finitely generated.

ProokF. The corollary is proved by induction on n. When n = 0 the only ideals
of R are {0} and R, generated by {0} and {1}, respectively. When n > 0 the
induction step follows from Theorem 6.1, setting

R=R[x;,....,x,—(] l

It is this choice of R that requires us to prove a sufficiently general version
of the Hilbert basis theorem: it would not suffice to state it just for R = R.
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The proof of the Hilbert—Weyl theorem requires a minor variant of Corollary
6.2.

Proposition 6.3. Let U be a nonempty subset of R[x,...,x,]. Then there exists
a finite set of elements {u,,...,u,} of U such that every u € U may be written
in the form

u=fiu, + -+ fiu, (6.3)
where f1, ..., fy€ R[x{,...,x,]

ProoOF. Let . be theidealin R[x,,..., x,] generated by U. Corollary 6.2 states
that .# is finitely generated, say by p,, ..., p,- Since . is generated by U we
may write each p; in the form

pi= a1+ F fimiUimo)

for j=1,..., I, where u;, € U. Therefore, the u;, generate .# and give the
desired subset of U. 0O

Now we can prove the Hilbert—Weyl theorem.

ProoF oF THEOREM 4.2. Let I" be a compact Lie group acting on V. Identify V
with R" and let x,, ..., x, be coordinates. Recall that 2(I') denotes the ring of
invariant polynomials. We must show that there exists a Hilbert basis for 2(I'),
that is, that there is a finite set u,, ..., u, € 2(I') such that every u € 2(I') may
be written in the form

u= f(uy,...,uy) (6.4)

where f is a polynomial function.
If ve 2(I) is of degree m and we write

V=109 + vy + "+ 0y, (6.5)

where each v; is a homogeneous polynomial of degree j, then each v; € 2(I').
This is valid since I acts linearly on V; hence v;(yx) is a homogeneous
polynomial of degree j for every y € I'. Thus the polynomials v(yx) and v(x)
are equal only if v;(yx) = v;(x) for each j.

By (6.5) we need verify (6.4) only for homogeneous u. We claim, moreover,
that we can choose u,, ..., u, to be homogeneous polynomials. Let U be the
set of nonconstant homogeneous polynomials in 2(I"), and apply Proposition
6.3 to U, obtaining u,, ..., u,, satisfying (6.3).

We now verify (6.4) for homogeneous u € Z(I'), using induction on the
degree degu of u. If degu = 0 then u is constant, and (6.4) is obvious: just
define f = u. For the induction step, assume (6.4) is valid for all v € U with
degv < k, and let degu = k + 1. Since u € U there exist polynomials f;, ...,
f, € R[x,,...,x,] such that

u=fiu, + -+ fiu,. (6.6)
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We may assume each f; is homogeneous, with
deg f; = degu — degu;. (6.7)

In particular, if degu < degu; then f; = 0. This assumption follows directly
since u and the u; are homogeneous.

We claim that we can replace the homogeneous polynomials f; in (6.6) by
homogeneous I'-invariant polynomials F;, with
deg F; = deg f; (6.8)

for each j=1, ..., s. To establish this claim, integrate (6.6) over I'. The
I'-invariance of u and u; leads to

Fi(x) = J fiyx)dy.

Averaging a homogeneous polynomial of degree d produces another (I'-
invariant) homogeneous polynomial of degree d since I' acts linearly, hence
leaves the space of homogeneous polynomials of degree d invariant.

Finally, we use the induction hypothesis to write each f; in the form

fi=giuy, ... u).
This is possible since each u; has degree > 1, so by (6.7)
degf; < degu—1<k.

Now we set
f ul’-- u)_ Z gj(ul? ">us)uja
and (6.4) holds as required. O

The remainder of this subsection is devoted to a proof of the Hilbert basis
theorem, Theorem 6.1, which is required to complete the preceding proofs.
We begin this task by introducing some notation and proving a preliminary
lemma.

Let f(x) be a polynomial in R{x] of degree m. Of course, f has the form
(6.1), where r,, # 0. We call r,, the leading coefficient of f and denote r,, by f.
By convention 0=0.

Suppose that .# = R[x] is an ideal. We define

F ={feR|fes} (6.9)

We claim that .7 is an ideal, the ideal of leading terms in #. To verify this we
must show that

(a) Iff,, f,es then fi+ f,e 4,

A (6.10)
(b) IfreR,fes then rfe .
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To prove (6.10(a)) we assume
d, =degf, <degf, =d,.

Let f = x791f, + f,; then f € .# since .# is an ideal. Moreover, f fi + f2
as desired. The proof of (6.10(b)) is simpler since clearly (rf = rf
Given an ideal .# € R[x] we define

S, =1{feF|degf <k} (6.11)

That is, ., consists of all polynomials in .# of degree < k. Observe that .4 is
an R-module, since deg(rf) < deg f.

Lemma 6.4. Suppose that all ideals in R are finitely generated. Then for each
k, %, is a finitely generated R-module.

Remark. Recall that .#, is a finitely generated R-module if there exist finitely
many generators ¢, ..., 4, € % such that every g € .4 has the form

qzrqu +“.+rsqs

wherer,,...,r,e R.

S

PROOF. We use induction on k. The result is trivially true if k = O since ., = R

is an ideal of R, thus finitely generated (as an ideal, hence as an R-module).
Inductively, suppose that %, _, is a finitely generated R-module, with genera-

tors fy, ..., f.. As we showed earlier, . is an ideal in R and hence is finitely

generated, say by g, ..., g, Moreover, we may assume degg; = k for all i. (If
deg g; < k then replace g; by x*~9°€4:g,.) We claim that
{fl"'-’/;’gla""gl}

is a set of generators for .#, as an R-module. To verify the claim, suppose that
g(x) € , has the form

gx) =nxk +r_ x* 1+ 41y (6.12)

where ry, ..., e R. If r, =0, then g € #,_, and by induction is a linear
combination of the f;. If r, # O then, by definition, r, € J. It follows that

h=a.g, + -+ ad, (6.13)
where a,, ..., a, € R. We may use (6.12) ad (6.13) to conclude that

g—(ayg, + - +ag)
has the form (6.12) with r, = 0 (since degg; = k for all i) and is a linear

combination of the f; as previously. This construction proves the claim. []

PRrROOF OF THEOREM 6.1. Let .# = R[x] be an ideal. We must show that .# is
finitely generated. We construct a set of generators for # as follows. By
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assumption every ideal in R is finitely generated; hence .Z is finitely generated.
Let f,, ..., p, be generators for . and let

k = max degp,.
1<i<s
Let {q,,...,q,} be a set of generators for the R-module .%_, whose existence is

guaranteed by Lemma 6.4. We claim that

{ph""ps’qla""qt}

is a set of generators for the ideal .#.
To prove this we must show that for every f € # there exist a,, ..., a,,
by, ..., b e R[x] such that

f=ap, + - +ap,+bq + -+ bg, (6.14)

This is trivially true if deg S < k, since then f is a linear combination of the g;
with constant polynomials b, € R as coefficients. To prove (6.14) holds in
general, we use induction on deg f. Assume that whenever deg f < k + ,(6.14)
holds. Now suppose f has degree k + | + 1. We can write the leading coefficient
of f as

f: rlﬁl ++ rsﬁs
since the p; generate the ideal J. Now observe that

— _ 5 r_xk+l+1—degpj X

g=1f ,; j p;
has degree < k + [ since the leading term of f has been cancelled away. It
follows by induction that g has the form (6.14), hence so does f. O

(b) Proof of Theorem 4.3

Here we sketch (with a broad brush) the proof of Schwarz’s theorem, Theorem
4.3, on smooth invariants. Complete proofs may be found in Schwarz [1975],
Mather [1977], and Bierstone [1980].

Recall the setting: ' is a compact Lie group acting (orthogonally) on
V =R" and {u,,...,u,} is a Hilbert basis for the ring 2(I') of I'-invariant
polynomials. We wish to show that every germ g € £,(T') is of the form

g(x) = fluy(x),..., ux)) (6.15)

for some germ f € &,, where y = (yy,..., ys). Itis sufficient to verify .(6.15) for
one Hilbert basis. For suppose that v, ..., v, is another Hilbert basis. By the

Hilbert—Weyl theorem
u, = wlvy,...,0) i=1,...,s),

SO
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g(X) :f(Wl(Ul,...,D,),...,WS(Ul,...,L‘,))
= F(vy,...,0)

for suitable smooth F. This verifies (6.15) for the Hilbert basis vy, ..., v,.

In particular, we may assume for the remainder of this section that the y;
are homogeneous polynomials.

We begin our discussion by recalling a result of Borel. Details of the proof
may be found in Theorem 4.10 of Brocker [1975].

Lemma 6.5 (E. Borel). Let ¢(x) be any formal power series in x = (Xy,...,X,),
with real coefficients. Then there exists a smooth germ f € &, such that
Jf(%) = o(x), (6.16)

where jf is the infinite Taylor series of f.

Remark. Recall from Chapter I1, §3, that the Taylor series of f may be written
using multi-index notation as

1 0 \*
ﬂm=ZgGQf@wf

Uniqueness is not asserted in Lemma 6.5. The germs f € &, with jf = 0 are
said to be flat. We show later that the difficulties in proving Schwarz’s theorem
all reside in the flat germs.

Lemma 6.6. If ¢(x) is a I'-invariant formal power series, then there is a formal
power series W in s variables such that

@(x) = Y(uy(x),..., ux)). (6.17)

PROOF. Write ¢(x) = > 3 ¢;(x) where ¢, consists of those terms in ¢ which are
homogeneous of degree i. By the Hilbert—Weyl theorem, Theorem 4.2, there
exist polynomials ¥,(y,,..., y,) such that

@i(x) = Yy (x), ..., ug(x)). (6.18)

Let | = max deg u;(x) and recall that we are assuming the u; to be homoge-
neous. Observe that to satisfy (6.18) we may assume that the smallest degree
of a nonzero term in ; is [i/l]. It follows that

ww=§mm

is a well-defined formal power series, since in any fixed degree there are only
a finite number of y; contributing nonzero terms to the sum. Now y satisfies

(6.17). O

Corollary 6.7. If every flat germ g € &,(T') has the form (6.15), then every germ
g € &.(T) has the form (6.15).
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Proor. Let g(x) € &(I). Then jg is a T'-invariant power series. Hence Lemma
6.6 implies that there exists a formal power series /(y,,..., y,) such that

J9(x) = Y (uy(x),..., uy(x)).
By Lemma 6.5, there is a smooth germ f € &, such that jf = y. It follows that

J(g(x) — fluy(x),...,u(x)) = 0.

Hence g(x) — f(u;(x),...,u(x))is flat. By assumption there exists agerm h € &,
such that

g(x) — flug(x),..., uy(x)) = huy(x),...,uy(x)).
Therefore, g satisfies (6.15). ad

Of course, the flat case is the heart of the problem. Nevertheless, the
reduction to the flat case is important, as we can see by considering the
example of Z, acting on R by reflection. Suppose that g is flat and satifies
g(x) = g(—x). We claim there is a smooth germ f such that g(x) = f(x?).

Moreover, we can define f easily since g is flat. Namely, let f(y) \/W ). It
is clear that f(x?) = g(x), and that f is smooth away from the origin. However
since g vanishes to infinite order at the origin, f is also smooth at 0. Thus we
have proved Schwarz’s theorem when I' = Z, and V = R (and we have given
an alternative proof to Lemma VI, 2.1, since the bifurcation parameter A can
easily be introduced without affecting the argument).

Let us try to generalize this approach. Let g be a I'-invariant germ and let

p: R" - R*
p(x) = (uy(x),.., us(x))

be the discriminant of I', with u,, ..., u, a Hilbert basis for &,(I'). We wish to
find a smooth germ f € &, such that

g(x) = f(p(x)). (6.20)

(Of course, (6.20) is just another way to write (6.15).) Equation (6.20) defines
f uniquely on the image A of p in R%, known as the (real) discriminant variety
of I'. We indicate here why f is well defined on A. Suppose that p(x) = p(x").
By standard results on invariants we see that x and x’ must lie on the same
orbit under the group I'. So x’ = yx for some y e I', whence g(x’) = g(x) and
f is well defined on A.

The main difficulty lies in showing that f extends from A to a smooth
function on R®. Very roughly, this is relatively easy to achieve except at the
origin. However, at the origin we may use the flatness of g to construct the
desired extension. The central idea in finding this extension is the fact that p
is a polynomial mapping. Hence the singularity of p at 0 is no worse than

algebraic, much as in the case I' = Z, where it is \/— . The flatness of g then
swamps this singularity of p and allows the extension.

(6.19)
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The actual proof involves numerous technical details. Again we refer the
reader to Schwarz [1975], Mather [1977], and Bierstone [1980].

(c¢) Proof of Theorems 5.2 and 5.3

In this subsection we discuss the structure of the modules Z(I") and &(I") over
the rings 2(I') and &(I), respectively. We prove the basis theorems here in
somewhat greater generality than is stated in §5. Let us introduce this generality
now.

Let the compact Lie group I' act on two different spaces V and W. We can
still speak of I'-equivariant mappings of V into W as those maps g satisfying

g(yx) = yg(x) (6.21)

where the action of y on the left-hand side of (6.21) is its action on V, and the
action on the right-hand side is that on W. We denote the I'-equivariant
polynomials by Z(T’; V, W) and the I'-equivariant germs by &(I; V, W). Both
these spaces are modules over the rings of I'-invariant functions on V, that is,
2.(I') and &,(T), respectively.

Following Poénaru [1976], who also credits Malgrange, we shall prove:

Theorem 6.8.
(@) The module Z(T; V, W) is finitely generated over the ring 2(I').
(b) Let gy, ..., g, be generators for the module Z(I"; V, W). Then {g1,---» g} is

—

a set of generators for the module &(T; V, W) over the ring &.(T).

Remark. Theorems 5.2 and 5.3 follow immediately by setting ¥V = W and
assuming that the actions of I" on V and W are identical.

PRroor.

(a) The basic idea is to convert the equivariant situation to the invariant case.
Here we must use the fact that I is compact and may be assumed to act
orthogonally on both ¥ and W. Let ( , ) denote a I'-invariant inner product
on W. Suppose that g: V — W is I'-equivariant and let y € W. Then

Sx,y) = <{g(x),y> (6.22)
is a I'-invariant function V x W — R, where the action of I" on V x W is
(x,y) = (yx,7y). To check I'-invariance in (6.22) we compute

Sx,vy) = <grx),yy) = {yg(x),yy) = {g(x), y> = f(x,y)

where the penultimate equality follows from orthogonality of the action of I'
on W.

Conversely, we can recover I'-equivariant mappings ¢ from I-invariant
functions f by the relation

g(x) =, )k o (6.23)
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where ¢ indicates the transpose. It is easy to see that (6.23) is a consequence
of (6.22). More generally, however, we claim that the mapping g defined by
(6.23) is I'-equivariant for any I'-invariant f: V x W - R. To prove this,
differentiate the relation

fox.vy) = fx, )
with respect to the y-variables and evaluate at y = 0, obtaining
(d,f)yx,07 = (d, s.0- (6.24)
It follows from (6.23) and (6.24) that
Y'9(7x) = g(x).
However, since I acts orthogonally on W, y* = y~! and we have
g(yx) = yg(x)

as claimed.

These calculations show that the I'-equivariant polynomial mappings in
P(T; V, W) (respectively, germs in &, ([ V, W)) may be obtained by the con-
struction (6.23) from the I'-invariant polynomial functions in 2(I;V x W)
(respectively, germs in &, (I, ¥ x W)) in a natural way. We now claim that
generators for the module Z(I", ¥V, W) can be obtained from a Hilbert basis for
the ['-invariant functions (I, V x W), whose existence is guaranteed by the
Hilbert-Weyl theorem. The general I'-invariant function in (T, V x W) has
the form

f(ul(x’ y)’-"’us(x’y))’ (625)

where f is a polynomial in s variables. Using the construction (6.23) we can
write the general I'-equivariant mapping in #(T; V, W) as

g 5["(“1" "sus)ly=0(dyuj).lx,0' (626)

Since gf—(ul(x, 0),...,u;(x,0)) is a I'-invariant function in 2(I', V) we have
U
shown that the s equivariants
(dyul)x,o, sy (dyus)x,o

generate the module Z(T"; V, W), thus proving part (a) of this theorem.

(b) This can be proved by slightly adapting the preceding argument, which
in particular shows that all I'-equivariant smooth germs in &,(I'; V, W) may
be obtained from the I'-invariant functions in &,(, V' x W) by the construc-
tion (6.23). We can of course represent the general I'-invariant smooth germ
in &,V x W) in the form (6.25) using Schwarz’s theorem in place of the
Hilbert—Weyl theorem. The only difference is that f is now a smooth germ in
s variables. The remainder of the argument is identical to that in part (a). [
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§7.* Tori

In §1 we introduced the n-dimensional torus T" = S! x -+ x S! (n times). Tori
are important in Lie group theory, and we shall need some of their properties
in Chapters XIX and XX on mode interactions. These properties are collected
here for reference; this section may be omitted on first reading.

We realize T" as a Lie group by its standard representation on R?", in which
0 =(0,,...,0,) e T" acts as the matrix

Ry

R,

2

TR,

As a topological manifold, T" is n-dimensional. The main results of this section
are as follows:

Theorem 7.1. Every irreducible representation of a compact abelian Lie group
(in particular of a torus) is of dimension at most 2.

Theorem 7.2. A Lie group is compact connected abelian if and only if it is
isomorphic to a torus.

Theorem 7.3. Every torus T" contains a dense subgroup A isomorphic to the
additive group of real numbers.

The reader willing to take these results on trust may omit the remainder of
this section.
For the less trusting we begin with the following:

PROOF oF THEOREM 7.1. Let I' be compact abelian acting irreducibly on V. We
may suppose that the action on V is not trivial, otherwise dim V = 1. Identify
V with R" and complexify to get C". We can make I act on C" by extending
the action on V via linearity over C. To do this let z e C" and write it as
z = x + iy where x, y, € R". Define a I'-action on C” by

Yz = ypx + iyy.
An easy calculation shows that each transformation
p,:C"=>C"
py(2) = 9z

is C-linear. Now any commuting set of C-linear transformations (finite or
infinite) on C" has a simultaneous eigenvector, so we may let w = u + ivbe a
simultaneous eigenvector for all the p,, y € . Let A(y) = u(y) + iv(y) be the
corresponding eigenvalue. Now C{w} is a one-dimensional (over C) C-linear
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subspace of C" invariant under I'. We construct a “real form” of this as follows.
We have

yw = Ay)w
whence
yu =+ iyo = (u(y) + iv(y)) (u + iv)
so that
yu = p(u — v(y)o
Y= u)v + v(y)u.
Hence the real vector space W < V spanned by u and v is I'-invariant. By

irreducibility, W = V. But dimgz W < 2 as claimed. O

Corollary 7.4. If I is a compact connected abelian Lie group then every nontrivial
irreducible representation has dimenion 2 and is isomorphic to a representation
on R? = C with action

yz = %z
where z € C and 6: T — S* is a homomorphism.
Proor. Without loss of generality the action of I' is orthogonal. Suppose
dim V = 1. The only orthogonal transformations of V are then + I. Since the
action is nontrivial, p, = —1 for some y e I'. Since {+ 1} is discrete, this
contradicts connectedness of T,
Thus dim ¥V = 2, and T acts via elements of O(2). Connectedness implies

that T acts via SO(2) = S*. Hence we may identify ¥ with C, and y acts by
z — %z, For this to be an action we require

0y, + 72) = 0(yy) + 6(y2)

so 0 is a group homomorphism. |
An immediate consequence is the following:

Proposition 7.5. Every compact connected abelian Lie group is isomorphic to a
subgroup of a standard torus.

Proor. Let I' ¢ GL(V) be compact connected abelian. Decompose V into
irreducible subspaces, V = V; @ - @ V,. By Corollary 7.4, dim V; = 2, and in
relation to an appropriate basis I acts on V by

Rol(}’)

R,

2(7)

R9k(v)
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for suitable homomorphisms 6;: I" — S*. This exhibits p(I), which is isomorphic
to T, as a subgroup of T*. O

In fact, a stronger result, namely Theorem 7.2, is true. The proof can be
completed by showing that every connected closed subgroup of a torus is a
torus or by exploiting additional machinery from the theory of Lie groups (in
particular the “exponential map”). See Adams [1969], p. 16, Corollary 2.20.

Finally we turn to Theorem 7.3, the existence in any torus T" of a dense
subgroup A isomorphic to R*, the group of reals under addition. By dense
we mean that the closure of A in T" is the whole of T". To see how such a
subgroup can arise, consider the 2-torus T?. For any « € R, define a map

.. R* > T? by
R
) =| =2 )
@.(0) [ RJ

We ask when ¢, is an isomorphism onto its image, that is, ker ¢, = 0. Now
0 € ker ¢, if and only if

0 = 0 (mod 2n)
o0 = 0 (mod 2n).

Therefore, 8 = 2qn, a8 = 2pn where p, g € Z. Hence either 6 = 0 or a = p/q is
rational. Therefore, @, is an isomorphism onto its image if and only if « is
irrational. It is well known in this case that the image A of ¢, is dense in T2,
See Abraham and Marsden [1978], p. 259, Proposition 4.1.11.

More generally, we have a strengthening of Theorem 7.3:

Proposition 7.6. Let o, ..., o, € R be linearly independent over the rationals.
Define ¢,: R* —» T" by
R

a0

?,(0) = 220

R,

Then the image of @, is dense in T" and isomorphic to R™.

PRrOOF. See Adams [1969], p. 79, Proposition 4.3, or Palis and DeMelo [1982],
p. 35, Exercise 11.13. O

EXERCISES

7.1. Classify all irreducible representations of S!. (Hint: Use Corollary 7.4, and compare
with Exercise 2.1.)

7.2. Classify all irreducible representations of O(2). There are:
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(a) Two one-dimensional irreducibles, the trivial representation and the repre-

sentation in which y € O(2) acts as multiplication by det y.
(b) A countably infinite family of two-dimensional irreducibles defined by

(i) zr etz

(i) zr>7Z

wherezeC=R%*andk=1,2,3,....

(Hint: IfO(2) acts irreducibly on a vector space V, show that the subgroup SO(2)

also acts irreducibly on V)

7.3. Show that all irreducibles for Z, and D, are of dimension 1 or 2.



CHAPTER XIII

Symmetry-Breaking in Steady-State
Bifurcation

§0. Introduction

In this chapter we begin to study the structure of bifurcations of steady-state
solutions to systems of ODEs

dx

T + g(x,A) =0 0.1)

where g: R" x R — R" commutes with the action of a compact Lie group I'
on V = R" Steady-state solutions satisfy dx/dt = 0; that is,

g(x,2) = 0. 0.2)

We focus here on the symmetries that a solution x may possess and in
particular define some simple “geometric” notions that will prove to be of
central importance.

In §1 we note that since I' commutes with g, if x is a solution then so is yx
for all y e I'. The set of all yx for y € I is the orbit of x under I'". The amount
of symmetry present in a solution x is measured by its isotropy subgroup

2=X,={0elox=x}.
The smaller X is, the larger is the orbit of x.
In §2 we introduce the fixed-point subspace
Fix(Z)={ve Vliev =vforallo € }.
It is a linear subspace of V and, remarkably, is invariant under g (even when

g is nonlinear). This leads to a strategy for finding solutions to (0.2) with
preassigned isotropy subgroups Z: restrict g to Fix(X) and solve there. This
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strategy will be used repeatedly in the sequel. It is important to be able to
compute dim Fix(X), and we prove a trace formula for this.

The main result of this chapter, proved in §3, is the equivariant branching
lemma (Theorem 3.2) due to Vanderbauwhede [1980] and Cicogna [1981].
This states that, with certain conditions on X, a unique branch of solutions to
(0.2) with isotropy subgroup Z exists. The main hypothesis is that the fixed-
point subspace Fix(Z) is one-dimensional. Thus the point of view is to pre-
scribe in advance the symmetries required of x and to reduce the problem to
a study of g|Fix(X).

The restriction dim Fix(XZ) = 1 is not as arbitrary as it may appear, and this
condition is often satisfied. The problem (0.2) is connected with “spontaneous
symmetry-breaking” as follows. Suppose that (0.1) has for each A a trivial
solution x = 0 (which manifestly has isotropy subgroup I'). Suppose it to be
asymptotically stable for 4 < 0 and to lose stability at A = 0. Usually such a
loss of stability is associated with the occurrence of new branches of solutions
x # 0t0(0.2), emanating from the trivial branch at 1 = 0. Such solutions often
have isotropy subgroups X smaller than I'. We may ask, Which X typically
arise in this way? In the language of symmetry-breaking, one says that the
solution spontaneously breaks symmetry from I" to Z. “Spontaneously” here
means that the equation g = 0 still commutes with all of I'. Instead of a unique
solution x = 0 with all of I as its symmetries, we see a set of symmetrically
related solutions (orbits under I' modulo X) each with symmetry group
(conjugate to) X. In many examples it turns out that the subgroups X are
maximal isotropy subgroups—not contained in any larger isotropy subgroup
other than I'. (Exceptions to this statement do occur; see §10.) If dim Fix(Z) = 1
then ¥ is maximal, and such ¥ are the most tractable maximal isotropy
subgroups.

Thus the equivariant branching lemma yields a set of solution branches
in a relatively simple way. It is important to decide whether the solutions
associated with any of these branches can be asymptotically stable. In §4 we
show that for some group actions I' on R”, all such branches are unstable.
This means that in some problems it is essential to consider degeneracies; this
leads to problems that can be solved using singularity theory. See Chapters
XIV and XV.

In §5 we discuss in more detail how to represent I'-equivariant bifurcations
by a (schematic) bifurcation diagram. Such diagrams are very convenient, but
we make their schematic nature explicit to avoid misunderstandings.

§66—9 apply the theory thus developed to two classes of examples: the
groups SO(3) and O(3) acting in any irreducible representation. The proofs
may be omitted if so desired. These representations are obtained in §7, which
links them to the classical idea of “spherical harmonics.”

Finally in §10 we discuss to what extent we may expect spontaneous
symmetry-breaking to occur to maximal isotropy subgroups. This section is
optional. Although many questions remain unanswered, it is possible to
establish a number of facts. In particular there are three distinct types of
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maximal isotropy subgroup, which we call real, complex, and quaternionic.
A theorem due to Dancer [ 1980a] effectively rules out all but the real maximal
isotropy subgroups. On the other hand, Chossat [1983] and Lauterbach
[1986] give examples in which submaximal isotropy subgroups arise generi-
cally, and we outline their results. We also describe two contexts in which
solutions occur for all maximal isotropy subgroups. These contexts are varia-
tional equations (Michel [1972]) and periodic solutions near equilibria of
Hamiltonian systems (Montaldi, Roberts, and Stewart [1986]).

§1. Orbits and Isotropy Subgroups

Let I" bea Lie group acting on the vector space V. There are two simple notions
used in describing aspects of a group action, which are intimately related to
the way we think of bifurcation problems with symmetry. We explain these
ideas and relations in the following discussion.

The orbit of the action of I on x € V is the set

I'x ={yx:yel}. (1.1)

Suppose that f: V — V is I'-equivariant; then when f vanishes, it vanishes on
orbits of I'; For if f(x) = 0, then

Sx) = 9f(x) =90 = 0.

In other words, this calculation shows that symmetric equations (I'-
equivariants) cannot distinguish between points (solutions) on the same orbit.
The isotropy subgroup of x € V is

., ={yelyx=x}. (1.2)

See the following for an example. We think of isotropy subgroups as giving
the symmetries of the point x (under the action of I'). In later sections we shall
attempt to find solutions to f = 0, for some unspecified I'-equivariant map-
ping f, by specifying required symmetries for the solution x, that is, by
specifying the isotropy subgroup of x.

It is natural to ask how the isotropy subgroups of two points on the same
orbit compare. The answer is as follows:

Lemma 1.1. Points on the same orbit of T have conjugate isotropy subgroups.
More precisely,
Z,=yZy . (1.3)
Remarks.
(@) Let Z = I be a subgroup and let y e I". Then
P2y~ = {yoy i g€ I}

is a subgroup of T, said to be conjugate to X.
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(b) The conjugacy class of X consists of all subgroups of I' that are conjugate
to X.

PRrOOF. Let x € V and y € I. Suppose that g € £,. We claim that yoy ™' € Z,.
We may check this directly:

yoy~(px) = ya(y"1y)x = yox = yx,
the last equality holding since o € Z,. It follows that
2707

Replacing x by yx and y by y™! yields X, = y™'Z, 7, which proves the lemma.
O

A convenient method for describing geometrically the group action of I' on
V is to lump together in a set W all points of V that have conjugate isotropy
subgroups. We say that W is an orbit type of the action.

We illustrate these ideas by considering the action of the dihedral group D,
on C generated by

k:iz+—Z and (zee?ing,

Geometrically we picture the action of D, as the symmetries of a regular n-gon
centered at the origin in the plane. This n-gon is shown in Figure 1.1 by dashed
lines, when n = 5. We derive in the following the orbit types of this group
action. The result depends on whether n is odd or even, and for simplicity we
consider only the case when n is odd. The complete results may be found in
§5. The vertices on the n-gon, shown as o in Figure 1.1, are mapped into each
other by I'. More precisely, these vertices constitute a single orbit of the action
of I". The isotropy subgroup of a vertex on the real axis (not at the origin) is
the group Z, generated by k. The other vertices have isotropy subgroups
conjugate to Z,, by Lemma 1.1. Finally, if t # 0 then linearity of the action
implies that £,, = Z,. So all points on the lines joining the origin to a vertex
have conjugate isotropy subgroups and belong to the same orbit type.

Next we consider a point near, but not on, the real axis, indicated by a @
in Figure 1.1. By reflection and rotation we see that its orbit contains 2n points,

Figure 1.1. Orbits of the action of D5 on C.



§1. Orbits and Isotropy Subgroups 71

Table 1.1. Orbit Types and Isotropy Subgroups for D,

on C, nodd

Orbit Type Isotropy Subgroup  Size of Orbit
{0} D, 1

{ze C|Im(z") = 0,z # 0} z, n

{z e C|Im(z") # 0} 1 2n

and the only group element that fixes one of these points is the identity in D,
Hence all points in the wedges between the vertex-origin lines belong to the
same orbit type.

Finally, of course, the origin forms an orbit on its own and is fixed by the
whole group D,. Thus there are three orbit types. We list these, along with
their (conjugacy class of) isotropy subgroups, in Table 1.1. (In the case n even,
points on the lines joining the origin to midpoints of edges of the n-gon have
nontrivial isotropy subgroups not conjugate to those listed in Table 1.1; see
§5.)

In this example “almost all” points—an open dense set-—have trivial iso-
tropy subgroup. It is a general theorem (Bredon [1972], p. 179) that there
exists a unique minimal isotropy subgroup X, for any linear action of a Lie
group I' on a vector space V and that points with this isotropy form an open
dense subset of V. Since Fix(Z,,;,) contains an open dense subset of V and is
a vector space, it must be the whole of V; therefore, Z_,, is the kernel of the
action—the subgroup of all elements of I" that act on V as the identity. The
points with isotropy group X;, are said to have principal orbit type.

We see that in this example, the larger the orbit, the smaller the isotropy
subgroup. We formalize this observation as follows:

Proposition 1.2, Let T be a compact Lie group acting on V. Then
(@) If |T'| < oo, then || = |Z|IT'x|.
(b) dimI' = dimX, + dim I'x.

Remarks.

(a) Proposition 1.2(a) states that the order of the group T is the product of
the order of £, and the size of the orbit of x. This formula may be checked
for I' = D, from Table 1.1, using the fact that |D,| = 2n.

(b) Lie groups are always smooth manifolds and have well-defined dimen-
sions. Since isotropy subgroups are always Lie subgroups both dimI" and
dim X, make sense. Similarly orbits of Lie groups are always submanifolds
and have well-defined dimensions. Thus dim I'x makes sense.

SKETCH OF PrOOF. There is a natural map ¢: I’ - I'x defined by

o) = yx. (1.4)
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By definition ¢ maps onto the orbit I'x, and ¢~ !(x) = X,. Define the coset
space of a subgroup X of I' to be

I/E = {ZlyeT}
where we recall that the cosets of Z in I" are the sets
7E = {yo|o € }.
Then ¢ induces a map
Y./, - T'x
Y(y) = yx

which is both one-to-one and onto. In the case that I is finite, a simple
counting of the cosets in I'/Z, verifies part (a). In general, both ¢ and  are
smooth mappings and (di), is invertible. It follows from the inverse function
theorem that

(1.5

dim I'x = dim(T'/%,)

from which part (b) is immediate. O

Remark (d} of XII, §4, promised a simple criterion for 2(I') to be a poly-
nomial ring. We have now defined the concepts needed to state this; we omit
the proof. Suppose that I" acts on ¥V with minimal isotropy subgroup Z_;,.
Let {u,(x),...,ux)} be a Hilbert basis for 2(I'). If

s=dimV — dimT + dimZ,,, (1.6)

then 2(I) is a polynomial ring.
In particular, if I is finite then (1.6) reduces to

s =dim V. (1.7)

For example, (1.7) trivially implies that #(D,) is a polynomial ring whenever
D, acts irreducibly on C.

EXERCISES

1.1. Let O(n) act on R” in its standard representation. Find the orbits and the corre-
sponding isotropy subgroups.

1.2. Let I' be the group of all symmetries, including reflections, of a cube center the
origin of R*® with edges parallel to the axes. (In the notation of XIII, §9, T" is the
group O @ Z5.) Show that
(a) |I'| = 48 and I is generated by

100 10 0 00 1
k,=| 01 0| R=[00 —1 R,=| 010
00 1 01 0 ~10 0
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(b) Show that the orbit data for I' are as follows:

Orbit Isotropy
Representative Subgroup
(0,0,0) r
(x,0,0) D,
(x,x,0) 2,017,
(x, x,x) S,
(x,5,0) 2
(x,x,2) Y
(x,3.2) 1
|xl, |y}, |z} distinct

and # 0

where D, is generated by R, and k, (in obvious notation, compare (a)), Z, by
K., and Z} by (x, y,z)—(x, z, y).
(c) Verify Proposition 1.2(a) directly for this example.

1.3. Find the orbits and isotropy subgroups for O(3) in its five-dimensional representa-
tion (as in Exercise XII, 3.6). Verify Proposition 1.2(b) for this example. (Hint:
Every symmetric matrix can be diagonalized.)

1.4. (a) Show thatin D,, ., all reflections are conjugate.

(b) In D,, show that there are two geometrically distinct types of reflection: those
through lines joining the origin to a vertex and those through lines join-
ing the origin to the midpoint of an edge. Prove that all reflections of the
same type are conjugate in D,,, but that different types of reflection are not
conjugate.

(c) Prove that all reflections in D,,, are conjugate in D,,,,.

1.5. Let Z, act on R? so that — 1 € Z, acts as (x, y) (—x, y). Prove that 2(Z,) is not
a polynomial ring.

§2. Fixed-Point Subspaces and the Trace Formula

This section divides into three subsections, devoted to the following topics:

(a) The existence of invariant subspaces for nonlinear equivariant mappings:
the fixed-point subspaces,

(b) A method for computing the dimensions of fixed-point subspaces: the trace
formula,

(c) Ways to use the dimensions of fixed-point subspaces to find an important
class of isotropy subgroups: the maximal isotropy subgroups.
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(a) Fixed-Point Subspaces

One of the most remarkable as well as one of the simplest features of nonlinear
I-equivariant mappings is that their equivariance forces them to have in-
variant linear subspaces. Moreover, these invariant subspaces correspond
naturally to certain subgroups of I.

Let X = I" be a subgroup. The fixed-point subspace of X is

Fix(Z) = {xe V:ox = xfor all g € Z}. 2.1

If it is important to display the space V explicitly we write Fix, (X). Observe
that Fix(Z) is always a linear subspace of V since
Fix(Z) = () ker(c — Id)
cel
and each kernel is a linear subspace.

Note that the simplest fixed-point subspaces are Fix(1) and Fix(I'). Since
the identity subgroup 1 fixed every point, we have Fix(1) = V. At the other
extreme, Fix(I') consists of all vectors in V that are fixed by every element in
I'. Thus Fix(I') is the subspace of V on which I' acts trivially. We shall often
adopt the hypothesis that Fix(I') = {0}.

We now show that the fixed-point subspaces have the invariance property
asserted earlier.

Lemma 2.1. Let f: V —» V be I'-equivariant. Let ¥ <= T" be a subgroup. Then
f(Fix(¥)) = Fix(X). (2.2)

ProoF. Let ¢ € X, x € Fix(X). Then
f(x) = flox) = of(x) (2.3)

where the first equality follows from the definition of Fix(X), and the second
from equivariance. From (2.3) we see that o fixed f(x). Therefore, f(x) € Fix(Z).

O

Remark. In Lemma 2.1 we do not require  to be an isotropy subgroup.
However, for any subgroup Z, Fix(Z) is equal to the sum W of all subspaces
Fix(A) where A o Z is an isotropy subgroup. To prove this, first let v € Fix(Z).
Then X, o X and v € Fix(Z,). Hence we may take A = X, to show thatve W,
so Fix(Z) = W. On the other hand, if we W the w = w, + -+ + w, where
w; € Fix(A)), for an isotropy subgroup A; > X. But this means that ow; = w;
for all o € X, so w; € Fix(X); therefore, w e Fix(Z) and so W < Fix(Z). Hence
W = Fix(%).

Thus in theory there is no real loss of generality if we let X run through just
the isotropy subgroups of I. However, it may sometimes be convenient not
to require X to be an isotropy subgroup, since this condition may not be easy
to check.
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For an example where we can check Lemma 2.1 directly, consider once
more I' = D, in its standard action on C. We find Fix(Z) for the isotropy sub-
groups X. Obviously if ¥ = 1 then Fix(X) = V; and if £ = D, then Fix(Z) =
{0}. If ¥ = Z, then Fix(Z) is the real axis; and if Z is a conjugate of Z, then
Fix(X) is the image of the real axis under an element of D,, that is, one of the
lines through the origin and a vertex.

Taking £ = Z, in Lemma 2.1 it follows that every D,-equivariant mapping
Jf must leave the real axis invariant. By (X1I, 5.12) the general f has the form

f(2) = p(u,v)z + q(u,0)z"™*
where u = zZ,v = z" + z". If z = x is real, then
f(x) = p(x?,2x")x + g(x?,2x")x"

is also real. So Fix(Z,) is invariant under f as predicted.

Animmediate consequence of Lemma 2.1 is the existence of trivial solutions
for T'-equivariant mappings f. More precisely, if Fix(I') = {0} then {0} must
be invariant under f, so that f(0) = 0. In fact, we have three equivalent
properties:

Proposition 2.2. Let " be a compact Lie group acting on V. The following are
equivalent:

(a) Fix(I') = {0}.

(b) Every I'-equivariant map f:V — V satisfies f(0) = O (there always exist
trivial solutions).

(c) The only I'-invariant linear function is the zero function.

Remark. The most important implication (a) = (b) we showed previously,
using Lemma 2.1.

ProOF. The converse (b) = (a) is proved easily as follows. We claim that for
every v € Fix(TI'), the constant mapping f(x) = v is I'-equivariant. If so, (b) will
imply that v = f(0) = 0, proving (a). To verify the claim, compute

P (x) =yv =v = f(yx).

The first equality is by definition of f(x), the second follows since v € Fix(I),
and the third holds since f is constant.
Next we show that (a) implies (c). Let L: V — R be linear and invariant. We
may write L in the form
L(x) = <{v,x)

for some v e V. We claim that v € Fix(I'), whence (a) implies (c). Since L is
[-invariant, L(x) = L(y~'x) for all y € I". Since T acts orthogonally ™! = y*.
Thus

(0,x) = <v,771x) = <u,p"x) = (yu,x)

for all x. Hence yv = v for all y and v € Fix(T'), as claimed.
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Finally we prove that (c)=(b). Let f: V — V be I'-equivariant. We must
show that f(0) = 0. To do this, define
L(x) = {f(0),x)

where { , ) is a I'-invariant inner product on V. We claim that the linear
function L is I'-invariant. If so, then L = 0 and f(0) = 0. To verify the claim,
compute

L(yx) = {f(0),yx> = <y7'f(0),x) = {f(0),x) = L(x). O

(b) The Trace Formula

In later sections we shall want to compute the dimension of Fix(X). There is
an elegant formula for this, which depends only on the trace tr(c) for ¢ € X.
Because I' acts linearly on V we may think of y e I as acting by the linear
mapping p,: x+— yx. By tr(s) we mean the trace of p, on V.

Theorem 2.3 (Trace Formula). Let " be a compact Lie group acting on V and
let £ < T be a Lie subgroup. Then

dim Fix(X) = J tr(o) (2.4

L

where [ denotes the normalized Haar integral on Z.

Remark. If X is finite then (2.4) can be rephrased as

1 S tr(o). (2.5)

dim Fix(X) =
! X( ) |Z| ageX

See Example XIII, 1.4.
Proor. Define the linear transformation 4: V — V by
A= J c. (2.6)
T
Because the Haar integral is X-invariant, we see that

A=Ja’a
z

where ¢’ is any fixed element of X. It follows that
A? = 4; 2.7)

that is, 4 is a linear projection. To check (2.7), compute
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A2=A0A=A<J a>
cel

By (2.7)
(@) V=kerA®ImA
(b) AllmA =1Id.

(2.8)

We verify (2.8b) first. Suppose x € Im 4, so x = Ay. Using (2.7) we have
Ax = A%y = Ay = x,

proving (2.8b). To verify (2.8a) observe that dimker A + dimIm 4 = dim ¥,
since A is linear. Thus it suffices to show that ker 4 nIm A = {0}. However,
if x e ker 4 nIm 4 then x = Ax by (2.8b), and Ax = 0.

It follows directly from (2.8) that

tr(4A) = dim Im A. 2.9)

We claim that Im 4 = Fix(X). The theorem will then follow since dimIm 4 =
dim Fix(X) and

tr(A) = f tr(o).
gel

To prove the claim, observe that Fix(X) > Im 4 by (2.8(b)). Conversely,
Fix(Z) « Im A by (2.8(a)). More precisely, suppose x € Fix(XZ). Write x =
k + y where k e ker 4 and y € Im A. Then x = Ax = Ak + Ay = y. This can
happen only if k = 0 and x € Im A. O

In certain cases it is possible to use the trace formula to reduce the calcula-
tion of dim Fix(Z) to finding the dimensions of fixed-point spaces Fix(A) for
certain subgroups A of X. This reduction, stated in Lemma 2.5 later, will be
of particular use when we discuss the fixed-point subspaces for subgroups of
SO(3) and O(3) in §§6-9.

Definition 2.4. Let H,, ..., H, be subgroups of a group Z. We say that X is the
disjoint union of H,, ..., H, if
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(a) X=H,v-"UH,

We use the notation £ = H, U -+ U H, to denote disjoint unions.
When X has a disjoint union decomposition then we can compute dim Fix(X)
in terms of the numbers dim Fix (H,):

Lemma 2.5. Let £ = H,; U -+ U H, be a finite subgroup of T, with I acting on
V. Then

dim Fix(Z) = é [f |H,|dim Fix(H,) — (k — 1)dim V:I. (2.10)
i=1

Proor. From (2.5) we see that

|
dim Fix(Z) = 5 tr(o)
gel

1 [

where the second equality is obtained by splitting the sum over X into a sum
over the H,. Since X is a disjoint union of the H; we must add tr(I) (k times)
for the overlap on the identity element. Since we want to count tr(l) only once
we subtract the overenumeration, obtaining (2.11).

To derive (2.10) from (2.11) we make two observations. First, tr(I}) = dim V.
Second, we apply the trace formula (2.5) directly to each H,, obtaining

1
il heH;

Substitute this in (2.11) to yield the desired result. O

(c) Maximal Isotropy Subgroups

It is important to be able to determine, in as simple a manner as possible,
whether a given closed subgroup is an isotropy subgroup. That is, we wish to
do this without knowing the orbit structure of I". We now consider a distin-
guished class of isotropy subgroups for which this question may be answered
using the dimensions of fixed-point subspaces.

Definition 2.6. Let I' be a Lie group acting on V. An isotropy subgroupZ = I
is maximal if there does not exist an isotropy subgroup A of I' satisfying
ZgAgT.

Lemma 2.7. Let Fix(I') = {0}, and let £ be a subgroup of I'. Then X is a maximal
isotropy subgroup of T if and only if :
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(a) dimFix(Z)> 0
(b) dimFix(A) = 0 for every closed subgroup A 2 %.

(2.12)

PROOF. Suppose T is a maximal isotropy subgroup of I'. Then dim Fix(Z) > 0
since X must fix some nonzero vector, by the definition of an isotropy sub-
group. Suppose A 2 X and suppose there is a vector x € V fixed by A. Then
the isotropy subgroup X, of x satisfies £, > A © X. Since X is a maximal
isotropy subgroup we must have £, = I'. But Fix(I') = {0}, so x = 0. There-
fore, dim Fix(A) = 0.

Conversely, suppose that X satisfies (2.12). Then some nonzero vector x € V
is fixed by X, so X, contains Z. Since X is an isotropy subgroup, it is closed.
If X, # X then (2.12(b)) implies that dim Fix(Z,) = 0, contrary to Z, being an
isotropy subgroup. Therefore £ = Z_, so X is an isotropy subgroup. The same
argument now proves that X is maximal. O

Lemma 2.7 provides a strategy for finding the maximal isotropy subgroups
of T if we know enough about the dimensions of fixed-point spaces of sub-
groups of I'. Namely, we find the largest closed subgroups with nonzero
fixed-point subspaces. We use this strategy in §§6—9 to compute the maximal
isotropy subgroups of SO(3) and O(3).

EXERCISES
2.1. Find the fixed-point subspaces for the isotropy subgroups of Exercises 1.1 and 1.3.

2.2. Let Z be an isotropy subgroup of I'. Show that the largest subgroup of I that
leaves Fix(X) setwise invariant is N = Np(Z). If dim Fix(Z) = 1 show that N/Z is
either 1 or Z,. If it is Z, show that the corresponding bifurcation is of pitchfork

type.

2.3. Show that for the group O @ Z5 of Exercise 1.2, the fixed-point subspaces are as
follows:

Isotropy Fixed-Point

Subgroup  Subspace Dimension
r {{0,0,0)} 0
D, {(x,0,0)} 1
2,07,  {(xx0)} 1
S, {(x,x,x)} 1
z, {(x,,0)) 2
zZ, {(x,x,2)} 2
1 R3 3

24. LetT'=2Z,@® Z, act on R? by (x,y)—(+x, +y) as in X, §1(a). Show that the
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action of I" is not irreducible, but that Fix(I') = {0}; that is, ['-equivariant bifurca-
tion problems have a trivial solution.

2.5. Show that the group O of rotational symmetries of a cube has a disjoint union
decomposition into cyclic subgroups.

2.6. Verify Theorem 2.3 directly for the three maximal isotropy subgroups of O @ Z5
listed in Exercise 2.2.

27. Let T act on V and let X be an isotropy subgroup. It is clear that dim Fix(Z) is
the dimension of the trivial part of the isotypic decomposition of ¥ for %, that is,
the multiplicity with which the trivial representation of X occurs on V. If instead
we ask the multiplicity of some other representation, then there is an analogous
formula to Theorem 2.3 which may be deduced from the orthogonality relations
for characters (see XIII,§7(f)). This exercise asks for a bare-hands proof of a special
case.

Let £ = O(2), and let p be the representation on R in which SO(2) acts trivially
and « acts as — 1. Show that the dimension of the isotypic component corre-
sponding to p is

J tro — J tro.
aeS0(2) 0 0(2)~S0(2)

A= j o — f G
0 eS0(2) ae0(2)~S0(2)

and mimic the proof of Theorem 2.3.)

(Hint: Let

§3. The Equivariant Branching Lemma

In this section we prove a simple but useful theorem of Vanderbauwhede
[1980] and Cicogna [1981] to the effect that isotropy subgroups with one-
dimensional fixed-point subspaces lead to solutions of bifurcation problems
with symmetry.

Definition 3.1. Let " be a Lie group acting on a vector space V. A bifurcation
problem with symmetry group I is a germ g € &, ,(I') satisfying g(0,0) = 0 and
(d9)o.0 = 0.

Here we recall notation used earlier in this volume as well as in Volume L.
A germ g € &, ,(T) is the germ of a '-equivariant mapping, which by abuse
of notation we also denote by g. Here g: V x R — V satisfies

g(yx, A) = yg(x, 4) (3.1)

for all y e I'. By convention our germs are based at the origin (x, 1) = (0,'0).
In Definition 3.1 we require that g(0,0) = 0 to avoid trivial complications.
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If Fix(I') = {0} then Proposition 2.2 implies that g(0,4) =0, and hence
g(0,0) = 0. However, in general g(0, 0) need not vanish.

We also require that (dg), o = 0. Recall that dg is the n x n Jacobian matrix
obtained by differentiating g in the V-directions. Here n = dim V. If (dg), , is
nonzero, then we can use the Liapunov—Schmidt reduction with symmetries
(see VIII, §3) to reduce g to the case where the Jacobian vanishes. Of course,
this process will change n to a smaller value n’ and will also change the
representation of I'. Nevertheless, we assume that this reduction has already
been performed and we therefore assume (dg), o = 0.

We claim that generically we may assume the action of I on V = R" to be
absolutely irreducible. Before stating the result more precisely, we must discuss
the term generic. A rigorous definition is somewhat technical, and we try
instead to convey the underlying idea.

Recall from Chapter II that a bifurcation problem g(x, 2) is equivalent to a
limit point singularity +x2 + 1 precisely when the defining conditions

g(0,0) =0, g,(0,0)=0 (3.2)
and the nondegeneracy conditions
gxx(o’ 0) ;é Os g}.(o’ 0) 76 0 (33)

are satisfied. We say that among those bifurcation problems g in one state
variable having a singularity at the origin (i.e., those g satisfying (3.2)) it is
generic for the singularity to be a limit point. More succinctly, we say that the
“generic singularity” is a limit point.

We abstract this process as follows. Let g be a germ satisfying some property
2, where the defining conditions for £ consist of a finite number of equalities
involving a finite number of derivatives of g evaluated at the origin. The
equalities in (3.2) provide an example, with 2 being the property “g has a
singularity at the origin.” A set S of germs is generic for property 2 if there
exists a finite number of inequalities Q involving a finite number of derivatives
of g at the origin, such that g € S if and only if g has property £ and g satisfies
the inequalities in Q. Thus, in the example, Q is given by (3.3) and limit
points—those germs satisfying (3.2, 3.3)—are generic singularities.

Actually, even this definition must be qualified. The inequalities Q@ must not
contradict any of the defining equalities of 2. For example, if 2 is defined by
g.(0,0) = 0 then Q should not include the inequality g,(0,0) # 0. We do not
intend that the empty set S be considered generic.

We find it convenient to use the word generic when we do not wish to specify
the inequalities Q explicitly. The important point is that a “typical” germ with
property 2 will be generic, where by typical we mean “not satisfying any
additional constraints” (e.g., on derivatives). This follows since an atypical
germ must violate an inequality in Q, that is, satisfy a further equality.

For example, in applications one expects to see only limit point singularities
in steady-state bifurcation problems g(x, 1), unless some other constraint such
as symmetry is placed on g. (The effect of symmetry is to constrain certain
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terms of the Taylor series of g, so symmetry effectively imposes conditions on
derivatives of g at the origin.) In Volume I we focused on nongeneric or
degenerate singularities, since these are expected to occur “generically” in
multiparameter systems. A major theme of this volume is to identify a “generic”
class of one-parameter bifurcation problems with symmetry.

The following proposition, whose proof will be sketched at the end of this
section, is a first step in that direction.

Proposition 3.2. Let G: RY x R - RY be a one-parameter family of T -equivariant
mappings with G(0,0) = 0. Let V = ker(dG),.o. Then generically the action of
I" on V is absolutely irreducible.

Remark. When one is interpreting this proposition in the preceding frame-
work, & is defined as follows. A germ G has property & if it is a germ of a
one-parameter family of I'-equivariant mappings, and G(0,0) = 0. The in-
equalities Q which imply that the action of I' on ker(dG), o is absolutely
irreducible are left unstated.

Proposition 3.2 supports our assumption later that I" acts absolutely irre-
ducibly on R and that g: R* x R — R"is a ['-equivariant bifurcation problem.
We use the assumption of absolute irreducibility as follows. Apply the chain
rule to the identity g(yx, A) = yg(x, 4) to obtain

(dg)o, 2y = 7(dg)o, 2- (3.4)

Absolute irreducibility states that the only matrices commuting with ally e I’
are scalar multiples of the identity. Therefore (dg)o. , = ¢(4)1. Since (dg),0 = 0
by Definition 3.1, we have c¢(0) = 0. We now assume the hypothesis

c'(0) #0, (3.5)

which is valid generically.

We next state the result of Vanderbauwhede and Cicogna, which—despite
the simplicity of its proof—forms the basis of many bifurcation results for
symmetric problems.

Theorem 3.3 (Equivariant Branching Lemma). Let T" be a Lie group acting
absolutely irreducibly on V and let g € &, ;(T') be a T-equivariant bifurcation
problem satisfying (3.5). Let T be an isotropy subgroup satisfying

dim Fix(Z) = 1. (3.6)

Then there exists a unique smooth solution branch to g = 0 such that the isotropy
subgroup of each solution is X.

Remarks 3.4.
(a) We may restate the equivariant branching lemma as follows: Generically,
bifurcation problems with symmetry group I" have solutions corresponding
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to all isotropy subgroups with one-dimensional fixed-point subspaces. Since
X isanisotropy subgroup satisfying (3.6) it follows that ¥ is a maximal isotropy
subgroup. Thus the equivariant branching lemma gives us a method for
finding solutions corresponding to a special class of maximal isotropy sub-
groups. To see that T is maximal, suppose A 2 X is an isotropy subgroup.
Then Fix(A) & Fix(X), whence Fix(A) = {0}, which is impossible.

(b) Cicogna [1981] generalizes Theorem 3.3 to the case in which dim Fix(X)
is odd, using a topological degree argument. However, to obtain effective
information in this case we must also assume that ¥ is a maximal isotropy
subgroup. Otherwise, the solutions in Fix(X) whose existence is being asserted
might actually have a larger isotropy subgroup than X.

In fact, we prove a slightly more general result than Theorem 3.3:

Theorem 3.5. Let I" be a Lie group acting on V. Assume

(a) Fix(I') = {0},

(b) £ = T is an isotropy subgroup satisfying (3.6),

(c) g: V x R—> Vis a I'-equivariant bifurcation problem satisfying

(dg;)o.0(ve) #0 (3.7

where v, € Fix(Z) is nonzero.
Then there exists a smooth branch of solutions (tvy, A(t)) to the equation

gt A) =

Two remarks make it clear why Theorem 3.3 follows from Theorem 3.5.
First, it is easy to show that nontrivial irreducible actions satisfy Fix(I") = {0},
since by Lemma 2.1 Fix(I') is an invariant subspace. Second, when I" acts
absolutely irreducibly,

(dg:)0,0(ve) = Kc'(0)

for some nonzero constant K. Hence (3.5) is equivalent to (3.7).

Remarks.

(a) The advantage of hypothesis (3.5) over (3.7) is that it holds simultaneously
for all subgroups X of I'.

(b) The advantage of Theorem 3.5 is that it does not require that T" act
irreducibly on V. However, a separate nondegeneracy condition (3.7) is required
for each subgroup X satisfying (3.6).

(c) Since the solution branch (tv,y, A(f)) lies in Fix(Z) x R, each solution for
t # 0 has as its symmetries the isotropy subgroup X.

PRrOOF OF THEOREM 3.5. It follows from Lemma 2.1 that
g: Fix(2) x R - Fix(Z).

Since dim Fix(Z) = 1 we have
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g(tvo, 4) = h(z, 1)v,.

Moreover, the assumption that Fix(I') = {0} implies by Corollary 2.2 that g
has a trivial solution. So #(0, 1) = 0. Applying Taylor’s theorem to h yields

gltvg, Ay = k(t, A)tv,.
By Definition 3.1
k(0,0)vg = (dg)o,0(vo) = 0
and further
k;(0,0)vo = (dg,)o,0(v0) # 0,

by assumption. Apply the implicit function theorem to solve k(t,4) = O for
A = A(t) as required. O

ExaMPLE 3.6. I' = D, acting on V = C. We know that the isotropy subgroup
of every point on the real axis is a two-element subgroup Z, generated by the
reflection k: z+—Z. See Table L.1. Moreover, the only complex numbers fixed
by « are the reals. Thus Fix(Z,) = Rand dim Fix(Z,) = 1. We conclude, using
the equivariant branching lemma, that generically D,-equivariant bifurcation
problems have solution branches consisting of solutions with Z, symmetry.

We end this section with the following, as promised.

SKETCH OF PROOF OF PROPOSITION 3.2. In this sketch we show only that there
exist small perturbations G, of G such that I" acts absolutely irreducibly on
ker(dG,), o. This argument can be expanded, with some effort, to give a proof
of genericity.

We begin by claiming that the action of I' on ¥ may be assumed irreducible.
Write RY = V @ W where W is ['-invariant and write

where each Vj is irreducible. In fact we can take W to be the sum of the
generalized eigenspaces corresponding to nonzero eigenvalues of (dG)o o.
Define M: RY —» R" to be the unique linear mapping such that

MW =0
M|V, =0
M|V, = Idy,.

Let ¢ € R and consider the I'-equivariant perturbation
G.(x,4) = G(x, ) + eMx.

The eigenvalues of (dG, ), o are 0 on V;, and nonzero on W. Apply a Liapunov—
Schmidt reduction to G, near (0,0) to obtain a bifurcation problem on V.
Since I acts irreducibly on V;, we have verified the claim.



§3. The Equivariant Branching Lemma 85

We now assume that g: ¥ x R — Vis a bifurcation problem with symmetry
group I' and that I acts irreducibly but not absolutely irreducibly on V. We
claim that in these circumstances there exist small perturbations of g which
have no steady-state bifurcations near the origin. Let 2 be the vector space
of linear mappings on V that commute with I". Recall from XII, §3, that & is
isomorphic to one of R, C, or H, and that 2 =~ R means that I acts absolutely
irreducibly on V. Now I' acts irreducibly on ¥, so g(0, ) = 0. The linear maps
L, = (dg),, , commute with I" and form a curve in 2. Since g is a bifurcation
problem, L, = 0, so the curve passes through the origin. Generically we may
assume that p = (d/dA)L,|,-, # O; that is, the curve L, has a nonzero tangent
vector at 4 = 0.

Assume that dimg 2 > 1, so that I" does not act absolutely irreducibly on
V. We can choose 0 # § € & such that p and ¢ are linearly independent. For
¢ € R define the I'-equivariant perturbation

ge(x) = g(x, 1) + edx.
When ¢ = 0, the curve
(dgc)o,» = (dg)o,; + €06 = L; + &

in 2 misses the origin entirely for A near 0.

Thus L, + &d is not zero. A general argument now shows that it has no zero
eigenvalues. Indeed, if « € 2 has a zero eigenvalue then a = 0. To see this,
suppose that av = 0 where o # 0, v # 0. Since 2 is a division algebra, o™
exists, and v = lv = a 'av = 2710 = 0. This contradiction forces a = 0 as
claimed.

Thus when g is a bifurcation problem whose symmetry group I' acts
irreducibly but not absolutely irreducibly, small perturbations of g have no
steady-state bifurcation whatsoever. O

Remark. Proposition 3.2 does not exclude the possibility that I'-invariant
equilibria can lose stability by having center subspaces with irreducible but
not absolutely irreducible representations of I'. This can happen generically
with Hopf bifurcation, but not with steady-state bifurcation. See the definition
of I'-simple in XVI, §1.

EXERCISES

3.1. Use the results of Exercises 1.2 and 2.3 to investigate steady-state bifurcation with
the symmetry O @ Z5 of the cube (see Melbourne [1987a]). Prove that
(a) Generically three branches of solutions bifurcate, with isotropy subgroups D,
Si,and 25 @ Z5,.
(b) Generically there are no solution branches corresponding to the isotropy
subgroups Z5, Z5, and 1.

3.2, Let Z, ® Z, act on R? by (£ x, + y) as in Chapter X. Show that the existence of
the pure mode solutions (X, 1.11(b), (c)) can be obtained by applying the equivari-
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ant branching lemma. Note that a separate nondegeneracy condition is needed
for each branch.

3.3. Let O(3) act in its five-dimensional representation. Using the results of Exercises
1.3 and 2.1 show that generically there exists a branch of axisymmetric solutions,
where a solution is axisymmetric if its isotropy subgroup contains SO(2).

3.4. Let SO(2) act on R? = C in its standard representation. Recall from Lemma VIII,
2.2, that the invariants are generated by |z}? and the equivariants by z and iz. Let
g(z, 4) be an SO(2)-equivariant bifurcation problem.

(a) Show that generically no steady-state bifurcation can occur.

(b) Assume further that the vector field is a gradient and show that generically
there now exist branches of steady states.

(c) Observe that SO(2)-invariant functions are also O(2)-invariant, and deduce
part (b) from the equivariant branching lemma.

(d) If g depends on two bifurcation parameters (4, u) rather than just one, so that
g = g(z, A, 1), show that generically steady-state branching does occur, even in
the nongradient case. (Compare Hopf bifurcation, XVI, §4, where a second
parameter 1, the perturbed period, plays a similar role.)

§4. Orbital Asymptotic Stability

As discussed in Chapter VIII, an equilibrium solution x, to a system of ODEs

% +g(x)=0 4.1
is asymptotically stable if every trajectory x(t) of the ODE which begins near
X, Stays near x, for all time ¢ > 0, and also lim,_,, x(t) = x,. The equilibrium
is neutrally stable if the trajectory stays near x, for all ¢ > 0. It is unstable if
there always exist trajectories beginning near x, which do not stay near x,
forallt > 0.

We repeat here the well-known condition for asymptotic stability known
as linear stability: the eigenvalues of (dg),, all have positive real part. The
standard theorem states that if x,, is linearly stable then x, is asymptotically
stable. Moreover, if some eigenvalue of (dg),, has negative real part, then x,
is unstable. See Hirsch and Smale [1974], p. 187.

In this section we discuss the stability properties of equilibria for systems
of ODE:s (4.1) when the mapping g commutes with the action of a Lie group
I". We address three issues:

(a) If the isotropy subgroup of an equilibrium has dimension less than that
of T, then neither linear stability nor asymptotic stability is possible. The
orbit of equilibria has positive dimension in this case, forcing dg to have
zero eigenvalues. However, these concepts may be replaced by linear
orbital stability and (asymptotic) orbital stability, respectively.
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(b) The explicit computation of (dg), is aided by knowledge of the representa-
tion of the isotropy subgroup X..

(c) For certain group actions, generically all of the solutions found using the
equivariant branching lemma are unstable.

(a) Orbital Stability

Let I' be a Lie group acting on V and let g: V — V be a I'-equivariant map.
Let x, be an equilibrium of the system (4.1), and let £ = X, be the isotropy
subgroup of x,. We claim that if dim¥ < dim I then x, cannot be asymp-
totically stable. To see this, recall from Proposition 1.2(b) that the orbit I'x,
is a submanifold of V of positive codimension. It follows that there are steady
states of the system (4.1) arbitrarily close to x,. The trajectories starting at
these equilibria are fixed for all time and so do not tend to x,. Thus x, is not
asymptotically stable. However, x, can be neutrally stable. In fact, x, can
satisfy a specific kind of neutral stability, as follows.

The equilibrium x,, is orbitally stable if x, is neutrally stable and if whenever
x(t) is a trajectory beginning near x,, then lim,_, , x(¢) exists and lies in I'x,.

There is a linear criterion for orbital stability. To show this, we first indicate
why linearized stability fails. We claim that

ker(dg),, = T, ,T'xo 4.2)

where T, T'x, denotes the tangent space of I'x, at x,. It follows from (4.2) that
(dg),, must, of necessity, have 0 as an eigenvalue; so linear stability is not
possible at x,.

To verify (4.2) let y(t) = y(t)x, be a smooth curve in the orbit I'x, with y(t)
a smooth curve in I and y(0) = 1. Since x, is an equilibrium and since g is
I'-equivariant we seg that

g(y(1) = 0. (4.3)
Differentiate (4.3) with respect to ¢, to get
d d
Eg(y(t))lgo = (dg)s, (;% (0)'xo> =0. (4.4)

Thus (4.4) shows that (dy/dt)(0)- x, is an eigenvector of (dg),, with eigenvalue
Z€ero.

Remark 4.1. Equation (4.4) provides a method for calculating null vectors of
(dg),, by considering curves in the group I'.

Definition 4.2. Let x,, be an equilibrium of (4.1), where g commutes with the
action of I'. The steady state x is linearly orbitally stable if the eigenvalues of
(d9), other than those arising from T, T'x, have positive real part.
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In other words, x, is linearly orbitally stable if those eigenvalues of (dg),,,
not forced by the group action to be zero, have positive real part.

The basic result is as follows:
Theorem 4.3. Linear orbital stability implies orbital (asymptotic) stability.

SKETCH OF PROOF. We can motivate this by considering the linearized equation

Z—): + (dg),,x = 0. 4.5)
If (4.1) is linearly orbitally stable then ker(dg),, = T, I',, and the remaining
nonzero eigenvalues of (dg),, all have positive real part. Let W be the vector
subspace generated by the generalized eigenspaces of these remaining eigen-
values, so that W is a complement to T, I', . Then it is easy to check that
trajectories of the linear equation (4.5) lie in planes parallel to W and approach
T,, T, exponentially. We may now relate this linearized flow to the original
nonlinear flow by methods similar to those used in showing that linearized
stability implies asymptotic stability; see Aulbach [1984], p. 2. The result is a
proof that trajectories of (4.1) tend exponentially to some point on the orbit
I'x,, if x4 is linearly orbitally stable. O

(b) Isotropy Restrictions on dg

As we have seen in (3.4), dg satisfies the commutativity constraint
(dg)yxy = ))(dg)x (46)

Let £ < I be the isotropy subgroup of x. Then for every ¢ € Z (4.6) takes the
form

(dg)x0 = a(dg); 4.7)

that is, (dg), commutes with the isotropy subgroup X of x.
The commutativity relation (4.7) restricts the form of (dg), as follows. Given
X we can decompose V into isotypic components

V=W, ® W,
as in Theorem XII, 2.5(b). By Theorem XII, 3.5,

dg).(W)) = W, (4.8)
We can always take W, = Fix(Z) since Fix(Z) is the sum of all subspaces of

V on which X acts trivially.
In summary, the group I affects the form of (dg), in two ways.
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(a) I'/Z forces null vectors of (dg), as in (4.2). That is, dim ker(dg), = dim I'/Z.
(b) (dg), has invariant subspaces as in (4.8).

The restriction of (dg), to W is often subject to extra conditions. For example,
suppose that T acts absolutely irreducibly on W,. Then (dg),|W is a scalar
multiple of the identity. Even when the action of I" on W, is not absolutely
irreducible, the form of (dg),| W, may be constrained by the symmetry, but we
shall not pursue this matter here.

We now consider two examples: D, and O(2) in their standard representa-
tions on C. In each case, we let x € C be real and recall that the isotropy
subgroup of x is the group Z, generated by the reflection k: z—Zz. In real
coordinates the matrix of « is

t=lp -1

Thus W, = R and W, = iR. The action of L on W, is the identity, and on W,
minus the identity. These representations are distinct and absolutely irreducible.

Therefore,
a 0
dg), = 4.9
(dg) [0 b} 4.9)

for a, b € R; that is, (dg), is diagonal.
In the case I' = D,,, the form (4.9) is all that we can say. But when I’ = O(2)
a null vector is forced on (dg), by the construction in (4.4). We perform this

calculation in real coordinates:
[1] - X ; [1 - [0]
=010 | 1 0 \ 0 l 1

d|cost —sint
dt ]| sint cost
a 0

is a null vector for (dg),. Thus

Remark. We emphasize that we have arrived at this form for (dg), without
ever having to compute a derivative of g. In general, the isotropy subgroup
will not reduce the form of (dg), so substantially, but every little bit helps.

(c) Unstable Solutions in the Equivariant Branching Lemma

In this subsection we prove that generically, for certain group actions, the
solutions obtained from the equivariant branching lemma are all unstable.
We prove this theorem using the hypotheses of Theorem 3.3; we indicate in

the text where weaker hypotheses are appropriate. The hypotheses we assume
are:
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(a) T acts absolutely irreducibly on V,

(b) g: V x R— Vis I'-equivariant with (dg), ; = c(4)1,

() ¢(0) =0 and c’(0) <0,

(d) X is an isotropy subgroup with dim Fix(X) = 1, 4.10)
(e) Some term in the Taylor expansion of g|Fix(X) x {0} is nonzero,

(f) (dq),, has eigenvalues off the imaginary axis, where q is the quadratic part

of g and x, € Fix(%).

Remarks.

(a) We assume that ¢'(0) < 0 so that the trivial solution x = 0 is asymptotically
stable for 2 < 0 and unstable for A > 0. Similar results, however, hold when
c'(0y > 0.

(b) The action of I often forces all quadratic terms (in x) of ¢ to be zero. This
happens, for example, when — I € I'. Then symmetry requires that g be an odd
function. In such circumstances g(x) = 0 and (f) is never valid. However, when
(f) holds for one g, it holds generically.

(c) All quadratic equivariants may be zero even if —1I ¢ I'. For example,
consider the standard action of D5 on R2.

Theorem 4.4. Assume hypotheses (4.10(a)—(f)). Then the unique branch of solu-
tions to g(x,A) = 0 in Fix(Z) whose existence is guaranteed by the equivariant
branching lemma consists of unstable solutions.

Remark. Suppose dim Fix(Z) = 1. Then in suitable circumstances the bifurca-
tion problem g|Fix(Z) x R = 0 must be a pitchfork. This happens when
N(Z) # Z; see Exercise 4.1. If in particular (4.10(f)) holds, then the nontrivial
branch of this pitchfork is unstable, even if it is supercritical. An example of
this phenomenon may be found in Case Study 4.

Let 0 # v, € Fix(X). In the proof of the equivariant branching lemma we
saw that the nontrivial branch of solutions to g|Fix(X) x R = 0 has the form
(tvy, A(2)) where A(0) = 0. We call this nontrivial solution branch transcritical
if A’(0) # 0 and degenerate if A’{0) = 0. The proof of Theorem 4.4 divides into
two parts, depending on whether the nontrivial branch is transcritical or
degenerate. Hypothesis (4.10(f)) is required only in the degenerate case.

We show below that

sgn(A'(0)) = sgn(c'(0))sgn(dg)o,o(vo, vo)- (4.11)

Identity (4.11) provides a method to determine whether a given branch is
transcritical. It also shows that transcriticality implies (4.10(e), (f)).
The first part of Theorem 4.4 is as follows:

Theorem 4.5. Assume (4.10(a)—(d)) and suppose that the unique branch of
solutions to g|Fix(Z) x R = 0, whose existence is guaranteed by the equivari-
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ant branching lemma, is transcritical. Then this branch consists of unstable
solutions.

Remark. It is perhaps surprising that transcritical solutions are unstable in
symmetric systems. Indeed for bifurcation problems in one state variable, the
supercritical part (see following discussion) of a transcritical branch is stable;
consider x2 — Ax = 0. The fundamental difference between the two situations
is stated in the next lemma.

Lemma 4.6. Let I be a Lie group acting on V. Let q: V — V be a I'-equivariant
homogeneous quadratic polynomial. Then

L(x) = tr(dq),

is a I-invariant linear function.
Moreover, if Fix(T') = {0} then tr(dg) = 0.

Proor. Differentiate the equivariance condition as usual to obtain (dg),,y =
y(dq),, and rewrite this as

(dq),x = y(dq)y™".
Take traces to obtain
L(yx) = L(x).

The entries of dg are linear in x since g is quadratic. If Fix(I') = {0} then by
Proposition 2.2 every linear invariant function is zero, so L = 0. O

There is another common classification of bifurcating branches. The branch
(tvg, A(t)) is subcritical if for all nonzero t near 0,

tA'(t) < 0. (4.12)

It is supercritical if tA’(t) > 0. This definition makes sense for the two parts of
the branch t > 0 and t < 0. Of course, when the branch is transcritical, it has
one subcritical part and one supercritical part. It is convenient to prove
Theorem 4.4 for these parts separately.

The instability of subcritical branches is well known; see Crandall and
Rabinowicz [1973]. It is included here for completeness. We prove the
following:

Proposition 4.7. Assume (4.10(a)—(e)) and suppose that the branch (tv,, A(t)),
t > 0, is subcritical. Then this branch consists of unstable solutions.

Remark. The same result holds when the branch (tv,, A(t)), t < 01is subcritical.

Proor. Since some derivative of g|Fix(Z) x {0} is nonzero, by (4.10(¢)), the
sign of A'(t) is uniquely defined for small ¢ > 0. The solution branch is
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subcritical precisely when A'(t) < 0. We claim that v, is an eigenvector for
(dPrv,, ary- To prove this, recall from (4.8) and the ensuing discussion that
(d9)1v,, ay(Fix(Z)) = Fix(Z). Since dim Fix(Z) = 1 by (4.10(d)) and v, € Fix(X)
we see that v, is an eigenvector for (dg),,, a)-

Next, we claim that the sign of the corresponding eigenvalue is that of tA'(t),
which by assumption is negative. The theorem follows since, by our conven-
tion, negative eigenvalues imply instability.

To establish the claim, recall how the branch (tvy, A(t)) is constructed in the
proof of Theorem 3.5. Since g maps Fix(X) x R to Fix(X), we have

g(tve, 2) = h(t, Hvo.
Since g has a trivial solution,
h(t, A) = tk(t, 2).

Finally (4.10(c)) implies that k(0,0) = 0, k,(0,0) < 0. The unique branch of
solutions is found by applying the implicit function theorem to the equation
k=0.So

k(t, A(t)) = 0. 4.13)
We compute (dg), v, by evaluating
d
200x -+ 500, Do,
s

Set x = tvy; then

d
(dg)ivo, 200 = d_sg((s + t)vg, Als=0

d
=—h(s + £, )]s=0V0
ds

= hy(t, Yo

Thus the eigenvalue associated to vy is h,(t, ). We now compute h, along the
branch of solutions, that is, where k = 0 as in (4.13). This yields

h(t, A(t)) = thk,(t, A(D)). 4.14)
Now differentiate (4.13) implicitly with respect to t, obtaining
k(t, A(t)) + k, (¢, A@G)A'(t) = 0. (4.15)
Substitute (4.15) in (4.14), to yield
h(t, A(t)) = —tA'(t)k, (L, A1) 4.16)
Since k,(0,0) < 0, (4.16) shows that for small ¢ the sign of the eigenvalue
associated with v, is given by sgn(tA'(t)), as claimed. ]

VERIFICATION OF (4.11). From (4.15)
sgn(A’(0)) = sgn k,;(0,0)-sgn k,(0, 0).
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Now k,(0,0) = ¢(0), and by twice differentiating g|Fix(X) x R we have
k,(0,0) = h,(0,0) = (d%g)o,0(vo, vo). Thus (4.11) holds. O

PRrROOF OF THEOREM 4.4. In the transcritical case the solution branch in Fix(Z) x
R has both a supercritical and a subcritical part. By Proposition 4.7 we need
consider only the supercritical branch. By (4.12), along the supercritical part
of the transcritical branch we have

(A'() > 0. 4.17)
We define
T(t) = tr(dg)v,, acr)-

We claim that in the transcritical case

T(t) = nc'(0)A'(0)t + O(t?). (4.18)
It follows from (4.17) and (4.10c) that for small ¢
T() <0.

Hence for small ¢ at least one eigenvalue of (dg),,,, ¢ has negative real part,
and these solutions are unstable as well.

We now prove (4.18). The assumptions on g, namely (4.10(b), (c), (f)), imply
that the Taylor expansion of g has the form

g(x, 4) = c(A)x + q(x, A) + O(x>). (4.19)
Hence
tr(dg),,, = nc(A) + tr(dg), ; + O(x?)
where n = dim V. Lemma 4.6 implies that for each 4, tr(dg), ; = 0. Thus
T(t) = tr(dg) o, aq)
= nc(A(t)) + O(t?)
= nc’' (A’ (0)t + O(t?)

as claimed. 0l
We complete the proof of Theorem 4.3 by proving the following:

Proposition 4.8. Assume (4.10(a)—(f)) and suppose that the branch (tvy, A(t)) is
degenerate; i.e., A'(0) = 0. Then the branch consists of unstable solutions.

PROOF. Here we compute the matrix (dg),,,, a¢ up to order 2, rather than just
its trace. We show that

(d9)1vo, A = tL(dQ)y,,0 + O(1))]. (4.20)
From (4.19)
(A9)1vo, iy = (AN + (dG)yuy, a) + O(?). (4.21)
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Now ¢(A(t)) = O(t?) since ¢(0) = 0 and A(0) = A'(0) = 0. Also

(dq)rvo,A(r) = t(dq)vn.A(t) (4.22)
since (dq), , is linear in x and
(e, Ay = (dq)yy,0 + O(1) (4.23)

since A(0) = 0. Of course, (4.21)—(4.23) together yield (4.20).

By (4.10f), (dg),,, o has one eigenvalue off the imaginary axis. By Lemma 4.6
the trace of this matrix is zero; hence (dg),, o has at least one eigenvalue with
positive real part and one eigenvalue with negative real part. Now write (4.20)
as

(dg)wo,z\(r) = l[(dQ)uo,o + tK(t)] (4.24)

for some matrix K(t). Since the eigenvalues of a matrix depend continuously
on parameters, it follows that for small ¢ at least one eigenvalue of

(dq)uo, 0 + tK(t)

has positive real part, and at least one has negative real part. Finally, from
(4.24) we see that for small ¢ the matrix (dg),,,, a¢y has at least one eigenvalue
with negative real part, whatever the sign of ¢. Thus the solutions are unstable
in this case too. O

Remark. We repeat that the assumptions on g in (4.10) are generic for any
absolutely irreducible group action that admits a nonzero equivariant homo-
geneous quadratic.

EXERCISES
4.1. Let X< T be an isotropy subgroup and let g be I'-equivariant. Assume
dim Fix(Z) = 1 and N(X) # Z. Show that g: Fix(X) - Fix(Z) is an odd function.

4.2. This continues Exercise 3.1 and is based on Melbourne [1987a].
(a) Using the results and notation of Exercises XII, 4.7; X1I, 5.5; XIII, 1.2; and
X111, 2.3 show that the general bifurcation problem on R with the symmetries
O @ Z5 of the cube has the form g(x,y,z,4) = PX, + QX, + RX; where P,
Q, R are functions of u, v, w, 4.
(b) Show that if the nondegeneracy conditions

0(0) #0, P00y # —1, =%, —3%

are satisfied, then the branches of solutions corresponding to the three maximal
isotropy subgroups satisfy the following equations:

D,: A= —(P0) + Q(0))x*/P,(0) + -
Z,®Zy: A= —(2P,0) + Q(0)x?/P,(0) + -
S;: A= —(3P0) + Q(0)x*/P,(0) + -~ .
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(c) Find the directions of branching and stability conditions for these solutions.
Show that in the nondegenerate case the Z5 @ Z!, branch is always unstable,
that for a branch to be stable all three must be supercriticial, and that in this
case either the D, branch or the S, branch (but not both) is stable.

§5. Bifurcation Diagrams and D, Symmetry

Let g: V x R — V be a bifurcation problem with symmetry group I". In this
section we describe what we mean by the bifurcation diagram associated with
g and illustrate the notion by discussing the generic bifurcation problems with
D,-symmetry. Bifurcation diagrams are important vehicles for summarizing
analytic information efficiently. To accomplish this task some information
must be suppressed. Our purpose here is to specify precisely what is to be
suppressed and what included.

(a) General Description of Bifurcation Diagrams

The simplest view of a bifurcation diagram is the zero set of g,
{(x,) eV x R: g(x,4) = 0}.
We have two reasons for not wishing to picture this set.

(a) If dim V > 2, we would be trying to draw a figure in a space of at least
four dimensions, where visualization is at best tricky.

(b) If g is T'-equivariant then the set {g = 0} contains redundant information
since g must vanish on entire orbits of the action.

Because of these observations, we prefer to draw schematic bifurcation
diagrams where each point represents an orbit of solutions to g = 0. These
schematics will always be drawn in the plane according to the following
conventions:

(a) The horizontal axis is the A-axis, and the vertical axis is, loosely speaking,
the norm of the (orbit of) solution(s).

(b) Each solution branch is labeled with its (conjugacy class of) isotropy
subgroup.

(c) Bifurcation points and limit points are indicated by bold dots.

(d) The asymptotic orbital stability of solutions, determined by eigenvalues
of the Jacobian, is marked. Orbitally stable branches are indicated by
heavy lines.

(e) Predictions of transitions under quasistatic variation of 1 are provided.

We now discuss a hypothetical bifurcation diagram illustrating these five
points. For the sake of argument assume that I is a four-dimensional group
acting on a six-dimensional space V. Suppose that the bifurcation problem g
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Figure 5.1. Fictitious bifurcation diagram with symmetry.

has branches of nontrivial solutions corresponding to isotropy subgroups Z;
(j =1, 2, 3) where dim Z; = j. Consider the fictitious bifurcation diagram in
Figure 5.1. Each point on branch Z; corresponds to a group orbit of dimension
dimI" — dimX; =4 — j. For example, a point on the X, branch actually
corresponds to a two-dimensional manifold of solutions, and where the
branches corresponding to £, and X, intersect we actually have a 3-manifold
of solutions in R® merging into a 2-manifold. Obviously such intersections
can be very complicated, but fortunately, for most aspects of bifurcation
theory, the detailed geometric picture of how such transitions take place is
not particularly relevant.

Because our schematic bifurcation diagrams are “projections” into R?,
branches of solutions may appear to intersect, even though they do not
actually intersect in V' x R. We “solve” this problem by placing bold dots at
genuine intersection points. Thus Figure 5.1 illustrates a situation where
branch X, does intersect branches X, and Z,, but branches X, and X, intersect
only at the origin.

We now turn to the question of orbital stability. Recall that equivariance
under I forces several eigenvalues of dg at g = 0 to zero. The number of these
zero eigenvalues is equal to the dimension of the orbit of soiutions. When
making stability assignments we employ two conventions. First, we indicate
eigenvalues of dg with positive real part by “+” and those with negative real
part by “—". Thus, along the X, branch, the annotation 3 + 1 — indicates
solutions where dg has three eigenvalues with positive real part and one with
negative real part. Second, eigenvalues forced to zero by the group action are
not included. Along each branch the total number of eigenvalues must equal
dim V, which is 6 in this case. Indeed along branch X, the number of eigen-
values forced by the group action to be zero is 2, so that 2 + 4 = 6 gives the
correct number of eigenvalues altogether. Note that at limit points the stabili-
ties of solutions change. For this reason limit points are also indicated by bold
dots.

To end the discussion of stabilities, note that we are seeking equilibrium
solutions to a system of ODEs written in the form

dx

) =0,

Using this form, eigenvalues with positive real part indicate (linearized) sta-
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bility, whereas those with negative real part indicate instability. Thus a solu-
tion is orbitally stable when no “— " signs appear in the stability assignments.
Orbitally stable solutions are shown by heavy lines. Note that there are
orbitally stable solutions on part of the branches Z,, Z,, £;, and I" (with 3,
4, 5, and 6 positive eigenvalues, respectively).

The most important information preserved in these schematic diagrams is
the answers to the following two questions:

(a) For each 4, how many orbits of solutions are there to the equation g = 0,
and which are stable?

(b) For which values of 1 do transitions in the number of solutions, or their
stability, occur?

The answers to these questions are preserved by projection onto the A-axis,
allowing us to keep track of smooth bifurcations, jump transitions (when
solutions cease to exist or change stability as A varies), and hysteretic
phenomena.

We end this section by discussing the simplest bifurcation diagrams for
problems with D, symmetry. Not all features of the diagram in Figure 5.1
appear, but all of these features will be important in later sections. For
example, see Case Study 4.

(b) Bifurcation Diagrams for D, Symmetry

We begin by describing the isotropy subgroups of D, in its standard action
on C = R?, generated by

(a) kz=7z

(b) (z = e?milmg, G0

By computing the isotropy subgroups and applying the equivariant branching
lemma we will be able to determine the expected number of solution branches.
The actual bifurcation diagrams are given at the end of this section in Figures
5.3, and 5.4. In this way it should become apparent just how much information
is contained in one of these pictures.

The lattice of isotropy subgroups, Figure 5.2, depends on whether n is odd
or even. We compute the isotropy subgroups by choosing representative
points on the group orbits. Recall (Lemma 1.1) that points on the same orbit
have conjugate isotropy subgroups. Moreover, any two points on the same
line through (but not including) the origin have the same isotropy subgroup.
Thus it sufficies to compute Z, for points z = e on the unit circle.

We claim that z is on the same orbit as a point e* with

0<0<m/n (5.2)

It is easy to arrange for 0 < 0 < 2n/n by sending z to ({')z = e®* @™/ for
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D, D,

Z,(x) Z,(x) Z,(xL)
1 \ 1 /

nodd neven

Figure 5.2. Lattice of isotropy subgroups of D, (n > 3).

some appropriately chosen . Now if n/n < 8 < 2n/n, we have
{kz = ¢2nim—6) (5.3

and 0 < 27/n — B < n/n, as promised.
Next observe that if n is odd, we can assume that

0<0<n/n (5.4)

To see this, let n = 2m + 1. Then ({™)e'™" = e'® = —1, and this has the same
isotropy subgroup asz = 1, i.e., 6 = 0.

We now leave it to the reader to check that the isotropy subgroup of z = %
is1if0 < 8 < n/n; Z,(x)if 0 = 0;and Z,({x) if nis even and 0 = n/n (see (5.3)).
We emphasize that for n even the two Z, isotropy subgroups, Z,(x) and
Z,((x), are not conjugate in D,. This is clear on geometrical grounds, since
vertices and midpoints of edges lie on different lines through the origin.
Alternatively, a simple calculation shows that the conjugates of x are the
elements (*x where s is even. For even n, these do not include (k.

Since the fixed-point subspaces of both Z,(x) and Z,({x) are clearly one-
dimensional, the equivariant branching lemma implies that generically there
are unique branches of solutions to bifurcation problems with D, symmetry,
corresponding to these isotropy subgroups. In general a given “branch” of
solutions, defined say for all x € R, may correspond to either one orbit, or two
distinct orbits, of solutions, depending on whether or not x and — x lie in the
same orbit of I'. See Exercise 4.1. In particular for D, with n odd there is one
branch, and when n is even there are two. We show later that when n is odd
the one branch splits into two orbits of solutions, whereas when n is even each
branch corresponds to a unique orbit.

We can determine more complete information about these branches by
analyzing the general form of D,-equivariant mappings. Recall from Chapter
X11, §5, that if g: C x R —» C commutes with D, then

g(z,2) = p(u,v, )z + qu,0,)z"", (5:5)

where u = zz and v = z" + z" In order for g to be a bifurcation problem, the
linear terms in (5.5) must vanish. Hence

p(0,0,0) = 0. (5.6)
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Table 5.1. Solution of g = 0 for D,-Equivariant g, n > 3

Isotropy Subgroup Fixed-Point Subspace Equations
D, {0} z=0
Z,(x) R p(x2,2x" 1) + x""2q(x%,2x",4) = 0
x # 0 [nodd], x > 0 [neven]
Z,({x) R{e™} p(x%, —~2x" A) — x""2g(x?, —2x", i) =0
[n even] x>0
1 C p=q=0
Im(z") # 0

In addition, the genericity hypothesis of the equivariant branching lemma
requires

p:(0,0,0) # 0. (5.7
We now prove that a second nondegeneracy hypothesis, namely
9(0,0,0) # 0, (5.8)

implies that generically the only (local) solution branches to g = 0 are those
obtained using the equivariant branching lemma.

Observe that z and z"! are collinear only when Im(z") = 0. Thus when
Im(z") # 0, solving g = 0 is equivalent to solving

p=q=0. (5.9)

Thus, under the genericity hypothesis (5.8), it is not possible to find solutions
to (5.9) near the origin. Now Im(z") # 0 precisely when the isotropy subgroup
of z is 1. Thus the only solutions to g = 0 are those corresponding to the
maximal isotropy subgroups. The full solution to g = 0 is given in Table 5.1.
When n is even, {"? = — 1, so that the points z and ~—z are on the same
orbit. Thus when n is even we may assume x > 0 (not just x # 0) in Table 5.1.
In the remainder of this section we discuss the direction of branching and
the asymptotic stability of the solutions we have found. In this discussion we
restrict attention to n > 5 since n = 3 and n = 4 are exceptional. See Chapter
XV, §4, for a discussion of the case n = 3 and Chapter XVII, §6, for n = 4.
We first explain why n = 3 and 4 are special. When n = 3 there is a non-
trivial D3-equivariant quadratic 2. Then Theorem 4.4 implies that generically
the branch of Z,(x) solutions is unstable. Therefore, in order to find asymp-
totically stable solutions to a D;-equivariant bifurcation problem by a local
analysis, we must consider the degeneracy ¢(0,0,0) = 0 and apply unfolding
theory. We return to this point in the discussion of the traction problem in
Case Study 5 and the spherical Bénard problem in Chapter XV, §5.
In the case n = 4 the term "' is cubic, and (0, 0, 0) enters nontrivially into
the branching equations. See Table 5.1, Exercise 5.1, and Chapter XVII, §6.
We now restrict attention to n > 5. Observe from Table 5.1 that the lowest
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Table 5.2. Data on Solutions of Generic D,-Equivariant
Bifurcation Problems, n > 5

Isotropy Branching Equation Signs of Eigenvalues
D, z=0 p:(0,0,0)4 (twice)
p.(0,0,0)
Z,(x A= — 2 x2 0,0,
2(0) 5 0.00) p.(0,0,0)
x > 0 [neven] —¢q(0,0,0) [neven]
x # 0 [nodd] —g(0,0,0)x [nodd]
p.(0,0,0)
Z,({x A= — 24 0,0,0
Z(CK) pl(o’ 0’ 0) X pu( ’ )
[neven] x>0 4(0,0,0)

order terms in the equation for both Z, solutions are
P.(0,0,0)x% + p,(0,0,0)4 + - . (5.10)

Thus the Z, branches are supercritical when p,(0,0,0)p,(0,0,0) < 0 and sub-
critical when p,(0,0,0)p,(0,0,0) > 0. Generically we may assume that

p.(0,0,0) #0 (5.11)

so that the direction of branching is determined.

We now discuss stabilities. Both x and {k are reflections, having 1 and —1
as distinct eigenvalues. Therefore, from the restrictions imposed by isotropy
(see (4.8)) dg leaves the corresponding one-dimensional eigenspaces invariant.
Hence the eigenvalues of dg must be real.

A straightforward calculation shows that if we think of g as a function of
real coordinates z, z, then

(dg)(w) = g, w + gz W. (5.12)

(The method for computing dg in (5.12) is typically the most efficient when g
is defined using complex variables.) Compute (5.12) to obtain:

(@) g,=p+ p,2Zz+np,z"+ (q,z + nqu”_l)f""l 515
(B) gz =puz2+np,22" " + (1 — D" + (quz + ng, 2" 2"

We list the branching and eigenvalue information in Table 5.2 and now verify
those data. Along the trivial solution z = O we have

(dg)o. ,(w) = p(0,0, h)w = (p;(0,0,0)4 + - -)w.

Thus dg is a multiple of the identity, having a repeated eigenvalue whose sign
is sgn(p;,(0,0,0)4) since p,(0, 0, 0) is assumed nonzero.

Next we consider the Z, (k) solutions. The fixed-point subspace is the real
axis (w = w)and the — 1 eigenspace is the imaginary subspace (w = — w). Since
these subspaces are invariant under dg we can find the eigenvalues directly
from (5.12). They are
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g: +9: and g, —g; (5.14)
Using (5.13) and (5.14) we compute these eigenvalues to lowest order. They are
(a) gz + gz = 2pu(0509 0)x2 +

(5.15)
(b) g.—g:=—(n—1)q(0,0,0)x"% + -,

assuming that n > 5. It follows that the signs of the eigenvalues are determined
by p,(0,0,0) and —¢(0,0,0)x, as recorded in Table 5.2.

Finally we consider the Z,({x) solutions which appear as a distinct orbit of
solutions only when n is even. The eigenspaces of {kx corresponding to the
eigenvalues T and —1 are, respectively, R{e'”"} and R{ie'™”"}. Using (5.13),
the eigenvalues of (dg), where z = xe'™" are

(a) gzlz=xef"/" =p+ xzpu - npux" - quxn + nqvx2n—2
n-2 2n—2]elni/n.

(5.16)

(b)  gzlomreinm = [Pux* — np,x" — (n — 1)gx""% — g, X" + nq,x

Using (5.12) we compute
(@) (dg).(e™™)
=[p—(n— 1)gx""% + 2x?p, — 2np,x" — 2q,x" + 2nq,x*""2]e'"?,
(b) (dg).(ie™") = [p + (n — 1)gx""2]ie™". (5.17)

Since p = x"~2q along the Z,({x) solution branch (Table 5.1) and n > S, the
eigenvalues of (dg), are

@ 2p,0,0,0)x* + -+
(b) nq(0,0,0)x""% + ---,

giving the last entry in Table 5.2.
Thus we have shown that for n > §, if we assume

p;(0#0, p,(0)#0, and ¢(0)#0 (5.19)

then the bifurcation diagram of g = 0 is determined. For each n there are eight
possible diagrams, depending on the signs of the terms in (5.19). To reduce
the complexity we assume that the trivial solution z = 0 is stable subcritically,
that is, that p,(0) < 0. The remaining possibilities for the bifurcation diagrams
are drawn in Figures 5.3 [nodd] and 5.4 [neven]. These diagrams are con-
structed from the data in Table 5.2, along with a final observation. When n is
even, ("2 ¢ D, acts as — 1 on C. Hence solutions z and —z to g = 0 lie on the
same orbit of solutions. This fact accounts for the restriction x > 0 when n is
even.

(5.18)

Remarks 5.1.
(a) There is a remarkable parallel between the generic bifurcation diagrams
with D, symmetry when n is odd and when n is even (as long as n > 5), despite



102 XIII. Symmetry-Breaking in Steady-State Bifurcation

Zix)
{x>0)
Z(x) - iad
(x<0)
Dn ++ - Dn ++ --
Py<0, ¢>0 P, <0, G<O
++_Zalx)
(x>0)
2= Z5(x)
{x<0)
D ++ ++ .
n
P,>0, >0 Py >0, a<0

Figure 5.3. Bifurcation diagrams for D, symmetry when p,(0) < 0, n odd, n > 5.

Zz(K)
Zp(xp)
- o,
pu <0,a>0
=~ Zp(x)
2 Z 5 p)
On ++ - O +4
py >0,9>0 Py >0, q<0

Figure 5.4. Bifurcation diagrams for D, symmetry when p,(0} < 0, neven, n > 6.

Z,(xp)

2 /—_\ t Zy(x)

Figure 5.5. Geometric differences in solutions to a PDE with D, symmetry.

the differences in the calculation. In particular, the diagrams for n even may
be obtained from those for n odd by replacing Z,(x) (x > 0) by Z,(x), and
Z,(x) (x < 0) by Z,({k). In spite of this apparent similarity, there is a subtle
difference which is captured by the isotropy subgroups. Imagine a solution to
a D,-equivariant PDE posed on the interior of a regular n-gon in R?. Suppose
that there is a D -invariant steady state which bifurcates to a solution which
breaks the D, symmetry. As we have shown, generically we expect exactly two
different orbits of solutions to bifurcate, and both should be super- or sub-
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critical together. However, when n is odd we expect both orbits of solutions
to be invariant under a reflection in a line joining a vertex of the n-gon to the
midpoint of the opposite edge; see Figure 5.5. On the other hand, when n is
even, we expect one orbit of solutions to be invariant under reflection in a line
joining opposite vertices, and another to be invariant under reflection in a line
joining opposite midpoints of edges. See Figure 5.5.

EXERCISE

5.1. Compute the branching equations for generic D, bifurcation.

§6." Subgroups of SO(3)

We now embark upon an extended example, applying techniques developed
previously to the orthogonal group O(3) and the special orthogonal group
SO(3). Recall that SO(3) is the group of all orthogonal 3 x 3 matrices over
R of determinant 1. In this section we discuss the closed subgroups of SO(3).
We classify them, describe specific realizations, show that the finite ones
have disjoint union decompositions, and list containment relations between
them. In §7 we discuss the irreducible representations of SO(3). In §8 we
find (for all irreducible representations) the dimensions of the fixed-point
subspaces of closed subgroups of SO(3), and list the isotropy subgroups
of SO(3) with one-dimensional fixed-point subspaces. These results may be
found in Michel [1980], although we follow the presentation by Ihrig and
Golubitsky [1984]. In §9 we extend the results to O(3). We do not prove
everything in detail. In particular, results from Lie theory that would require
substantial development-—and yet are well known—are just stated along
with appropriate references.

(a) Classification

We now describe the closed subgroups of SO(3). Geometrically, SO(3) is the
group of orientation-preserving rigid motions of R? that fix the origin. Its
closed subgroups have nice geometric interpretations in terms of symmetries
of subsets of R*. Choose a plane P in R* and an axis 4 orthogonal to P. The
subgroup of transformations leaving P invariant consists of rotations about
A together with reflections through lines in P (combined with reversals in the
sense of A4 to yield elements of SO(3); see the following discussion). This group
is isomorphic to O(2). If we require the sense of A to be preserved this is
reduced to the special orthogonal group in two dimensions, or the circle group,
SO(2).

The symmetries of a regular n-gon lying in P yield a subgroup of O(2)
isomorphic to the dihedral group D,,. This consists of rotations through 2kn/n
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4

Figure 6.1. The regular polyhedra in R3, which give rise to exceptional subgroups of
SO(3).

about 4 (k=0,1,....,n — 1) plus flips about symmetry axes of the n-gon
(again combined with reversals of the sense of A). Preserving the sense of 4
restricts this to the cyclic group Z,, the rotations in D,. (We allow n =2 in
this description.) We call O(2), SO(2), D,, and Z, the planar subgroups of
SO(3).

In addition there are the “rotational” symmetry groups T, O, [ of the regular
tetrahedron, octahedron (or cube), and icosahedron (or dodecahedron); see
Figure 6.1. By “rotational” we mean that reflections (in planes in R?) are
excluded, since these do not lie in SO(3). We call these the exceptional groups
and refer to them individually as the tetrahedral, octahedral, and icosahedral
groups. (For purposes of visualization it is often convenient to replace the
octahedron by the cube and the icosahedron by the dodecahedron—which
does not change the group of symmetries—but the names octahedral and
icosahedral are traditional.) Note that Q(2) and SO(2) are infinite groups (of
dimension 1), whereas D, Z,,, T, O, and [ are finite, of orders 2n, n, 12, 24, 60,
respectively.

It is clear on geometric grounds that for the planar subgroups a different
choice of the plane P and the sense of the axis A just yields a conjugate
subgroup. Similarly, a different orientation of the relevant regular polyhedron
yields a conjugate exceptional subgroup. These considerations motivate the
following:

Theorem 6.1. Every closed subgroup of SO(3) is conjugate to one of SO(3), O(2),
SO(2),D,(n=2),Z,(n=2),T,0,0and 1.

The main idea, which is classical, is to show that any closed subgroup acts
as symmetries of a suitable geometric figure and then to classify these figures
by exploiting certain arithmetic constraints given by counting arguments. A
proof is given in Dubrovin, Fomenko, and Novikov [1984], p. 189. See also
Exercises 6.1-6.4.

(b) Realizations
We now provide specific realizations of the planar subgroups of SO(3), in a

form suitable for computations. Let (x, y, z) be coordinates in R3. The planar
subgroups all leave a plane invariant, and after a suitable conjugacy we may
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assume this to be the (x, y)-plane. Then SO(2) is the group of rotations in this
plane, leaving the z-axis fixed. Z, is the unique cyclic subgroup of order n
contained in SO(2).

As a group, O(2) is obtained from SO(2) by adjoining an element of order
2. It is tempting to adjoint the reflection (x, y)+— (—x, y) in the (x, y)-plane by
letting this reflection also fix the z-axis. However, (x,y,z)—(—x,y,z) has
determinant —1 so does not lie in SO(3). We can avoid this problem by
extending the reflection so that it sends z to —z. Thus O(2) is realized as a
subgroup of SO(3) as follows. Let y € O(2) be written as a 2 x 2 matrix, and
define

70 (%, 3, 2) = (v (x, y), det(y)2).

Finally, the dihedral groups D, occur uniquely as subgroups of O(2).
Coordinate forms of the exceptional subgroups may be found in Coxeter
[1963]. We do not require them here.

(c) Disjoint Union Decompositions

The dihedral groups D, and the exceptional subgroups all have disjoint union
decompositions (Definition 2.4) into cyclic subgroups. These decompositions
are most useful when determining the dimensions of fixed-point subspaces.
They are rooted in the geometry of regular polyhedra.

Lemma 6.2.

(@ D,=U"Z,UZ,.

by O=U3Z,0*Z,0%Z,.

() T=U*Z,03Z,.

(d) 1= U°ZU°Z, U5 Z,. ,

Here U*Z, denotes a disjoint union of k copies of subgroups all conjugate (in
SO@3))to Z,.

PROOF.

(a) The dihedral group has 2n elements. Of these, n lie in the cyclic subgroup
Z,. Each of the remaining n elements acts as a reflection of the (x, y)-plane and
generates a subgroup conjugate (in SO(3)) to Z,.

(b) The first step for the exceptional groups is to observe that every rotation
in SO(3) has an axis of symmetry. Each axis intersects the invariant regular
polyhedron in either the midpoint of a face, the midpoint of an edge, or a
vertex. Think of the octahedral group O as the symmetries of a cube. The
rotational symmetries whose axes meet a face form a subgroup conjugate to
Z,. Each such axis meets two faces; since the cube has six faces we find three
copies of Z, in O. The rotational symmetries of the cube whose axes meet the
center of an edge generate a subgroup conjugate to Z,, and there are six such
axes. Finally the rotational symmetries whose axes meet a vertex form a
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subgroup conjugate to Z,, and there are four such axes. This yields a total of
1+3@4-1D+62~1)+43-1)=24

rotations, which equals the order of O. Hence all elements of the octahedral
group are accounted for.
(c,d) The proofs for T and 1 are similar and are left to the reader. O

(d) Containment Relations

Finally we discuss containment relations between conjugacy classes of sub-
groups of SO(3). We begin with a definition.

Definition 6.3. Let H,, H, be subgroups of a group I'. We say that the
conjugacy class of (subgroups conjugate to) H, contains that of H, if there
exists a subgroup of I', conjugate to H,, which contains H,. Then every
subgroup conjugate to H, contains some subgroup conjugate to H,. We write
H, > H, or H, < H, to denote containment of conjugacy classes in this sense.

It is easy to determine all containment relations for the planar subgroups
of SO(3). They are:
a Z,<D,<0(2 (n=2).
b) Z,<Z,and D, <D, (if n divides m).
(0 Z,<D, (nz=2)
(d) Z,<S0((2) <02 (n = 2).

6.1)

SO(3)

N
\V/
\ﬂ

Figure 6.2. Containment relations for exceptional subgroups of SO(3).
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The containment relations for the exceptional subgroups—with one exception
—are determined directly from (6.1) and Lemma 6.2 and are summarized in
Figure 6.2. The exception is that T is contained in O and [. The easiest way
to see this is to embed the regular tetrahedron in a cube or dodecahedron.
This induces an embedding of the corresponding symmetry groups.

EXERCISES
These exercises lead to a proof of Theorem 6.1.

6.1. Let I" be a proper closed subgroup of SO(3). Show that if I' is infinite then there
is a line L that is invariant under every y e I'. If T fixes every point on L show
that I is conjugate to SO(2). If some elements of I" act nontrivially show that T’
is conjugate to O(2).

6.2. Let I be a finite subgroup of SO(3), of order g. For each y e I define the poles of
y to be the two points in which the axis of y meets the unit sphere. Show that T’
permutes (faithfully) the set of poles of the g — 1 nonidentity elements of I".

6.3. If P is a pole define v, to be the order of the isotropy subgroup X of Pin I'. Prove
that X, is cyclic and that the orbit of P under I" has size g/vp. Calculate in two
different ways the number of pairs (y, P) where 1 # y € I', P is a pole, and y fixes

P. Hence show that
2 1
2 - = 1—= 6.2
=2(1-) 62

where i parametrizes the orbits of I' on the set 2 of poles.

6.4. Using (6.2) show that there are either 2 or 3 orbits of I" on £. If there are two
orbits show that I' is conjugate to some Z,. If there are three orbits choose
notation so that v, < v, < v5. Prove that v, =2 and v, =2 or 3. If v, = 2 prove
that I is conjugate to some D,. If v, = 3 prove that v; = 3, 4, or 5 and hence that
g = 12, 24, or 60. Finally prove that in these cases I' is conjugate to T, O, or [,
respectively.

§7.7 Representations of SO(3) and O(3): Spherical
Harmonics

It is a classical result that SO(3) has precisely one irreducible representation,
up to isomorphism, in each odd dimension 2/ + 1, and no others. See Wigner
[1959]. It easily follows that O(3) has precisely two distinct irreducible repre-
sentations in each odd dimension, and no others. These representations may
be realized in terms of special functions known as spherical harmonics. They
may also be treated from a more abstract point of view, and much of the
modern literature takes this approach. In this section we derive, by “bare
hands” methods, the basic resuits on these irreducible representations. We try
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to steer a middle course between the classical and the modern treatments, to
show how they are related.

(a) Classical Spherical Harmonics

Spherical harmonics often occur as linearized eigenfunctions in problems with

spherical symmetry. They are normally defined in one specific setting: separa-

tion of variables for Laplace’s equation in spherical polar coordinates. We

sketch the theory here: see Duff and Naylor [1966] for further details.
Consider Laplace’s equation in R3:

Au=u,, +u, +u,=0 (7.1

where u = u(x, y, z) and subscripts denote partial derivatives. Transform to
spherical polar coordinates (r, 6, ¢), withr > 0,0 < 6 < 2%,0 < ¢ < 7, where

X =rcosfsing
y = rsinfsin ¢
Z = rcos .
Then (7.1) becomes
r2u,, + 2ru, + (cosec® @)ugy + u,, + (cot @)u, = 0. (7.2)
Separate the variables by assuming
u(r, 0, 9) = R(r)©(0)® (o).
Then R, O, ® satisfy the ODEs
(@ r*R"+2rR —Il(l+ 1)R=0
b)) O +m?*O =0 (7.3)
(c) (sin? @)®” + (sin @ cos )@’ + (I(I + 1)sin? ¢ — m?) = 0.

Here [ and m are constants. We seek solutions u(0, ¢) that are independent of
r. By (7.3b) we have

©(0) = Acosmb + Bsinmf

and for consistency at 6 = 0, 2n we require m € Z. We may assume m > 0.
Equation (7.3¢) is the associated Legendre equation. It has a solution bounded
on 0 < ¢ < = only when | € Z, and the solution is then P/"(cos ¢) where P is
the associated Legendre function. We may assume m < I, because P;" vanishes
for m > 1. Thus solutions are spanned by the functions

cos mOP"(cos
" ( ) (7.4)
sin mdP"(cos )
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where 0 < m < I. Since sinQ = 0 there are 2/ + 1 such functions for a given [.
They are known as surface harmonics of degree I. If multiplied by r' they are
called spherical harmonics of degree I, and they are then polynomials in x, y,
z of degree /.

(b) Connection with Representations

To approach these polynomials from a representation-theoretic viewpoint, let
W, be the space of all homogeneous polynomials p: R* — R of degree . Now
SO(3) acts on W, by

yp(x) = p(y ' x). (7.5)

For [ = 0 this yields the trivial representation on R; for [ = 1 the natural
representation on R3. For I > 2 it is not irreducible. To see why, let J, be the
subspace of polynomials in W, that are multiples (by polynomials in W,_,) of

p=x?4yr 4+ 22

That is, J, = pW,_,. Since p is invariant under SO(3), so is J;. Let ¥] be the
space spanned by the spherical harmonics of degree /, that is, the elements
p € W, for which Ap = 0, where A is the Laplacian. V] is also invariant under
SO(3).

Proposition 7.1.
(a) W, = J, @ W, that is, V, is an SO(3)-invariant complement to J,.
(b) dim ¥V, =2l + 1.

Proor. Clearly A: W, — W,_, is linear, so
dimker A + dimImA = dim W, (7.6)

Now dim J, = dim W,_, > dimIm A since ImA = W,_,. If we can show that
ker A n J, = {0} then dim J, < dim Im A, since J; is contained in a complement
to ker A, whose dimension is < dim Im A by (7.6). From (7.6) it follows that
W, = J, ® ker A, which is part (a). Part (b) follows at once since dim W, =
(*42) =3l + (1 + 2), and dim V, = dim W, — dim J; = dim W, — dim W_,.

It remains to prove that J,nker A = {0}. Assume that 0 # g € J,nker A.
Write g = p*f where k > 1, f # 0, and p does not divide f. Calculate

A(p*f) = 2k(2k + 2m + 1)p*71f + p*Af, a.m
where m = | — 2k is the degree of f. Since Ag = 0 it follows that
f = —pAf2k2k + 2m + 1)

whence p divides f, a contradiction. Hence g = 0. O
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(c) Cartan Decomposition

We next describe what in representation theory is called the Cartan decomposi-
tion of V. Let

cos —sinf 0
SO(Q2) = sinf cosf 0[:0eS!
0 0 1

be contained in SO(3). We can decompose ¥ into irreducible subspaces for
the action of SO(2) as follows. Since W, = pW,_, @ V, we can think of V] as
the quotient space W,/pW,_,. Let w = x + iy, where (x,y,z) € R*. For k = 0,
1, ..., | define H, to be the subspace of this quotient space spanned by the
cosets of

s, = z' ¥ Re(wF)

7.8
t, = z' ¥ Im(wh), 78)
if k > 1. If k = 0 define H, to be the span of z'. We claim that
. 2 (k>0
dim H, = 7.9
i {1 (k = 0). (7.9)

Clearly this holds for k = 0. We must show s, and t, are linearly independent
modulo pW,_,. So suppose that

as, + bt e pW,_,
for a, b, € R. That is,
2" *(@Re(w*) + bIm(w")) = pf
where f € W,_,. Then z!™* divides f, so
aRe(w*) + bIm(w*) = ph

for some polynomial 4. But the left-hand side is harmonic by the Cauchy—
Riemann equations, whereas the right-hand side is not (by the proof of
Proposition 7.1) unless h = 0. Therefore Re(w*) and Im(w*) are linearly de-
pendent; this is absurd since they involve distinct monomials in x, y.

We now have the following:

Proposition7.2. V, = H, ® H, @ - - @ H,, where V, is identified with W;/pW,_,.
Moreover, SO(2) acts on H, by rotation through k6.

ProoF. That § e SO(2) acts on H, by rotation through k6 is obvious, since e®
has this action on w* and leaves z fixed. Since these representations are distinct,
the sum H, + -+ + H, is direct. By (7.7) this sum has dimension 2/ + 1, so is
the whole of V. ]
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ExXAMPLE. [ = 3, dim ¥, = 7. To find a basis we seek harmonic cubics of the
form

k=0: 23 + pu,

k=1 z2x + pu,
2%y + pv,

k=2 z(x? — y?) + pu,
z(2xy) + pv,

x¥ — 3xy?
3xly — ;3} already harmonic.

Here the us and vs are linear. Now for linear u we have A(pu) = 10u by (7.7).
So if g is cubic, then
0=A(g + pu) = Ag + 10u

leads to u = — Ag/10. Hence it is easy to obtain the basis

k=0 22 —3pz

k=1 z2x — Lpx

2%y —dpy
k=2 z(x* —y?)

xXyz
k=3 x3 — 3xy?
3x2y — y3.

Note that the SO(2)-action is obviously by rotations kf when k = 0, 2, 3, and
when k = 1 the two cubics are xq, yq where q = z? — 4p is SO(2)-invariant.
So the action is the same as on the (x, y)-plane in R, that is, the standard
action.

(d) Absolute Irreducibility

We are now in a position to prove the key result:

Theorem 7.3. The representation of SO(3) on V, is absolutely irreducible.
ProOF. Let B: V; — V, be linear, and commute with SO(3). Then B commutes
with SO(2). Since the representations of SO(2) in Proposition 7.2 are distinct,

it follows from XII, Theorem 3.5, that B leaves each subspace H, invariant
(and commutes with the SO(2) action on each H, ). Therefore B can be written,
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in relation to the decomposition of V,as H, @ --- @ H,, in the form

Ao
Ay o~y
B = A . 0
0 A=y
| WA R

for A, u, € R. We must show that the 4, are equal and the g, are zero.

Let y(x,y,z) = (x, —y, —z). Then y acts as an element of O(2) ~ SO(2) on
H,.In particular, ys, = (— 1)'"*s,, yt, = (— 1) "**'t,, where s, and ¢, are defined
in (7.8). Since B commutes with v, it follows that y, = 0, and B is diagonal.

To prove that the 4, are equal, form the subspace

A= @ Hk'

Ak=Ao

Clearly A o H,. Since B commutes with SO(3) we know that A is invariant
under SO(3). We claim, however, that the only SO(3)-invariant subspace of
V, containing H,, is the whole of V,, leading to the desired conclusion that
A=V,

Now the minimal SO(3)-invariant subspace containing H, is

Z =R{yz' + pW,_,:ye SO(3)}.

From now on we work modulo pW,_,. Thus Z is just R{yz'}. We claim that
in fact the span of all yz/, as y runs through SO(3), is the whole of W, (modulo
pW,_,). To verify this, note that the permutation ¢ which sends x+ y+> z+—> x
is in SO(3) and sends z' to x!. Then the rotation R, € SO(2) = SO(3) sends it
to (xcosa — ysina)’. Letting ¢ = tana we see that Z contains all (x + cy)
(c € R), that is, all polynomials x'y'“*fori=0,1,..., 1

Next fix some i, 0 < i </, and apply ¢! to get the polynomial z°'x'~". Apply
R, to get all polynomials z'(x + cy)'™), that is, all z'x/y'""" for 0 <i <,
0 <j <! — i. But these span all of W,. This completes the proof. O

In fact, every irreducible representation of SO(3) is isomorphic to some V.
The proof of this uses extra machinery (orthogonality of characters) and is
therefore placed at the end of this section.

(e) Irreducible Representations of O(3)

We can now describe all irreducible representations of O(3) = SO(3) @ Z9,
where Z5 = { £1}.

Proposition 7.4. The irreducible representations of O(3) are precisely the repre-
sentations on V, given by
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y-p(x)=plyx)  yeSOQ)
—1-p(x) = p(x)

(7.10)

and
yp(x) = p(yx) 7€ 80(3)
—1I-p(x) = —p(x).

(7.11)

ProOF. Let V be an irreducible representation of O(3). Decompose V into +1
eigenspaces for the action of —1I,

V=V, ®V,.

Since Z5 commutes with SO(3), each V., is an invariant subspace. So either
V = V, (when —I acts as the identity) or ¥V = V_; (when —I acts as minus the
identity). In either case, V is clearly irreducible as a representation of SO(3).
By Proposition 7.5 later, ¥V = V, for some I. Thus we obtain the two types of
representation listed. O

We call (7.10 and 7.11), respectively, the plus and minus representations of
OB3)on V.

In applications, the usual way that O(3) acts is induced from the natural
action on R3, where —1(x, y,z) = (—x, —y, —z). This leads to the representa-
tion on V; whose sign is (— 1)}, since p(—x, —y, —z) = (— 1)'p(x, y,z) when p
is homogeneous of degree L.

(f)* Completeness

It remains to prove that every irreducible representation of SO(3) is iso-
morphic to some V. The most direct way is to appeal to properties of
characters. The character of a representation V of a compact Lie group I' is
the function y: T - R given by yx(y) = trp,, where p,(x) = yx. Note that
x(671yd) = tr(ps ' p,ps) = x(y) so x is constant on conjugacy classes. There is
an inner product on characters defined by

1o 220 = f X1 (Mx2(7) dy
r

with the property that if y, and y, are characters of nonisomorphic irreducible
representations, then (y,,x,> = 0, whereas (x;,x,> > 0. See Adams [1969],
p- 49. Using this property, known as orthogonality of characters, we can prove
the following:

Theorem 7.5. Every irreducible representation of SO(3) is isomorphic to some V.

Proor. We first compute the character y, of V,. This is constant on conjugacy
classes. Every element of SO(3) is a rotation by 6 about some axis, hence
conjugate to R, € SO(2). Also R, and R_, are conjugate. By Proposition 7.2
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x(Re) =1+ 2cos8 + -+ + 2cos 0.

Let y be the character of an irreducible representation V, not isomorphic to
any V. Then y # x;, so {x, x;> = 0for all I. Since yx is a smooth even function,
in the sensé that ¥(R,) = x(R_g), it can be expanded in a convergent cosine
Fourier series

8

x(Rq) = zzo ccoslf = %CI(XI = Xi-1)-

N

0

Since {y, x> = 0 we have
0=t xm) = %Z o — Xi-15Am?
- {%(Cm - cm+1)<Xm’ Xm> m>0
co — 3¢1<%0> Xo> m=0.
It follows that

X(Rg) = co I:Xo ‘Z Xt+1):} =0

which contradicts {y, x> # 0. O

EXERCISES

7.1. This exercise relates our abstract definition of spherical harmonics to the usual
classical coordinate system.
Let U, (I =0,1,...) denote the complexification of the space ¥, of spherical
harmonics of order [ with its natural action of O(3). Let (r, 0, ¢), where 0 < 0 < 7,
0 < ¢ < 2r denote spherical polar coordinates, related to cartesian coordinates
(x,y,2) on R3 by

x = rsinf cos ¢, y = rsinfsin ¢, z =rcos?b.

Show that an arbitrary spherical harmonic of order / can be written as

]
2 ZnYim(6:0)
m=-—1
wherez,, e C,z_,, = Z,,and
Y;,m(o’ (P) = P,_m(COS B)eim(p, (_l =m< l)s

the P, ,, being polynomials. (These are the associated Legendre polynomials; see
Whittaker and Watson [1948].)

7.2. Compute (up to a constant factor) the polynomials ¥, ,, for 4 = 0, 1, 2, 3. (Classi-
cally, the constant factor is determined by a suitable normalization.)
7.3. Show that the action of O(2) on U is given by
0-(z_p...,z) = (e7™z_,,...,e"0%,,...,e"%),

K (ZopooZ)) = (Zperes (=1 "2y 20)
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§8.1 Symmetry-Breaking from SO(3)

We now describe, for each irreducible representation ¥, the isotropy sub-
groups X = SO(3) for which dim Fix(X) = 1. The equivariant branching lem-
ma implies that generically an SO(3)-equivariant bifurcation problem will
have branches that break symmetry to X. In fact, we calculate dim Fix(Z) for
all closed subgroups X of SO(3), then use this information to find the maximal
isotropy subgroups and those with dim Fix(Z) = 1.

(a) Dimensions of Fixed-Point Subspaces

The first step is to compute dim Fix(Z) for all closed subgroups X < SO(3).
Recall from Proposition 7.2 that we may write the space V, of spherical
harmonics as a direct sum of irreducible subspaces for SO(2) = SO(3), via the
Cartan decomposition

V;:Ho@Hx"'@Hh (8-1)

where dim H, = 1, and dim H, = 2 (k = 1). The action of 6 € SO(2) on H, is
by rotation through k6.
From (8.1) we obtain the following results:

(a) dimFix,,(SO(2)) = 1,
(b) dimFixy(Z,,) = 2[l/m] + 1,

(8.2)

where [x] is the greatest integer less than or equal to x. The formula (8.2(a))
follows directly from (8.1) since the only vectors in V; fixed by SO(2) are those
in Hy. To verify (8.2(b)) recall that Z,, is generated by rotation through 27/m.
Therefore Z,, fixes a nonzero vector in H, if and only if m divides k. There are
[l/m] integers k between 1 and [/ such that m divides k. Since H, is also fixed
by Z,,, (7.2(b)) follows.

Let d(¥) = dim Fix(X). Then we may summarize our results as follows:

Theorem 8.1. Let SO(3) act irreducibly on the space V, of spherical harmonics

of degree . The dimensions of the fixed-point subspaces of closed subgroups are:
(@) d(Z,)=2[l/m]+1 (m=>1)

[i/m] (I 0dd)

[/m] + 1 (I even)

() d(SO(2) =1

@) dOQ)= {0 (¢ odd)

1 (I even)

(b) d(D,,) = {

(€ d(T)=2[3]1+ 2] —1+1
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(f) dt@) =41 + [33+ [/2] -1+ 1

(8 d)=[y51+[03]1+0/72]—-1+ 1
Proor. Formulas (a) and (c) are restatements of (8.2). For the finite subgroups
X of SO(3) we use the disjoint union decomposition in Lemma 6.2 together

with Lemma 2.5, the corollary to the trace formula (2.5). For example, Lemma
6.2(a) states that

D, =U"Z,0Z,.
By (2.10)

d(D,) = {m|Z,1d(Z,) +Z,,|d(Z,,) — mdim V}

IDml

= ﬁ{2m(2[1/2] + 1)+ mQ/m] + ) — m(2l + 1)}

(40120 + 2+ 2[m] + 1 =20 — 1}
21+ [iml =1+ 1

1

2

2[
{/m] (I odd)
[m]+1 (I even).

Il

Similarly d(T) is obtained using the disjoint union decomposition
_U_ = Q4Z3 03Z2
from Lemma 6.2(c). Now apply (2.10) to obtain

d(T) = —{41Z5|d(Z3) + 3|Z,|d(Z,) — 6 dim V}}

ITI
= 5{12Q[3] + 1) + 6Q2[1/2] + 1) — 6(2] + 1)}
=231+ 1+ [2]+4—-1-1%
=2[3]+[)2] -1+ 1

as desired. The formulas (f) and (g) for d(®) and d(l) are obtained in identical
fashion.
It remains only to derive the formula for d(O(2)). To do this, observe that

Fix,,(O(2) = 61 Fixy,(D,).

A vector fixed by O(2) is certainly fixed by D,, for all m. But since the union
of all D, is dense in O(2), continuity implies that a vector fixed by every D,
is also fixed by O(2). Now formula (d) follows directly from (b) by considering
m large. O
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(b) Maximal Isotropy Subgroups of SO(3)

In the previous subsection we computed the dimensions of fixed-point sub-
-spaces for all closed subgroups of SO(3). We did not decide which of these
subgroups are isotropy subgroups of SO(3), that is, exactly the symmetry
groups of a given vector in ¥,. The general question of when a subgroup is an
isotropy subgroup is complicated; see Ihrig and Golubitsky [1984]. But by
using the strategy developed in Lemma 2.7 we can obtain the maximal isotropy
subgroups, as we now do.

Theorem 8.2. Let SO(3) act irreducibly on V,. Then the maximal isotropy
subgroups are:

=2 0(2)

=48, 14: 0OQ2)and O

all other even I 0Q), O, and 1.

I=1 SO(2)

=3 SO(2), T, D,

=5 SO(2), D;,D,, Dy

=711 SO(2), T,and D,, (I/2 <m <)
1=9,13,17,19, 23, 29: SO(2), 0,and D, (/12 <m <)
all other odd I: SO0Q2), 0, ,and D,,(I)2 <m < ).

Proor. First observe that O(2), O, and [ are maximal subgroups of SO(3).
Hence these are maximal isotropy subgroups precisely when they are isotropy
subgroups. By Lemma 2.7, this is the case precisely when the fixed-point
subspace is nonzero.

0O(2) is a maximal isotropy subgroup when [ is even, since d(O(2)) = 1 in
this case. For | and O the argument is slightly different. Note that formulas
(f) and (g) in Theorem 8.1 are “periodic” in I. More precisely, think of d(O)
and d(1) as functions of I. Then

(@ dO)(I+12)=dO)() + 1,
(b) d()(I +30)=d()() + L.

It follows that O is a maximal isotropy subgroup when [ > 12 and [ is a
maximal isotropy subgroup when I > 30. The other ! for which O and [ are
maximal isotropy subgroups are obtained from Table 8.1. Just check in that
table when d(0) and d(l) are positive.

Next observe that SO(2) is contained only in O(2) and that d(SO(2)) = 1

(8.3)
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Table 8.1. Fixed-Point Subspace Dimen-
sions for the Exceptional Subgroups

I d©@) 40 4T 1 4
1 0 0 0 16 1
2 0 0 0 17 0
3 0 0 1 18 1
4 1 0 1 19 0
5 0 0 0 20 1
6 1 1 2 21 1
7 0 0 1 22 1
8 1 0 1 23 0
9 1 0 2 24 1
10 1 1 2 25 1
1 0 0 1 26 1
12 2 1 3 27 1
13 0 28 1
14 0 29 0
15 1 30 2

for all I. Therefore for odd I, SO(2) is a maximal isotropy subgroup, since
d(O(2)) = 0 when ! is odd.

The cyclic groups Z,, are contained in SO(2) and O(2). Hence they cannot
be maximal isotropy subgroups of SO(3) for any L

It remains to analyze the subgroups T and D,,. Now T is contained only
in O and [. Since O is a maximal isotropy subgroup for all / > 12, T cannot
be a maximal isotropy subgroup for [ > 12. Tt is easy to check from Table 8.1
that T is a maximal isotropy subgroup only when [ = 3, 7, or 11. (Note that
d(T) is also “periodic” of period 6.)

Since D,, = O(2) for all m, and O(2) is a maximal isotropy subgroup when
lis even, D,, cannot be a' maximal isotropy subgroup for / even. When [ is odd,
d(D,) = [I/m] by Theorem 8.1(b). When m > I, d(D,,) = 0, so these cases are
ruled out. On the other hand, when m < /2, D,, < D,,, and d(D,,,) > 0. It
follows from Lemma 2.7 that D, cannot be a maximal isotropy subgroup.
Therefore, we are left with the range of values

2 <m<l. 8.4)

The only obstruction to D,,’s being a maximal isotropy subgroup, when m is
in this range, occurs when D,, is contained in an exceptional subgroup X with
d(Z) > 0. Now only D,, D3, D, and D; are contained in exceptional sub-
groups. Thus when lis odd and I > 11, D,, is a maximal isotropy subgroup for
all min the range (8.4). When | < g and /is odd, d(l) = 0. Therefore, D 5 occurs
whenever 5 is in the range (8.4). When [ < 7 and ! is odd, d(0) = 0. So D; and
D, occur whenever 3 and 4 are in the range (8.4). Finally D, may be a maximal
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isotropy subgroup when | = 3. However, d(T) = 1 when /= 3so D, isnot a
maximal isotropy subgroup. O

Finally, we list the isotropy subgroups £ = SO(3) with d(Z) = 1. These are
maximal, so we can read them off from Theorems 8.2 and 8.1.

Theorem 8.3. The (maximal) isotropy subgroups of SO(3) acting on V,, which
have one-dimensional fixed-point subspaces, are:

0(2): all even |.
SO(2): all odd 1.

D,.: l odd, /2 <m<|, m # 2.

[: l=6,10,12, 15, 16, 18, 20-22, 24-28, 31-35, 37-39, 41,
43, 44,47, 49, 53, 59.

0 I=4,6,8-10, 13-15,17, 19, 23.

T: 1=3,7,11.

§9.7 Symmetry-Breaking from O(3)

Algebraically, the orthogonal group O(3) is just a direct sum
0(3) =S0(3) @ Z5 ©.1)

where Z3 = {+1}; and as we saw in §7 this leads to very close connections
between the representations of O(3) and SO(3). We now address for O(3) the
same questions that we addressed for SO(3) in §8, namely, the dimensions of
fixed-point subspaces, the maximal isotropy subgroups, and the isotropy
subgroups with one-dimensional fixed-point subspaces.

In order to understand the differences between the analyses of SO(3) and
0O(3), we first recall from §7 how (9.1) determines the irreducible representa-
tions of O(3). If V = 1} and SO(3) acts on V as usual, then there are two
irreducible actions of O(3) on V which extend that of SO(3). They are distin-
guished by whether —I € O(3) acts as the identity or minus the identity. We
claim that the plus representation, in which —1I acts as the identity, has
essentially the same properties as the corresponding representation of SO(3).
To make this statement precise we must discuss some properties of subgroups
of O(3).

Subgroups of O(3) fall into three classes:

(I) Subgroups of SO(3),

(IT) Subgroups containing — I, 9.2)
(ITI) Subgroups not in SO(3) and not containing — I.
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Observe that subgroups of class I all have the form £ @ Z$ where X is a
subgroup of SO(3). Since we listed the closed subgroups of SO(3) in Theorem
6.1 we know the closed subgroups of classes I and II of O(3).

For the plus representation of O(3), — I acts trivially and hence lies in every
isotropy subgroup. Therefore, each isotropy subgroup is class II, of the form
X @ Z5. Moreover, dim Fix(£ @ Z$) = dim Fix(Z). Thus all results for SO(3)
in §8 carry over to O(3) in this case, when X is replaced by £ @ Z5.

Now we consider the minus representation, in which — I acts as minus the
identity on V. In this case —I fixes only the origin, hence is not contained in
any isotropy subgroup. Therefore, the isotropy subgroups are of class I or I1I.
In order to determine the maximal isotropy subgroups for these actions of
O(3) we must consider the class III subgroups.

We divide the remainder of this subsection into five parts:

(a) The description of class III subgroups,

(b) Containment of class III subgroups,

(c) Dimensions of fixed-point subspaces for class III subgroups,

(d) Maximal isotropy subgroups for irreducible representations of O(3),
(e) The natural representations on spherical harmonics.

We remark here on (e). Recall from §7(e) that the natural action of O(3) on
spherical harmonics of degree [ is by the plus representation when !/ is even
and the minus representation when [ is odd, since in the natural action

—I-p(x) = p(—=x) = (= 1)'p(»). (9.3)

In subsection () we combine the results from §8(b) and subsection (d) of this
chapter to discuss this natural action.

(@) The Class IIT Subgroups of O(3)

We now show that each class III subgroup H is isomorphic to a subgroup of
SO(3), though H is never conjugate to that subgroup. To see why, let n:
O(3) - SO(3) be the homomorphism whose kernel is Z5. Since —I ¢ H, it
follows that n|H is an isomorphism. Hence H is isomorphic to n(H) < SO(3).
We claim that every class ITI subgroup H is uniquely determined by two data:
the subgroups n(H) and H n SO(3) of SO(3). Recall that if L = K are groups,
then the index of L in K is the number of cosets in the quotient K/L.

Lemma 9.1.

(a) Let H be a class 111 subgroup of Q(3). Then H nSO(3) is a subgroup of
index 2 in n(H).

(b) Let L = K = SO(3) be subgroups, where L has index 2 in K. Then there
exists a unique class III subgroup H < O(3) such that n(H)=K and
HnSO@3)= L.
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Remark. Lemma 9.1 allows us to determine the conjugacy classes of class III
subgroups of O(3) by classifying pairs of subgroups L = K < SO(3) such that
L has index 2 in K. Care must be taken, however, to analyze the conjugacy
class of (K, L) considered as a pair of subgroups, and not just pairs of con-
jugacy classes of K and L. We amplify this remark in the following:

PROOF.

(a) Suppose 7,0 € O(3) ~ SO(3). Then yé € SO(3) since O(3)/SO(3) = Z5.
Now suppose 7,6 € H ~ (HNSO(3)). Then y™! ¢ SO(3) and y"'6e Hn
SO(3). Therefore, § € y(H nSO(3)), and ¢ and y are in the same coset of
H AN SOQ@3) in H. It follows that the index of HSO(3) in H is 2. Since
n(H nSO(3)) = H n SO(3), the index of H n SO(3) in n(H) is also 2.

(b) Given L < K = SO(3), define

H=LuUhL 9.4)
where h = (g, —1) e SO3) @ Z, = O(3)and g€ K ~ L. Since h? = g2 e L, it
follows that H is a subgroup of O(3). Observe that n{H) = LugL = K and
H nSO(3) = L. Note that H has to be of class III. If —I'isin H then K = n(H)
equals H nSO(3) = L. But K # L, so this is impossible.

Next, we claim that H is uniquely determined. Let H' be a subgroup of O(3)
satisfying

n(H)=K and H nSO(3)=L.
We know that H' nSO(3) = H n SO(3). Now suppose h’' € H' ~ L. Since
h' ¢ SO(3) it has the form (g', —I) e SO(3) @ Z5. Since n(H') = K it follows

that g’ € K ~ L. Therefore g’ = gl where g is the element in K ~ L used to
define H above, and | € L. Thus g'L = gL whence H' = H. O

We now use Lemma 9.1 to enumerate all conjugacy classes of class II1
subgroups. As a first step we enumerate up to conjugacy the subgroups
K <= SO(3) which have subgroups L of index 2. The pairs K = L are:

(@) O(2) >S0(2)

b) O>T

(¢ D,>Z, (m=2)
d) D,,o>D, (m=2)
© Zpwm>Z, (m>2
) Z,>1.

(©.5)

Although we have enumerated all of the isomorphism classes of pairs of
subgroups of index 2, we must check whether there are isomorphic but
nonconjugate choices for L and K. This problem cannot arise in (9.5(a), (b),
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(c), (e), () since L is the unique subgroup of K in its isomorphism class and
of index 2.

Note, however, in (9.5(d)) there are two subgroups isomorphic to D,, which
lie inside D,,,. We specify them as follows. Let 8 = n/m and let R, be rotation
through 6. Observe that Z,, is generated by RZ. Let k be reflection in the plane
across the x-axis. Then the two subgroups are

D,=2Z,vxZ, and D, =27Z,0UkR,Z,.

These subgroups are not conjugate inside D,,, but they are conjugate inside
D,,, = SO(3). Since

R_pkRq, = KR,
it is easy to check that
R_¢;D, Ry, =D;, and R_ppD;,,Rep = Dy

Thus the pairs D,, = D,,, and D, = D,,, are conjugate in SO(3), so they
generate conjugate class III subgroups of O(3).

Next we describe our notation for class I[1I subgroups H. With one excep-
tion, we shall write them in the form n(H)~, so that, for example, O~ indicates
the type III subgroup that is isomorphic to O. The exception is when n(H) =
D,,.. From (9.5(c), (d)) there are two nonisomorphic subgroups of index 2 in
D,,,, namely D,, and Z,,,. We let DZ be the class III subgroup corresponding
to the pair D,, © Z,,, and we let D4,, be that corresponding to D,,, > D,,,.

We now list the conjugacy classes of closed subgroups of O(3).

Theorem 9.2. Every closed subgroup of O(3) is conjugate to one of the following:

(I) SO(3), 0(2),S0(2), T, 0, I, D,,, (m = 2), Z,, (m = 2), 1.
(II) K @ Z where K is a subgroup of SO(3) and Z5 = { +1}.
(I11) 0(2)~, 07, D}, (m = 2), D5, (m > 2), Z3,, (m = 1).

Remarks.

(a) All of these are nonconjugate. Note that D4 is omitted since it is conjugate
to D3.

(b) There are three nonconjugate subgroups of O(3) of order 2, namely Z5,
Z,,and Z; . They are generated, respectively, by

—1 0 0 —1 0 0 —1 0 0
0 -1 01, 0 —1 0, and 0 1 0].
0 0 -1 0 0 1 0 0 1

(c) There are three nonconjugate subgroups of O(3) isomorphic to D,
namely D,,,, D%, and D4,. It is amusing to understand how each of these
groups may be viewed as symmetries of the 2n-gon in the (x, y)-plane. The
cyclic subgroup Z,,,, generated by rotation of the (x, y)-plane through n/m, is
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present in both D,,, and D3,,. The group D,,, « SO(3) is generated by Z,,,
and a reflection across the x-axis in the (x, y)-plane, affected by

1 0 0
0 -1 0.
0 0 -1

The group D%,, ¢ SO(3) is generated by Z,,, and a reflection across the x-axis
in the (x, y)-plane affected by

1 0 0
0 -1 0].
0 0 1

The cyclic subgroup of order 2m in D4, is not the standard cyclic subgroup
Z,,, = SO(3), but the class I1I subgroup Z3,,, generated by the rotation

Rom 0
0.
0 0|—-1

The reflection across the x-axis in D4, is the same asin D,,,.
2m 2m

(b) Containments Involving Class II1 Subgroups

We begin our discussion by giving disjoint union decompositions into cyclic
subgroups for the finite class III subgroups:

(a O =03Z; U*Z,0°Z;,
(b) D:Z=27,0"Z;, (mn>2) (9.6)
(c) D4,=125,0"Z,0"Z;, (m>2).

The class 111 subgroups in (9.6) have disjoint union decompositions induced
by their isomorphisms with subgroups of SO(3). The verification of (9.6) is
based on a combinatorial argument using the disjoint unions for O and D,,
in Lemma 6.2 and the fact that exactly half the elements in a class III
subgroup are not in SO(3). We now give the details.

Since D;, is isomorphic to D,, it has a disjoint union decomposition with
one subgroup isomorphic to Z,, and m subgroups isomorphic to Z,. Since
D nSO(3) = Z,,, we must have all other elements not in SO(3), whence
(9.6(b)) holds. A similar argument applies to D%, but now Z;,, = D9, so the
decomposition must be as in (9.6(c)). For @~ the cyclic groups of order 3 must
be Z, since there is no such thing as Z3 ; the Z, part is not contained in SO(3)
so must be Z , and a counting argument does the rest.

We now discuss containment relations involving class III subgroups.
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Lemma 9.3. Let H, and H, be class 111 subgroups. Then H, = H, if and only if
(a) H,nSOQ3) < H, nSO(3), n(H,) = n(H,), and

9.7
(b) n(H;)¢ H; nSO(Q).
PRrOOF. The necessity of condition (9.7(a)) is obvious. What is not so obvious
is the need for condition (9.7(b)). To prove this, assume H, = H, and n(H,) <
H; nSO(3). We claim that —I € H,, contradicting H,’s being class III. To
verify this, let h € H, ~ SO(3). Then n(h) € n(H,) =« H, nSO(3) = H,. More-
over, he H, = H,. Therefore, n(h)"*h € H,. However, since h ¢ SO(3) it fol-
lows that h = (n(h), — 1) € SO3) ® Z4 = O(3),and hencen(h) *h = (1, - 1) =
—1I € H,. This is what was claimed.
Conversely, suppose (9.7) holds. We show that H, = H,. Assumption
(9.7(a)) implies that H, n SO(3) = H,. We must show that H, ~ SO(3) < H,.
Observe that

H, ~ SO(3) = h(H, nSO(3)) (9.8)

for any h € H, ~ SO(3), since the index of H, n SO(3) in H, is 2. Thus, if we
can show that there exists h € H, ~ SO(3) which is also in H,, then the
right-hand side of (9.8) is also in H,, and H, < H, follows.

Using (9.7(b)) we choose h € H, such that n(h) ¢ H; n SO(3). Observe that
h ¢ SO(3). Forif hisin SO(3), then hisin H, " SO(3) =« H, n SO(3) by (9.7(a)),
and then n(h) € H, nSO(3). We now show that h e H,, which proves the
lemma. We know that h = (n(h), —I) e SO(3) @ Z5 since h ¢ SO(3). Now
n(h) e n(H,) = n(H,) by (9.7(a)). Thus there exists h; € H, such that n(h) =
n(h,). However, h, cannot be in SO(3) since n(h) ¢ H; nSO(3). Therefore,
hy = (n(h,), —I) = h,so h e H, as claimed. O

We next use Lemma 9.3 to prove the following:

Proposition 9.4. The containments between conjugacy classes of subgroups of
class I11 groups are as follows:

(a) O~ contains D4, Z,;, D3, D3, Z5, and subgroups of T.

(b) O(2)™ contains Dz, (m > 2), Z5, and subgroups of SO(2).

(c) Z;,, contains Z3, where k divides m and 2k does not divide m, and subgroups
of Z,,.

(d) D%, contains D3, and 23, when k divides m and 2k does not divide m, D}
when k divides m, D%, Z7 , and subgroups of D,,,.

(e) DZ contains Di where k divides m, Z; , and subgroups of Z,,.

ProoF. We make two general comments. If H is a class IIT subgroup, then all
subgroups of H N SO(3) are contained in H and all other subgroups of H are
of class III. The class III subgroups of H may be obtained by using Lemma
9.3 and the pairs of subgroups (n(H), H n SO(3)) of index 2 in (9.5). We prove
(a,c, d), leaving (b, e) as exercises for the reader.
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(a) Since T = O~ N SO(3) all subgroups of T are contained in ©~, and the
remaining subgroups are class 11I. From (9.7) the class III subgroups of O
satisfy

nH)c®, HASOB)cT, and n(H) ¢ T.

From Figure 6.2 we see that D,, D5, and Z, are possibilities for n(H). In
addition, there is a subtle possibility. There are subgroups Z, and D, which
are in O but not in T. Their existence follows from the disjoint union decom-
positions of @ and T in Lemma 6.2(b, c). There are only three Z, subgroups
in T and six in @. The possible class I1I subgroups are given by Theorem 9.2
(IT1), namely D%, D4, Z;, D3, D%, and Z;. The condition HNSO(3)c T
eliminates D} and shows that the remainder occur as subgroups of O~

(c) Since Z,, = Z3,, n SO(3), all subgroups of Z,, are contained in Z3,, and
the remainder are class III. From (9.7) the class III subgroups H of Z5,, satisfy

n(H)c Z,,, HnSOQ3)< Z,, and n(H)4¢ Z,,.

Subgroups of Z,,, are cyclic, so n(H) is cyclic. The only cyclic class III
subgroups are Z5,. For k > 1, the only Z3, that can occur are those for which
k divides m (so that n(H) = Z,,, and H nSO(3) = Z,,) and 2k does not divide
m (so that n(H) ¢ Z,,).

(d) Since D%,,nSO(3) = D,,, all subgroups of D,, are contained in D4,, and
the remainder are class II1. By (9.7) the class III subgroups H of D%, satisfy

n(Hy< D,,, HASOB3)<=D,, and n(H)&D,,

Since n(H) = D,,, the only possibilities for H are Z;,, D%,, and Dz, which we
consider in order. Begin by observing that the containment of subgroups Z;,
in D4, is analogous to that of Z3, in (c) earlier.

Next let H = D%, be contained in D%, Since n(H) = D,, < D,,, we must
have k|m. Similarly, k|m implies that H 0 SO(3) = D, < D,,. If 2k does not
divide m then n(H) ¢ D,,, and Lemma 9.3 guarantees that D%, < D4,,.

Suppose now that H is conjugate to D4, and that H is contained in D4,,.
As previously, k must divide m. Moreover, H n SO(3) = D%,,nSO(3) = D,,
and H nSO(3) is isomorphic to D,. We can always choose y such that
7 'Dy,y = Dy, 77D,y = D,,, and y7}(H nSO(3))y = D,. Thus we may
assume that H nSO(3) = D,. Therefore, D, < n(H) = D,,, where n(H) is
isomorphic to D,,. We claim that in fact n(H) = D,,. It then follows from the
preceding paragraph that 2k does not divide m. To verify the claim recall that
the standard group D, may be written as Z, U kZ,, where « is a fixed element
of SO(3). Now n(H) is isomorphic to D,,, so n(H) = Z,,. Since D, = n(H) it
follows that « € n(H). Therefore, n(H) contains the group generated by Z,,
and k, which is D,,. Since n(H) is isomorphic to D,,, we must have n(H) = D,,
as claimed.

Finally, let H be a subgroup conjugate to DZ and contained in D%,,. Then
H nSO(3) is cyclic and contained in D,,. Thus H n SO(3) = Z,. Since Z, <
D,, we have k|m. Now assume that k|m. We claim that there is a subgroup
D, isomorphic but not equal to D, such that D; = D,,, but D, ¢ D, If so,
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then the class HI subgroup H corresponding to Z, « Dj is conjugate to D?
and is contained in D%,,. To construct D, we use the idea in the proof that
there is one conjugacy class of class III subgroups corresponding to (9.5(d)).
Let

D; = Z, U kR, Z, 9.9)

where R, is rotation through n/m in the (x,y)-plane, and x(x,y,z) =
(x, —y,2). It is easy to check that D; is a group isomorphic to D,. It is also
easy to check that D; = D,,, but D, ¢ D,,. O

Note that D% = D4, for all m since D3 is conjugate to D,

(c) Dimensions of Fixed-Point Subspaces for Class 111
Subgroups

In this subsection and the next we consider the nontrivial irreducible repre-
sentations of O(3), that is, the minus representations, where — [ acts as minus
the identity. As noted previously, isotropy subgroups of O(3) in these rep-
resentations are either class I or class III. The dimensions of the fixed-
point subspaces of class I subgroups (subgroups of SO(3)) are given in Theo-
rem 8.1. In this section we derive the corresponding formulas for class 111
subgroups.

Theorem 9.5. Let O(3) act irreducibly on V; with — I acting as minus the iden-
tity. Then the dimensions of the fixed-point subspaces for class 111 subgroups
are:

@ d(Z3,)=2[( + m)/2m].

[l/m] (I even)
(/m] +1 (I odd)

(© d(D3,) = [+ m)/2m]
(d) d(O7)=T[I/3]-1[l/4]

0 (I even)
1 {l odd).

(b) d(D7) = {

(e) dOQ))= {

ProoF.
(a) The group Z,,,is generated by R, ,, followed by — I. The only way a vector
v € ¥, can be fixed by Z3,,, is if

R, .t = —v. (9.10)

n/m

Since R,,, € SO(2) we can use the Cartan decomposition, Proposition 7.2, of
¥, to compute the number of independent vectors v satisfying (9.10). Recall
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that the Cartan decomposition is
Vi=H,®H, ® ®H,

where R, acts on H, by rotation through k6. Thus vectors in H, satisfy (9.10)
if and only if k/m is an odd integer. There are [(I + m)/2m] such integers k
between 0 and . Since dim H, = 2 when k # 0 we have d(Z3,,) = 2[(l + m)/
2m] as claimed.

(b, ¢, d). Use the disjoint union decompositions in (9.6) and argue as in

Theorem 8.1.
(e) Observe that

Fix(O(2)") = () Fix(D)
m=2
so that
d(D(2)7) = lim d(D3),

yielding the desired formula. O

Remark. The verification of b, ¢, d proceeds most easily using Exercise 9.1.
(d) Maximal Isotropy Subgroups for the Minus
Representations

Theorem 9.6. Let O(3) act irreducibly on V; with — I acting as minus the identity.
Then the maximal isotropy subgroups are:

=1 02"

I=3: 027,07, D§

=5 02 ,Di, (Q<m<5)

=711 0Q2),0°,D%, (B3<m<l)
1=9,13,17,19, 23, 29: 0(22)~,07,0,D4, (3<m<l)
All other odd I: 02),0°,0,L,D4,  (B3<m<])
=2 0(2), D,

=428 0(2), 0, D4, (3<m<l)

I =14; 0(2),0°,0,D%, (5<m<14)
All other even I: 0(2),07,0,1, D4, U3<m<l).

PRrROOF. Observe that Fix(SO(3)) = {0} since SO(3) acts irreducibly. Thus
maximal subgroups of SO(3), namely O(2), O, and [, and maximal subgroups
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of O(3) which are not in SO(3), namely O(2)” and O~, are maximal isotropy
subgroups of O(3) provided their fixed-point subspaces are nonzero. From
Theorem 8.1 and Theorem 9.5(e) we see that

_§0 {l odd)

4(0@2)) = {1 (! even)
N (I odd)

0@ = {0 (/ even).

Therefore, O(2) is a maximal isotropy subgroup when [ is even, and O(2)" is
a maximal isotropy subgroup when [ is odd.

The exceptional subgroups O and [ are maximal isotropy subgroups for
precisely the same / as for the irreducible representation of SO(3) on V.

The exceptional subgroup O~ is a maximal isotropy subgroup whenever
d(O7) > 0. Now d(07) is “periodic” in ! of period 12, by Theorem 9.5(d). That
is,

dO )+ 12)=d(0O7)() + 1.

We enumerate d(07)(/)for I < 12in Table 9.1. From the periodicity and Table
9.1 we see that O~ is a maximal isotropy subgroup for all [ except 1, 2, 4, 5,
and 8.

Next we decide which of the subgroups Dj,, are maximal isotropy sub-
groups. Recall that

d(D4,) = [(I + m)/2m] (9.11)

from Theorem 9.5(c). Certainly (9.11) implies that m </, since otherwise
d(D4,) = 0. Recall Lemma 2.7, where we showed that a subgroup X is a

Table 9.1 Dimensions of
Fixed-Point Subspaces
for O~

! d@7)(

—_— O D 00 AW B W N
—_— e D e =, O O =, OO

——
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maximal isotropy subgroup if d(X) > 0, and any subgroup T I satisfies
d(T) = 0. By Proposition 9.4, D4,, is contained in a subgroup T in only two
ways:

(a) T =D4, where m divides s but 2m does not divide s. ©.12)
() m=2  whenDic O '

We consider when D4, is not a maximal isotropy subgroup. This happens,
for example, if d(D%,,) > 0, since D%,, = D¢,,. Now d(D%,,) > 0if 3m </, so
D4, is not a maximal isotropy subgroup if m < /3.

It is easy to check that D¢, ¢ D4, and that D%, is a maximal isotropy
subgroup when /3 <m < I, with one possible exception, (9.12(b)). When
m=2 Dic0", so we need d(07) =0 for D4 to be a maximal isotropy
subgroup. This can only occur when [/3 <2 < [, thatis, [ = 2, 3, 4, 5. From
Table 9.1 d(0~) = 0 unless [ = 3. Thus D4 is a maximal isotropy subgroup
when | = 2, 4, 5, but not 3.

Next we consider DZ,. Now Dz, = O(2)7, and d(0(2)") = 1 when [ is odd.
So DZ can be a maximal isotropy subgroup only when / is even. When [ is
even, d(D?) > 0 precisely when m < I; see Theorem 9.5(b). However, when
m < 1/2, we have d(D4,,) > 0 and Proposition 9.4(d) shows that D, < D3,
Hence D?Z is never a maximal isotropy subgroup.

We have now shown that every subgroup listed in Theorem 9.6 is a maximal
isotropy subgroup. To complete the proof we must rule out any others. If a
subgroup of SO(3) is not a maximal isotropy subgroup for SO(3) then it
cannot be one for O(3). Inspection of Theorem 8.2 shows that the only class
I subgroups we need consider are

(a) SO(2) when [ is odd,
(b) D, whenlisoddand /2 <m <l ms#2, (9.13)
(¢) Twhenl=3711.

Further, the only class III subgroup not yet considered is Z3,,.

We check the class I subgroups . We have SO(2) = O(2)7,and d(0(2)7) =1
when | is odd, eliminating (9.13(a)). From Proposition 9.4(d) we see that
D,, = D4%,., which eliminates (9.13(b)). Using Proposition 9.4(a), T = O~. We
check in Table 9.1 to see that d(O~) = 1 when ! = 3,7, 11, eliminating (9.13(c)).

Finally we consider Z3,,. Proposition 9.4(d) implies that Z;,, = D%,.. More-
over, Theorem 9.5(a, c) implies that d(Z5,,) = 2d(D4%,,), so Z3,, is never a max-
imal isotropy subgroup. (]

It is again easy to read off the isotropy subgroups X for which d(X) = 1.

Theorem 9.7. Let O(3) act irreducibly on V; with — I acting as minus the identity.
Then the isotropy subgroups with one-dimensional fixed-point subspaces are:
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02)™: all odd |

OQ2): all even |

O~ 1=3,6,7,9-14,16, 17, 20

O: [=4,6,8-10,13-15,17,19, 23

(: l=6,10,12, 15, 16, 18, 20-22, 24-28, 31-35, 37-39,
41,43, 44, 47, 49, 53, 59

DY, I/3<m<|, alll > 4

Dé: =3

D4: I=2

PRrOOF. For @ and [ the results are identical with those in Theorem 8.3. The
remaining subgroups ¥ are obtained by computing d(X) from Theorem 9.5
and Table 9.1, for the maximal isotropy subgroups listed in Theorem 9.6. [

(¢) The Natural Representation on Spherical Harmonics

Recall that the natural action of O(3) on the spherical harmonics V, of order
lis the representation of sign (— 1)%. It is easy to combine the preceding results
to yield a list of maximal isotropy subgroups for the natural representation:

Theorem 9.8. Let O(3) act on V) in the natural representation. Then the maximal
isotropy subgroups are:

I=1: 012)

=3 027,07 ,D¢

=5 0(2)~, D4, 2<m<s)

=711 0(2)", 07, D4, (/3<mx<l)
=9,13,17, 19, 23, 29: 0(2)~,07,0,Ds, (3<m<l)

all other odd I 0(2),07,0,1,D%, 3<m<l)

=2 02)y® Z5

=48 14 ORQ)DZ5, 0DZS

all other even I: OR)PZ5 0025 1@ Zs.

We can also deduce the isotropy subgroups X with d(Z) = 1:

Theorem 9.9. The (maximal) isotropy subgroups with one-dimensional fixed-
point subspaces for the natural representation of O(3) on V, are:
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0@2): all odd |

0O 3,7,9, 11,13, 17

O: 9,13,15,17, 19,23

I: 15,21, 25,27, 31, 33, 35, 37, 39, 41, 43, 47, 49, 53, 59
D4, I3<m<l, allodd!l>5

Dé: =3

0@ Zs5: all even |

0@ Z5: 1=46,8,10, 14

1@ Z5: I=6,10,12, 16, 18, 20, 22, 24, 26, 28, 32, 34, 38, 44.

We have enumerated the isotropy subgroups with one-dimensional fixed-
point subspaces because these are the ones to which the equivariant branching
lemma applies directly. However, recall Remark 3.6(a), that generically solu-
tions with isotropy group X exist whenever d(Z) is odd. These subgroups could
also be classified from our results with little extra work; we do not pursue this
since we have no specific applications of such a classification in mind. When
d(X) is even we have no information on the existence or nonexistence of
branches. Despite this we feel that it is important to determine the maximal
isotropy subgroups, as part of a general program for understanding bifurca-
tion with symmetry. We discuss this point further in the next section.

We have not discussed the asymptotic stability of the preceding solutions.
By Theorem 4.3 we know that when [ is even, generically the solutions
found from the equivariant branching lemma are unstable. When [ is odd,
only partial results exist. Chossat and Lauterbach [1987] have shown that
generically the axisymmetric solutions—those whose isotropy subgroup con-
tains SO(2)—are unstable.

EXERCISES

9.1. Consider the Lie group I’ @ Z, where Z, = { +1}.
(a) Show that subgroups £ = I' @ Z, fall into three classes:
) ZcT,
(II) Z=A®Z,whereAcT,
(II) X¢ Tand —1¢X.
(b) Let i: '@ Z, - I be projection and let £ be a class 111 subgroup. Show that
H = n(X) is isomorphic to T and that K = £ N T has index two in H.
(c) Let ' @ Z, act on the vector space V so that Z, acts as +1I,. Use the trace
formula to show that

dim Fix(Z) = dim Fix(K) — dim Fix(H)

for all class III subgroups £ of I' @ Z,.
(d) Use (c) and Theorem 8.1 to verify Theorem 9.5.
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§10.* Generic Spontaneous Symmetry-Breaking

In XI, §1, we posed the basic question of spontaneous symmetry-breaking.
Let the compact Lie group I' act on ¥ and let £ be an isotropy subgroup.

Is there a generic set of conditions on I'-equivariant

bifurcation problems g: ¥V x R — V which imply that

there exists a branch of solutions to g = 0 with

isotropy subgroup Z? (10.1)

(See §3 for a discussion of the term generic.)

Proposition 3.2 states that generically we may assume the action of I' on
V to be absolutely irreducible, as we now do. By the equivariant branching
lemma, Theorem 3.3, such conditions do exist when the fixed-point subspace
of X is a one-dimensional, and the bifurcating solution branch is then unique.

The resolution of the problem of spontaneous symmetry-breaking also
requires an answer to an equally important question:

Is there a generic set of conditions on g which
imply that there are no solutions to g = 0 with (10.2)
isotropy subgroup X?

If (10.1 and 10.2) could be answered completely, then we could divide isotropy
subgroups into three categories: those for which we expect solutions to bifur-
cate from a I'-invariant equilibrium, those for which we do not expect solu-
tions to bifurcate, and those for which solutions may or may not exist for open
sets of bifurcation problems g.

In this section we discuss the limited results about these questions that are
now known. In subsection (a) we define the isotropy lattice and show how the
known results on (10.1) pertain to maximal isotropy subgroups in this lattice.
In (b) we show that maximal isotropy subgroups are of three types—real,
complex, and quaternionic—and that generically only the real ones generate
solution branches. In (c) we discuss examples of submaximal isotropy sub-
groups for which solutions generically exist. In (d) we end by contrasting these
results with those known for gradient systems.

(a) The Isotropy Lattice

Let I' be a compact Lie group acting on V. Define the isotropy lattice of I to
be the set £(I") of conjugacy classes [X] of isotropy subgroups X of I' and
write [£] < [T] if £ < T for suitable representatives. In other words, given
two isotropy subgroups T and T, we have [Z] < [T]ifand only ify'Zy = T
for some y € I'. We omit the square brackets in future. Note that #(I') depends
on the representation V.

(In abstract algebra a lattice is a partially ordered set satisfying certain



§10. Generic Spontaneous Symmetry-Breaking 133

axioms. Strictly speaking, “isotropy lattice” is a misnomer: £(I) is in general
just a finite partially ordered set. The finiteness is proved in Bredon [1972].)

ExampLES 10.1.
(@) T = D, in its standard action on C. The isotropy lattice is

D
1
Z,

1
1

n

(b) T = 0@ Z = SOB)® Z5 = O(3) acting on R? by the restriction of the
standard action of O(3). This is the full symmetry group of the cube, including
reflectional symmetries. The isotropy lattice (See Melbourne [1986] and
Exercise 10.1) is

087,

Here D,, Z, ® Z,,, D, are the subgroups that fix a line through midpoints
of opposite faces, edges, and vertices of the cube, respectively. The two sub-
groups of order 2, Z), and Z, are generated, respectively, by a reflection and
by a rotation leaving an edge invariant.

The evidence from many specific calculations may be summed up as follows.
Isotropy subgroups “high up” in the lattice correspond to solution branches
to the bifurcation equation. Those “low down” do not.

Define an isotropy subgroup X to be maximal if £ # I and X is contained
in no other proper isotropy subgroup. (That is, [2] is a maximal element of
the lattice.) Otherwise say that X is submaximal. So in Example 10.1(a), Z, is
maximal and 1 is submaximal, and in Example 10.1(b) D,, Z’, ® Z, D, are
maximal and Z5, Z}, 1 are submaximal.

We summarize what is known about symmetry-breaking for these two
examples. In (a) solution branches occur generically for Z, but not for 1. In
(b) (see Melbourne [1986] and Exercises 3.1, 10.1) branches occur generically
for D4, Z5% @ Z5, D, but not for Z, Z, 1. The results are striking and suggest
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that the answer to (10.1) may be “the maximal isotropy subgroups .” In fact,
this is not true in general, as we explain in subsections (b, c).

Nevertheless, we can make some remarks. For example, the equivariant
branching lemma really involves a class of maximal isotropy subgroups—
namely those with one-dimensional fixed-point subspace. To see this, let
T < A be subgroups. Then Fix(A) = Fix(Z). Therefore, any isotropy sub-
group with one-dimensional fixed-point subspace must be maximal. On the
other hand, the fixed-point subspaces of maximal isotropy subgroups can be
of arbitrarily high dimension: just consider the octahedral group O in the
various irreducible representations of O(3); see Theorems 8.2 and (8.3(a)).

Recall Cigogna’s extension of the equivariant branching lemma, Remark
3.4(b). He uses the topological degree theory of Krasnoselskii [1964] to show
that when X is a maximal isotropy subgroup with dim Fix(Z) odd, then there
exist bifurcating solutions with isotropy Z. His argument is as follows: Let g
be a I'-equivariant bifurcation problem and let  be an isotropy subgroup.
Suppose that dim Fix(Z) is odd. By degree theory g|Fix(X) has nontrivial
solutions. Let A be the isotropy subgroup of such a solution. Since the solution
is nontrivial, A is a proper subgroup of I', and £ < A since the solution lies
in Fix(Z). To conclude that there are solutions with isotropy exactly £ we
must know that T is a maximal isotropy subgroup. (This argument does not
prove the existence of branches of solutions, neither does it assert uniqueness.)

In another direction, Field and Richardson [1987] show that for finite
groups generated by reflections, all maximal isotropy subgroups have one-
dimensional fixed-point subspaces. The octahedral group described earlier
provides a special case of this result.

(b) Three Types of Maximal Isotropy Subgroups

In this section we show that maximal isotropy subgroups fall naturally into
three types, which we call real, complex, and quaternionic, and we derive some
related properties.

We begin with three simple observations whose proof is left to the reader:

Lemma 10.2. Let g: V x R > R commute with T and let T be an isotropy
subgroup. Let N = Np(X) be the normalizer of Z in T and let D be the quotient
group N/Z. Then

(@) N leaves Fix(X) invariant, whence D acts naturally on Fix(Z).

(b) g|Fix(Z) x R commutes with this action of D.

(c) Suppose that Fix(I') = {0} and that T is a maximal isotropy subgroup of T
Then the action of D on Fix(Z) is fixed-point-free; that is, each nonidentity
element of D fixes only the origin in Fix(Z).

ProoF. For (a) see Exercise 2.2. Part (b) is obvious. See Exercise 10.2 for part
(c). O
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The groups that admit fixed-point-free actions have been classified. This
lets us make a strong statement about D and its action:

Theorem 10.3. Let I" act on V with Fix(I') = {0} and let = be a maximal isotropy
subgroup. Let D° be the connected component of the identity in D = Np(X)/Z.
Then either:

(a) D° =1,

(b) D° = S! and Fix(X) is a direct sum of D°-irreducible subspaces, on each of
which the D°-action is isomorphic to the natural action of S* on C.

(c) D° = SU(2) and Fix(X) is a direct sum of irreducible subspaces under D°,
an each of which the D°-action is isomorphic to the natural action of SU(2)
on the quaternions H.

PRrOOF. Since the action of D is fixed-point-free, so is that of D°. The result
then follows from Theorem 8.5 of Bredon [1972]. A sketch proof, using Lie
theory, is given in Golubitsky [1983]. O

Remark. SU(2), the special unitary group in two dimensions, can be identified
with the group of unit quaternions

{a+bi+c¢+dkia®> +b*+c*+d*=1)}

under quaternionic multiplication. This acts naturally on H by left multi-
plication

(g,x)— gqx (g e SU(2),x € H).

In fact the possibilities for D, rather than just D°, can be classified. When
D° = 1, there is an extensive list of finite groups D; see Wolf [1967]. When
D° =~ S', D is either S! or O(2). When D° = SU(2), the only possibility is
D = SU(2). See Bredon [1972].

We say that X is real if D° =1, complex if D® = S*, and quaternionic if
D° = SU(2). In the complex case

dim Fix(Z) = 0 (mod 2)
and in the quaternionic case
dim Fix(Z) = 0 (mod 4).
In particular, the maximal isotropy subgroups X with dim Fix(Z) odd are
necessarily real. This also follows from Exercise 10.5.
This real/complex/quaternionic trichotomy is reminiscent of, but different

from, the similar trichotomy that arises for the space 2 of commuting linear
mappings of an irreducible representation, mentioned in XII, §3.

ExaMPLES 10.4.
(a) Complex or quaternionic maximal isotropy subgroups do occur. The
simplest examples are very straightforward. For the complex case take S!
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acting naturally on C. Then 1 is a maximal isotropy subgroup (since the action
is fixed-point-free) and obviously D = S'. Similarly for the quaternionic case
let SU(2) act naturally on H and take £ = 1.

(b) It is instructive to consider the generic situation in these two cases. For
S! we have (Lemma VIII, 2.5) the general equivariant bifurcation problem

(e J-[]
y x 0

where u = x? + y2. Then for (x, y) # (0,0) we obtain
pu, 1) =0, q(u,2) = 0.

This system of equations is “overdetermined,” and generically, for given 4, q
will not vanish when p does. Thus there are no solution branches in the generic
case, though there may be isolated solutions for certain 4. However, if p and
q depend on an additional parameter t, then we may be able to solve for 1
and get a “branch” in (x, t) space (intersecting x-space in isolated points). This
actually occurs, and is important, in Hopf bifurcation—see VIII, §2b, and
XVI, §3. Here t is the perturbed period.

(c) The quaternionic case is similar. Let x = a + bi + ¢j + dk € H, and let
SU(2) act on h by q' x = gx. The invariants are generated by the norm

x| = a® + b% + ¢ + d2,

and the equivariants are generated by the maps a, f§, y, 6 where a(x) = x,
B(x) = xi, p(x) = xj, 6(x) = xk; that is, by H under right multiplication. See
Exercise 10.4. Thus the general SU(2)-equivariant bifurcation problem has the
form

Ad+ BB+ Cy+D5=0

where A, B, C, D are functions of || x|| and A. This is even more overdetermined:
when x # 0, all four of 4, B, C, D must vanish simultaneously. Even for
isolated values of A solutions do not occur generically; only if three additional
parameters are added is a branch of solutions likely to occur.

Unlike the complex case, we know of no natural context where this type of
bifurcation problem arises, and no interpretation for the three additional
parameters.

Remarks 10.4(b, c) suggest that when considering steady-state bifurcation,
generically we should not expect bifurcating solutions to occur with maximal
isotropy subgroups that are complex or quaternionic. Indeed this is the case
and can be proved using either a theorem of Dancer [ 1980a] or the equivariant
transversality theorem of Bierstone [1977b] and Field [1976]. However, we
currently know no example of an absolutely irreducible action having a
complex or quaternionic maximal isotropy subgroup. Hence we know of no
nontrivial example where this remark may be applied.

Indeed, on the available evidence it may in fact be the case that when I acts
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absolutely irreducibly on V then generically there exist bifurcating solutions
corresponding to every maximal isotropy subgroup X. As we discuss in (d)
later, results of Smoller and Wasserman [1986] and Chow and Lauterbach
[1986] show that this possibility does occur for gradient systems. We suspect,
however, that for general systems of ODEs this assertion may not always be
valid when dim Fix(Z) is even.

(c) Submaximal Isotropy Subgroups

By considering O(3)-equivariant bifurcation problems on the space V; of
spherical harmonics, Chossat [ 1983] and Lauterbach [1986] have found cases
where branches with submaximal isotropy subgroups occur generically. Field
and Richardson [1987] give examples of finite reflection groups in which
branches with submaximal isotropy occur generically. Chossat’s example is
as follows:

Proposition 10.5. Let O(3) act on V|, where either | = 4 or | = 2 (mod 4), | # 2.
Let g be a generic O(3)-equivariant bifurcation problem. Then there exists a
branch of solutions to g = 0 whose isotropy subgroup is D,.

Remark. In this case A = D, is submaximal (contained in X = O(2) ® Z5) and
dim Fix(A) = 2, dim Fix(Z) = 1.

Proor. We sketch this: see Chossat [1983] for further details. Restrict g
to Fix(A). Then Np(A)/A > Z, acts as —I on Fix(A), so g|Fix(A) is Z,-
equivariant. The linear and quadratic terms of g|Fix(A) can be computed
explicitly in terms of Wigner symbols and are

A[X] + [q’(x’y)] (10.3)
y q,(x, y)

where the linear term can be predicted from absolute irreducibility. There are
at least two solutions, the trivial one and the one derived from O(2) @ Z5 by
the equivariant branching lemma. The explicit forms for q,, g, show that there
are four solutions. The two extra ones must have A as isotropy subgroup
(and are interchanged by Ni-(A)). Since (10.3) is 2-determined, or by the implicit
function theorem, higher order terms do not destroy these solutions. 0O

Lauterbach’s approach uses topological index theory, which we have not
discussed: see Krasnoselskii [1964]. It leads to the following example:

Proposition 10.6. For a generic O(3)-equivariant bifurcation problem on Vs,
there exists a solution branch with the submaximal isotropy subgroup D3.

PRrOOF. See Lauterbach [1986]. d
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(d) The Variational Case

In this subsection we mention three contexts in which generically every
maximal isotropy subgroup leads to solutions. These are:

(a) the bifurcation of steady states in gradient systems,
(b) the bifurcation of periodic solutions for general systems of ODEs,
(c) periodic solutions near equilibria of Hamiltonian systems.

We begin with gradient systems. Let I" be a Lie subgroup of O(n) and let
f: R" - Rbe al-invariant function. Let g = Vf, where V indicates the gradient
with respect to the x variables. Then the system of ODEs

dx

i +g(x)=0

is an equivariant gradient system. (In particular, g is here I'-equivariant; see
Exercise 10.6.)

Since we are interested in bifurcations, we may assume f vanishes to second
order, whence Vf vanishes to first order. We shall prove the following resuit
due to Michel [1972]:

Proposition 10.7. Suppose that T is a compact Lie group and g is a bifurcation
problem of the form

glx,A) =Vf(x) —ix =0 (10.4)

where f is T-invariant and vanishes to second order in x. Let £ be a maximal
isotropy subgroup of I'. Then for A arbitrarily close to 0, (10.4) has at least two
distinct solutions in Fix(X).

Proor. Note that g is I'-equivariant. Let h = g|Fix(Z) x R. Then h maps
Fix(X) x Rinto Fix(Z). For fixed y # 0 and arbitrary A, h(y, 1) = Oif and only
if Vf(y) = Ay, which holds if and only if Vf(y) L S where S is the sphere
x|l = |ly] in Fix(X). But this is equivalent to f|S: S — R having a critical point
at y. Since S is compact, f|S has at least two critical points. O

Remarks 10.8.

(a) Smoller and Wasserman [ 1986] use the Conley index to improve substan-
tially on Michel’s result. They obtain generically the existence of solutions
with maximal isotropy, to equations g = Vf = 0 where f(x, ) is a I'-invariant
function having a degenerate singularity at the origin. In particular, they do
not assume that g has the restrictive form (10.4). Further, their method only
requires ¢ to be gradient-like. See also Chow and Lauterbach [1986].

(b) Smoller and Wasserman [1986a, b, 1987] consider steady-state bifurca-
tion in reaction—diffusion equations in the n-ball with both Dirichlet and
Neumann boundary conditions. These equations have a gradient structure
and are O(n)-invariant. When n = 3 the results of the last section and of their
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general theorem couple to give the existence of a number of nontrivial steady
states. For n > 3, Smoller and Wasserman prove the existence of a number of
isotropy subgroups for irreducible actions of O(n) having one-dimensional
fixed-point subspaces.

Hopf bifurcation of periodic solutions provides a second example in which
maximal isotropy subgroups always lead to the existence of solutions; see
Fiedler [1987]. We discuss this context in more detail in Chapter XVI, though
we there confine ourselves to presenting a Hopf bifurcation analogue of the
equivariant branching lemma.

Finally, the theory of periodic solutions of equivariant Hamiltonian systems
near equilibria provides a third instance in which all maximal isotropy sub-
groups lead to solutions. See Montaldi, Roberts, and Stewart [1988].

EXERCISES

10.1. Let £ be a maximal isotropy subgroup of I' with dim Fix(X) odd. Show that
D = Np(X)/Z has at most two elements.

10.2. Prove Lemma 10.2(c). (Hint: If 6 € N ~ X fixes an element x of Fix(X), then the
isotropy subgroup X, of x must be larger then X).

10.3. Let I' act irreducibly on ¥ and let Q < I" be any subgroup. Let 2 be the space
of linear mappings on V that commute with T". (In XII, §3, we noted that 2 is
isomorphic to one of R, C, or H. Prove thatif 2 = C then dim Fix(Q) = 0(mod 2),
and if 2 ~ H then dim Fix(Q) = 0 (mod 4). (Hint: Show that Fix(Q) is invariant
under £ and that the action of 2 on Fix(Q) is fixed-point-free, so Fix(Q) is a
vector space over Z.)

10.4. Let SU(2) act on H by left multiplication. Prove that the invariants are generated
by the norm ||x||, and the equivariants are generated by the maps a, §, y,  where
a(x) = x, f(x) = xi, y(x) = xj, 6(x) = xk, that is, by H under right multiplication.

10.5. Let I' act irreducibly on V. Use Exercise 10.3 to show that if any subgroup
Q of I" has an odd-dimensional fixed-point subspace, then I" acts absolutely
irreducibly.

10.6. Let I' = O(n) be a Lie subgroup and let f: R" — R be a I'-invariant function.
Show that g = Vf is I'-equivariant.

10.7. This exercise establishes a version of Hopf bifurcation for certain equivariant
systems and prepares the way for a quaternionic analogue in Exercise 10.8.
Let I act orthogonally on V and let f: V x R — V be I'-equivariant. Consider
the ODEx + f(x,4) = 0. Let ¥ be a maximal isotropy subgroup of I' with
W = Fix(X). Assume that dim W = 2 and D = N (X)/Z = S*. Assume that there
is a bifurcation “on W,” in the sense that df |W is singular at (0,0).
(a) Show that df | W has either a double zero eigenvalue or a complex conjugate
pair of eigenvalues +wi (w # 0).
(b) Show that g = f|W is S'-equivariant and hence has the form g(z,) =
(p + ig)z where p = p(u, 4), g = q(u, 1), u = zZ, and W is identified with C.
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(c) Show that for a steady-state branch we require p = g = 0, which generically
does not occur.

(d) Show that an S!'-equivariant vector field has rotational symmetry. Thus if
g(z,4) is tangent to the circle through z at one point, then it is tangent
everywhere. Deduce that this circle is invariant under the dynamics, and
hence that there is a periodic solution.

(e) Show that the condition for tangency is Re(g(z, 1)z) = 0; that is, p(u,4) = 0.
Apply the implicit function theorem to show that this has a solution provided
p.(0,0) # 0, and deduce the generic occurrence of a branch of periodic solu-
tions with isotropy X.

(f) Interpret the condition p,(0,0) # O as the “eigenvalue crossing condition™:
the eigenvalues of dg cross the imaginary axis with nonzero speed as A passes
through 0.

This exercise establishes a quaternionic analogue of the results of Exercise 10.7,

generalizing results of Cicogna and Gaeta [1987].

Assume the same hypotheses, except that that dim W = 4 and D = SU(2).

(a) Show that at a bifurcation “on W” df|W has either a quadruple zero eigen-
value or a double conjugate pair + wi (w # 0).

(b) Show that g = f|W has the form g(z,4) = (p + iq + jr + ks)z (z € H) where
p. q, 1, s are functions of zZ and 4, the bar denot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>