


Applied Mathematical Sciences 
Volume 51 

Editors 
J.E. Marsden L. Sirovich F. John (deceased) 

Advisors 
S. Antman J.K. Hale 
P. Holmes T. Kambe J. Keller 
B.J. Matkowsky C.S. Peskin 

Springer Science+Business Media, LLC 



Applied Mathematical Seiences 

1. John: Partial Differential Equations, 4th ed. 34. Kevorkian!Coie: Perturbation Methods in Applied 
2. Sirovich: Tecbniques of Asymptotic Analysis. Mathematics. 
3. Haie: Tbeory ofFunctional Differential Equations, 35. Carr: Applications of Centre Manifold Theory. 

2nd ed. 36. Bengtsson!Ghil/K(Ji/en: Dynamic Meteorology: 
4. Percus: Combinatorial Methods. Data Assimilation Methods. 
5. von Mises!Friedrichs: Fluid Dynamics. 37. Saperstone: Semidynamical Systems in Infinite 
6. Freiberger/Grenander: A Short Course in Dimensional Spaces. 

Computational Probability and Statistics. 38. Lichtenberg!Lieberman: Regular and Chaotic 
7. Pipkin: Lectures on Viscoelasticity Tbeory. Dynamics, 2nd ed. 
8. Giacaglia: Perturbation Methods in Non-linear 39. Piccini/Stampacchia/Vidossich: Ordinary 

Systems. Differential Equations in Rn. 
9. Friedrichs: Spectral Theory of Operators in 40. Nayior!Sell: Linear Operator Theory in 

Hilbert Space. Engineering and Science. 
10. Stroud: Numerical Quadrature and Solution of 41. Sparrow: The Lorenz Equations: Bifurcations, 

Ordinary Differential Equations. Chaos, and Strange Attractors. 
11. Woiovich: Linear Multivariable Systems. 42. Guckenheimer!Hoimes: Nonlinear Oscillations, 
12. Berkovitz: Optimal Control Theory. Dynamical Systems, and Bifurcations ofVector 
13. Biuman!Coie: Similarity Methods for Differential Fields. 

Equations. 43. Ockendon!Tayior: Inviscid Fluid Flows. 
14. Yoshizawa: Stability Tbeory and the Existence of 44. Pazy: Semigroups ofLinear Operatorsand 

Periodic Solution and Ahnost Periodic Solutions. Applications to Partial Differential Equations. 
15. Braun: Differential Equations and Their 45. Giashojj!Gustafson: Linear Operations and 

Applications, 3rd ed. Approximation: An Introduction to the Tbeoretical 
16. Lefschetz: Applications of Algebraic Topology. Analysis and Numerical Treatment of Semi-
17. Collatz!Wetterling: Optimization Problems. Infinite Programs. 
18. Grenander: Pattern Synthesis: Lectures in Pattern 46. Wilcox: Scattering Tbeory for Diffraction 

Tbeory, Vol. I. Gratings. 
19. Marsden!McCracken: HopfBifurcation and Its 47. Haie et ai: An Introduction to Infinite Dimensional 

Applications. Dynamical Systems-Geometrie Theory. 
20. Driver: Ordinary and Delay Differential 48. Murray: Asymptotic Analysis. 

Equations. 49. Ladyzhenskaya: The Boundary-Value Problems of 
21. Courant!Friedrichs: Supersonic Flow and Shock Mathematical Physics. 

Waves. 50. Wiicox: Sound Propagation in Stratifted Fluids. 
22. Rouche/Habets/Laioy: Stability Tbeory by 51. Goiubitsky!Schaeffer: Bifurcation and Groups in 

Liapunov's Direct Method. Bifurcation Tbeory, Vol. I. 
23. Lamperti: Stochastic Processes: A Survey of the 52. Chipot: Variational Inequalities and Flow in 

Mathematical Tbeory. Porous Media. 
24. Grenander: Pattern Analysis: Lectures in Pattern 53. Majda: Compressible Fluid Flow and System of 

Tbeory, Vol. IL Conservation Laws in Several Space Variables. 
25. Davies: Integral Transforms and Their 54. Wasow: Linear Turning Point Tbeory. 

Applications, 2nd ed. 55. Yosida: Operational Calculus: A Tbeory of 
26. Kushner!Ciark: Stochastic Approximation Hyperfunctions. 

Methods for Constrained and Unconstrained 56. Chang!Howes: Nonlinear Singular Perturbation 
Systems. Phenomena: Tbeory and Applications. 

27. de Boor: A Practical Guide to Splines. 57. Reinhardt: Analysis of Approximation Methods 
28. Keiison: Markov Chain Models-Rarity and for Differential and Integral Equations. 

Exponentiality. 58. Dwoyer!Hussaini/Voigt (eds): Theoretical 
29. de Veubeke: A Course in Elasticity. Approaches to Turbulence. 
30. §liatycki: Geometrie Q!I8Jl!ization and Quantum 59. Sanders!Verhuist: Averaging Methods in 

Mechanics. Nonlinear Dynamical Systems. 

31. Reid: Sturmian Tbeory for Ordinary Differential 60. Ghil/Chiidress: Topics in Geophysical Dynamics: 

Equations. Atmospheric Dynamics, Dynamo Tbeory and 

32. Meis/Markowitz: Numerical Solution ofPartial Climate Dynamics. 

Differential Equations. 
33. Grenander: Regular Structures: Lectures in 

Pattern Tbeory, Vol. IIL (continued following index) 



Martin Golubitsky 
David G. Schaeffer 

Singularities and Groups in 
Bifurcation Theory 
Volume I 

With 114 Illustrations 

~Springer 



Martin Golubitsky 
Department of Mathematics 
University of Houston 
Houston, TX 77004 
USA 

Editors 

J .E. Marsden 
Control and Dynamical Systems, 107-81 
California Institute of Technology 
Pasadena, CA 91125 
USA 

David G. Schaeffer 
Department of Mathematics 
Duke University 
Durham, NC 27706 
USA 

L. Sirovich 
Division of Applied Mathematics 
Brown University 
Providence, RI 02912 
USA 

Mathematics Subject Classification: 35B32, 34D05, 34D20, 34D30, 73D05, 58Fl4, 34L35, 
35L67, 76L05, 57R45 

Library of Congress Cataloging-in-Publication Data 
Golubitsky, Martin. 

Singularities and groups in bifurcation theory. 
(Applied mathematical sciences; 51) 
Bibliography: p. 
Includes index. 
1. Bifurcation theory. 2. Singularity Theory. 

I. Schaeffer, David G. II. Title. III. Series: Applied 
mathematical sciences (Springer-Verlag New York 
Inc.); 51. 
QA374.G59 1984 515.3'53 84-1414 

Printed on acid-free paper. 

© 1985 Springer Science+Business Media New York 
Originally published by Springer-Verlag New York, Inc. in 1985 
Softcover reprint of the hardcover 1st edition 1985 
All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission of the publisher Springer Science+ Business Media, LLC), 
except for brief excerpts in connection with reviews or scholarly 
analysis. Use in connection with any form of information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now known or here
after developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, even 
if the former are not especially identified, is not to be taken as a sign that such names, as 
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely 
by anyone. 

9 8 7 6 5 4 3 2 SPIN 10782874 
ISBN 978-1-4612-9533-4 ISBN 978-1-4612-5034-0 (eBook) 
DOI 10. 12-5034-0 1007/978-1-46



To Elizabeth and Alexander 
and 

To Jennie 



Preface 

This book has been written in a frankly partisian spirit-we believe that 
singularity theory offers an extremely useful approach to bifurcation prob
lems and we hope to convert the reader to this view. In this preface we will 
discuss what we feel are the strengths of the singularity theory approach. 
This discussion then Ieads naturally into a discussion of the contents of the 
book and the prerequisites for reading it. 

Let us emphasize that our principal contribution in this area has been to 
apply pre-existing techniques from singularity theory, especially unfolding 
theory and classification theory, to bifurcation problems. Many ofthe ideas 
in this part of singularity theory were originally proposed by Rene Thom; 
the subject was then developed rigorously by John Matherand extended by 
V. I. Arnold. In applying this material to bifurcation problems, we were 
greatly encouraged by how weil the mathematical ideas of singularity 
theory meshed with the questions addressed by bifurcation theory. 

Concerning our title, Singularities and Groups in Bifurcation Theory, it 
should be mentioned that the present text is the first volume in a two-volume 
sequence. In this volume our emphasis is on singularity theory, with group 
theory playing a subordinate role. In Volume II the emphasis will be more 
balanced. 

Having made these remarks, Iet us set the context for the discussion of 
the strengths of the singularity theory approach to bifurcation. As we use 
the term, bifurcation theory is the study of equations with multiple solutions. 
Specifically, by a bifurcation we mean a change in the number of solutions 
of an equation as a parameter varies. F or a wide variety of equations, 
including many partial differential equations, problems concerning multiple 
solutions can be reduced to studying how the solutions x of a single scalar 
equation 

g(x, A.) = 0 (P.l) 
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vary with the parameter A.. This simplification depends on a technique known 
as the Liapunov-Schmidt reduction. 

The singularity theory approach deals with equations ofthe form (P.l); 
i.e., with equations after the Liapunov-Schmidt reduction has been per
formed. We shall emphasize the qualitative properties of such equations. 
This emphasis is sharply focused by the notion of equivalence, which defines 
precisely what it means for two such equations, and their solution sets, to 
be qualitatively similar. 

The theory quickly leads one to generalize (P.l) to include k-parameter 
families of such equations; i.e., equations of the form 

G(x, A., a) = 0, (P.2) 

where a = (a1 , ... , ak) is a shorthand for k auxiliary parameters. Weshall 
call G an unfolding of g if for a = 0 

G(x, A., 0) = g(x, A.). 

Since 

G(x, A., a) = g(x, A.) + [G(x, A, a) - G(x, A., 0)], 

we may think of G(x, A., a) as a perturbation of g(x, A.). 

(P.3) 

In this volume we limit our discussion of (P.2) in the following four ways: 

(i) we assume that the dependence of G on x, A., and a is infinitely differ
entiable; 

(ii) we consider primarily the case where x is a scalar ( one-dimensional) 
unknown; 

(iii) we work locally (i.e., in the neighborhood of some fixed point (x0 , A.0 )); 

and 
(iv) we discuss dynamics only in a limited way. 

Brief discussions of points (i) and (iii) occur later in this Preface. Concerning 
point (ii), in Volume II we will consider finite-dimensional systems of 
equations with several unknowns. Let us elaborate on point (iv). Typically, 
equations with multiple solutions arise in characterizing steady-state 
solutions of an evolution equation. Singularity theory methods are useful in 
finding the steady-state solutions and, in some instances, their stabilities. 
However, it does not seem to be possible with these methods to analyze 
essentially dynamic phenomena such as strange attractors. 

One generat strength of the singularity theory approach to bifurcation 
problems is easily stated-this approach unifies the treatment of many 
diverse problems in steady-state bifurcation. Such unification has the obvious 
advantage of elegance, but it also leads to economy of effort. Specifically, 
the same general methods used to study the most familiar problems in 
bifurcation theory continue to apply in a variety of nonstandard contexts. 
For example, whether or not g(x, A.) = 0 has a trivial solution and whether 
or not symmetries are present, the theoretical framework of the singularity 
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theory approach is the same. Also, although in this text we consider only 
equations having A. as a distinguished parameter, the same techniques work 
equally weil when all parameters are treated on the same footing. 

In the next few paragraphs we discuss three specific problems in bifur
cation theory that are solved by the singularity theory approach; we also 
discuss how this information is useful for applications. The first problem, 
called the recognition problem, is the following: Given an equation 
h(x, A.) = 0, when is a second equation g(x, A.) = 0 equivalent to h(x, A.) = 0? 
In solving this problem, singularity theory methods produce a finite Iist 
of terms in the Taylor series of g such that the question of whether equiv
alence obtains is determined wholly by the values of the derivatives of g on 
this Iist-all other terms may be ignored. (Of course this Iist depends on the 
given function h(x, A.); moreover for certain pathological functions h(x, A.), 
a finite Iist does not suffice.) Regarding applications, this Iist specifies 
precisely the calculations which must be performed to recognize an equation 
of a given qualitative type. As we shall illustrate in Case Study 1, this in
formation helps organize the computations for analyzing mathematical 
models. 

The second problern concerns perturbations of an equation g(x, A.) = 0; 
i.e., equations of the form 

g(x, A.) + p(x, A.) = 0, (P.4) 

where p is appropriately small. Specifically, the problern is to enumerate all 
qualitatively different perturbations of a given equation. We will solve this 
problern by constructing and analyzing what is called a universal unfolding. 
By way of definition, a universal unfolding of g is a distinguished k-parameter 
family of functions, G(x, A., 0(), which satisfies (P.3) and has the following 
crucial property: For any small perturbation p, there is a value of il( such 
that g + p is equivalent to G(·, ·, 0(). Less formally, up to qualitative equiv
alence, G contains allsmall perturbations of g. 

Let us elaborate on point (i) above, the Iimitation that we consider only 
smooth functions of x, A., and il(. In constructing a universal unfolding of g, 
we will show that il( in the universal unfolding and p in (P.4) are related by a 
smooth transformation. Nonetheless, a great deal of nonsmooth behavior 
is contained in a universal unfolding. Specifically, it is rarely possible, even 
locally, to express the solution x of (P.2) as a smooth, or even continuous, 
function of A. and il(. The spirit of our approach is to work with smooth 
relationships between variables for as long as possible. Thus we attempt to 
solve (P.2) for x only after transforming the equation to a particularly 
tractable form; these transformations may be performed in a purely coo 
context. 

Our work with universal unfoldings has two additional benefits for 
applications. First, these methods often allow one to determine quasi
global properties of a model using purely local methods (cf. point (i) above); 
and second, in multiparameter models, these methods impose a structure 
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on the physical parameter space that is useful as a guide in thinking 
about the problem. Both these benefits are illustrated in Case Sturlies 1 
and 2. 

The third problern is to classify the qualitatively different equations 
g(x, A.) = 0 that rnay occur. This isaproblern of infinite cornplexity in that 
there are infinitely rnany equation types and there are equation types of 
arbitrarily high cornplexity. The singularity theory notion of codirnension 
provides a rational approach to this problern. The codimension of g is the 
nurnber of pararneters needed in a universal unfolding of g; this notion also 
provides a rough rneasure of the likelihood of an equation of a given quali
tative type appearing in a rnathernatical rnodel, equations with lower 
codirnensions being rnore likely. Of course we do not solve the classification 
problern cornpletely. In this book we list all the qualitative types of equations 
having codirnension three or less, along with all the qualitatively different 
perturbations of each. (See Chapter IV.) It is possible to extend the classi
fication to higher codirnensions, but the effort required escalates rapidly. 

Our list of qualitative types of equations and their perturbations includes 
graphs of the solution sets, which we call bifurcation diagrams. These 
diagrarns rnay be used in applications as follows. Consider a physical 
problern which depends on one or rnore auxiliary pararneters. Suppose that 
for various values of the pararneters one can generate representative bifur
cation diagrams for the problern either by experirnent or by nurnerical 
solution of a rnodel. Suppose further that cornparison with our lists shows 
that the bifurcation diagrarns so generated are rnany or all ofthe qualitatively 
different perturbations of one specific qualitative type of equation, say 
g(x, A.) = 0. Then it is natural to conjecture that for sorne special values 
of the pararneters an equation equivalent to this g results. To verify such a 
conjecture one needs to solve a recognition problern, as was discussed above. 
If the conjecture is verified, then the physical pararneter space inherits 
useful structure frorn the universal unfolding, as was also discussed above. 
Typically this sequence of events leads to a cornpact description of a great 
deal of data. Following Thorn, we use the term organizing center to describe 
an equation type occurring in this way; i.e., an equation which occurs in a 
rnodel for certain values of the pararneters such that the universal unfolding 
of this equation generates rnany or all of the bifurcation diagrarns occurring 
in the physical problern. Each of the case sturlies illustrates the use of this 
concept in applications. 

We now outline the contents of this book, chapter by chapter. Chapters 
11-IV, the essential theoretical core of the book, are a unit which develops 
the rnain ideas of the theory. These three chapters deal with the three problems 
discussed above; i.e., Chapters II, 111, and IV study the recognition problern, 
unfolding theory, and the classification problern, respectively. 

Chapter I highlights the theory to follow and discusses how singularity 
theory rnethods are used in applications. Also in this chapter we introduce 
the Liapunov-Schrnidt reduction in the lirnited context of ordinary dif-
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ferential equations. (As we indicated above, with this technique many 
problems involving multiple solutions can be reduced to a single scalar 
equationg(x, .Ä.) = 0.) The style ofthe chapter is mainly expository, develop
ing ideas by means of examples rather than theory. 

Chapter V explores a theoretical issue that singularity theory methods 
raise, the subject of moduli. Moduli are currently an active topic of research 
in several areas of pure rnathernatics. Regarding applications, rnoduli might 
at first seem to be an esoteric subject, but as illustrated by Case Studies 2 
and 3, we have found rnoduli to play an irnportant role in the rnore interesting 
applications we have studied. (Remark: Chapter V considers rnoduli in the 
sirnplest context-one state variable with no symrnetry present. In appli
cations, including Case Studies 2 and 3, moduli usually arise in a richer 
context involving syrnmetry.) 

Syrnrnetry and its consequences are the focus of Chapter VI. The re
striction to one state variable greatly sirnplifies the discussion of syrnmetry 
since in one variable there is only one nontrivial symrnetry possible. Thus in 
this chapter we are able to illustrate, with a minimum of technical compli
cations, the rnain issues involving syrnmetry. (The full complexities of 
syrnrnetry will be studied in Volurne II.) In particular, one point illustrated 
by Chapter VI is how singularity theory methods unify different contexts
this chapter uses the same methods as are used in the unsymmetric context 
of the preceding chapters, even though the specific results in Chapter VI 
are quite different from those of earlier chapters. 

Chapter VII develops the Liapunov-Schmidt reduction in general, 
expanding on the lirnited treatment in Chapter I. In this chapter we also 
illustrate the use oftbis reduction in applications-specifically, in a buckling 
problern and in certain reaction-diffusion equations. 

Chapter VIII studies Hopf bifurcation for systerns of ordinary differential 
equations; i.e., bifurcation of a periodic solution from a steady-state 
solution. This dynarnical problern can be formulated as a steady-state 
problem, thereby permitting the application of singularity theory methods. 
The advantageoftbis approachlies in the fact that these methods generalize 
easily to handle degenerate cases where one or more hypotheses of the 
classical Hopf theorem fail. 

Chapters IX and X together serve as a preview of the main issues to be 
studied in Volume II-bifurcation problerns in several state variables, 
especially with symmetry. The siruplest bifurcation problems in two state 
variables are discussed in Chapter IX, and certain bifurcation problems in 
two state variables with syrnrnetry are discussed in Chapter X. The treatment 
of these subjects is not cornplete; in particular, several proofs are deferred 
to Volume II. 

The three case studies in this book form an important part of it-they 
illustrate how singularity theory methods are used in applications. We 
believe that the three problerns analyzed in the case studies are of genuine 
scientific interest. (Other exarnples, of prirnarily pedagogical interest, have 



xii Preface 

been included within various chapters. Volume II will contain several more 
case studies, treating technically more difficult problems.) 

As to the interdependence of various parts, Chapters I-IV should be 
included in any serious effort to read the book. After this point there are 
some options. In particular, Chapters V, VI, and VIIare largely independent 
of one another, although the latter part of Chapter VI is closely related to 
Chapter V. By contrast, Chapter VIII depends heavily on Chapters VI and 
VII. Chapter IX may be read immediately following Chapter IV. (There is 
some reason to do so, as Chapter IX completes a theoretical development 
begun in Chapter IV; viz., the classification of bifurcation problems of 
codimension three or less. Chapter IX eliminates the restriction to one state 
variable that was imposed in Chapter IV.) Chapter X draws primarily on 
Chapter VI. Each case study is placed immediately following the last chapter 
on which it depends. 

In writing this book we wanted to make singularity theory methods 
available to applied scientists as well as to mathematicians-we have found 
these methods useful in studying applied bifurcation problems, especially 
those involving many parameters or symmetry, and we think others may too. 
Therefore we have tried to write the book in ways that would make it acces
sible to a wide audience. In particular, we have devoted much effort to 
explaining the underlying mathematics in relatively simple terms, and we 
have included many examples to illustrate important concepts and results. 
Several other features of the book also derive from our goal of increasing its 
readability. For example, each chapter and case study contains an intro
duction in which we summarize the issues to be addressed and the results to 
be derived. Likewise, in several places we have indicated material within a 
chapter that may be omitted without loss of continuity on a first reading, 
especially technically difficult material. In the same spirit, in cases where 
proofs are not central to the development, we have postponed these proofs, 
preferring first to discuss the theorems and give illustrations. Usually we 
have postponed proofs until the end of a section, occasionally until a later 
section, and in a few cases (the unfolding theorem among them) until 
Volume II. 

The prerequisites for reading this book may seem to work against our 
goal of reaching a wide audience. Regarding mathematical prerequisites, 
the text draws on linear algebra, advanced calculus, and elementary aspects 
of the theory of ODE, commutative algebra, differential topology, group 
theory, and functional analysis. Except for linear algebra and advanced 
calculus, we attempt to explain the relevant ideas in the text or in the appen
dices. Thus we believe it is possible for a nonmathematical reader to gain 
an appreciation of the essentials of the theory, including how to apply it, 
provided he or she is comfortable with linear algebra and advanced calculus. 
The many examples should help greatly in this task. 

Prerequisites for understanding the applications should not pose a 
problern for mathematical readers. Although our three case studies involve 
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models drawn from chemical engineering, mathematical biology, and 
mechanics, in each case we have described the physical origins of the equa
tions of the model and then analyzed these equations as mathematical 
entities. A mathematical reader could follow the analysis of the equations 
without understanding their origins; of course some physical intuition would 
thereby be sacrificed. 

We are aware that many individuals whose work is not mentioned in this 
book have made important contributions to bifurcation theory. Consistent 
with our goals in writing this book, we have given references only when 
needed to support specific points in the text. Moreover by quoting one 
reference rather than another we do not mean to imply any historical 
precedent of one over the other-only that the quoted reference is one with 
which we are familiar and which establishes the point in question. The lack of 
a complete bibliography in this book is made less serious by the recent appear
ance of several monographs in bifurcation theory, for example, Carr [1981], 
Chow and Hale [1982], Guckenheimer and Holmes [1983], Hassard, 
Kazarinoff, and Wan [1981], Henry [1981], Iooss and Joseph [1981]. 

An amusing, personal anecdote may suggest further reasons why we have 
not attempted to include a complete bibliography. One of us was lecturing 
before an audience that included researchers in bifurcation theory. When 
asked to date a paper we had quoted, we guessed "around 1975." "lt was 
in the early sixties!" came the prompt reply from someone in the audience 
who had been associated with the work. Like children everywhere, we find 
that events before our time are somewhat blurred. 

There remains only the pleasant duty of thanking the many people who 
have contributed in one way or another to the preparation of this volume. 
Dave Sattinger originally suggested applying singularity theory methods to 
bifurcation problems. Jim Darnon has been a frequent consultant on the 
intricacies of singularity theory; moreover Lemma 2. 7 of Chapter III is 
due to him. Encouragement by, advice from, and lively discussion with 
John Guckenheimer, Jerry Marsden, and Ian Stewart have been most 
helpful. Joint work with our coauthors Barbara Keyfitz and Bill Langford 
are included in this text. The manuscript benefited greatly from suggestions 
made by Joe Fehribach and Ian Stewart. Barbara Keyfitz has contributed to 
the book in more ways than can reasonably be enumerated. To all these 
people, and to Giles Auchmuty, Vemuri Balakotaiah, Charlies Conley, Mike 
Crandall, Jack Haie, Phil Holmes, Ed Ihrig, Dan Luss, and Ed Reiss, we 
express our heartfelt thanks. The figures were drawn by Jim Villareal and 
Wendy Puntenney. While pursuing the research reported in this text, we 
were generously supported by the NSF and ARO, including visiting positions 
at the Courant Institute, the Institute for Advanced Study, the Mathematics 
Research Center, and the Universite de Nice. Finally we are grateful to 
Bonnie Farrell for her most efficient typing of an illegible manuscript-we 
only wish that we might have written the book as quickly, accurately, and 
cheerfully as she typed it. 
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CHAPTER I 

A Brief Introduction to the Central 
Ideas of the Theory 

§0. Introduction 

In this book weshall study local bifurcation problems with one state variable. 
Such problems may be formulated as an equation 

g(x, A.) = 0 (0.1) 

for a single unknown x, the state variable, where the equation depends on an 
auxiliary parameter A., the bifurcation parameter. We shall call the set of 
(x, A.) satisfying (0.1) the bifurcation diagram or solution set of g. The central 
questions about (0.1) concern multiple solutions. Foreach A., Iet n(A.) be the 
number of x's for which (x, A.) is a solution of (0.1). Our study of (0.1) will be 
Iocal; thus we suppose that (0.1) may only be defined in some neighborhood 
of a point (x0 , A.0 ) and that n(A.) only counts solutions in this neighborhood. 
To avoid trivialities we assume that g(x0 , A.0 ) = 0. Classically, one calls 
(x0 , A.0 ) a bifurcation point if n(A.) changes as A. varies in the neighborhood of 
A.0 • (Remark: Our theory makes liberal use of the derivatives of g; for 
simplicity we assume throughout that this function is infinitely differ
entiable.) 

A surprising variety ofthe problems in applied mathematics which exhibit 
multiple steady-state solutions, even systems with infinitely many degrees of 
freedom, can be reduced to the form (0.1) by the so-called Liapunov
Schmidt reduction. We will illustrate this technique in §3 ofthis chapter and 
study it in earnest in Chapter VII; however, for the moment we take (0.1) as 
the basic datum. 

The implicit function theorem (see Appendix 1) gives a simple necessary 
condition for (x0 , A.0 ) to be a bifurcation point; namely gx(x0 , A.0 ) = 0. 
(Here the subscript x indicates partial differentiation.) For if gx(x0 , A.0 ) # 0, 
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then (0.1) may be uniquely solved in the small for x as a function of A.; in other 
words, for each A. near ..1.0 there is exactly one solution of (0.1) close to x0 . 

Weshall call a point (x0 , ..1.0 ) for which 

(0.2) 

a singularity. 
Note that a singularity need not be a bifurcation point in the classical 

sense. For example, consider 

x3 + ,.t2 = 0, 

which has exactly one solution (viz., x = -A.213 ) for any A., but is obviously 
singular at the origin. (Remark: This example is quite important for the 
physical problern that we consider in §2 below.) 

This chapter is divided into four sections. Section 1 is a theoretical section; 
in it we discuss the information that singularity theory methods provide 
about the pitchfork bifurcation, perhaps the most important example of 
bifurcation in the classical literature. In §2 we consider the application of 
singularity theory methods to a chemical engineering model. In §3 we intro
duce in a special case the Liapunov-Schmidt reduction mentioned above. 
Finally in §4 we analyze the relation beiween the Liapunov-Schmidt reduc
tion and the stability of equilibrium solutions of an autonomous system of 
ordinary differential equations. 

Sections 1-3 introduce the three major themes that occur throughout this 
volume. Section 1 Ieads naturally into the theoretical side of the subject, 
which we begin to develop in Chapters II and III. Section 2 is indicative ofthe 
applications in the Case Studies. The third section is concerned with the issue 
of how the study of equations as simple as (0.1) can have such wide applic
ability; we return to this theme in Chapter VII. By contrast, the material in §4 
lies outside the mainstream oftbis text, although it is extremely important for 
bifurcation theory in general. 

§ 1. The Pitchfork Bifurcation 

In this section we discuss the pitchfork bifurcation from the singularity theory 
point of view. This bifurcation occurs frequently in the classicalliterature. It 
has the basic property that as A. crosses some value ..1.0 , the number of solu
tions n(A.)jumps from one to three. The simplest equation with this behavior is 

(1.1) 

where ..1.0 = 0. The solution set for (1.1) is shown in Figure 1.1, which explains 
the nomenclature. In the figure the orientation of the coordinate axes is 
shown to the right. 
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Figure 1.1. The pitchfork bifurcation x3 - h = 0. 

We have divided this section into five subsections. In subsection (a) we 
present a simple mechanical system which illustrates the pitchfork bifurca
tion. In subsections (b) and (c) we discuss the information that singularity 
theory methods provide about the pitchfork bifurcation. The fundamental 
ideas of the theory already occur in this simple example. In particular, 
Chapters II and III develop the ideas in subsections (b) and (c), respectively; 
i.e., they extend these ideas to a general context and supply proofs. Finally, in 
subsections (d) and (e) we consider certain related issues needed to under
stand the significance of bifurcation theory for applications. This latter 
material is a standard part of bifurcation theory, and not at all tied to the 
singularity theory approach. We present it here because it gives the subject 
vitality by making connections with applications. 

(a) An Example of the Pitchfork Bifurcation 

In Figure 1.2 we illustrate a simple physical system which exhibits a pitchfork 
bifurcation. (This is a finite element analogue of the Euler column which we 
will study in Chapter VII, §2.) The system consists of two rigid rods of unit 
length connected by pins which permit rotation in a plane; it is subjected to 
a compressive force A. which is resisted by a torsional spring of unit strength. 
W e neglect friction. The state of the system is described by the angle x 
measuring the deviation of the rods from the horizontal. The potential 
energy of this system equals 

x2 
V(x, A.) = 2 + 2A.(cos x - 1), 

the first term representing the stored energy in the torsional spring and the 
second, the work done by the external force. Steady states are described by an 

Figure 1.2. Finite element analogue of Euler buckling. 
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equation of the form (0.1 ), where 

g(x, A.) = ~: (x, A.) = x - 2A. sin x. (1.2) 

We ask the reader to check that the function (1.2) has a singularity at 
(x0 , A.0 ) = (0, f) and that modulo higher-order terms (hot) 

x3 
g(x, A.) = 6 - 2(A. - f)x + hot, (1.3) 

where the neglected terms are of order x 5 , (A. - f)2x, or higher. Equation (1.3) 
bears a strong similarity to (1.1) but differs in three respects: first, the singu
larity in (1.3) is not located at the origin; second, the coefficients in (1.3) 
differ from unity; and third, there are higher-order terms present in (1.3). The 
first two differences may be absorbed by simple linear changes of coordinates; 
i.e., by replacing A. by a(A. - f) and x by bx for appropriate constants a and b. 
These two differences have no effect on the qualitative picture ofthe solution 
set. As for the higher-order terms, below we will describe results which show 
that they may be absorbed by a nonlinear change of coordinate. In other 
words, the third difference also has no effect on the qualitative behavior ofthe 
solution set in the small. 

Let us elaborate. Formula (1.4) below provides a sufficient condition for 
n(A.), the number of solutions of g(x, A.) = 0, to jump from one to three as A. 
crosses A.0 . We ask the reader to verify that (1.2) satisfies (1.4) at (x, A.) = 
(0, f). This will show that there are three equilibrium configurations of the 
model in Figure 1.2 when A. > f, the trivial (or undeformed) state x = 0 and 
two nontrivial (or buckled) states with x t= 0. (To relate this result to the 
physical system, it is important to realize that for A. > t the undeformed state 
x = 0 is unstable and hence effectively unobservable in experiments. We will 
discuss stability briefly in subsection (d) below, and more thoroughly in §4 of 
this chapter.) 

(b) Finite Determinacy and the Recognition Problem 

There are two basic issues on which the singularity theory approach to 
bifurcation focuses; the first of these concerns questions of the type just 
encountered; i.e., questions about the importance of higher-order terms. We 
shall use the singularity theory term finite determinacy to describe such 
problems, since the underlying question may be phrased: "To what extent do 
the low-order terms in the Taylor series expansion of a bifurcation problern 
g(x, A.) determine its qualitative behavior, regardless of the higher-order 
terms that may be present?" For the particular case of the pitchfork, our 
answer, in part, is as follows. Let g(x, A.) be a bifurcation problern suchthat 
when (x, A.) = (x0 , A.0 ) we have 

(1.4) 
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then n(A.), the number of solutions of g(x, A.) = O,jumps from one to three as A. 
crosses -10 . (If 9xxx9;.x has the opposite sign, n(A.) jumps from three to one, 
while if 9xxx9;.x = 0, more information is required.) 

A direct and fairly elementary proof ofthis result is possible, using only the 
implicit function theorem; this proof is outlined in Exercise 1.1. In the 
singularity theory approach, however, one proves considerably more
namely, that any g satisfying (1.4) may be transformed by an appropriate 
change of coordinates into the standard model for the pitchfork, x 3 - A.x = 0. 
More precisely, if g(x, A.) satisfies (1.4) at (x0 , .10 ), then there exist: 

(i) a local diffeomorphism of ~2 ofthe form (x, A.) --+ (X(x, A.), A(A.)) mapping 
the origin to (x0 , -10 ); and 

(ii) a nonzero function S(x, A.); 

suchthat 

S(x, A.)g(X(x, A.), A(A.)) = x3 - A.x (1.5) 

near the origin, where, moreover, Xx(x, A.) > 0 and A'(A.) > 0. Since the factor 
S(x, A.) is nonzero, the solutions of g(x, A.) = 0 differ from those of x 3 - A.x = 0 
only by the diffeomorphism (X, A). This is the precise sense in which the 
higher-order terms in (1.3) have no effect on the qualitative behavior of the 
model in the small-they may be transformed away entirely by a change of 
coordinates. 

Equation (1.5) leads to the definition of equivalence, which is one of the 
fundamental concepts in the theory. Weshall say that two bifurcation prob
lems g and h are equivalent if they may be related through an equation 

S(x, A.)g(X(x, A.), A(A.)) = h(x, A.), (1.6) 

where S is nonzero and positive and (X, A) is a local diffeomorphism which, 
as above, preserves the orientations of x and A.. Note that this definition 
requires that S > 0; as weshall explain in §4 below, this convention preserves 
useful information about the stability of solutions. Unfortunately this con
vention also leads to some nuisances regarding plus and minus signs. For 
example, with this convention we must decompose (1.4) into two distinct 
cases, depending on which factor in the product 9xxx9;.x is negative. 

If g and h are equivalent, then the two multiplicity functions are related as 
follows: 

(1.7) 

Indeed, (1.7) is one of the most important consequences of equivalence. It 
turns out that this equation is intimately related to our restriction that in the 
diffeomorphism (X, A), the second coordinate A may not depend on x. 
We explore this relationship in Exercise 1.4; here we only motivate this 
restriction by the remark that typically in applications A. is associated with an 
external force set by the experimenter, while x is associated with an internal 



6 I. A Brief lntroduction to the Central Ideas of the Theory 

state of the system that results from the choice of A.. In other words, A. in
fluences x, but x does not influence A.. Coordinate transformations of the 
form (X(x, A.), A(A.)) reftect this distinction. 

Our treatment of the pitchfork is representative of the general singularity 
theory approach to determinacy questions. Let us summarize the above 
discussion as a way of introducing the terminology of Chapter II. Weshall 
call x 3 - A.x = 0 anormalform for the pitchfork bifurcation. Any bifurcation 
problern g(x, A.) which at a specific point (x0 , A.0 ) satisfies 

gxxx > 0, g;.x < 0 (1.8) 

is equivalent tothisnormal form. Weshall say that (1.8) solves the recognition 
problern forthisnormal form; i.e., (1.8) characterizes the bifurcation problems 
equivalent to x 3 - A.x = 0. Equivalent bifurcation problems have the same 
qualitative properties; more precisely, qualitative properties are those which 
are unchanged by equivalence. The object oftbis book is to study qualitative 
properties of bifurcation problems. 

(c) Universal Unfoldings and Perturbed Bifurcation 

The second of the two central issues in our approach to bifurcation theory 
arises from the study ofhow bifurcation problems may depend on parameters. 
In a bifurcation problern g(x, A.), small variations of an auxiliary parameter 
usually Iead to dramatic changes in the bifurcation diagram at a singularity of 
g. As an illustration of this phenomenon, Iet us consider the perturbed pitch
fork 

G(x, A., e) = x 3 - A.x + e = 0. (1.9) 

The bifurcation diagrams of (1.9) with e =1= 0 are shown in Figure 1.3. Com
plete derivations ofthese and other graphs are deferred until Chapter III, but 
the following intuitive considerations may be helpful. The unperturbed 
equation G(x, A., 0) = Oisnonsingular awayfrom theorigin;i.e., Gx(x, A., 0) = 
3x2 - A. is nonzero on both solution branches {x = 0} and {A. = x2 } except 
at the origin. Thus by the implicit function theorem the solution x of (1.9) 
depends smoothly (and hence continuously) on e (as weil as A.) away from the 
origin. In other words, away from the origin the diagrams in Figure 1.3 must 

e > 0 

Figure 1.3. Perturbations of the pitchfork, x3 - A.x + e = 0. 
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closely resernble the pitchfork (Figure 1.1) for which 1: = 00 On the other 
hand, near the origin the quadratic terrn A.x will be rnore irnportant than the 
cubic terrn x 3 0 Thus near the origin the graphs of Figure 1.3 should resernble 
the hyperbola A.x = eo 

In the classicalliterature there appear to be two distinct ways in which 
auxiliary pararneters arise in bifurcation problernso Often the original 
forrnulation of a physical rnodel involves rnany auxiliary pararneters, as is the 
case, for exarnple, in the stirred reactor problerntobe studied in §20 In other 
cases, however, the pararneters arise frorn the rnore subtle issue of imperfect 
bifurcationo Let us elaborateo The rnathernatical equations which result frorn 
the choice of a rnodel for a physical phenornenon are invariably an idealiza
tion; a rnore cornplete description would alrnost surely lead to a slightly 
perturbed set of equationso These deviations of the actual situation frorn the 
idealized one-irnperfections-rnay be described by auxiliary pararneters in 
the equationso 

Let us illustrate how irnperfect bifurcation rnight introduce pararneters 
into the buckling model ofFigure 1.20 One natural perturbation to consider is 
a srnall vertical force 1: applied to the center pin (See Figure 1.4(a)); this force 
rnodels the weight of the structureo Another such perturbation cornes frorn 
irnagining that the torsional spring is slightly asyrnrnetric, exerting zero torque 
when x = /J rather than when x = 0 (See Figure 1.4(b))o The potential 
function with these two perturbations present is 

(x - /J)2 
0 

V(x, A., 1:, /J) = 2 + 2A.(cos x - 1) + 1: sm x, 

and the equilibriurn equation is 

x - o - 2..1. sin x + 1: cos x = 00 (1.10) 

Note that (1.10) is a perturbation of (1.2) depending on two auxiliary pararn
eterso Near the singularity ofthe unperturbed problern at x = 0, A. = t, (1.10) 
has the expansion 

3 x 1 e 2 6- 2(..1.- 2)x + (e- /J)- 2 x + hot. (1.11) 

In the singularity theory approach, the occurrence of pararneters is 
handledas followso One knows that auxiliary pararneters are norrnally an 

e 
! 

(a) (b) 

Figure 1.40 Two possible imperfections in the buckling model. 
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important part of a bifurcation problem, and one attempts to classify all 
possible behavior that can occur as a result of their presence. This problern 
is solved in two steps. Given a bifurcation problern g, the first step is to 
construct a certain distinguished family of perturbations of g. Let us elaborate. 
Suppose that G(x, A., oc 1, ... , ock) is a k-parameter family of bifurcation 
problems; weshall call Ga perturbation of g if 

G(x, A., 0, ... , 0) = g(x, A.). (1.12) 

Of course, G(x, A., IX 1, .•. , ock), which we abbreviate to G(x, A., oc), need only be 
defined for oc close to the origin in !Rk. In the first step of solving the classifica
tion problern we seek a k-parameter family G of perturbations of g with the 
distinguishing property that any perturbation of g whatsoever is equivalent 
to G(-, ·, oc) for some IX E [Rk near the origin. In other words, given any 
perturbing term ap(x, A., e), there are parameter values oc 1 (a), ... , 1Xk(e) 
such that for small e 

g + ep "' G( ·, oc(a)), 

where "' denotes equivalent i the sense of (1.6). We shall call such a G a 
universal unfolding of g. Not every bifurcation problern admits a universal 
unfolding, but, in a sense we shall clarify in Chapter III, most do. The 
number k of parameters required for a universal unfolding depends on the 
specific function g under consideration. For example, we will show in 
Chapter III that 

(1.13) 

is a universal unfolding of the pitchfork. (Remark: In specific physical models 
it is possible to relate the mathematical parameters ofthe universal unfolding 
G to physical parameters in the problem, although in realistic applications 
this often requires rather tedious calculations. For the beam model above, 

provides such a correspondence modulo higher-order terms, as (1.11) might 
suggest.) 

The second step in solving the classification problern is to explore the 
parameter space u;gk of the universal unfolding with the goal of enumerating 
the various bifurcation diagrams 

{(x, A.): G(x, A., oc) = 0} 

that can occur as oc varies. For the universal unfolding (1.13) ofthe pitchfork, 
there are essentially four different bifurcation diagrams which can occur as oc 
varies; these diagrams are illustrated in Figure 1.5. This figure also indicates 
how the bifurcation diagram depends on oc-the ocb 1X2 plane is divided into 
four regions by the two curves oc 1 = 0 and oc 1 = IXV27, and equivalent dia
grams are obtained for all IX within a given region. Proofs will be given in 
Chapter III. 
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o:1 = o:V27 

(1) (3) 

~ 
--------------------~----~-------------------0:1 =0 

(4) 

Figure 1.5. Universal unfolding of the pitchfork. 

The bifurcation diagrams ofregions 1 and 2 in Figure 1.5 already occurred 
in Figure 1.3 above. Let us discuss briefly the more complicated diagrams of 
regions 3 and 4. First consider (1.13) with oc 1 = 0 but oc2 > 0. Solving the 
equations explicitly, we find the diagram of Figure 1.6. By choosing oc 1 

nonzero, we will now split apart the two crossed curves of Figure 1.6. If oc 1 

is chosen positive and sufficiently small (more precisely, if 0 < oc 1 < oc~/27), 
the primary solution branch will have a kink, as in region 3 of Figure 1.5. (By 
the primary branch we mean the solution branch which connects to the unique 
solution branch that exists for A ~ 0.) 

With these complications in mind, the reader may weil wonder what might 
result from introducing three or more parameters into the model. In fact, no 
new behavior would occur if more parameters were introduced. This fact is a 
consequence of our assertion that (1.13), which contains two parameters, is a 
universal unfolding ofthe pitchfork. Singularity theory methods teil the exact 
number of parameters required to describe the most general perturbation of 
a bifurcation problern-tbis is one of the theory's achievements. 

Figure 1.6. Bifurcation along the boundary between regions (1) and (2) in Figure 1.5: 
()( 1 = 0 and ()( 2 > 0. 
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f 
(•)•,<0 c c 

Figure 1.7. Bifurcation along the boundary between two regions in Figure 1.5: 
a 1 = ai/27. 

It is instructive to consider the dividing cases in Figure 1.5; i.e., those which 
occur for (a 1, a2 ) along the two curves a 1 = 0 and a 1 = aV27. Actually the 
first case, a 1 = 0, has already been considered above-it is graphed in Figure 
1.6 for a2 > 0. Note that the origin is a point of bifurcation. The bifurcation 
diagrams for the second case, a 1 = aV27, are illustrated in Figure 1. 7. We refer 
to the points on these graphs with vertical tangents as hysteresis points. (For 
the origin of this term, see subsection (e) below.) 

The pitchfork is an informative example because it is the simplest singu
larity exhibiting both bifurcation and hysteresis. There is precisely one 
singularity which exhibits neither bifurcation nor hysteresis, the Iimit point. 
As we will show in Chapter II, such a singularity is defined by the equations 

g = 9x = 0; 9.u # 0, 9;. # 0 at (0, 0), 

and is equivalent to the normal form ± x 2 ± A. for some choice of signs. The 
only singularities in the bifurcation diagrams in Figure 1.5 are Iimit points; as 
weshall see below, this occurrence is a special case of a general phenomenon. 

(d) Stability 

In applications, equations of the form g(x, A.) = 0 arise in describing the 
equilibria of some physical system. The notion of the stability of such 
equilibria lies outside the scope of a steady-state theory; stability can only be 
defined in a theory which follows the time evolution of the system. In this 
subsection we briefty discuss stability in the context ofthe mechanical system 
of Figure 1.2. (See §4 for a more general analysis of this concept.) 

For this mechanical model, Newton's equations of motion are the ap
propriate dynamical theory. Let us write 

av Mx= -- (x A.)- c.x ox ' ' (1.14) 

where M and C arepositive constants. (Remark: Here we assume a dynamic 
frictional force proportional to .X, and for simplicity we make the small angle 
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approximation in the inertial term so that the effective moment of inertia M is 
independent of x.) Note that a constant function x(t) = x0 satisfies (1.14) iff 
av;ax(x0 , A.0 ) = 0; in other words, equilibrium solutions of (1.14) are 
characterized by x - 2A. sin x = 0. (Cf. (1.2).) 

We shall call an equilibrium solution x 0 of (1.14) asymptotically stable if, 
for all sufficiently small e;, the solution of (1.14) with perturbed initial data 

x(O) = Xo + el> x(O) = 8z 

decays to x 0 as t--+ oo. Otherwise we call x 0 unstable. (Remark: The reader 
should note the contrast between this subsection and subsection (c). Here 
we are considering perturbations of the initial data in an evolution equation. 
In subsection ( c) we were considering perturbation of the equation describing 
equilibrium.) 

There is a natural sufficient condition for stability which only involves the 
sign of Yxx· Let us define a new variable y = x and rewrite (1.14) as a first
order system 

x-y=O, 

. 1 {av } y + M ax (x, A.) + Cy = 0. (1.15) 

The Jacobian of the function in this ODE is 

(0 -1) 
1 c . 
M Yxx M 

(1.16) 

According to the results of §§1 and 2 in Chapter 9 of Hirsch and Smale 
[1974], an equilibrium solution (x, y) = (x0 , 0) of (1.15) is asymptotically 
stable if both eigenvalues of the matrix (1.16) have positive real parts, and 
unstable if at least one eigenvalue has a negative real part. The eigenvalues 
of the Jacobian (1.16) are 

~± = ~ { ±j~2 - MV"x +~} 
Both eigenvalues lie in the right half plane iff 

82 V 
ax2 (xo, A.o) > 0, (1.17) 

while ~- lies in the left half plane if Vxx is negative. According to the results 
mentioned above, x 0 is a stable equilibrium point if (1.17) holds, and unstable 
if the opposite sign prevails. 

Note that (1.17) is precisely the condition for the potential V(·, A.0 ) to have 
a nondegenerate local minimum at x 0 • Thus x 0 is asymptotically stable if 
V(·, A.0) has a nondegenerate local minimum at x 0 • Similarly x 0 is unstable if 
V(·, A.0 ) has a nondegenerate local maximum at x 0 • 
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Let us relate the above discussion to subsection (a). Equilibrium points of 
(1.14) are characterized by the equation g(x, A.) = 0 where g(x, A.) = V"(x, A.). 
Thus an equilibrium point x 0 is asymptotically stable if gx(x0 , A.0 ) > 0 and 
unstable if gx(x0 , A.0 ) < 0. The borderline case where gx = Yxx = 0 occurs 
precisely when g has a singularity, as defined in subsection (a). In §4 we will 
relate stability and singularities in a more generat context. 

Let us apply this criterion for stability to the model of Figure 1.2, first 
assuming no imperfections. We ha ve 

gx(x, A.) = 1 - 2A. COS X. (1.18) 

Now as we saw above, g(x, A.) = x - 2A. sin x has two solution branches
the trivial branch x = 0 and a nontrivial branch where 

1 x2 
A. = 2 + 12 + bot, (1.19) 

the latter coming from (1.3). For the trivial solution x = 0, we have 

Thus x = 0 is asymptotically stable for A. < f and asymptotically unstable 
for A. > t. For the nontrivial solution we substitute (1.19) into (1.18) to 
obtain gx = x 2f3 + hot. Thus the nontrivial solution is asymptotically 
stable for allsmall x =1= 0. There is, of course, an intimate relationship between 
the fact that the trivial solution loses stability as A. crosses ! and that stable, 
new solutions appear (bifurcate) at this point. Classically this phenomenon 
was described by the phrase exchange of stability. 

In Figure 1.8(a) we have indicated the stability assignments for the pitch
fork as just determined, using dashed lines for unstable solutions and 
solid lines for stable solutions. The bifurcation diagram in Figure 1.8(a) 
divides the xA.-plane into four regions. Since the bifurcation diagram is the 
zero set of g, the sign of g is constant in each ofthese four regions. Wehave 
indicated these signs in Figure 1.8(a). Let us show how to use these signs in 
determining the stability assignments when imperfections are present. We 
have the following rule: gx is positive (and stability prevails) along a portion 
of the bifurcation diagram where a region with g > 0 lies above a region 

(a) (b) (c) 

Figure 1.8. Stability assignments for the pitchfork and for typical perturbations. 
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where g < 0; 9x is negative (and instability prevails) when the situation is 
reversed. In Figure 1.8(b) and (c) we have indicated typical perturbations of 
Figure 1.8(a), corresponding to regions 2 and 4 in Figure 1.5, respectively. 
We ask the reader to verify the stability assignments on these two diagrams 
by applying the above rule. 

In experiments, a solution which is unstable is effectively unobservable. 
This is because in an experiment there are always uncontrollable, even if 
small, perturbations from the idealized situation. In the unstable case these 
perturbations grow in time causing the system to leave any neighborhood of 
the equilibrium point in question. In fact, our definition of stability, which 
allows only a single small perturbation of the system at time zero, might be 
criticized as an inadequate model of the physical situation where repeated 
perturbations may be expected. However, questions about the long time 
asymptotic behavior of an autonomous system subjected to small random 
perturbations are very difficult indeed, and we leave such issues untouched. 

(e) Quasi-Static Variation of Parameters 

In this subsection we discuss a folklore interpretation of bifurcation diagrams 
which makes the subject much more lively. A bifurcation diagram displays 
the equilibrium states of a system (together with their stabilities) as a function 
of the bifurcation parameter A.. Under certain circumstances a bifurcation 
diagram can also describe the evolution in time of the system. In this sub
section we discuss one such set of circumstances, called quasi-static variation 
of parameters. 

For definiteness we base our discussion on the beam model of Figure 1.2 
(possibly with imperfections). Imagine that the applied load is slowly varied 
with time; i.e., slowly compared to the relaxationtime of the system. More 
picturesquely, imagine applying a small increase in the load, waiting until the 
system returns to a new equilibrium, then applying a second small increase in 
load and again waiting for re-equilibration, and so on. The behavior resulting 
from such variations in load depends crucially on whether or not the current 
equilibrium state of the system lies near a singularity of the bifurcation dia
gram. 

We consider the nonsingular case first. Let x 0 and A.0 be the current 
equilibrium state and load ofthe system, respectively, where, of course, x 0 is a 
stable equilibrium. In the nonsingular case there is a smooth branch of 
equilibrium points x(A.) passing through (x0 , A.0 ), and these are the only 
equilibria in the neighborhood of(x0 , A.0 ). Ifthe load is increased to A.0 + ßA., 
the system will be out of equilibrium, but its initial data (namely x0 ) willlie 
within the basin of attraction of the equilibrium at x(A.0 + ßA.). Thus the 
systemwill settle into this new, close-by equilibrium. In other words, under 
quasi-static variation of the Ioad, the system will simply move along regular 
portions of the bifurcation diagram. 
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At a singularity, however, quite a variety of behavior is possible. Let us 
consider several examples. First we consider quasi-static variation of A. in 
the idealized beam model (i.e., s = l> = 0). The bifurcation diagram for this 
system is pictured in Figure 1.8(a), with the bifurcation point at A. = !. For 
A. < ! the system will follow the trivial solution branch x = 0, but for A. > ! 
it will follow one of the two nontrivial solution branches. (Exactly which 
branch it will follow is indeterminate in the present case-this is another 
illustration of the importance of imperfections.) Thus for Figure 1.8(a), the 
derivative of the observed solution with respect to A. is discontinuous at the 
bifurcation point, although the solution itself is continuous. 

Next we consider quasi-static variation of A. in the beam model with 
imperfections present (i.e., s and l> nonzero ). Let us suppose that the system 
is governed by the bifurcation diagram of Figure 1.8(b ). Here the primary 
solution branch consists entirely of regular points, so the evolution under 
quasi-static variation of A. will be smooth. In words, the imperfections intro
duce a preferred direction into the system and smooth out the transition to 
buckled states. There are stable buckled states on the secondary solution 
branch, but thesewill never be reached by quasi-static variation of A. starting 
from small A.. However, these states can easily be reached by temporarily 
applying a large vertical force ( once A. is sufficiently large), and then releasing 
the system in the neighborhood of the new equilibrium point. Once reached, 
these equilibria will endure, since they are stable. Now imagine pushing the 
system onto the secondary solution branch in this way and then decreasing A. 
quasi-statically. When the Iimit point is reached, a further decrease in A. will 
necessarily result in a large jump of the system, since there are no nearby 
equilibria. In other words, at a Iimit point the solution itself, not merely its 
derivative, will vary discontinuously with A.. 

If s, l> aresuch as to produce the bifurcation diagram in Figure 1.8(c), then 
there are Iimit points on the primary solution branch. Thus the solution x will 
undergo a jump even in the simplest experiment of increasing A. quasi
statically from zero. Note that jumps occur for different values of A., depending 
on whether A. is being increased or decreased. This is similar to the hysteresis 
which occurs in magnetism and is the origin of our term hysteresis point, 
which describes the borderline case between the presence or absence of 
hysteresis. 

We conclude this subsection with two remarks. The first concerns the 
behavior of n-dimensional systems (as opposed to I-dimensional). What 
happens in several dimensions when, as in Figure 1.8(c), A. is increased 
beyond a Iimit point, causing the system to behave discontinuously? Apriori 
there is no reason why such a system has to jump to another equilibrium; it is 
quite possible for the system to evolve to some sort of dynamic steady state 
such as a periodic orbit. Only by close examination of the dynamical equa
tions can one decide this issue, although in this book we consider primarily 
cases where the new equilibrium is static. Second, in bifurcation theory it is 
customary to study the dependence of the solution on a distinguished 
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parameter- A, in our notation. In our estimation, this practice has its origins in 
the interpretation of bifurcation diagrams as describing the evolution of a 
system under quasi-static variation ofparameters. In effect the parameter ,{ is 
identified with time. 

EXERCISES 

1.1. Show that if g satisfies (1.4) at (x0 , A-0 ) = (0, 0) then there exists smooth functions 
M(x, A.), lj;(A.), and </J(x) defined on neighborhoods ofthe origin suchthat 

g(x, A.) = (A. </J(x)x 2)(x - 1/f(A.))M(x, A.), 

where </J(O) > 0, lj;(O) = 0, and M(O, 0) oft 0. Conclude from (1.20) that 

{3 if A. > 0, 
ng(A.) = 1 if A ::; 0. 

Prove (1.20) by using the following sequence of hints. 

(1.20) 

(a) Let s(x) = g(x, JlX) for fixed Jl· Using (1.4) show that s(O) = s'(O) = 0. Using 
Taylor's theorem conclude that g(x, J1X) = x 2K(x, Jl). 

(b) Show that K(O, 0) = 0, Kx(O, 0) = gxxx(O, 0)/6 and KiO, 0) = g1x(O, 0). Then 
use the implicit function theorem to find a smooth function Jl(X) satisfying 
K(x, Jl(x)) = 0, J1(0) = 0, and Jl'(O) > 0. 

(c) Use Taylor's theorem to conclude that Jl(X) = x4J(x) where </J(O) > 0. Hence 
g(x, x 2 </J(x)) = 0. Use Taylor's theorem again to show that 

g(x, A.) = (A. - x 2</J(x))L(x, A.). 

(d) Show that L(O, 0) = 0 and LxCO, 0) oft 0. Apply the implicit function theorem 
to obtain a smooth function lj;(A.) satisfying L(lj;(A.), ).) = 0, lj;(O) = 0. Now apply 
Taylor's theorem to obtain (1.20). 

Comment. Exercise 1.1 gives a "classical" proof of the pitchfork bifurcation. 
The basic idea in the proofis to construct the zero set of g by clever uses ofthe 
implicit function theorem and Taylor's theorem. Note that in order to apply 
such methods one has to know a priori certain qualitative information about 
the zero set of g; essentially one has to know that x 3 - A.x is a good "model" 
for the general case. 

1.2. Show that equivalence for bifurcation problems-as defined in (1.6)-is an 
equivalence relation. In particular, Iet g(x, A.), h(x, A.), and k(x, A.) be bifurcation 
problems. Assurne that g is equivalent to h and that h is equivalent to k. Then show 
that g is equivalent to k. 

1.3. Using (1.20), prove that if g(x, A,) satisfies (1.4) at (0, 0) then g is equivalent x 3 - h. 
Prove this fact by considering the following sequence of four equivalences. 
(a) g(x, A.) is equivalent to h(x, A,) = (x - lj;(A.))(x2 </J(x) - A.). 
(b) h(x, A.) is equivalent to k(x, }.) = x 3</J(x)- h q(x, A.) where q(O, 0) = 1. 
(c) k(x, A,) is equivalent to l(x, A.) = x 3p(x, A.) - h where p(O, 0) > 0. 
(d) l(x, A.) is equivalent to x 3 - h. Consider X(x, A.) = x~ and evaluate 

[1/y"P(x, A.) ](X\x, A.) - AX(x, A.)). 
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1.4. Show that the formula (1. 7) is false if one allows A in (1.6) to depend on x by con
sidering the following two examples. 
(a) g(x, A.) = x2 - A.2, X(x, A.) = x - A., and A(x, A.) = A. + x. 
(b) g(x, A.) = x3 - A.x and A(x, A.) = A. + x2 • 

1.5. Let g(x, A.) and h(x, A.) be equivalent, as in (1.6). Show that if h has a singularity at 
(x0 , A.0) then g has a singularity at (X(x0 , A.o), A(A.o)). 

§2. The Continuous Flow Stirred Tank Reactor 
(CSTR) 

In this section we discuss the application of singularity theory methods to the 
continuous flow stirred tank reactor (CSTR}, a modelproblern from chemical 
engineering that exhibitsmultiple solutions. This problern differs from many 
traditional problems of bifurcation theory in that there is no trivial solution 
branch. It gives an excellent illustration of how singularity theory methods 
may be applied in bifurcation problems; in particular, it Ieads to the important 
concept of an organizing center. The problern is easy to describe and has been 
the object of much study, but yet singularity theory methods were able to 
provide new insights. In this section we only attempt to survey the situation; 
all proofs are deferred for Chapters II and III and Case Study 1. 

This section is divided into three subsections, as follows. In subsection (a) 
we derive the equations which govern the CSTR. In subsection (b) we show 
that these equations admit multiple solutions. Finally, in subsection (c) we 
discuss how singularity theory methods apply to this problem. The issues 
raised in subsection (c) are important in many applications of singularity 
theory methods, not just the CSTR. 

(a) Formulation ofthe Governing Equations for the CSTR 

Figure 2.1 gives a schematic diagram for a continuous stirred tank reactor 
(CSTR). In this problern a reactant flows into a reactor vessel ofunit volume 
at a rate r and undergoes a single, exotherrnie reaction to form inert products. 
We suppose that the reactor is weil stirred, which means that the concentra
tion c of the reactant and the temperature T are uniform throughout the 
vessel. The unused reactant and the products leave the vessel at the samerate 
ras the input; the concentration of the reactant and the temperaturein the 
exit stream are equal to those in the reactor itself. Heat is removed from the 
reactor by a coolant fluid at temperature Yc. 
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Figure 2.1. Schematic diagram for CSTR. 
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The concentration and temperature in the reactor are modeled by the 
following pair of coupled ordinary differential equations (ODE's). 

(a) 
dc 
dt = r(cr - c) - ZcA(T), 

(2.1) 
dT 

(b) dt = r(Tf- T) + k(T;, - T) + hZcA(T). 

There are three physical processes represented in (2.1 ). In the first terms on the 
right in (2.1), er and 1f denote the concentration and temperature of the 
feed (i.e., the incoming reactant). In the absence of other terms, c and Twould 
decay exponentially (at rate r) to the feed values er and Tf. The middle term in 
(2.1 b) represents heat removed by the coolant. The parameter k is a lumped 
one, involving the heat transfer area, specific heats, etc. The final term in each 
equation is associated with the reaction. Note that the reaction depletes the 
concentration but increases the temperature. The factor A(T), which govems 
the temperature dependence of the reaction rate, typically has Arrhenius 
form 

{r.. r..} A(T) =:= exp 1f - T , (2.2) 

where T,. is the activation energy (converted to a temperature by means ofthe 
universal gas constant R). We have added the constant term TJTf in the 
exponent in (2.2) so that Z in (2.1) represents the reaction rate at the feed 
temperature Tf. (Typically T,. is much larger than Tf, say y = TJTf > 10, so 
that the factor exp(TJTf) is substantial.) Finally the parameter h is pro
portional to the heat released by the reaction. 
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We are interested in equilibrium solutions of (2.1 ), so we set the left-hand 
sides equal to zero. On solving the first equation for c and substituting into the 
second, we obtain the relation 

rhcr 
r( Tf - T) + k( 7;, - T) + = 0. (2.3) 

I' 

1 + ZA(T) 

In order to nondimensionalize (2.3), we define a normalized temperature 
x = (T - Tf)/Tf. Then (2.3) may be rewritten as 

A. A. BA. = 0 g(x, ) = (1 + )x - 11 - 1 + (Unf(x) ' 

where A. = r/k, () = k/Z, 11 = (7;, - Tf)/Tf, B = hcr/Tf, and 

.nf(x) = exp {-~}. 
l+x 

(2.4) 

with y = T./Tf. Note that A. and () represent comparisons ofthe flow rate and 
the reaction rate, respectively, with the rate ofheat loss; 11 and y compare two 
temperature parameters with the feed temperature; and Bis a dimensionless 
measure of the heat of reaction. (Remark: Wehave inserted a factor -1 in 
passing from (2.3) to (2.4) because this facilitates applying the stability results 
of §4. The discrepancy in sign is a result of our convention in §4 of writing all 
terms in a differential equation on the left; i.e., a minus sign is needed to 
write (2.1) in the form (4.1).) 

(b) The Occurrence of Multiple Salutions 

Equation (2.4) determines the possible equilibrium temperature(s) x of a 
CSTR. We regard (2.4) as defining x as a (possibly multiple-valued) function 
of A.. As is customary, we treat A. as a distinguished parameter, since the ftow 
rate is the quantity most readily varied in the laboratory. We are primarily 
interested in the bifurcation phenomena exhibited by (2.4); i.e., the occurrence 
of multiple solutions and their dependance on the various auxiliary param
eters in the problem. 

lt is quite easy to see that multiple solutions of (2.4) are possible. In 
Figure 2.2 we ha ve graphed the third term in (2.4) as a function of x for typical 
parameter values. Salutions of (2.4) correspond to intersections of this curve 
with the straight line (1 + A.)x 11· It is clear from the figure that there may 
be either one or three intersections, depending on the value ofthe parameters; 
three possible cases are sketched in the figure. In other words, multiplicity 
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1 + Abd(x) 

-I 

Figure 2.2. Possible intersection configurations. 

results from the different balances that can be achieved between a linear term 
(heat removed by cooling and by heat exchange of the flow) against a non
linear one (temperature dependence of the reaction). (Remark: Calculation 
shows that the curve in Figure 2.2 has a single inflection point; for large y the 
inflection point occurs at approximately x = 2/y.) 

In the limiting cases of A.--+ 0 or A.--+ oo, the solution of (2.4) is unique. If 
A.--+ 0, then insufficient new reactant is available to continue the reaction, so 
the systemwill come to equilibrium at approximately the coolant temperature 
7;,. If A.--+ oo, then the reactant temperatureisnot changed significantly by 
any heat produced by the reaction or absorbed from the coolant since the 
reactant remains in the reactor only a negligible time; thus the equilibrium 
temperature will be approximately 'If. Therefore multiple solutions can only 
occur for intermediate values of ..1.. 

lndependently, Zeldovich and Zisin [1941] and Uppal, Ray, and Poore 
[1976] made the surprising discovery that there may be two distinct ranges of 
A. where (2.4) has multiple solutions and that some ofthese solutions may lie 
on an isolated branch not connected to the unique solution of (2.4) which 
occurs in the Iimits A. --+ 0 or A.--+ oo. Uppal et al. [1976] conducted an 
extensive numerical study of the problem, and we present their results in 
Figure 2.3. The upper half of this figure shows the (first quadrant of the) bß 
parameterplane divided by the curves .OJ 1PiPcPp:Jl2 and .Yl'1PiPp.Yl'2 into 
five regions. (Notation is discussed below.) Associated to each of these five 
regions, in the lower half ofthe figure, is a plot of the solutions x of (2.4) as a 
function of ..1.. (Remarks: The residence time,' = 1/ ..1., is the bifurcation param
eter used in Uppal et al. [1976]. Qualitatively speaking, this change of 
parameter simply reverses the orientation of the graphs. Similarly (j- 1 is the 
abscissa in the upper part of the figure. Finally, throughout Figure 2.3 the 
parameter f!, which measures coolant temperature, is held fixed.) 

Note that in graphs 2 and 5 there is an isolated solution branch, and that in 
graphs 3 and 5 there are two distinct ranges of A. with multiple solutions. 
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(3) (4) 

L.-. 
'1 fixed 
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(1) -~· (3) -18 
X (4)ß 

Figure 2.3. Multiple solutions in the CSTR (after Uppal, Roy, and Poore [1976]). 

(c) A Primer on the Application of Singularity 
Theory Methods 

One achievement of singularity theory is to provide a natural explanation for 
the data summarized in Figure 2.3. Incidentally the information gained from 
the theory shows that the two curves ~1PiPcPp~2 and .Yf1PiPp.Yf2 must be 
tangentat their intersection at PP, a fact that was apparently not clear from 
the numerical evidence. (We ha ve drawn Figure 2.3 in imitation ofUppal et al. 
[1976]; in Figure 2.4 the curves are correctly shown as tangent.) Another 
achievement is that, using singularity theory methods, we can analyze (2.4) 
analytically, without recourse to the computer. For the mathematician, this 
has the advantage of elegance and rigor. For the engineer, it led to the dis
covery that two additional bifurcation diagrams, not shown in Figure 2.3, 
could occur for certain parameter values. 
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Figure 2.4. Bifurcation diagrams along the boundary between two regions in Figure 2.3. 

To understand how to apply singularity theory methods in problemssuch 
as this one, it is helpful to consider the dependence of x on A. when ( o, B) lies on 
the boundary between two regions in Figure 2.3. There are seven distinct 
portions of the boundary (PA 1Ph PiPe, PcPp, PPPA2 , Jfe1Pio PiPp, Pp3'e2), 

andin Figure 2.4 we have shown the associated bifurcation diagrams. For 
example in the case of the boundary between regions 1 and 2, PA 1Pio the 
diagram consists of a smooth curve x = x(A.) and an isolated point solution 
(x0 , A.0) of (2.4). As the parametersBand o vary, this isolated solution can 
either disappear into the complex plane, as in region 1 of Figure 2.3, or open 
up into a small "circle" of solutions, as in region 2. (W e will supply proofs in 
Case Study 1, drawing on Chapter 111, §8.) Similarly, in the case of the 
boundary between regions 1 and 4, Ye1 Pi, the curve of x as a function of A. has 
a vertical tangent, although it is still single-valued. (As indicated in §1, we 
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shall call points having vertical tangents hysteresis points.) If o or B is 
varied to perturb this graph, it can either pull out to give a smooth, single
valued curve, as in region 1, or twistback to give a range of A. where there are 
multiple solutions, as in region 4. 

Let us explain the notation in Figures 2.3 and 2.4. We have labeled the 
ends of one boundary curve with the letters fll;, i = 1, 2 because, as may be 
seen in Figure 2.4, traditional bifurcation phenomena occur along this 
curve-either the formation of new solution branches or the crossing of 
already existing ones. We Iabel the ends of the other curve .n';, i = 1, 2 
because points on the curves are associated with the onset of possible hys
teresis. For the three distinguished points on these curves, PP, Pc, and Pi, 
the subscripts are mnemonics for pitchfork, cusp, and intersection, re
spectively. Understanding the significance of these points is our next task. 

In the singularity theory approach, one focuses relentlessly on degenerate 
cases. Thus having seen the type of bifurcation diagrams which occur along 
the boundaries ofregions in Figure 2.3, we now ask what happens at bound
aries of the boundary; i.e., at the three points Pc, PP, and Pi. We exhibit 
this behavior in Figure 2.5; again, justifications will be given in Case Study 
1 and Chapter III, §8. 

The following remarks on the three cases may be helpful. In case Pc, one 
may regard this diagram as the Iimit ofthe diagrams in case P c PP of Figure 2.4 
as the loop shrinks to diameter zero, or alternatively as the Iimit of case Pi P c 

as the isolated point meets the main solution branch. In case PP, the crucial 
issue isthat one ofthe intersecting curves has a vertical tangent-this is what 
separates cases PcPp and PP~2 of Figure 2.4. The bifurcation of case PP is 
equivalent to the normal form ( 1.1) for the pitchfork (in a neighborhood ofthe 
bifurcation point). Finally in case P; there are two singular points in the 
bifurcation diagram, a bifurcation point and a hysteresis point, and they are 
more or less independent. 

Let us carry this focusing on the "worst case" to the extreme. Specifically, 
we will show in Case Study 1 that it is possible to vary 17, which was held fixed 
in Figure 2.3, so as to make the three points Pc, PP' and P; merge into a single, 
superdegenerate point. This Ieads to a bifurcation diagram as shown in 
Figure 2.6-analogous to case P c in Figure 2.5 except the tangent to the cusp is 
vertical. Indeed, Figure 2.6 arises as a limiting case ofFigure 2.6(c), since as 11 
is increased the tangent to the cusp in Figure 2.5(a) rotates clockwise. Of 

Figure 2.5. Bifurcation diagrams at the three distinguished points in Figure 2.3. 
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X 

Figure 2.6. Bifurcation diagram of the organizing center for Figure 2.3. 

course if 11 is increased beyond the critical point where the tangent is vertical, 
one obtains a bifurcation diagram as in Figure 2.7(a), and on perturbation of 
this, Figure 2.7(b), (c)-the two new diagrams whose existence was predicted 
by singularity theory. This analysis is due to Golubitsky and Keyfitz [1980]. 

We now try to summarize how we will apply singularity theory methods to 
the CSTR in Case Study 1, drawing on Chapter III.It turnsout that 

h(x, il) = x 3 + il2 (2.5) 

is the appropriate normal form to describe the bifurcation diagram of 
Figure 2.6 near the singularity. (Following Golubitsky and Keyfitz [1980], we 
call (2.5) the winged cusp.) First, in Chapter II, §9 we will show that the 
recognition problern for (2.5) is solved by the following conditions: 

gxxx > 0, g;.x > 0. (2.6) 

In other words, a function g(x, il) has a singularity equivalent to (2.5) at some 
point (x0 , il0 ) if and only if (2.6) holds at that point. Next, in Case Study 1 we 
will use (2.6) to prove that there isauniqueset ofvalues for the parameters J, 
B, and 11 in (2.4) such that the resulting function has a singularity equivalent 
to (2.5). Let J0 , B0 , and '1o be the values which yield (2.6). Finally, we will call 
on results from Chapter III, §§4 and 8 concerning the universal unfolding 
of (2.5) in order to understand the solution set of (2.4) for J, B, and 11 close to 
b0 , B 0 , and Yfo. All the bifurcation diagrams of Figure 2.3 and the two addi
tional diagrams ofFigure 2. 7(b), (c) will then emerge from perturbation ofthe 

(a) (b) (c) 

Figure 2.7. Additional bifurcation diagrams deduced from singularity theory. 
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distinguished values, <5 0 , B0 , and IJo. In particular, the geometry ofthe various 
regions in Figure 2.3 is predicted a priori by the mathematics. 

Although the above methods are local, Balakotaiah and Luss [1981] 
verified numerically that the conclusions are in fact valid globally. In partic
ular, all seven diagrams predicted theoretically have been found numerically. 
This verification proceeded by computing numerically the transition curves 
in global parameter space. Balakotaiah and Luss [1981, 1982, 1983] have 
applied these ideas to a number of chemica1 reactor systems. 

Following Rene Thom, we will refer to the bifurcation diagram in Figure 
2.6 as an organizing center for this prob1em. This very suggestive, but some
what vague, term only acquired meaning for us after we had analyzed several 
physical problems along the lines sketched above. Let us attempt at least a 
loose description of what this term means. Consider a physical pro blem which 
exhibits a variety of qualitatively different behaviors, depending on various 
parameters. An organizing center is associated with a distinguished set of 
values for the parameters such that all ( or at least many) of the different be
haviors occur for parameter values in a small neighborhood of the distin
guished values. Typically at an organizing center the system exhibits its 
most singular behavior. We do not attempt a precise definition of this 
concept anywhere in the text, even though this idea occurs frequently. The use 
of an organizing center is best illustrated by the case studies. In particular, 
quasi-global results may often be obtained by the application of local 
analysis near an appropriately chosen organizing center. 

In a typical application the parameters of the organizing center are 
distinguished because for these values the several physical effects in the prob
lern are exactly balanced. Let us illustrate this for the CSTR. It may be seen 
from case 3 of Figure 2.3 that there can be hysteresis in the jump to the high
temperature solution branch on both the high A, and low A, sides. It is possible 
to vary two ofthe three parameters <5, B, and 1J so that hysteresis is on the verge 
of disappearing on both sides of the diagram, as sketched in Figure 2.8. 
Further, with appropriate variation ofthe third parameter, the two hysteresis 
points in Figure 2.8 approach one another and merge, resulting in the bi
furcation diagram Figure 2.6. In other words, in Figure 2.6, the organizing 
center, the dissipative effects which Iead to a unique solution as A, -> 0 or A-> oo 

X 

---r---------------A 

Figure 2.8. A bifurcation diagram with two hysteresis points. 
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are exactly balanced with the nonlinear temperature dependence of the reac
tion rate which pushes toward multiple solutions. 

EXERCISES 

2.1. Suppose that g(x, A.) is equivalent to the winged cusp, x3 + A.2• Using the definition 
(1.6) of equivalence, show that g satisfies (2.6). 

2.2. Show that the perturbation of the winged cusp g(x, A., cx) = x3 + A.2 + cxA.x has a 
pitchfork singularity at (x0 , A.0 ) = (0, 0) when cx # 0. Determine the orientation of 
these pitchfork bifurcations. (cf. (1.8).) 

§3. A First View of the Liapunov-Schmidt 
Reduction 

In this section we explore how it happens that so many problems in applied 
mathematics involving multiple solutions can be reduced to a single equation 
g(x, A.) = 0. The discussion centers around what is called the Liapunov
Schmidt reduction. Historically this procedure was used to reduce certain 
infinite-dimensional problems to one dimension. In the present section we 
consider the Liapunov-Schmidt procedure only in a finite-dimensional 
context. This reduces technicalities to a bare minimum, and we hope it will 
bring the essential issues into clearer focus. (We shall return to the reduction 
of infinite-dimensional problems in Chapter VII.) 

Let us now set the context for the reduction. Consider a system of n 
equations 

<l>;(y, IX) = 0, i = 1, ... , n, (3.1) 

where <1>: ~n x ~k+ 1 ~ ~n is a smooth mapping. We regard the vector 
y = (y1, ... , Yn) as the unknown tobe solved for in (3.1); IX= (1X0 , ••• , 1Xk) is a 
vector of parameters. (Usually we think of IXo as a bifurcation parameter A., 
which is distinguished, and IX 1, ••• , IXk as auxiliary parameters. The reduction 
is already of interest when k = 0; i.e., when there are no auxiliary parameters. 
But since it does not complicate the analysis, right from the start we treat the 
case where auxiliary parameters may be present.) We assume that <1>;(0, 0) = 0 
and we attempt to describe the solutions ofthis system locally near the origin. 
Let (d<l>)0 , 0 be the n x n Jacobian matrix (o<I>Joyj(O, 0)). If rank(d<l>)0 , 0 = n, 
it follows from the implicit function theorem that (3.1) may be solved uniquely 
for y as a function of IX; in other words, this is a nondegenerate case where no 
bifurcation occurs. In this section we consider the minimally degenerate case 
where 

rank(d<l>)0 , 0 = n - 1. (3.2) 
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This section is divided into five subsections, which address the following 
issues: 

(a) In subsection (a) we show that under the assumption (3.2), solutions of 
the full system (3.1) locally may be put in one-to-one correspondence with 
solutions of a single equation 

g(x, cx) = 0, (3.3) 

where g: IR x IRk+l ~IR. This is the Liapunov-Schmidt reduction for (3.1). 
In words, (3.3) is a k-parameter family of bifurcation problems of the form 
g(x, A.) = 0. 

(b) We summarize the essential steps of the reduction in subsection (b). 
(This is primarily for reference in Chapter VII.) 

(c) We interpret the reduction geometrically in subsection (c). 
( d) There are several arbitrary choices that must be made while performing 

the Liapunov-Schmidt reduction, and different choices Iead to different 
reduced equations ofthe form of(3.3). In subsection (d) we present a theorem 
which states that different choices Iead to equivalent reduced equations (as 
defined in §1), apart from some ± signs that must be inserted explicitly. This 
result provides further motivation for our definition of equivalence. (We prove 
this result in Appendix 2.) 

(e) In subsection (e) we compute a few ofthe low-order derivatives ofthe 
reduced function (3.3) at the origin. Being able to make these calculations is 
important, since g is only defined implicitly-in most applications it is 
impossible to obtain a formula for g. 

The methods of singularity theory may be applied to a bifurcation problern 
most readily after the Liapunov-Schmidt reduction has already been per
formed. The reduction meshes weil with our theory. This is illustrated by 
items (d) and (e) above. Specifically: 

(i) Although the reduced function is not uniquely determined, all possible 
reduced functions are equivalent (apart from possible differences ofsign). 

(ii) Singularity theory methods analyze the reduced function in terms of the 
data that is computable in applications; i.e., a finite number of the 
derivatives of g at the bifurcation point. 

The ideas in this section will be used in §4 below, but then will not reappear 
until Chapter VII. 

(a) Derivation of the Reduced Equations 

Two arbitrary choices are required toset up the Liapunov-Schmidt reduction. 
As a convenient shorthand Iet us write L = (d<I>)0 , 0 • We must choose vector 
space complements M and N to ker Landrange L, respectively, obtaining the 
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splittings 

~n = ker L EB M, (3.4) 

and 

~n = N EB range L. (3.5) 

Observe that by assumption (3.2), dim range L = n - 1 and dim ker L = 1, 
so that dim M = n - 1 and dim N = 1. Let E denote the projection of ~n 
onto range L with ker E = N. The complementary projection I - E has 
range equal to N and kernel equal to range L. 

The following trivial observation starts the derivation: If u E ~n 

u = 0 iff Eu = 0 and (I - E)u = 0. (3.6) 

Thus the system of equations (3.1) (i.e., <l>(y, A.) = 0) may be expanded to an 
equivalent pair of equations 

(a) E<l>(y, a) = 0, 

(b) (I - E)<l>(y, a) = 0. 
(3.7) 

The basic idea underlying the Liapunov-Schmidt reduction isthat (3. 7a) may 
be solved for n - 1 ofthe y variables, and (3. 7b) then yields an equation for the 
remaining unknown if values for these n - 1 variables are substituted into 
(3.7b). 

Let us expand on this idea. First we apply the implicit function theorem to 
show that (3.7a) may be solved for n - 1 of the y variables. Because of the 
splitting (3.4), we may decompose any vector y E ~n in the form y = v + w, 
where v E ker Land wEM. Let us write (3.7a) as 

E<l>(v + w, a) = 0. (3.8) 

More abstractly, we are thinking of (3.8) as defining a map F: (ker L) x 
M x ~k+ 1 ~ range L, where 

F(v, w, a) = E<l>(v + w, a). 

By the chain rule, the differential of (3.8) with respect to the w variables at the 
origin is 

E(d<l>)0 , 0 = EL = L, 

the first equality holding by definition and the second because E acts as the 
identity on range L. However, the linear map 

L: M ~ range L 

is invertible. Thus it follows from the implicit function theorem that (3.7a) is 
uniquely solvable for w near the origin. Let us write this solution as w = 
W(v, a); thus W: ker L x ~k+ 1 ~ M satisfies 

E<l>(v + W(v, a), a) = 0, W(O, 0) = 0. (3.9) 
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We substitute W into (3.7b) to obtain the reduced mapping cp: ker L x 
IRk+ 1 -+ N where 

cp(v, a) = (I - E)<I>(v + W(v, a), ot:). (3.10) 

Then the zeros of cp(v, a) are in one-to-one correspondence with the zeros of 
<I>(y, ot:), the correspondence being given by 

cp(v, a) = 0 iff <l>(v + W(v, ot:), ot:) = 0. 

The reduced function cp has all the information we need from the Liapunov
Schmidt reduction, but it suffers from the disadvantage that it maps between 
one-dimensional subspaces of IR"; i.e., cp: ker L x IRk + 1 -+ N. In applications 
it is customary to choose explicit coordinates on ker L and N and thereby 
obtain a reduced map g: IR x 1Rk+ 1 -+ IR. Of course, this introduces addi
tional arbitrary choices into the method, beyond the choices of M and N in 
(3.4) and (3.5). We introduce coordinates as follows. Let v0 and v~ be nonzero 
vectors in ker L and (range L)\ respectively, where the orthogonal comple
ment is taken with respect to the usual inner product 

n 

(y, z) = L: Y;Z;. 
i= 1 

Any vector v E ker L may be written uniquely in the form v = xv0 where 
x E IR. We define g: IR x IRk+ 1 -+IR by 

(3.11) 

Since cp(xv0 , ot:) E N, g(x, ot:) = 0 iff cp(xv0 , ot:) = 0. Thus the zeros of g are also 
in one-to-one correspondence with solutions of <l>(y, ot:) = 0. 

It is worth noting that in substituting the definition (3.10) of <I> into (3.11) 
the projection (I - E) drops out; i.e., 

g(x, cp) = (v~, <I>(xv0 + W(xv 0 , ot:), ot:)). 

The reason for this simplification isthat v~ E (range L)\ and for any vector 
V E IR", EV E range L, so (v~, EV) = 0. Hence 

(v~, (I - E)V) = (v~, V). (3.12) 

Remark 3.1. We use the phrase "reduced function" to refer to both cp(v, a) 
and g(x, ot:). Both functions contain the same information-g is just the 
representation of cp in specific coordinates. For theoretical analysis cp is 
typically more convenient; for applications, g. We shall use whichever 
seems more appropriate. 
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(b) An Overview of the Liapunov-Schmidt Reduction 

For purposes of reference in Chapter VII, we divide the above derivation of 
the reduced equation (3.11) into the following five steps: 

Step 1. Decompose the ambient space into summands related to L. (Cf. (3.4), 
(3.5).) 

Step 2. Transfer this decomposition to the equation. (Cf. (3.7).) 

Step 3. Show that (3.7a) may be solved for all but one ofthe variables, using 
the implicit function theorem. 

Step 4. Substitute the solution of (3.7a) into (3.7b) to obtain (3.10). 

Step 5. Choose coordinates on ker Land (range L)J. to obtain (3.11). 

The essence of the Liapunov-Schmidt reduction is to show that the 
implicit function theorem is applicable in situations where its applicability 
may not be readily apparent. Thus Step 3 is the fundamental step in the 
reduction. The other steps are required to carry out Step 3. Note that in Steps 
1 and 5 a choice must be made, while Steps 2 and 4 are primarily notational. 

( c) A Geometrie View of the Liapunov-Schmidt Reduction 

1t is instructive to think of the Liapunov-Schmidt reduction pictorially. In 
particular, this view clarifies the identification of the bifurcation diagram 

{(v, 0() E ker L x ~k+ 1 : </J(v, 0() = 0} 

with the solution set 

{(y, 0() E ~n X ~k+ 1: Cl>(y, 0() = 0} 

of the full equations. 
W e claim that the set 

(3.13) 

is a (k + 2)-dimensional submanifold of ~n x ~k+ 1 whose tangent space is 
ker L x ~k+ 1• (See Figure 3.1.) In fact, solving (3.9) by the implicit function 
theorem, we see that "f/ may be parametrized by a map Q: ker L x ~k+ 1 --. 

~n x !Rk + 1, where 
(3.14) 

In this formula v and W(v, 0() belong to ker Land M, respectively. Since we 
have the decomposition IR"= ker LEB M, we could rewrite (3.14) in an 
equivalent notation as 

(3.14a) 
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"Y = {E<I> = 0} 

r (v + W(v, Ä.), Ä.) 

kerLx!R 

+W(v, Ä.), Ä.) 

-- {<1>=0} 
-- {r/>= 0} 

Figure 3.1. A picture ofthe Liapunov-Schmidt reduction: n = 2, k = 0. 

It is clear from (3.14a) that (dQ)0 , 0 is nonsingular; therefore "''is a (k + 2)
dimensional submanifold of IR" x IRk + 1• We will show below by implicit 
differentiation that (ß/ßx)W(xv0 , O)lx=o = 0. (Cf. (3.15).) It follows that the 
tangent space to "'' at the origin is ker L x IRk + 1, as claimed. 

In Figure 3.1 we have attempted to sketch ker L x IR, "'', and the zero 
sets of Cl> and <P in a case where n = 2, k = 0, and the reduced function 
exhibits a pitchfork bifurcation. One can see from the figure how the bifurca
tion diagram { </J(v, A.) = 0}, which lies in ker L x IRk+ 1, is identified with 
the zero set of Cl>, which lies in "//. 

(d) Relation with Equivalence 

Different choices of the data needed to carry out the Liapunov-Schmidt 
reduction Iead to reduced equations which are (essentially) equivalent. To 
formulate this assertion carefully, we need to set up some notation. Let 
Cl>: IR" x IR--+ IR" be a smooth mapping satisfying CI>(O, 0) = 0 and (the 
minimal degeneracy condition) rank(del>)0 , 0 = n- 1. Choose complements 
M 1 and M 2 to ker Las in (3.4). Choose complements N 1 and N 2 to rangeLas 
in (3.5). Choose v1 and v2 in ker L, vf and v! in (range L)J.. Let g 1(x, A.) and 
g2(x, A.) be the reduced bifurcation equations obtained by using the four 
choices subscripted by 1 and 2, respectively. (We are assuming k = 0 here, and 
we write A. for a0 • There is no difficulty in extending the following theorem to 
positive k.) 
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Theorem 3.2. Let c: = sgn(v 1, v2 ) and (J = sgn(vf, v!). Then g2(x, A.) is 
equivalent to bg 1(c:x, A.). 

The importance of Theorem 3.2 lies in the motivation it provides for the 
definition of equivalence. Weshall not make further use of this result in the 
text, so we have relegated its proofto Appendix 2. However, Iet us mention an 
issue that might not be apparent -reading this proof is a wonderful exercise 
for the reader who wishes to understand just what is involved in the 
Liapunov-Schmidt reduction. 

( e) Computation of Derivatives of the Reduced Equations 

In this subsection we show how to compute the derivatives of the reduced 
function g(x, y) from derivatives of the original mapping <l>(y, a). Let us 
summarize the calculations before performing them. We can find the deriva
tives of g by substitution into (3.11 ), g(x, a) = ( vS, cjJ(xv0 , a) ), if we know the 
derivatives of the function cjJ. To this end we rewrite the definition (3.10) of 
cjJ in the form in which it appears in (3.11): 

cjJ(xv0 , a) = (I - E)<l>(xv0 + W(xv0 , a), a). (3.10a) 

Calculation of derivatives of (3.10a) is a Straightforward application of the 
chain rule. However, the resulting formulas contain derivatives of W, and 
these must be determined by implicit differentiation of (3.9) 

E<l>(v + W(v, a), a) = 0. 

This step is the most tedious part of the calculation, both in the present 
theoretical discussion and in actual applications. 

lt turns out that the first derivative of W with respect to x vanishes. We 
digress to prove this. (Warning: We sometimes write W(x, a) for W(xv0 , a). In 
this way derivatives of W with respect to x make sense. Cf. Remark 3.1.) We 
substitute v = xv0 into (3.9) and differentiate with respect to x to obtain 
E d<l> · (v0 + Wx) = 0. This becomes EL(v 0 + VV") = 0 on evaluating at (0, 0). 
However v0 E ker L and EL = L so that we have 

LWx(O, 0) = 0. 

But Wx(O, 0) E M and L: M ~ range L is invertible. Thus it follows that 

VV"(O, 0) = 0. (3.15) 

Before actually starting the calculations we introduce an invariant nota
tion for higher-orderderivatives offunctions of several variables. If v1, ..• , vk E 

!Rn, we define 

(dk<l>)y,a(vl, ... ' Vk) = J~l ... J~k <l>(y + J/;V;, a) ltl= .. ·=tk=O· (3.16) 
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Note that (dk<l>)r. 2 is a symmetric, multilinear function of k arguments. lf 
desired, we may represent (3.16) in terms of kth-order partial derivatives of<l>; 
for example, if k = 2 

II (Jl<l> 
(d2<l>)y,a(v, w) = I aa(y, O()ViWj. 

i,j=l Yi Yj 

In this notation the chain rule takes the following form. Ifthe base point y and 
the vectors vi, i = 1, ... , k depend on a parameter t, then 

k ( ::l ) 
k uvi + .L (d <l>)y,2 vl, ... ' -;-.... , vk . 

•= 1 ut 
(3.17) 

Here we are assuming that <l> does not depend explicitly on t; when it does, 
an additional term with dk(o<l>/ot) is required on the right-hand side of (3.17). 

We finally begin the calculations. Repeated application ofthe chain rule to 
(3.10a) yields the following formulas for the derivatives of </J. 

(a) <Px = (I - E)(d<l>(v0 + W")), 

(b) </Jxx = (I - E)(d<l>(Wxx) + d2<l>(Vo + Wx, Vo + Wx)), 

(c) </Jxxx =(I- E)(d<l>(Wxxx) + 3d2<l>(vo + Wx, Wxx) 
+ d3<l>(vo + Wx, v0 + Wx, v0 + Wx)), (3.18) 

(d) </;,, = (I - E)(<l>,, + d<l>(W,,)), 

(e) </J,,x = (I - E)(d<l>",(v0 + W") 
+ d<l>(VV,,.J + d2<l>(v0 + VV,, VV,,)). 

We evaluate at x = 0. (J( = 0 and recall that (I - E)L = 0 and W"(O, 0) = 0; 
the formulas become 

(a) </Jx(O, 0) = 0, 

(b) <PxxCO, 0) =(I- E)(d2<l>(vo, Vo)), 

(c) <Pxxx(O, 0) =(I- E)(3d 2<l>(vo, wxx(O, 0)) + d3<l>(vo, Vo, Vo), (3.19) 

(d) </;2 ,(0, 0) = (I - E)(<l>2 ,(0, 0)), 

(e) </J,,x(O, 0) =(I- E)(d<l>",(v0 ) + d2<l>(v0 , W,,(O, 0))). 

Before continuing the calculation, we make two remarks. First, the fact that 
</Jx(O, 0) vanishes is totally expected. This means that the reduced equation has 
a singularity at the origin. If it did not then we could have applied the implicit 
function theorem to the original system <l>(y, ()() = 0; that is, rank(d<l>)0 , 0 

would be n and not n - 1 as assumed in (3.2). 
Second, one ofthe major problems in evaluating (3.19) lies in the computa

tion of Wxx(O, 0) and VV,,(O, 0). We shall give specific formulas for these 



§3. A First View of the Liapunov-Schmidt Reduction 33 

quantities below. The difficulty is that these formulas require inverting a 
linear Operator. However the computation of wxx(O, 0) and ~.(O, 0) is not 
required in (3.19) if (tf<l>)o,o happens to be zero. This circumstance is not 
unusual in applications, as often <I> is an odd function; i.e., 

<I>(- y, IJ() = - <l>(y, ()(). (3.20) 

If (3.20) is satisfied, then <1>,.,(0, 0) = 0 and (d2<1>)0 , 0 = 0. So the formulas 
(3.19) reduce to 

</Jx(O, 0) = 0, </Jxx(O, 0) = 0, </Ja,(O, 0) = 0, 

<PxxiO, 0) = (I - E)(d 3<1>(vo, Vo, Vo)), 

</Ja1x(O, 0) = (I - E)(d<l>,.,(vo)). 

(3.21) 

(Remark: The property of <I> being odd is a specific instance of <I> possessing 
a certain symmetry; we shall study symmetry and its consequences in later 
chapters, especially in Chapter VI. One point deserves comment here. 
If an odd function has a singularity (i.e., if <l>x(O, 0) = 0), then automatically 
<l>x/0, 0) = 0 and <1>,.,(0, 0) = 0. We saw in §1 that the vanishing of these 
derivatives was part of the characterization of the pitchfork. Thus in the 
context of odd functions, the pitchfork is the minimally degenerate singu
larity.) 

Returning to the calculation, we claim that at x = IJ( = 0 

( a) Jtfxx(O, 0) = - L- 1 E d2 <1>( Vo, Vo), 

(b) ~,(0, 0) = - L - 1E<l>,.,(O, 0), 
(3.22) 

where L- 1 : range L --+ M denotes the inverse of the linear map L 1M. To 
verify (3.22a), we differentiate (3.9), E<l>(xv0 + W(xv0 , ()(), IJ() = 0, twice with 
respect to x and evaluate at x = IJ( = 0; this yields 

EL(Wxx(O, 0)) + Ed2<1>(v0 + Wx(O, 0), Vo + Wx(O, 0)) = 0. 

Recalling that Wx(O, 0) = 0 and that EL = L we solve this equation for 
J.v"x(O, 0) to obtain (3.22a). Similarly, one verifies (3.22b) by differentiating 
(3.9) with respect to ()(1 and evaluating at x = IJ( = 0. 

To complete the calculation we will substitute (3.22) into (3.19) and then 
use the resulting formulas in (3.11), g(x, IJ() = <v~, </J(xv0 , ()()). Carrying out 
the above steps and recalling that <v~, (I - E)v) = <v~, v) (cf. (3.12)), we 
find that 

(a) 9x = 0, 

(b) 9xx = (v~, d2<1>(vo, Vo)), 

(c) 9xxx = (v~, d3<1>(v0 , Vo, v0 ) - 3d2<1>(v0 , L -t Ed2<1>(v0 , v0))), (3.23) 

(d) g,,= (v~, <1>,,), 

(e) y,,x = (v~, d<l>a, · v0 - d2 <1>(v0 , L -t E<l>",)). 

These are the formulas we were seeking. 
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The principal difficulty in computing these derivatives lies in the evalua
tion of the inverse of L. This difficulty is even greater when we generalize 
to infinite-dimensional problems in Chapter VII, where inverting L requires 
solving a differential equation. Thus any special circumstances which cause 
some of these terms to vanish are most welcome. One such circumstance was 
mentioned above; i.e., if <D(y, cx) is odd in y. Another occurs if y = 0 is a 
solution of the equation for all values of the bifurcation parameter cx0 = il; 
i.e., if <D(O, cx) = 0 for any cx of the form (il, 0, ... , 0). In the latter case 
<D;.(O, 0) = 0, so by (3.22b), W;.(O, 0) = 0. It follows from (3.19d) that 
4J;.(O, 0) = 0, and moreover the troublesome d2<D(v0 , W;,) in (3.19e) drops 
out of this equation. 

EXERCISES 

3.1. In §2 we reduced the equilibrium equations for (2.1 ), a 2 x 2 system of ODE, to the 
single scalar equation (2.3). This is a particular instance of the Liapunov-Schmidt 
reduction. Specifically, form a 2 x 2 system of equations of the form (3.1) by setting 
the right-hand side in (2.1) equal to zero. Show that ifwe take 

M = IR{(Ö)}, 

Vo = (1), vt = <n. 
where a and b are appropriate constants, then the general reduction process Ieads 
to (2.3). 

3.2. Let <1>: IR2 x IR -+ IR2 be defined by 

"" ') = (2u1 - 2u2 + 2ui + 2u~ - Au1) = 0 ~\ul,u2,1L 2 • 
u1 - u2 + u1u2 + u2 - 3A.u1 

Using the Liapunov-Schmidt reduction, show that <I> = 0 has a pitchfork bifurca
tion in a, neighborhood of the origin. (To check your answer, solve the second 
equation in <I> = 0 by the implicit function theorem and use implicit differentiation 
to obtain 

u2 = u1 + 2ui - 3u1A. + 6u~ + · · ·. (3.24) 

Then substitute (3.24) into the first equation.) 

3.3. (Discussion) Consider the finite element approximation of the Euler column 
illustrated in Figure 3.2. It consists of three rigid rods of unit length connected by 

Figure 3.2. A second finite element analogue of Euler buckling. 
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pins which permit rotation in a plane. It is subjected to a compressive force ...l. 

which is resisted by torsional springs of unit strength at the two connecting pins. 
This system is quite similar to the one illustrated in Figure 1.2; however the present 
system has two degrees of freedom. The point of the exercise is to use the 
Liapunov-Schmidt reduction to show that the qualitative behavior of the present 
system is identical to that of Figure 1.2. 

(a) Let x and y be defined as in Figure 3.2. Derive a 2 x 2 system of equations for 
x andy, say 

<l>;(x, y, l) = 0, i = 1, 2, 

which characterizes equilibria of the model. 
Hint: The easiest derivation is to use the potential function 

V(x, y) = !(x - 9)2 + !(y + 8)2 + A.(cos x + cos 8 + cos y). 

Here 8 is the angle the middle rod makes with the horizontal. Note that 8 is 
not an independentvariable-rather 8 is the following function of x and y: 

8 = sin- 1[sin y- sin x]. 

This relation comes from requiring that the two end pins be at the same 
height. Now Iet <1> 1 = av;ax and <1>2 = av;ay. 

(b) Note that x = y = 0 is a solution of the equations in (a) for any value of .t 
Let (d<l>)o,o,.< be the 2 x 2 Jacobian of the equations at this solution. Show 
that (d<l>)o,o,.< is invertible for 0 :5: ...l. < 1 and singular for A. = 1. Show also 
that (d<l>)o,o,.< has rank 1 when A. = 1. 

(c) Find the kerneland range of (d<l>)o,o,.< when A. = 1. 
(d) Show that if the Liapunov-Schmidt reduction is applied to the equations at 

x = y = 0, A. = 1, then the reduced bifurcation equation is equivalent to 
x3- A.x. 

Hint: Verify (1.8), using (3.23) to perform the calculations. The calculations 
are simplest if in (3.5) one takes 

M = IR(.!t), N = IR(D. 

§4. Asymptotic Stability and the Liapunov-Schmidt 
Reduction 

In this section we discuss how the stability of an equilibrium solution of an 
ODE is affected by the Liapunov-Schmidt reduction. Specifically, Iet 
F: IR" x IRk+ 1 -+ IR" and consider the n x n system of ODE 

y + F(y, rx) = 0, (4.1) 

where rx = (rx0, ••• , rxk) is a vector of parameters. Equilibrium solutions of 
(4.1) are characterized by the equation 

F(y, rx) = 0. (4.2) 
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Suppose that F(y0 , 0) (i.e., y0 is a rest point of (4.1) when cx = 0) and that 

rank(dF)y0 ,o = n- 1. (4.3) 

Since (dF)y0 , 0 is singular, the equilibrium solution of ( 4.1) at y = y0 for cx = 0 
may split into several equilibrium solutions when cx =1= 0. (Let us refer to these 
by the term perturbed equilibrium solutions.) Using the Liapunov-Schmidt 
reduction we may associate such perturbed equilibrium solutions of (4.1) 
with solutions of a single scalar equation 

g(x, cx) = 0, (4.4) 

where g: ~ x ~k+l ~ ~. The main conclusion oftbis section is that, under a 
slight strengthening of hypothesis ( 4.3), the stability or instability of these 
perturbed equilibrium solutions of (4.1) is determined by the sign of gx, the 
derivative of the reduced function ( 4.4). 

This section is divided into two subunits. In subsection (a) we review the 
theory of asymptotic stability for ODE, andin subsection (b) we formulate 
and prove our main result, Theorem 4.1. 

In both §3 and §4 we have restricted ourselves to finite dimensions. We will 
generalize the results of §3 to infinite dimensions in Chapter VII. Although 
the results of the present section also have infinite-dimensional analogues, 
they are more technical, and we shall not pursue them in this text. 

(a) Asymptotic Stability 

In defining asymptotic stability, Iet us temporarily suppress parameters in the 
differential equation. Let F: ~n ~ ~n, and suppose that y0 is an equilibrium 
solution of the ODE 

y + F(y) = 0; (4.5) 

i.e., suppose that F(y0 ) = 0. We shall call the rest point y0 asymptotically 
stable if every solution to ( 4.5) with initial condition close to y0 decays to y0 • 

More precisely, y0 is asymptotically stable if there are positive constants 
e and M such that for any solution y(t) to (4.5) satisfying ly(O) - y0 I < e 
we have I y(t) - Yo I < M and lim1 .... 00 y(t) = Yo. Otherwise we call Yo 
unstable. 

There is a useful sufficient condition for asymptotic stability in terms ofthe 
eigenvalues of the Jacobian matrix (dF)yo· Weshall call y0 linearly stable if 
every eigenvalue of (dF)y0 has a positive real part, linearly unstable if at least 
one eigenvalue has a negative real part. In Chapter 9, §§1 and 2 of Hirsch and 
Smale [1974] it is shown that y0 is asymptotically stableifit is linearly stable 
and that y 0 is unstable if it is linearly unstable. (Remark: Note that this 
apparent dichotomy is not complete: if every eigenvalue of (dF)y0 has a 
nonnegative real part but at least one real part vanishes, then y0 is neither 
linearly stable or linearly unstable. In this situation there is no simple test for 
asymptotic stability.) 
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The intuition here can be obtained by looking for solutions of ( 4.5) of the 
form 

y(t) = Yo + ez(t). (4.6) 

On substituting into (4.5) and neglecting terms of order e2 or higher, we find 
the equation for z(t) 

:i+Lz=O, (4.7) 

where L = (dF)yo· (This equation is commonly called the linearization of 
(4.5) at y0 .) Let !li> i = 1, ... , n be the eigenvalues of L, and let V; be the 
associated eigenvectors. Then the general solution of (4.7) has the form 

n 

z(t) = L: c;e-"''rv;, 
i=1 

(4.8) 

where the c;'s are constants. (Equation (4.8) holds provided the 11/s are 
distinet; a slight modification is required if there are repeated eigenvalues.) 
If /1; > 0 for all i, then z(t) ~ 0 as t ~ oo. The spirit ofthe theoremisthat on an 
appropriately small neighborhood of y0 , the full equation (4.5) mirnies the 
behavior of the linearization ( 4. 7). (Remark: With our convention of writing 
F(y) on the left in (4.5), positive eigenvalues correspond to stability. The 
opposite convention results from writing Fon the right.) 

Let us now return to (4.1); i.e., the case where the ODE depends on one or 
more parameters. To simplify the notation we will suppose that y0 = 0; 
in other words, we are assuming that y = 0 is an equilibrium solution of ( 4.1) 
when r:t. = 0. (The discussion applies with trivial modifications to an arbitrary 
rest point y0 .) Let L = (dF)0 , 0 . As noted above, linearization ofthe equations 
yields no information about asymptotic stability if one eigenvalue of L is 
zero and all the rest are positive. Of course our assumption (4.3) states 
unequivocally that zero is an eigenvalue of L. Thus, the task of this section is 
to analyze the stability of equilibrium solutions of ( 4.1) in the neighborhood of 
a borderline case. 

Let us expand on this point. Suppose that the eigenvalues p. 1, .•. , !ln of L 
satisfy the following: 

11-1 = 0, Re /1; > 0 for i = 2, ... , n. (4.9) 

(Equation ( 4.3) follows from ( 4.9), but not conversely.) As we remarked above, 
the equilibrium solution of (4.1) at y = 0 for r:t. = 0 may split into several 
perturbed equilibrium solutions when r:t. # 0. Now an equilibrium solution 
(y, rx) of (4.1) will be asymptotically stable if all the eigenvalues of (dF)y,!l. 
have positive real parts and unstable if at least one eigenvalue has a negative 
real part. We claim that for (y, rx) near (0, 0) the eigenvalues of (dF)y,!l. will be 
close to those of (dF)0 , 0 • To prove this, let us write (dF)y, !1. as a perturbation of 
(dF)0 , 0 = L: 

(dF)y,!l. = L + [(dF)y,!l. - L]. 
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The perturbing term (dF)y,,. - L is small if (y, oc) is close to zero, and the 
change in the eigenvalues tends to zero as the perturbation tends to zero. This 
proves the claim. However, the eigenvalues of L satisfy (4.9). Thus by the 
claim the last n - 1 eigenvalues of (dF)y,rz will be bounded away from the 
imaginary axis on an appropriately small neighborhood of (0, 0) and could 
not cause (y, oc) to be an unstable rest point of (4.1). In constrast, the first 
eigenvalue (which we denote by f.J.(y, oc)) will be close to zero and might cause 
such instability. Indeed an equilibrium solution (y, oc) of (4.1) will be linearly 
stable or unstable according as f.J.(y, oc) is positive or negative, respectively. 
Our goal is to show that gx(x, oc), where g is the reduced function from the 
Liapunov-Schmidt process, has the same sign as f.J.(y, oc). 

(b) Statement and Proof of the Main Result 

Recall from §3 that several arbitrary choices are necessary when making a 
Liapunov-Schmidt reduction. Specifically, in Step 1 one must choose 
complements to ker L and to range L, and in Step 5 one must choose a non
zero vector v0 in ker Land a nonzero vector v~ in (range L)J.. We claim that 
the assumption (4.9) implies that v0 is not in range L. For suppose v0 werein 
range L, say v0 = Lw. Then Lw =ft 0 and L 2w = 0. Thus both v0 and w would 
belong to ker L 2 , so that dim ker L 2 ~ 2. This would contradict the as
sumption (4.9) that zero is an algebraically simple eigenvalue for L. 

Since v0 does not belong to range L, ( v0 , v~) =ft 0. In order for the reduced 
equation g to give the correct stability information we need to match the 
orientations of v0 and v~ by requiring that 

(v0 , v~) > 0. (4.10) 

A choice of vectors satisfying ( 4.10) is said to be a consistent choice. 

Theorem 4.1. Let i + Lz = 0 be the linearization of y + F(y, oc) = 0, and 
assume that the eigenvalues ofL satisfy (4.9). Let g(x, il) be the reduced equation 
obtained by a Liapunov-Schmidt reduction of F(y, oc) = 0 using a consistent 
choice o.f v0 and v~. Then the rest point of y + F(y, oc) = 0 corresponding to a 
solution (x, oc) of g(x, oc) = 0 is asymptotically stable if gx(x, oc) > 0 and 
unstable if gx(x, oc) < 0. 

Roughly speaking, the proof of Theorem 4.1 requires showing that the 
quotient f.J./gx, where f.J. is the first eigenvalue of dF, defines a smooth function 
which is positive near the origin. We perform this division by means of the 
following proposition. Both Proposition 4.2 and the techniques involved 
in its proofwill be used in later chapters. However, with the one exception of 
Chapter VIII, §4, the remainder of this text is independent of the proof of 
Theorem 4.1 itself. Thus the reader may omit this proof with no loss of 
continuity. 
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Proposition 4.2. Let cjJ, t/1: ~n -. ~ be coo functions defined on a neighborhood of 
zero which vanish at zero. Assurne that 

(a) t/J(y) = 0 implies cjJ(y) = 0, 

(b) V cjJ(O) =F 0, Vt/1(0) =F 0, 

where V indicates gradient. Then a(y) = cjJ(y)/t/J(y) is coo and nonvanishing on 
some neighborhood of the origin. Moreover, sgn a(O) = sgn(VcjJ(O), Vt/1(0)). 

We derive Proposition 4.2 from a preliminary result. 

Lemma 4.3. Let t/f: ~n-. ~ be a smoothfunction de.fined on a neighborhood of 
0 such that t/1(0) = 0 and Vt/1(0) =F 0. Then there exists a diffeomorphism 
Y(y) such that Y(O) = 0 and t/J(Y(y)) = Yn, where Yn is the nth coordinate 
function of Y = (y1, ... , Yn). 

PRooF. Since Vt/1(0) =F 0 there is an index i such that ot/1 joylO) =F 0. By 
relabeling the coordinates, if necessary, we may assume that ot/Jjoy"(O) =F 0. 
Consider the map 

'P(y) = (y1, • • •' Yn-1• t/J(y)). 

Observe that det(d'P)0 = ot/Jjoyn(O) =F 0. By the inverse function theorem 
there exists a smooth mapping Y(y) satisfying Y(O) = 0 and 'P(Y(y)) = y. 
Equating the last Coordinates yields t/J(Y(y)) = Yn as desired. 0 

PR.ooF OF PROPOSITION 4.2. The property of being coo is, of course, invariant 
under coo changes of coordinates. Thus we may verify that a(y) is coo in any 
coordinate system that simplifies the calculations. We choose the system of 
Lemma 4.3. In other words, we assume without loss of generality that 
t/J(y) = Yn· 

The proposition is based on the fundamental theorem of calculus: 

cjJ(y', Yn) - cjJ(y', 0) = rYn ;cjJ (y', s) ds. 
Jo Yn 

(4.11) 

Here y' = (y1, ..• , Yn- 1). Now cjJ(y', 0) = 0 by hypothesis (a) ofthe theorem, 
since t/f(y) = Yn vanishes on the hyperplane {Yn = 0}. We make the sub
stitution s = tyn in (4.11) to obtain 

cjJ(y', Yn) = Yn ( 1 ;cjJ (y', tyn) dt. (4.12) Jo Yn 

Thus cjJ(y) = a(y)t/J(y), where a(y) is the integral in (4.12). Clearly a is C 00 • 

It remains to determine the sign of a(O). Differentiating the relation cjJ = at/1 
and recalling that t/1(0) = 0, we find that 

VcjJ(O) = a(O)Vt/1(0). 

Since V cjJ(O) =F 0, we deduce that a(O) =F 0 and moreover that sgn a(O) = 
sgn(VcjJ(O), Vt/1(0)). 0 
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PROOF OF THEOREM 4.1. In proving Theorem 4.1 weshall need some informa
tion from §3 about the mechanics of the Liapunov-Schmidt reduction of 
F(y, IX) = 0. We record this information here for reference in the proof. We 
continue to use the notation of §3 without comment. First, we rephrase (3.6): 
If u E ~". then 

u = 0 iff ( v~, u) = 0 and Eu = 0. 

Also, we rewrite (3.9) and (3.11) as 

EF(Q(x, IX), IX) = 0, 

g(x, IX) = (v~, F(Q(x, IX), IX)), 

where Q: ~ x ~k+ 1 --+ ~n is defined by 

Q(x, IX) = xv0 + W(xv0 , IX). 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(This formula differs from (3.14) in that here we do not retain the IX-co
ordinate on the right-hand side.) 

Let f.l(y, IX) be the first eigenvalue of(dF)y,a• as described above. We claim 
that f.l is a smooth function of y and IX. To motivate the proof, suppose 
that the entries of (dF)y, a vary smoothly with y and IX and that the eigenvalues 
of a matrix vary smoothly with its entries; composing these two smooth 
dependences, we see that f.l is a smooth function of y and IX. U nfortunately, it is 
not always true that the eigenvalues of a matrix vary smoothly with its entries: 
this property fails precisely at multiple eigenvalues. However, by (4.9) zero is 
a simple eigenvalue of (dF)0 , 0 = L, so this difficulty does not arise here. This 
proves the claim. Recall that the rest point of (4.1) corresponding to a solu
tion of g(x, IX) = 0 is asymptotically stable or unstable according as 
f.l(Q(x, IX), IX) is positive or negative. (We will abbreviate f.l(Q(x, IX), IX) to 
f.l(Q, IX).) Our task is to prove that f.l(Q, IX) and gx(x, IX) always have the same 
sign. We do this by invoking Proposition 4.2 to show that f.l(Q, IX) divided by 
gx(x, IX) isapositive coo function. Tothis end, we now prove that 

gx(x, IX) = 0 implies f.l(Q, IX) = 0, 

i.e., we verify condition (a) in Proposition 4.2. 
Suppose that gx(x, IX) = 0 for some (x, IX) E ~ x ~k+ 1• Differentiating 

(4.14) and (4.15) we see that 

E · dFn(x,a),a · Qx = 0, 

(vt, dFn(x,a),a · Qx) = 0. 

By (4.13), dFn<x,a),a · Qx = 0. In other words, zero is an eigenvalue of dFn(x,a),a 
associated to the eigenvector Qx· Thus f.l(Q, IX) = 0, since all the other eigen
values of dFy,a are bounded away from zero. 

In general it is not true that Vgx and V f.l(Q) arenonzero. Thus condition (b) 
of Proposition 4.2 is not valid, and the proposition cannot be applied directly. 
However, we shall use an unfolding trick which allows us to apply Pro-
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position 4.2. Specifically, we insert an extra scalar parameter ß into F by 
defining F: IR" x IRk+ 1 x IR ~ IR", 

F(y, et, ß) = F(y, et) + ßy. 

We then define jl(y, et, ß) tobe the eigenvalue of(dF)y,a,p that is close to zero. 
Applying the Liapunov-Schmidt reduction to F, we obtain a reduced 
function 

g(x, et, ß) = <vö, F(Ö.(x, et, ß), et, ß)). 

The argument above shows that 

gx(x, et, ß) = 0 implies that ji.(Q, et, ß) = 0. 

To apply Proposition 4.2, we show that the gradients ofthese two functions 
are nonzero. First consider 9x· Wehave from (3.23e) 

9xp(O, 0, 0) = <vö, d(Fp) · v0 - d2F(v0 , L - 1EFp)). 

However Fp(O, 0, 0) = 0 and d(Fp) · v0 = v0 . Therefore 

9xp(O, 0, 0) = <vö, Vo), 

and since <vö, v0 ) > 0 (i.e., vö and v0 were chosen consistently) 

gxp(O, 0, 0) > 0. 

Next we turn to the ß derivative of ji.(Ö., et, ß). We claim that 

Ö.(O, 0, ß) ~ 0. (4.17) 

To see this, observe that F(O, 0, ß) = 0. Thus formula (4.17) satisfies 
EF(Ö.(x, et, ß), et, ß) = 0, the analogue of (4.14), at points ofthe form (0, 0, ß). 
But Ö.(x, et, ß) is obtained by solving this analogue of (4.14) for n with the 
implicit function theorem; thus Ö. is uniquely determined in the solution 
process. This proves ( 4.17). 

Now 

(dF)o,o,p · v0 = Lv0 + ßvo = ßv0 , 

since Lv0 = 0. Therefore ß is an eigenvalue of(dF)o,O,P• with eigenvector v0 . 

Since the other eigenvalues of dF are bounded away from zero, we must have 

jl(O, 0, ß) = ß. 

Combining this equation with ( 4.17), we see that 

jl(Ö., 0, ß) = ß. 

On differentiating (4.18) we conclude that 

:ß jl(Q, 0, 0) = I > 0. 

(4.18) 
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We may now apply Proposition 4.2, obtaining 

ji(Ö., tx, ß) = a(x, tx, ß)gx(x, tx, ß), 

where a is a smooth function. Moreover, 

~ :ß ji(Q, 0, 0) 
a(O, 0, 0) = ~ (O 0 O) > 0. 

gx(J ' ' 
Theorem 4.1 follows on setting ß = 0 in (4.19). 

(4.19) 

D 

Remark 4.4. From Theorem 3.2 we know that any two reduced equations g1 

and g2 obtained by different Liapunov-Schmidt reductions are essentially 
equivalent. More precisely, we have that g2(x, A.) is equivalent to og1(ex, A.) 
where sgn () = sgn(vf, vD and sgn e = sgn(v1, v2 ). If v1, vT and v2 , v~ are 
both consistent choices (i.e., both satisfy (4.10)) then () = e and we have that 
g2(x, A.) is equivalent to eg 1(ex, A.). In particular, g1,x and g2 ,x have the same 
sign, since e2 = + 1. Let us show, more generally, that if g and h are equivalent 
then gx and hx have the same sign when g and h vanish. Indeed suppose 

h(x, A.) = S(x, A.)g(X(x, A.), A(A.)), 

where S(O, 0) > 0, X x(O, 0) > 0. Then 

hx = Sxg + SgxXx. 

If g = 0 the first term vanishes; thus hx and gx have the same sign. Of course, 
our reason for requiring that S(x, A.) > 0 and that X x(x, A.) > 0 in the defini
tion of equivalence is to obtain this property. 

EXERCISE 

4.1. Check the stability of the steady-state solutions to the differential equation 

du 
dt + F(u, A.) = 0, 

where Fis defined as in Exercise 3.2; i.e., 

F( ') = (2u 1 - 2u2 + 2ui + 2u~ - A.u1) 
U~o u2, 11. 2 • 

U 1 - U2 + U 1U2 + u2 - 3Au1 

ßiBLIOGRAPffiCAL COMMENTS 

The various perturbations of the pitchfork described in §1 may be found in 
Matkowsky and Reiss [1977]; it was proven in Golubitsky and Schaeffer 
[1979a] that the unfolding of the pitchfork given in Figure 1.5 is universal. 
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Further references to work on the CSTR are given in Balakotaiah and Luss 
[1981]. Alternative treatments of the Liapunov-Schrnidt reduction may 
be found in Chow and Haie [1982], Ch. 5; Crandall and Rabinowitz 
[1971]; Sattinger [1979], Ch. 3; Carr [1981], Ch. 1; and Chapter VII ofthe 
present text. (Thompson and Hunt [1973] discuss the same procedure 
under the name "elimination of the passive Coordinates".) Similarly, 
alternative treatments of the stability of solutions obtained from the 
Liapunov-Schmidt reduction may be found in the above references, in 
Crandall and Rabinowitz [1973], and in Kielhafer [1976]; in particular, 
these references study PDE, not just ODE as we have done in the text. 



APPENDIX 1 

The Implicit Function Theorem 

(a) Finite Dimensions 

The implicit function theorem in finite dimensions is concerned with a 
system of equations of the form 

i = 1, ... , n, (Al.l) 

depending on the k parameters rxi. Specifically, this theorem gives a sufficient 
condition which guarantees that the system (AU) may be solved locally for 
x 1, ... , x" as functions of the parameters rxi. Note that the number of equa
tions in (AU) equals the number of unknowns. 

We reformulate (Al.l) using vector notation. Let x = (x 1, ... , xn) E IR", 
rx = (rx 1, ... , rxk) E IR\andf = (/1, ... , fn) E IR". Thus(AU)definesamapping 
f: IR" x IRk ~ IR" which we assume is s-times differentiable, where 1 :::;; s :::;; oo. 
For any (x, rx) E IR" x IRk let (df)x,a denote the n x n Jacobian matrix 

( aJ; ) 
OX· (x, rx) . ·- . 

J I,J- 1, ... ,n 

We shall work in a neighborhood of a fixed point (x0 , rx0 ) E IR" x IRk. 

Implicit Function Theorem. Let f be as above. Suppose that f(x 0 , rx0 ) = 0 and 
that 

det( df)xo, ao =f. 0. 

Then there exist neighborhoods U of x 0 in IR" and V of rx0 in IRk and a function 
X: V~ U suchthatforeveryrxE V,(AU)hastheuniquesolutionx = X(rx)in 
U. Moreover, if f is of class CS so is X. In symbols we have 

f(X(rx), rx) = 0, 
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For the proof of the implicit function theorem, we refer, for example, to 
Chapter 8 of Taylor and Mann [1983]. 

Let us illustrate the use of the theorem with three examples. As a first 
example we refer the reader to Chapter I, §1. Here we consider possible 
bifurcation ln an equation g(x, A.) = 0 where g: IR 1 x IR 1 -+ IR 1. We conclude 
from the implicit function theorem that gx(x0 , .4.0) = 0 is a necessary con
dition for a solution (x0 , .4.0) of g(x, A.) = 0 to be a bifurcation point, for 
otherwise we could solve uniquely for x as a smooth function of A.. 

As a second example, Iet us consider the special case 

g(x, oc) = x 2 - ocx. 

Observethatx = Oisasolutiontog = Oforeachoc.Moreover,(dg)0 ,"' = -oc, 
so that for oc "# 0 the implicit function theorem guarantees that x = 0 is the 
only solution to g(x, oc) = 0 near x = 0. However, a simple glance at the 
set {(x, A.): g(x, A.) = 0} shows that the neighborhood on which the implicit 
function theorem is valid shrinks to a point as oc approaches 0. 

As a third, less trivial, example we show that Iimit points are both isolated 
and persistent to small perturbations. The point (x0 , .4.0 ) is a Iimit point for 
g(x, A.) = 0 if g(x0 , .4.0) = 9x(x0 , A.0) = 0 and 9xix0 , A.0) "# 0, g;.(x0 , A.0) "# 0. 
To show that Iimit points are isolated, define a mapping f: IR x IR-+ IR2 , 

where 

f(x, A.) = (g(x, A.), gx(x, A.)). 

At the Iimit point (x0 , .4.0 ) we have 

Thus the implicit function theorem, applied with k = 0, implies that (x0 , .4.0) is 
the only solution to g = 9x = 0 on a neighborhood of(x0 , .4.0 ). 

We next show that Iimit pointsarepersistent tosmall perturbations. Let 

G(x, A., 8) = g(x, A.) + 8p(x, A.), 

where p is any perturbation term and 8 is small. The Iimit points of G( ·, ·, 8) 

must satisfy 

F(x, A., 8) = (G(x, A., 8), Gx(x, A., 8)) = 0. 

Observe that det(dF)xo, ;.0 , 0 = det(df)xo. ;.0 "# 0. Thus the implicit function 
theorem, applied with k = 1, guarantees that the solutions to F = 0 near 
(x0 , A.0 , 0) have the form (X(8), A(8), 8) where (X(O), A(O)) = (x0 , .4.0 ). Thus 
for each 8 sufficiently small, G(·, ·, 8) has a unique Iimit point near (x0 , .4.0). 
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(b) Infinite Dimensions 

In Chapter VII, we will need to apply an infinite-dimensional version of the 
implicit function theorem which we formulate here. First we define a C 1 

mapping <1>: f5E-+ rJjj between Banach spaces. The mapping <I> is called 
(Frechet) differentiable at a point u E [!( if there is a bounded linear mapping 
L : [!( -+ rJjj such that 

ll<l>(u + v) - <l>(u) - Lv!l = o(llvll) (Al.2) 

for v in some neighborhood ofzero in fi. The linear operator in (A1.2) will be 
denoted (d<l>)u, the differential of<l> at u. We will say that <I> is of dass C 1 if<l> is 
differentiable for every u E [!( and the mapping u -+ d<l>u is continuous in the 
norm topologies. (Remarks: (i) The reader should understand that this 
definition and the theorem below apply equally weil to a mapping into qy 
defined on an open subset of f5E; we ignore this generalization, as it complicates 
the notation without adding insight. (ii) Mappings of dass c• are defined in 
Appendix A3.) 

Let <1>: [!( X rJjj-+ fZ be a C 1 mapping between Banach spaces. Let 
(d<l>)u. v: f5E -+ fZ denote the differential of<l> (with respect to [!( only). Consider 
the equation 

<l>(u, v) = 0 (Al.3) 

near a fixed point, say (0, 0), such that <1>(0, 0) = 0. 

Implicit Function Theorem for Banach Spaces. Let <I> be as de.fined above and 
suppose that (d<l>)0 , 0 : [!( -+ fZ has a bounded inverse. Then (A1.3) may be solved 
locally for u = 'P(v), where 'I': r1!J -+ [!( is a C1 mapping. 

A comprehensive treatment of the implicit function theorem in infinite 
dimensions is given in Chapter 2 of Chow and Haie [1982]. 

In the applications of this theorem in Chapter VII, <I> is typically a differ
ential operator. For such an operatortobe bounded it is essential to allow the 
domain and range of <I> to be different spaces. For example, the Laplacian is 
bounded from C2(Q) to C0(Q) but is not bounded operating from any Banach 
space to itself. 

EXERCISES 

Al.l. A function f: IR"-+ IR has a nondegenerate singularity at x if (df)x = 0 and 
det(d~f)x =f. 0 where d2f is the Hessian matrix (B 2f!BxJJxj). Show that non
degenerate singularities are isolated and persistent to small perturbations of f. 

Al.2. The mapping F: IR"-+ IR" has a nondegeneratefixed point at x if F(x) = x and 1 is 
not an eigenvalue ofthe n x n Jacobian matrix (dF},. Show that nondegenerate 
fixed points are isolated and persistent to small perturbations of F. 
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Equivalence and the Liapunov-Schmidt 
Reduction 

In this appendix we prove Theorem I,3020 We recall the notation of that 
theorem-g 1 and g2 are two different reduced functions obtained by applying 
the Liapunov-Schmidt reduction to (I,3o1)o Each reduced function g;, 
i = 1, 2, depends on four arbitrary choices; vizo, on subspaces M; and N; as in 
(I,3.4) and (I,3o5), and on vectors V; and vf in ker Land (range Llo Our task 
is to show that, up to the ± signs indicated in the theorem, g1 and g2 are 
equivalent. We consider in turn the four cases where three ofthe four choices 
needed for the reduction are the same for g 1 and g2 but the fourth is different. 
Since equivalence is a transitive relationship, the general case follows by 
combining these four special caseso As it happens two of these four cases are 
trivial to analyze, and we deal with both of these simultaneously in Case I 
belowo 

Case I. Suppose M 1 = M 2 , N 1 = N 2 , but possibly v1 # v2 andjor vf # vi 0 

This case is easy because the reduced equation 1;;: ker L x IR~ N;, 
i = 1, 2, obtained in Step 4 ofthe reduction is the same for g 1 and g 2 0 (We will 
therefore simply write lj;, omitting the subscript.) The only difference between 
g1 and g2 is in the parametrization of ker Land No Wehave v2 = cv 1 and 
vi = dvf for some coefficients c andjor d, where c # 0 and d # 00 Indeed 
sgn c = s and sgn d = bo Now 

gix, A.) = (dvf, lj;(cxvl> A.)) 

= dg 1(cx, A.)o 

This equation yields the equivalence of gix, A.) and 1Jg 1(ex, A.); specifically we 
may take S(x, A.) = ldl- 1, X(x, A.) = lcl- 1x, and A(A.) = A. in (I,l.6)o 
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For the remaining two cases we recall from Chapter I, §3(c) the geometric 
view of the Liapunov-Schmidt reduction. Let 

"fi = {(y, A.): E;<I>(y, A.) = 0}, i = 1, 2. (A2.1) 

Each "fi is a two-dimensional submanifold of ~n x ~ whose tangent space 
at the origin is ker L x ~. The submanifolds "fi may be parametrized by 

O;(v, A.) = (v + W;(v, A.), A.). (A2.2) 

(Cf. (1,3.14).) Moreover 

g;(x, A.) = (vf, <I> o O;(xv;, A.)). (A2.3) 

(Cf. (I, 4.15).) 

Case II. Suppose that N 1 = N 2 , v1 = v2, v! = v! but possibly M 1 =I= M 2 . 

The projection E; depends only on N;, and we have N 1 = N 2 • Thus in 
(A2.1) we have "Y1 = "Y2 • However, the parametrization of "Y = "Y1 = "Y2 by 
n; in (A2.2) does depend on the choice of M;, and this point is the only 
difference between g 1 and g2 • This observation is the basis of our proof of 
equivalence in this case. 

Let us elaborate. Let n1 : ~n x ~- ker L x ~ be the projection with 
kerne! M 1 x {0}. We claim that Q1 o nd"Y is the identity. It may be seen 
from (A2.2) that for composition in the reverse order we have 
1t1 0 n1 (v, A.) = (v, A.), whence n1 0 1t1 0 n1 (v, A.) = n1 (v, A.). But n1 para
metrizes 1/, so any point in "Y has the form Q1(v, A.) for some (v, A.). The claim 
follows. 

Since v1 = v2 and v! = v!, we use a common subscript "zero" for these 
vectors. (v without a subscript is a generic element of ker L.) We insert the 
identity into the representation (A2.3) of g2 as follows. 

g2 = (vö, <I> o 02(xvo, A.)) 
= (VÖ, <I> o Q1 o TC 1 o Q2(XVo, A)). 

Weshall extract the required diffeomorphism from the factor 1t1 0 n2. Let 
us elaborate. Since n1 maps into ker L x ~. there exists a smooth function 
X suchthat 

Thus 

g2(x, A.) = (vö, <I> o Q 1(X(x, A.)v0 , A.)) 
= g 1 (X(x, A.), A.). 

(A2.4) 

Hence g2 can be obtained from g1 by composition with a change of Co
ordinates, and it remains only to show that oXjox(O, 0) > 0. Applying the 
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chain rule to (A2.4) we observe that ax;ax(O, O)v0 equals the first component 
of dn1 o dQ 2 • (v0 , 0), which we abbreviate to dn1 · dQ2 · v0 . However by 
(1,3.15) we have aWzfax = 0, so dQ.z. Vo = Vo. Moreover, dn1 = n1, since 
n1 is linear, and n1v0 = v0 • Combining these, we conclude that 
ax;ax(O, O) = 1. 

Case 111. M 1 = M 2 , v1 = v2 , vi = vi, but possibly N 1 # N 2 • 

The basic observation here is the following containment: 

{(y, A.): <l>(y, A) = 0} c 1/'1 n "Yz. 

We deduce from this observation that for v e ker L, 4> 1(v, A.) vanishes if and 
only if c/> 2(v, A.) = 0; thus, introducing coordinates, we see that 

g1(x, .l.) = 0 iff g2(x, A) = 0. (A2.5) 

We now want to apply Proposition 1,4.2 to show that gz(x, .J.)jg1(x, .l.) is a 
positive c:o function near the origin. For this we need to show Vg; # 0, 
i = 1, 2. Wehave from (1,3.23a) that ag)ax(O, 0) = 0, but from (1,3.23d) 

ag 1 _ I * a<I> ) _ ag z af (0, 0) - \ Vo, Q>). (0, 0) - a.J. (0, 0). 

Therefore, if either derivative is nonzero, then so is the other, and moreover 
<Vg 1 , V'g2 ) > 0. Thus in this case 

gz(x, .l.) = S(x, .J.)g1(x, .l.) 

for some positive, coo function S(x, .l.); in particular, g2 is equivalent to g1• 

However, more commonly it will happen that VgJO, 0) = 0. We cannot 
then apply Proposition 1,4.2 directly, but must resort to a trick. (Cf. the proof 
ofTheorem I, 4.1.) We "unfold" <1> by introducing an additional parameter 
ß as follows. Define a function <1>: !Rn x IR x IR --+ !Rn, 

<D(y, .l., ß) = <l>(y, .l.) + ßv~. 

Now apply the Liapunov-Schmidt reduction to <D, obtaining 

(f>;: ker L x IR x IR --+ N; 

as in (1,3.10) and {/;(x, A, ß) as in (1,3.11 ). As before, the zeros of Mx, A, ß) are 
in a natural one-to-one correspondence with the zeros of <D(y, A, ß). Likewise 
define the solution manifolds f/; = {(y, A., ß): E;<D(y, A., ß) = 0} and note that 

{<D(y, A, ß) = 0} c 17"1 n 172 • 

This fact implies, as in (A2.5), that 

(J 1(x, A, ß) = 0 ifand only if gz(x, A, ß) = 0. 



50 Appendix 2. Equivalence and the Liapunov-Schmidt Reduction 

We claim that (ojoß)(JlO, 0, 0) > 0. Indeed, applying (1,3.23d) we have 

~~ {0, 0, 0) = \v~, ~!) = (v~, v~) > 0 

as claimed. Thus we may apply Proposition 1,4.2 to functions of the three 
variables x, A., and ß to conclude that g2(x, A., ß) = S(x, A., ß)g 1(x, A., ß) for 
some coo, positive function S(x, A., ß). On restricting to ß = 0 we obtain the 
desired equivalence. 0 



CHAPTER li 

The Recognition Problem 

§0. Introduction 
In this chapter we consider a notion of equivalence slightly different from 
that of Chapter I. We say that two smooth mappings g, h: ~ x ~- ~ 
defined near the origin are strongly equivalent if there exist functions X(x, A.) 
and S(x, A.) such that the relation 

g(x, A.) = S(x, A.)h(X(x, A.), A.) (0.1) 

holds near the origin. This definition differs from our earlier version (1,1.8) in 
that here we do not allow the bifurcation parameter A. to be transformed. In 
this definition we still require that 

X(O, 0) = 0, Xx(x,A.) > 0, S(x, A.) > 0. (0.2) 

Here and below we work in the neighborhood of the origin in ~2 ; this is 
merely for convenience, as we could equally weil work near any given point. 

This chapter is entitled "The Recognition Problem," by which we under
stand the following. Consider a smooth mapping h: ~ x ~ - ~ defined near 
(0, 0). To solve the recognition problern for h means to characterize explicitly 
the mappings which are strongly equivalent to h. For example, we will show 
in this chapter that a mapping g is strongly equivalent to x3 - A.x if 

g(O, 0) = gx(O, 0) = gxx(O, 0) = g;.(O, 0) = 0 (0.3a) 

and 

gxxiO, 0) > 0, (0.3b) 

(Cf. (1,1.6).) In other words (0.3) solves the recognition problern for x 3 - A.x. 
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In this chapter we present algorithms which Iead to a solution of the 
recognition problern for a rather general mapping h, and we carry out the 
calculations required by the algorithms in a number of interesting special 
cases, x3 - A.x among them. This information is useful in applications, in that 
one can test whether an equation g(x, A.) = 0 coming from a specific applica
tion is equivalent to another, presumably simpler, equation h(x, A.) = 0. 
However, this information is incomplete, in that it does not teil how to derive 
an appropriate h-throughout this chapter we assume that h is already given. 
Weshall refer to h as anormalform for the bifurcation problem. Typically h 
will be the simplest representative from a whole equivalence dass of mappings. 

The issue of obtaining an appropriate normal form for a bifurcation 
problern is one of the most subtle aspects of our theory. At this early stage of 
the exposition, we Iimit ourselves to the following two simple remarks con
cerning this issue: 

(i) Given a specific mapping g(x, A.), it may be possible to compute which 
of its derivatives vanish at the bifurcation point. Suppose we have a Iist 

( a )k'(o )'' OX oA. g(x, A.) = o, i = 1, 2, ... , N. (0.4) 

A natural choice for h isalinear combination ofthe lowest-order monamials 
xk),1 not on this Iist. 

However, even in relatively simple examples, this procedure requires care 
in its implementation. For example, the monamials associated to the Iist 
(0.3a) are 1, x, A., x 2 ; the lowest order monamials not on this Iist would seem 
tobe xA., A.2 , and x 3• As (0.3b) suggests, we need only consider the x3 and xA. 
terms in h. In many cases the classification theorem (Theorem 2.1 of Chapter 
IV) eliminates the need for computation in carrying out this procedure-for 
several of the simpler bifurcation problems, this theorem gives the normal 
form associated to a Iist ofvanishing derivatives such as (0.4). (Corollary 9.1 of 
this chapter is a less complete result in this direction.) 

(ii) Often in applications one has some idea of what kind of bifurcation 
diagrams to expect. In the figures ofChapter IV, §4 we tabulate the bifurcation 
diagrams associated to the normal forms considered in Theorem IV,2.1. 
Scanning this table and looking for the expected behavior of the applied 
problern is another way to generate candidates for a normal form. 

Of course these remarks are terribly sketchy. We refer the reader to the 
Case Sturlies for a more complete presentation of how we choose normal 
forms in specific problems. 

At this point we present our solution of the recognition problern for 
anotherexample. Weconsiderthenormalformsh(x, A.) = e(x2 + c5A.2), where 
e and c5 equal ± 1. lf c5 = - 1, the zero set of h consists of two crossed lines; if 
c5 = + 1, it consists of the single point x = A. = 0. Thus, the bifurcation 
diagrams in these two cases are quite different, although algebraically the 
two cases are quite similar. This example foreshadows some of the nuisance 
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that plus and minus signs create. In Proposition 9.3 below we obtain the 
following solution to the recognition problern for a(x2 + JA. 2 ): if a mapping g 
satisfies 

g(O, 0) = gx(O, 0) = g;.(O, 0) = 0 (0.5a) 

and 

9xx(O, 0) i= 0, det d2g(O, 0) i= 0, (O.Sb) 

then g is strongly equivalent to a(x2 + JA.2 ), where B = sgn 9xx(O, 0) and 
J = sgn det(d2g(O, 0)). Here d2g stands for the Hessian matrix 

d2g = (9xx 9.l.x). 
9;.x 9u 

In the rest of §0 we attempt to give an overview of the contents of Chapter 
II. The discussion in the next paragraph starts this effort. 

The most noteworthy feature of (0.3) and (0.5) isthat these conditions only 
involve a small number of the derivatives of g. We say that h is .finitely 
determined if we need compute only a finite number of terms in the Taylor 
expansion of g when deciding whether g is strongly equivalent to h. Let us 
explore some consequences oftbis fact. Consider, for example, the second case, 
h = a(x2 + JA.2). According to our solution ofthe recognition prob lern, if p is 
any polynomial all of whose terms are of degree 3 or greater, then h + p is 
strongly equivalent to h. For an arbitrary monomial xk A.1, Iet us ask for what a, 
if any, is h + axk .11 strongly equivalent to h? This question separates mono-
mials into three classes as follows: 

(i) Low-order terms: The derivative (ojoxt(ojoA.Yg must vanish, so equi
valence only obtains if a = 0. 

(ii) Higher-order terms: The derivative (iJ/oxt(ojiJA_)lg nowhere appears in 
(0.5), so equivalence obtains for all a. 

(iii) Intermediate-order terms: Whatever terms are not included above. 

In general, our solution of the recognition problern foranormal form h will 
split monomials into three classes in this fashion. The exact definition of 
higher-order terms is more complicated than is indicated in (ii); however, (ii) 
does convey the essential spirit of the correct definition. For the specific case 
of (0.5) the three classes may be related to degrees of homogenity as follows: 

(i) Low order: degree ::;; 1. 
(ii) Intermediate order: degree = 2. 

(iii) Higher order: degree ~ 3. 

Usually the three classes will not mesh so nicely with degrees ofhomogeneity. 
The main results of Chapter II are formulated in §8 where we describe the 

algorithm which solves the recognition problern for a mapping h. This 
algorithm has three parts, corresponding to the three kinds of monomials 
mentioned above. The first part enumerates the low-order terms; this is a 
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rather simple task. The second part provides an algorithm to characterize 
the higher-order terms; the algorithm may be carried out even in rather 
complicated bifurcation problems. The third part identifies the conditions 
that the intermediate-order terms must satisfy for equivalence to obtain; 
it will appear in Chapter V that these conditions can in general be rather 
complicated, but in the present chapter, they will always have the form of 
inequalities, as in (0.3b) and (0.5b). 

In §9 we apply the results of §8 to derive normal forms for several im
portant classes of bifurcation problems. Sections 11-12 contain the proofs of 
results that either were too long to give earlier or were extraneous to the main 
sequence of ideas. 

Sections 1-7 develop the material needed for an efficient presentation of 
our main results. In §1 we introduce the formalism of germs, which is a 
notational convention incorporating the fact that all our results are only 
valid in a sufficiently small neighborhood of some fixed point. The funda
mental theoretical concept ofthe chapter, the restricted tangent space RT(g), 
is defined in §2; loosely speaking, R T(g) consists of those mappings p such 
that fort small, h + tp is strongly equivalent to h, modulo error terms that are 
(!)(t2 ). lt is important tobe able to compute R T(g) efficiently; §§3-7 are a unit 
which addresses this issue. In §§3 and 6, we compute RT(g) for certain simple 
and complicated examples, respectively. In §§4, 5, and 7 we abstract general 
principles from the calculations of the earlier sections; we give these their 
natural, algebraic formulation. 

In §10, we consider the recognition problern in the context of general 
equivalences; i.e., those where the bifurcation parameter may be trans
formed. (This is to be contrasted with strong equivalences as defined in 
(0.1).) Actually our principal interest lies with general equivalences, but the 
mathematical development of the subject is simplified by considering strong 
equivalences first. In any case, we use essentially the same techniques in 
either context, and for simple normal forms the solution to the recognition 
problern is the samein either context. In particular, (0.3) and (0.5) solve the 
recognition problern for their respective normal forms in either context. 

§ 1. Germs : A Preliminary Issue 

The theory we are presenting is a local one; i.e., our results arevalid only in a 
sufficiently small neighborhood of some fixed point. The terminology of 
germs provides a convenient way of formulating results in a local theory 
which avoids infinite repetition ofthe phrase "in a sufficiently small neighbor
hood of the origin." 

To better understand what it means that our theory is only local, Iet us 
consider the function 
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I 

Figure 1.1. Solutionset of x3 - ilx + ax4 = 0; a > 0. 
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Now g satisfies conditions (0.3), so by the results quoted above, g is strongly 
equivalent to the pitchfork x3 - A.x. However, the zero set of g, shown in 
Figure 1.1 when a > 0, consists of the two curves x = 0 and A. = x2 + ax 3• 

Intuitively, it is clear that x3 - A.x + ax4 can be equivalent to x 3 - A.x only 
on a neighborhood which is not too large. Specifically, equivalence can 
only hold on a neighborhood which excludes the Iimit point of A. = x 2 + ax3 

at (x, A.) = ( -2/3a, 4/27a2); such a neighborhood is indicated by the dotted 
lines in Figure 2.1. (This intuition may be supported by a rigorous argument 
based on counting solutions as in formula (1,1.9).) Moreover, the largest 
disk on which equivalence obtains in fact shrinks to the origin as a ~ oo. 
From this example we see that it is impossible to choose one fixed neighbor
hood of the origin on which (0.3) would imply pitchfork-like behavior. 

Given suitable bounds for higher-order derivatives of g it is possible to 
estimate the size of the neighborhood on which an equivalence obtains. 
However, the situation concerning such results is similar to the situation for 
the implicit function theorem. This theorem (see Appendix 1) gives sufficient 
conditions which guarantee that an equation F(x, y) = 0 may be solved for 
x as a function of y, say x(y). We can estimate the exact domain of the 
function x(y), but for most applications this is unnecessary, and usually 
such estimates are hard to apply. 

Moreover, tobe completely explicit about the domains offunctions can be 
rather a nuisance. For example, if g(x, A.) is defined on U, a neighborhood of 
the origin in IR2, and if h(x, A.) is defined on V, then the sum g + h or product 
gh is onlydefined on U n V. But whatis therelationoftherestrictiong I U n V 
to the original function g? For purposes of a local theory they are effectively 
indistinguishable. 

We shall say that two functions (defined near the origin, possibly on 
different sets) are equal as germs ifthere is some neighborhood ofthe origin on 
which they coincide. This definition applies to artificial examples such as 
9t(x, A.) = x and 

{
X if A s 1, 

gz(x, A.) = x + e-t/(A- tJ if A. > 1, 

since g 1 and g 2 coincide in the disk {(x, A.): x 2 + A.2 < 1}. More importantly, 
this definition speaks to the question of the preceding paragraph: lf g is 
defined on a neighborhood of zero, then g and g I U n V are equal as germs. 
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In general, if vl and v2 are neighborhoods of the origin, then 9 I u (\ vl and 
9 I U n V2 are equal in this sense. 

Let c! x,;. denote the space of all functions 9: IR2 ~ IR that are defined and 
coo on some neighborhood ofthe origin. Weshall identify any two functions 
in c!x,J. which are equal as germs. We call the elements of c!x.J. germs. (In 
more technicallanguage, a germ is an equivalence class in tff x, ;. with respect 
to this identification. A similar issue concerning equivalence classes arises in 
integration theory, where we want to identify functions that are equal almost 
everywhere.) We shall sometimes write c! 2 or simply c! for this space-the 
subscript "2" indicates the number of variables. Similarly, we will occasional
ly need c!", germs of functions of n variables, and c!;., germs of functions of A, 
alone. 

Germ concepts allow us to shrink the domain of a function as needed. For 
example, if 9 E c! x,;. and 9(0, 0) # 0, then 1/9 E c! x, .<, since 1/9 is defined and 
smooth in some neighborhood ofthe origin.ltdoes not matter ifthat neighbor
hood is smaller than the original domain of 9· Similarly, in formula (0.2) it 
suffices to require that 

S(O, 0) > 0; 

by continuity these inequalities continue to hold in some neighborhood ofthe 
origin, and what happens away from such a neighborhood is irrelevant. 

In dealing with germs the reader should bear the following points in mind: 

(i) Evaluation of a germ 9 at a fixed point (x0 , A-0 ) different from (0, 0) is not 
compatible with germ concepts, since for any such point (x0 , A-0 ) there 
always exist smooth functions 9 1 and 92 which are equal as germs but 
still satisfy 91(x0 , A-0 ) # 92(x 0 , A-0 ). On the other hand, any derivative ofa 
germ evaluated at the origin is weil defined (See Exercise 1.1.) 

(ii) Limit processes with germs are suspect, since the domains ma y shrink to a 
point in the limit. Of course, finite processes such as addition and multi
plication pose no such problem. 

EXERCISE 

1.1. (a) Letg beagerm in ~n· Show thatg(O) is welldefined; that is,choosetwo functions 
/ 1 and / 2 representing g and show that / 1 (0) = / 2(0). 

(b) Show that agjaxi is a well-defined germ in ~x.;. by showing that ajtf8xi and 
aj2jaxj define the same germs. 

(c) Show that (ajax 1)"' • • · (ajaxn)""g(O) is weil defined. 

§2. The Restricted Tangent Space 

In this section we define the restricted tangent space of a germ 9 in c! x,;.; this 
definitionisafundamental theoretical concept that underlies most of Chapter 
II. This concept arises naturally from the following question: "Given a 



§2. The Restricted Tangent Space 57 

germ g, for what perturbations p is g + tp strongly equivalent to g for all 
small t?" Suppose that for some perturbation p the answer is affirmative; 
then for allsmallt there exist functions S(x, Ä., t) and X(x, Ä., t) suchthat 

g(x, Ä.) + tp(x, Ä.) = S(x, Ä., t)g(X(x, Ä., t), Ä.), (2.1) 

where 

X(O, 0, t) = 0. (2.2) 

Suppose further that Sand ~ vary smoothly in x, Ä. and t and that at t = 0, S 
and X define the identity transformation on g; in symbols 

S(x, Ä., 0) = 1, X(x, Ä., 0) = x. (2.3) 

(Remark: Because of (2.3) we need not assume explicitly that X x(O, 0, t) > 0, 
S(O, 0, t) > 0-this follows for small t by continuity.) We differentiate (2.1) 
with respect tot, set t = 0, and use (2.3) to simplify the right-hand side; this 
yields 

p(x, Ä.) = S(x, Ä., O)g(x, Ä.) + gx(x, Ä.)X(x, Ä., 0), 

where dot indicates a t derivative. Note that by (2.2), X 0(0, 0, 0) = 0. 
The restricted tangent space R T(g) is defined as the totality of functions 

that arise through the above construction. Let us formalize this in the follow
ing definition. 

Definition 2.1. The restricted tangent space of a germ g, denoted by RT(g), is 
the set of all germs p which may be written in the form 

p(x, Ä.) = a(x, Ä.)g(x, Ä.) + b(x, Ä.)gx(x, Ä.), 

where a, b E G x, .t and b(O, 0) = 0. 

(2.4) 

We use the word "restricted" to indicate a construction associated with 
strong equivalence. In the next chapter we shall consider an unrestricted 
tangent space associated with ordinary equivalence. For our purposes here, 
the restricted tangent space leads to a simpler theory. 

1t follows from the discussion above that p e RT(g) is a necessary con
dition for g + tp to be strongly equivalent to g when t is small. lt is not a 
sufficient condition, but we can prove the following theorem. 

Theorem 2.2. Let g and p be germs in Gx,.t· If 

RT(g + tp) = RT(g) for all t E [0, 1], 

then g + tp is strongly equivalent to g for all t E [0, 1]. 

(2.5) 

This theorem is proved in § 11. There we construct an appropriate S and X 
to show equivalence by solving certain ODE. Moreover, we will use the ideas 
involved in this construction later in the text. 
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Let us show that if condition (2.5) is satisfied then p E RT(g). Indeed, 
suppose 

RT(g + tp) = RT(g) (2.6) 

for just one nonzero t. Certainly g + tp E RT(g + tp), as we may choose 
a = 1, b = 0 in (2.4). Thus, by (2.5) we see that 

g + tp = ag + bgx 

for some a, b E C x,;. where b(O, 0) = 0. Subtracting g from both sides and 
dividing by t we obtain 

a- 1 b 
P ---g+-g 

- t t X' 

which shows p E RT(g). 

§3. Calculation of RT(g), I: Simple Examples 

Our main purposein this section is to calculate RT(g) for the following two 
simple examples: 

(a) g = x 2 + A. (Iimit point), 

(b) g = x3 - A.x (pitchfork). 
(3.1) 

These calculations Iead to general principles for determining RT(g) that are 
an essential part of our theory. 

(a) Preliminaries Needed for the Calculation 

According to Definition 2.2, a germ f E fffx,;. belongs to RT(g) if it may be 
written in the form (2.4). In this formula the condition that b(O, 0) = 0 is 
something of a nuisance. We will use Lemma 3.1 below to obtain a more 
convenient formula; since we will usually prefer this reformulation of (2.4) to 
(2.4) itself, we incoprorate the reformulation into Lemma 3.2 for later 
reference. 

Lemma 3.1. Let f(x) be a germ in C" with f(O) = 0. Then there exist smooth 
germs al, ... ' an in cn suchthat 

where x = (x 1, ... , Xn). 

We apply the Iemma to reformulate (2.4) before giving the proof. 
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Lemma 3.2. Let g E G x, J.. A germ f belongs to R T(g) if and only if there exist 
germs a, b, c E ß x, J. such that 

f = ag + (xb + A.c)gx. (3.2) 

PRooF OF LEMMA 3.2. If f has the form (3.2), then f also has the form (2.4), 
since the coefficient of gx in (3.2) vanishes at the origin. Conversely, suppose f 
has the form (2.4). Then b(O, 0) = 0, so by Lemma 3.1 there exist smooth 
coefficients jj and c such that 

b(x, A.) = xb(x, A.) + A.c(x, A.). 

We obtain (3.2) on substituting this representation for b(x, A.) into (2.4) 0 

PRooF OF LEMMA 3.1. Suppose f is defined on some ball B. c 11\11". For any 
fixed x E B. define a function of one variable h(s) = f(sx), where 0 :::;;; s :::;;; 1. 
Note that h(O) = f(O) = 0. Now 

i l dh 
f(x) = h(l) - h(O) = 

0 
ds (s) ds. 

By the chain rule 

dh n of 
-d (s) = L xi--;----- (sx). 

S i=l UXj 

Ifwe define 

i l of 
alx) = --;----- (sx) ds, 

0 UXj 

then we obtain the desired representation for f. 0 

lt will be useful below to generalize Lemma 3.1. This generalization is just a 
version ofTaylor's theorem; the new wrinkle in Lemma 3.3 is a specific form 
for the remainder of order k which shows, in particular, that this remainder is 
itself a smooth function.lf f E Sn, we use the following notation for the kth
order Taylor polynomial of f at the origin (or k-jet, as it is often called): 

1 ( fJ )"' I /'f(x) = L 1 - f x"'. 
lalskCX. OX x=O 

Here cx = (cx1, .•. , cxn) is a multi-index ofnonnegative integers and we observe 
the standard conventions with multi-indices; thus 

Iex! = CX1 + · · · + CXn, cx! = (cxl)! · • · (cxn)!, 

x"' =X~' ... x:", (:xr = (o~)"'' ... (o~)"'". 
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Lemma 3.3 (Taylor's Theorem). Let f be in Cn. For any nonnegative integer k 
there exists coefficients aa E cn, indexed by multi-indices a with I a I = k + 1, 
suchthat 

f(x) = /J(x) + L aa(x)x". (3.3) 
Iai =k+ 1 

PROOF. The proof ofLemma 3.3 is by induction. Lemma 3.1 applied to f(x) -
f(O) starts theinduction whenk = 0. We ask thereader to supplytheinductive 
step of the argument in Exercise 3.1. D 

(b) Calculation of RT(g) for the Two Examples 

For (3.1a) we will show that 

RT(x2 + A.) = { f E C x,;.: f(O, 0) = fx(O, 0) = 0}. (3.4) 

To see this we argue as follows. Observe from Lemma 3.2 that R T(x 2 + A.) 
consists of all germs of the form 

a(x2 + A.) + (xb + A.c)(2x) = (a + 2b)x2 + (a + 2xc)A., (3.5) 

where a, b, c E C x, ;.· We claim that RT(x2 + A.) may equally be characterized 
as all germs of the form 

(3.6) 

where a, ß E C x,;.. Certainly every germ with the form (3.5) has the form (3.6). 
Conversely, given a, ß E C x.;. we set 

a = ß, b = (a- ß)/2, c = 0; (3.7) 

on substituting these coefficients into (3.5) we see that ax2 + ßA. can be 
expressed in the form (3.5), as claimed. We now derive (3.4) from the claim. 
If f E RT(x2 + A.) then f may be written in the form (3.6), from which we 
calculate that f(O, 0) = fx(O, 0) = 0. Conversely, suppose f(O, 0) = fx(O, 0) 
= 0. Then applying Taylor's theorem (Lemma 3.3) with k = 1, we see that 
there exist coefficients a20 , a 11 , and a02 suchthat 

f(x, A.) = f;.(O, O)A. + a20 x 2 + a11 A.x + a0 zA2 . (3.8) 

But (3.8) has the required form (3.6)-we may set 

This completes the verification of (3.4). 
Passing to the second example, we claim that for (3.1b) 

RT(x3 - A.x) = {f E cx,).: f(O, 0) = fx(O, 0) = f;.(O, 0) = fxxCO, 0) = 0}. 

(3.9) 
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The calculation is quite similar to the preceding case. First we apply Lemma 
3.2 and regroup terms to show that RT(x3 - A.x) consists of all germs of the 
form 

(a + 3b)x3 - (a + 2b - 3xc)A.x - cA.2 , (3.10) 

where a, b, c E tfx,.<· Then we argue that every germ oftheform (3.10) may be 
written as 

(3.11) 

where IX, ß, y E tf x, ;., and less trivially, every germ of the form (3.11) may be 
written in the form (3.10); the important point hereisthat the linear system 

a+3b=IX, 

-a - 2b + 3xc = ß, 

-c = y, 

is invertible. Finally we apply Taylor's theorem to show that a germ may be 
expressed in the form (3.11) if and only if 

f(O, 0) = fx(O, 0) = f;.(O, 0) = fxx(O, 0) = 0. 

This proves the claim. 

(c) Afterthoughts 

Let us examine the calculations oftbis section with an eye towards identifying 
what is essential. We find that there are three basic ideas involved in the 
calculation. In discussing these ideas we use the term generator as follows. 
Consider an expression such as the right-hand side of (3.5), 

a(x2 + A.) + b(2x2 ) + c(2A.x). (3.12) 

This formula describes a linear combination with arbitrary germs as coef
ficients of the three functions x 2 + A., 2x2, and 2A.x. We refer to x 2 + A., 2x2, 

and 2A.x as generators in (3.12). Similarly, we call x2 and A. generators in (3.6); 
x3, A.x, and A.2 generators in (3.11). 

The following three steps in the previous calculations are of general 
applicability. 

(i) Casting out redundant generators. This was the first step in the cal
culation for (3.1a). The third generator in (3.5), 2A.x, isalinear combina
tion of the other two-specifically, 

(3.13) 

Consequently there was no loss in (3.7) when we set the coeffi.cient ofthe 
generator 2A.x equal to zero. By contrast, in the calculation of (3.1 b) there 
were no redundant generators. 
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(ii) Forming linear combinations of generators to simplify them. This idea 
was used in both examples, to derive (3.6) from (3.5) and to derive (3.11) 
from (3.10). More specifically, in deriving (3.6) we formed the following 
two linear combinations of the generators in (3.5): 

x2 = -J(2x2), 

A. = (x2 + A.) - -J(2x2). 
(3.14) 

Concerning the derivation of (3.11 ), in Exercise 3.2 we ask the reader to 
identify the specific linear combinations of the generators in (3.10) that 
are involved. 

(iii) Passing from generators of RT(g) to a characterization of RT(g). By a 
characterization of RT(g) we mean necessary and sufficient conditions 
on a functionjforfto belong to RT(g). These conditions involvef(O) 
and of a finite number of derivatives of f at the origin. This step was 
required in both examples. 

In the next section we formalize the first two of these three steps in alge
braic language that is natural for the problem. In particular, this Ieads to a 
better understanding of when and why these techniques are effective. In the 
following section, §5, we do likewise for the third step. The first section is a 
fairly Straightforward formalization ofthe remarks above. The second section 
is far less obvious; some of the fundamental ideas of singularity theory first 
appear there. 

EXERCISES 

3.1. Complete the proof of Taylor's theorem. 
(a) Show by induction that iflg(x) = 0 then 

g(x) = L a.(x)x". (3.15) 
iai=k+ I 

To do this observe that if l+ 1g(x) = 0 than a.(O) = 0 in (3.15). Then apply 
Lemma 3.1 to each a •. 

(b) To obtain (3.3) observe thatlg(x) = 0 where g = f -lf. 

3.2. Let g(x, A.) = x 3 - Ax. Find explicitly germs Aj, Bj, C/j = 1, 2, 3) such that: 

x 3 = A1g + A2xgx + A3A.gx, 

XA = Blg + B2xgx + B3Agx, 

A. 2 = C1g + C2xgx + C3A.gx. 

3.3. Prove the following version of Taylor's theorem. Let f(x, y) be a smooth, real
valued function defined on a neighborhood of (0, 0) in IRm x IR". Let Y: IRm -> IR" 
be smooth, defined on a neighborhood ofO in IRm, and satisfy Y(O) = 0. Assurne that 



§4. Principles for Calculating RT(g), 1: BasicAlgebra 63 

f(x, Y(x)) = 0. Show that there exist smooth, real-valued functions a1(x, y), 
... , an(x, y) suchthat on some neighborhood of (0, 0) 

f(x, y) = I a;(x, y)(y; - Y,{x)), 
i=l 

where y = (yl> ... , Yn) and Y(x) = (Y1(x), ... , Y"(x)) in Coordinates. Hint: Adapt 
the proof ofLemma 3.1 to the above situation by letting h(s) = f(x, sy + (1- s) Y(x)). 

§4. Principles for Calculating RT(g), I: Basic Algebra 

(a) Terminology from Algebra 

In this section we work with t! n, germs of functions of n variables, although 
for our intended applications we need only consider tC 2 • 

The set Sn is a vector space, meaning that given any two elements f, g E t! n 

we may form an arbitrary linear combination with scalar coefficients 
cd + c2 g, where c; E ~. It is also possible to multiply elements of Gn. The 
mathematical name for a set admitting these two kinds of operation is a ring. 

An ideal J in Gn isalinear subspace with the following special property: 

lf 4J E Cn and f E J, then 4Jf E J. 

Concerning our intended application, if g E S x,;. then R T(g) is an ideal in 
tC x,;.. To see this, recall the characterization of R T(g) in Lemma 3.2 as the set 
of alllinear combinations 

(4.1) 

where a, b, c E t! x.;.. If .f has the form ( 4.1) for some coefficients a, b, c E S x.;., 

then for any 4J E S x,;., 4J f also has this form, with coefficients 4Ja, 4Jb, and 4Jc. 
Similarly, if .f1 and f 2 both have the form (4.1), so does ft + f 2 • 

The characterization ( 4.1) of R T(g) is a typical construction of ring theory. 
More generally, if p t, ... , Pk are germsinS n, then the set of alllinear combina
tions, 

where a; E Sn, is an ideal in Sn. We denote this ideal by (Pt• ... , Pk), and we 
call Pt• ... , Pk the generators ofthe ideal. (This is consistent with our previous 
use ofthe term.) In this notation, we may summarize Lemma 3.2 as 

RT(g) = (g, xgx, Agx)· (4.2) 

An ideal such as (Pt• ... , Pk) which is generated by a finite number of 
germs is called .finitely generated. Although there are ideals in G" which arenot 
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finitely generated, all of the ideals we consider here will be finitely gener
ated. (See Exercise 5.2 for an example of an ideal which is not finitely 
generated.) 

(b) Principles for Calculating RT(g) 

In §3( c) we abstracted three principles for calculating R T(g) from the examples 
of §3(b ). The following two lemmas formalize the first two of these, using the 
algebraic language above. We continue to work with idealsinn dimensions, 
although ( 4.2) is the case we have in mind. 

Lemma 4.1. Let .f = (p1, ••• , Pk> be an ideal in$" with generators p1, ••• , Pk· 
lfpk = a1P1 + · · · + ak-tPk- 1for some germs ai E $"' then .f is generated by 
Pt>···•Pk-1· 

Lemma 4.2. Let J = (p 1, ••• , Pk) be an ideal in$". For i = 1, ... , k Iet 

k 

qi = L aiipi, 
j=l 

where aiie $". lfthe k x k matrix (ofscalars) 

{aii(O): i,j = 1, ... , k} 

is invertible, then .f is also generated by q1, ... , qk. 

(4.3) 

Before proving the lemmas, we apply them to rephrase the calculations of 
§3(b). The argument leading up to (3.6) may be written compactly as 

RT(x2 + A.) = (x2 + A., 2x2, 2A.x) = (x 2 + A., 2x2 ) = (x2 , A.). (4.4) 

The first equality here is the definition (4.2) of RT(g). The second equality 
follows from Lemma 4.1, since, as noted in (3.13), the third generator is 
redundant. To derive the last equality in ( 4.4) from Lemma 4.2 we express one 
set of generators in terms of the other as follows: 

(x2 + A.) = (1 1) (x 2
) 

2x2 2 0 A. · 
(4.5) 

Since the matrix in ( 4.5) is invertible for x = A. = 0 (indeed for all (x, A.), since 
it is constant), either pair of germs generates RT(x2 + A.). (Remark: Equation 
(4.5) is the inverse of (3.14).) 

Similarly, the derivation of (3.11) may be written 

RT(x 3 - A.x) = (x3 - A.x, 3x3 - A.x, 3x2A.- ..1.2 ) = (x3, A.x, ..1.2 ). (4.6) 
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The first equality is (4.2). To derive the second equality, observe that 

c·-'") ( -1 

-~)(f,) 3x3 - h = 3 -1 (4.7) 
3x 2A.- A.2 0 3x 

When x = A. = 0 this matrix equals 

G 
-1 

~). -1 

0 -1 

which is nonsingular. The second equality in (4.6) follows from Lemma 4.2. 
The proof of Lemma 4.1 is quite simple; we ask the reader to supply this 

proof in Exercise 4.1. 

PR.OOF OF LEMMA 4.2. We must show that (qt> ... , qk) = (p1, ••. , Pk). First 
we claim that (q 1, .•• , qk) is contained in (p1, .•. , Pk>· Certainly each 
generator q; belongs to (p 1, ... , Pk), since by(4.3) q;is a linear combination of 
p1, •.. , Pk· But any element f E (qt> ... , qk) is a linear combination of 
ql> ... , qk; since an ideal is closed under such operations, f belongs to 
(Pt• ... , Pk), as claimed. 

To obtain the reverse containment we invert (4.3). Let A(x) be the k x k 
matrix with entries {aii(x)}. We recall Cramer's rule: 

A- 1 = - 1 -adj(A) 
det A ' 

(4.8) 

where adj(A) is the classical adjoint of A; i.e., the matrix whose entries are co
factors of A. By hypothesis det A(O) =P 0, and by continuity det A(x) is non
zero in some neighborhood of the origin. Thus it follows from (4.8) that the 
entries of A - 1(x), like those of A(x), are smooth germs. 

On inverting (4.3) we obtain 

k 

Pi= L bijqj, 
j= 1 

where bu E c&'" is the i, j entry of A- 1(x ). Thus each generator Pi is a linear 
combination of q 1> ••• , qk. Reversing the above argument we may deduce that 
(p1, ... , Pk) is contained in (q1, •.. , qk), which proves the Iemma. D 

EXERCISE 

4.1. Prove Lemma 4.1. Hint: Show that every linear combination of p1, ••• , Pk may be 
written as a linear combination of Pt> ... , Pk-t· 
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§5. Principles for Calculating RT(g), II: 
Finite Determinacy 

In §3(c) we isolated three ideas used in the calculation of RT(g) for the 
examples ofthat section. The third ofthese involved passing from generators 
of R T(g) to a characterization of R T(g) by conditions on a function and its 
derivatives at the origin. In this section we explore this third step more fully. 
This exploration leads us into some fundamental ideas of the singularity 
theory approach to bifurcation. 

(a) More Terminology from Algebra 

Let 

Jl = {f E ~n: /(0) = 0}. (5.1) 

(We do not put a subscript on A since usually the context indicates the 
number of independent variables.) We ask the reader to show that .ß is an 
ideal in Exercise 5.3. We claim that Aisgenerated by x 1, ... , xn; in symbols 

A = (xl> ... , xn>· 

Certainly each generator xi belongs to A. But by Lemma 3.1, if f E ~ n satisfies 
f(O) = 0, then 

for someai E ~n· Thusf E (x 1, ... , xn), which proves the claim. (Remark: We 
use the letter A because Jt isamaximal ideal, in the following sense: For 
any ideal.§ c ~n• either .§ c A or .§ = ~n· See Exercise 5.4 for the proof of 
this fact.) 

Given two ideals ,I and J in ~n• there are standard constructions in ring 
theory which leads to new ideals, the sum ideal J + ,I and the product ideal 
J · ,1. The sum ideal J +,I consists of all germs of the form f + g where 
f E .§ and g E ,I; the product ideal consists of all finite sums of the form 

.f1g1 + ''' + fmgm, 

where /; E J and g; E f If J is generated by PI> ... , Pk and ,I is generated by 
q1, ... , q~> then J + ,I is generated by the k + l germs 

(5.2a) 

and J · ,I is generated by the k · l germs 

{piqj: i = 1, ... ' k;j = 1, ... ' l}. (5.2b) 

We ask the reader to verify these statements in Exercise 5.6. 
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Remark. These generators of J + ,I and J ·,I may be redundant, even 
though there are no redundancies in either {p;} or in { qi} by themselves. 

We give two examples of the product construction that are important in 
the discussion below. If 9 E tff x,;., then 

.ß · RT(9) = <x9, ).9, x 29x, h9x, A29x)· 

Thesegenerators may be derived from (5.2b) on observing that .ß = <x, y) 
and RT(9) = <9, X9x, A9x>· Note that the generator Ax9x occurs twice in the 
enumeration, as ).(x9x) and x().gx). 

For the second example we return to n dimensions. Proceeding induc
tively we define a sequence of ideals 

Jt2 = .ß . .ß, .ß3 = .ß . . .ß2, .ß4 = .ß . .ß3, .... 

lt follows from (5.2b) that Jtk is generated by all monamials of degree k, 

In Exercise 5.5 we ask the reader to derive the following, alternative character
ization of Jtk: 

Let J c tff" be an ideal. We shall say that two germs f, 9 E tff" are equal 
modulo J, in symbols 

f = 9 (modJ), 

if f - 9 E J. For example, using this terminology Taylor's theorem (Lemma 
3.3) may be rephrased 

(5.4) 

The algebraic operations in <ff" (i.e., addition, multiplication, etc.) preserve 
this notion of equality. Thus if f 1 = f 2 (mod J) and 91 = 92 (mod J), then 
! 1 + 91 = !2 + 92 (mod J) andft9t = !292 (mod J). 

(b) Conditions for Membership in RT(g) 

Let 9 E tff x,;.. Our goal in this subsection is to show that if some power of the 
maximal ideal is contained in RT(9), then deciding whether a given germ 
f E tff x,;. belongs to RT(g) reduces to a problern in finite-dimensionallinear 
algebra. This conclusion follows simply from the Iemma below. The purpose 
of this Iemma is theoretical; i.e., to derive the above conclusion. We do not 
recommend the Iemma for serious calculations, as we will introduce more 
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efficient techniques below. In the Iemma we adapt the multi-index notation 
from n dimensions by defining 

" = (~)"' (~)"2 D ax 8A. . 

Lemma 5.1. Let g E 8 x, A, and suppose that for some k ~ 0, Jtk+ 1 c R T(g ). A 
germ f E 8x,A belongs to RT(g) if and only ifthere exist polynomials a(x, A.), 
b(x, A.), c(x, A.) of degree kor less satisfying the following system of equations: 

D"[f - (ag + bxgx + cA.g~](O, 0) = 0 for locl ::::;; k. (5.5) 

PROOF. If f E RT(g), there exist germs ii, b, c E 8 x,;. such that 

f- (iig + bxgx + CAgx) = 0 for all X, A. (5.6) 

Let a, b, c be the kth-order Taylor polynomials of a, b, c, respectively. Then 

D"a(O, 0) = D"a(O, 0) for Ia I ::::;; k, 

and similar formulas hold for b and c. Equation (5.5) results from combining 
this observation with appropriate derivatives of (5.6). 

Conversely, suppose f E 8 x, A satisfies (5.5) for some polynomials a, b, c. 
Let 

r = f - (ag + bxgx + cA.gx). 

We see from (5.3) that re.ßk+l c RT(g). Now the formula 

f = (ag + bxgx + cA.gx) + r 

displays f as the sum of two terms in R T(g); thus f E RT(g ). 0 

Lemma 5.1 reduces the question of membership in R T(g) to the solvability 
of(5.5). Weinterpret(5.5)asasystemof(k + 1)(k + 2)f2linearequationsfor 
unknown coefficients in the polynomials 

There are 

a(x, A.) = L a"x"•A."2 , etc. 
la<lsk 

3k(k + 1)/2 

(5.7) 

(5.8) 

such unknown coefficients. Because ofthe terms D"f(O, 0) in (5.5), this system 
is inhomogeneous. lt turns out that (5.5) cannot be solved unless the in
homogeneity D"f(O, 0) satisfies auxiliary conditions; this is of course a 
familiar situation in linear algebra. 

Let us illustrate these ideas by relating them to the calculation of 
RT(x3 - A.x) in §3(b). First we claim that 

.ß3 c RT(x3 - A.x). (5.9) 
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By (3.11), RT(x3 - A.x) = (x3, A.x, A.l). Foreachgenerator of ..1{3 we have a 
representation 

This shows that all generators of ..1{3 belang to RT(x3 - A.x), which proves 
the claim. 

Now we unscramble (5.5) when g = x3 - A.x, taking k = 2. Observe that 
ifi1XI:::;2 

D"[a(x, .A.)(x3 _ A.x)](O, O) = {-a(O, 0) if IX= \1, 1), 
0 otherwtse. 

In other words, only the first coefficient a0 of a(x, A.) in (5.7) actually con
tributes to (5.5), because x 3 - A.x already vanishes to fairly high order. 
Similarly, for the other two unknown polynomials, only b0 and c0 contribute 
to (5.5). Equation (5.5) written out in components becomes the following 
inhomogeneaus system of six equations in the three unknowns a0 , b0 , c0 : 

0 = f(O, 0), 
0 = jx(O, 0), 
0 = j;.(O, 0), 
0 = fxx(O, 0), 

- ao - b0 = f 4",(0, 0), 

- Co = fu(O, 0). 

Clearly this system is solvable if and only if 

j(O, 0) = fx(O, 0) = j;,.(O, 0) = fxx(O, 0) = 0, 

which recovers our earlier result. 
The example illustrates that, in general, formula (5.8) is a gross overestimate 

for the number ofunknowns in (5.5). Typically g vanishes to fairly high order, 
and only the low-order coefficients of a, b, and c contribute to (5.5). Moreover, 
there is substantial overlap between contributions of bxg" and cA.g" which 
further reduces the effective number of independent variables. 

The following fact is of the utmost importance: The solvability condition 
for ( 5.5) only involves a finite number of the derivatives of f at the origin. In 
other words, if the derivatives of f of order k or less are suchthat (5.5) is 
solvable, then f E R T(g) no matter what the higher-arder derivatives of f may 
be. Thus Lemma 5.1 begins to address the fundamental issue of finite deter
minacy. 
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(c) Nakayama's Lemma 

Lemma 5.1 above indicates the importance ofbeing able to ascertain whether 
some power of .ß is contained in RT(g). In this connection, a result called 
"Nakayama's Lemma" is most useful-given an integer k, this result provides 
a simple test for whether or not .,l(k c RT(g). In this subsection we first state 
without proof Nakayama's Iemma in the most relevant special case; then we 
use the special case of the Iemma to show .,l(k c R T(g) in two specific 
examples; next we state and prove the general case of the Iemma; and finally 
we mention a corollary of the Iemma. 

Lemma 5.2. Let g E 8 x, ;., and Iet k be a positive integer. If 

then .,l(k c RT(g). 

As our first application, Iet us derive (5.9) using this Iemma. By definition 

We may express each ofthe generators of .ß3 in terms ofthe three generators 
in (5.10), modulo errors in .ß\ as follows: 

x3 = --!{x3 - A.x) + -!{3x3 - A.x), 

A.x2 = -x(x3 - A.x) + r1(x, A.), 

A.2x = -A.(x3 - A.x) + rix, A.), 

A. 3 = - A.(3A.x2 - A. 2) + r3(x, A.), 

where r; E .ß4. We see from ( 5.11) that 

so (5.9) follows from Lemma 5.2. 

(5.11) 

In general Lemma 5.2 simplifies the treatment of higher-order terms in a 
bifurcation problem. To illustrate this, we consider the following perturba
tion of the pitchfork: 

where a ER (Cf. §1.) Specifically we will show that 

(5.12) 
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Indeed, Iet us just repeat ( 5.11) for the present example. Since ax4 E .lt\ each 
equation in (5.11) is merely perturbed by some element of .114 ; in symbo1s 

x3 = -!g + !xg;. + fo(X, A), 

A.x2 = -xg + i't(x, A.), 

A.2x = -).g + rix, A.), 

A3 = -A.().gx) + f3(x, A.), 

where f; E .114. Thus (5.12) follows from Lemma 5.2. 

Remarks. (i) It is quite possible to derive (5.12) directly using the result in 
Exercise 3.2. 

(ii) The proof of Nakayama's Iemma has much in common with the proof 
of Lemma 4.2. The advantage of Nakayama's lemma is that it is not nec
essary to be so explicit in specifying the relationship between two sets of 
generators. 

Lemma 5.2 is the special case of the following lemma which results from 
taking .F = .11\ f = RT(g). Thus we only prove Lemma 5.3. 

Lemma 5.3 (Nakayama's Lemma). Let .Fand f be ideals in Sn, and assume 
that .F = (Pto ... , p1) is .finitely generated. Then .F c f if and only if .F c 
f + .1( . .F. 

PRooF. Since f is contained in f + .II · .F, the "only if" part is a triviality. 
Conversely, Iet us assume that .F c f + .II · .F. This implies that each 
generator Pi of .F can be written 

I 

Pi = !; + L aiiPi• 
j= 1 

(5.13) 

where!; E f and aii E Sn satisfy aJO) = 0. The form of the second term in 
(5.13) follows from the fact that .ß · .F is generated by products of Pi with 
germs vanishing at the origin. Let A be the l x l matrix with entries aii; 1et I be 
the l x I identity. We rewrite (5.13) in matrix notation 

(5.14) 

Now (I - A)(O) = I, so I - A is invertible in some neighborhood of the 
origin. Inverting (I - A) in (5.14) and writing out components we find that 

I 

Pi= Lbij}j, 
j= I 

where {bii} are the entries of (I - A)- 1• This shows that each Pi isalinear 
combination of the jj's and hence belongs to f. Therefore .F c f. D 
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There are two useful consequences of Nakayama's lemma which we 
mention at this time. 

Corollary 5.4. (a) Let J = (pb ... , p1) be an ideal in Gn and suppose that 
qt, ... , q1 are in Jt · J. Then J is also generated by Pt + qt, ... , p1 + q,. 

(b) If g isagermsuch that Jtk c RT(g), then g is strongly equivalent to its 
Taylor polynomial/g. 

PROOF. (a) Since each qi E Jt · J c J it follows that Pi + qi E J which in turn 
implies that <Pt + qt, ... , p1 + q1) c J. Conversely, each Pi= (pi + q)
qi E <Pt + qt, ... , p1 + q1) + Jt · J, implying that 

J c (Pt+ qt, ... ,p, + q,) + Jt.J. 

It follows from Nakayama's lemma that J c (p1 + q1, •.• , p1 + q1) 

proving part (a). 
(b) Let us write g =lg- r, where revltk+t. (Note the minus sign.) 

According to Theorem 2.2, to prove that g is strongly equivalent to /g, it 
suffices to show that 

RT(g) = RT(g + tr) 
for allreal numbers t satisfying 0 ~ t ~ 1. Now RT(g + tr) is generated by 
g + tr, x(gx + trx), and A.(gx + trx). Bach of these generators differs from 
the corresponding generators of R T(g) by an element of J(k+ t c Jt · R T(g ). 
Thus by part (a) ofthe corollary, RT(g) = RT(g + tr). D 

Part (b) of the corollary plays a fundamental role in issues of finite 
determinacy. Weshall expand greatly on this corollary in §8(b). 

(d) Finite Codimension for Ideals 

In this subsection we explore the concept offinite codimension. As shown by 
Proposition 5.7 below, this concept is intimately related to the question of 
whether an ideal contains some power of the maximal ideal Jt. We use this 
concept extensively in the rest of this chapter; the proofs of this subsection, 
however, are less germane, and they may be skipped on a first reading. 

Definition 5.5. Let J c G n be a vector subspace. If there exists a finite
dimensional vector subspace V c C n such that 

(5.15) 

we say that J has.finite codimension. Ifno such subspace exists, we say that J 
has infinite codimension. 

As the notation suggests, we will usually apply this concept to a vector 
subspace J which is in fact an ideal, at least in the present chapter. 
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We consider some examples to clarify this definition. Let us show that for 
any positive integer k, .ltk has finite codimension. If f E Sn, we may write 

f = [f -l'-l!J + l'-lf 

By (5.3) the first term here belongs to .lt\ and the second term is a polynomial 
of degree at most k - 1. Therefore 

(5.16) 

where the second summand in (5.15) indicates all linear combinations of 
monamials of degree k - 1 or less. lt follows from (5.16) that .l(k has finite 
codimension for any k, as claimed. 

As a second example, we claim that R T(x 3 - A.x) has finite codimension in 
Sx,J.· Recall the characterization (3.9) of RT(x3 - A.x). For any f E Sx,;. there 
is a (unique) polynomial of the form 

n(x) = c1 + c2 x + c3 A. + c4 x2, 

suchthat f - 1t E RT(x3 - A.x). Thus 

sx,;. = RT(x3 - A.x) + ~{1, X, A., x 2 }, 

which proves the claim. 

(5.17) 

Given a vector subspace .F c Sn of finite codimension, there are many 
choices for a complementary subspace V (i.e. a subspace satisfying (5.15)). 
For example, a possible modification of (5.17) for RT(x3 - A.x) is indicated 
in Exercise 5.8. lt is natural to require, however, that V have as small a 
dimension as possible. This occurs if and only if 

.F n V= {0}, 

in which case we say that Sn is the direct sum of .Fand V, written 

(5.18) 

The decompositions ( 5.16) and ( 5.17) are direct sum decompositions. (See 
Exercise 5.9 for the proof.) These ideas lead to the following refinement of 
Definition 5.5. 

Definition 5.6. Let .F c Sn be a vector subspace of finite codimension. The 
codimension of .F is the dimension of any subspace V c Sn which satisfies 
(5.18); in symbols 

codim .F = dim V. 

Proposition 5. 7. Let .F c Sn be an ideal. There is an integer k suchthat .ltk c .F 
if and only if .F has finite codimension. 

We prove this proposition below; first we state and apply a corollary. 
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Corollary 5.8. If an ideal f c Sn, where n z 2, is generated by only one germ 
p such that p(O) = 0, then J has infinite codimension. 

This corollary is proved below. Before that, Iet us use the corollary to 
construct two examples of a germ g such that R T(g) has infinite codimension. 

Example 5.9a. We consider any germ of the form g(x, A.) = A.q(x, A.), where 
q E <ff n- Now RT(g) = <g, xgx, A.gx), and it is easily seen that A. is a factor of all 
three of these generators. Thus, RT(g) c (A.), and it follows from Corollary 
5.8 that RT(g) has infinite codimension. 

Incidentally, germs ofthe form A.q(x, A.) do not have the finite determinancy 
property contained in Lemma 5.1. Indeed, the germs g(x, A.) = A. and 

f(x, A.) = e-1/xz + A. 

have equal derivatives of all orders at the origin, but yet g and f are not 
equivalent. To verify the latter statement, compare the zero sets of the two 
germs as shown in Figure 5.l(a). Note that the number of solutions x as a 
function of A. is different for fand g. 

Example 5.9b. We consider any germ of the form x 2q(x, A.). In this case x is a 
factor of all three generators of RT(g), so RT(g) c <x). Thus RT(g) has 
infinite codimension. Notice also that the germs g(x, A.) = x2 and f(x, A.) 
= x2 + e- 11"2 sin(l/A.) have the same Taylor expansions, but the zero sets 
of g and f are very different indeed. See Figure 5.1(b). 

Examples 5.9 show some of the difficulties which arise when RT(g) has 
infinite codimension. Pathological behavior is the rule rather than the 
exception. 

(a) g(x, A.) = A, 
f(x, .1.) = A. + e-ltx' 

(b) g(x, A.) = x 2 , 

f(x, A.) = x 2 + e- 11'' sin(I/.1.2 ) 

Figure 5.1. Perturbations of bifurcation problems of infinite codimension. 
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PROOF OF PROPOSITION 5. 7. If .ßk c $, then 

codim ..F ~ codim .ßk < oo. 

Conversely, assume that ..F has finite codimension; say codim ..F = l - 1. 
Trivially, we have the inclusions 

..F c ..F + .ß1 c ..F + .ß1- 1 c ... c ..F + .ß2 c ..F + .ß. 

Hence, reading back to front we have 

1 = codim(..f + .ß) ~ codim(..F + .ß2) ~ • • • ~ codim(..F + .ß1) 

~ codim ..F = l - 1. 

Equality must hold in at least one case here, because there are more in
equalities than available integers. Thus, there exists an integer k ~ l for which 

codim(..F + .ßk) = codim(..F + .ßk+ 1). 

However, ..F + .ßk+ 1 c ..F + .ßk. These two ideals can have equal codimen
sion only if they are equal; in symbols 

..F + .ßk = ..F + .ßk+1. 

lnparticular,.ßk c ..F + .ßk+ 1.ItfollowsfromNakayama'slemma(Lemma 
5.3) that .ßk c ..F. The proof is complete. D 

PRooF OF COROLLARY 5.8. We assume that ..F has finite codimension and 
derive a contradiction. By Proposition 5.7 there is a k such that .ßk c 

..1 c (p). It follows from Corollary 5.4 that p and its Taylor polynomial 
lP generate the same ideal since p = fp + r where r e .ßk+ 1 c .ß (p ). 
Thus in proving Corollary 5.8 we may assume without loss of generality 
that p is a polynomial of degree at most k-if it is not, we replace p by fp. 

Since p is a polynomial, we may extend p to a function on C". Moreover 
p(O) = 0. Now in C", n ;;::: 2, the zero set of a polynomial is never an isolated 
point; necessarily in any neighborhood of the origin there are infinitely 
many points where p vanishes. 

On the other hand, since .ßk c (p), any monomial q of degree k may be 
factored q = ap for some a e Sn. lndeed, a must be a polynomial of degree 
k or less. The factorization q = ap still holds over the complex numbers. 
Thus, any such monomial q vanishes on {p = 0}. However, this contradicts 
our remarks above, since the set of simultaneous zeros in C" of all monomials 
of degree k is just the origin, an isolated point. D 

We will need a technical result about finite codimension in §13 which we 
present here. 

Proposition 5.10. Let f(x, A.), g(x, A.) be in ß x,;. and assume that the ideal 
(f, g) has finite codimension. Suppose there exist IX, p in S x,;. such that 

o:(x, A.)f(x, A.) + ß(x, A.)g(x, A.) = 0 for all x, A.. 
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Then for each k there exists a germ Q(x, A.) in t! x,-< such that 

o:(x, A.) = -Q(x, A.)g(x, A.) and ß(x, A.) = + Q(x, A.)f(x, A.) mod ,Ak+ 1. 

Weshall not give a proof oftbis proposition in its full generality; this proof 
depends on ideas from algebraic geometry. See Zariski and Samuel [1960], 
p. 293. However, we do sketch the proof in the special case f(x, A.) = x 2 • 

Suppose 

o:(x, A.)x2 + ß(x, A.)g(x, A.) = 0 for all x, A., (5.19) 

and suppose that the ideal (x2, g(x, A.)) has finite codimension. As observed 
in the proof of Corollary 5.8, near the origin, the origin itself is the only 
common zero of x 2 and g(x, A.). Evaluating equation (5.19) at x = 0 yields 

ß(O, A.)g(O, A.) = 0 for all A.. 

Since g(O, A.) i= 0 if A. =F 0 it follows by continuity that ß(O, A.) = 0 for all A.. 
Now apply Taylor's theorem to see that 

ß(x, A.) = xy(x, A.). 

Substitution into (5.19), division by x, and appeals to continuity yield 

o:(x, A.)x + y(x, A.)g(x, A.) = 0. 

Iterating the above argument, we see that 

y(x, A.) = xQ(x, A.) and ß(x, A.) = x 2Q(x, A.). 

Substitution into (5.20) and division by x yield 

o:(x, A.) = - Q(x, A.)g(x, A.) 

as desired. 

EXERCISES 

(5.20) 

D 

5.1. Let ß be a finitely generated ideal. Use Nakayama's Iemma to show that if 
ß = .ß · ß then ß = {0}. 

5.2. Let .ß"' = n~ vi'fk. 

(a) Show that .ß"' is an ideal and that .ß"" # {0}. (.ß"' is called the ideal offtat 
germs.) 
(b) Show that .ß"" = .ß · .ß"" and conclude using Exercise 5.1 that .ß"" is not 

finitely generated. 

5.3. Using only the definition of .ß in (5.1), show that .ß is an ideal. (The charac
terization of .ß as (x 1, ..• , x.,) using Lemma 3.1 also shows that .ß is a finitely 
generated ideal.) 

5.4. Prove that .ß is the unique maximal ideal ins •. Hint: Suppose ß is an ideal in 
s. which contains a germ g suchthat g(O) -1= 0; use the fact that 1/g Es. to show 
that 1 = g · 1/g E ß. 
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5.5. Use Taylor's theorem to verify (5.3). 

5.6. Show that (5.2a, b) give generators for J + / and J · ;, respectively. 

5. 7. Show that every ideal of finite codimension is finitely generated. Give an example 
of a finitely generated ideal of infinite codimension. 

5.8. Show that G:x:,A = {~\ sin x, A., 1 - cos x} + RT(x3 - A.x). 

5.9. Show that (5.16) and (5.17) are direct sums. 

5.10. Use Exercise 3.5-with Y(x) = 0-to prove Taylor's theorem with parameters; 
that is, if f: !Rn x IRm --+ IR is smooth, then 

f(x, y) = L a.(x)y" (mod ...H~+ 1 ), 
l•lsk 

where ...Hy is the maximal ideal (y1, ..• , Ym> in the y-variables, cx = (cx~o ... , CXm) 
is a multi-index and each a. is smooth. In fact one has the formula 

1 al•l 
a.(x) = - 1-;- f(x, 0). 

CX. uy• 

§6. Calculation of RT(g), II: A Hard Example 

In this section we calculate R T(g) when 

(6.1) 

This is a somewhat academic example that we chose for its pedagogical value 
rather than for any intended application. As in §3 we shall characterize 
RT(x5 + A.x3 + .A?) both by generators and by conditions for membership 
on a function. 

Specifically, our characterization of RT(g) by generators is 

RT(xs + A.x3 + .A_2) = .ß6 + .ß4(.A_) + .ß(A.2) 

+ ~{x5 + A.x3 + A.2 , 5x5 + 3A.x3 }. (6.2) 

Let us compare (6.2) with (3.11), the corresponding formula for x3 - A.x. To 
facilitate this comparison we rewrite (3.11) in our present notation; we claim 
that 

(6.3) 

We see from (3.11) that RT(x3 - A.x) is generated by the three monomials 
x 3, A.x, A.2• Now .ß3 + .ß(A.) has generators x 3, A.x2, A.2x, A.3, x.A., and A.2 • We 
use Lemma 4.1 to discard the redundant generators A.x2 , A.2x, A.3 from the 
latter list, thereby proving (6.3). Part ofthe difficulty ofthe example (6.1) stems 
from the fact that (6.2) is not generated by monomials. 
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As our first step in deriving (6.2) we use Lemma 5.2 (the special case of 
Nakayama's Iemma) to show that 

.ß6 c RT(x5 + b:3 + A.2 ). (6.4) 

Now 

RT(g) = (g, xgx, A9x) 

= (x5 + b:3 + A.2 , 5x5 + 3A.x3, 5A.x4 + 3A.2x2) (6.5) 

We must show that each generator of .ß6 (i.e., x 6 , b:5 , •.• , A.6 ) belongs to 
RT(g) + .ß7. This is trivial for every generator except the first-we have 

xz 
Ax5 = 3 (xgx) + rt. 

A_2x4 = x4g + rz, 

A_3x3 = A.x3g + rJ, 

A.4x2 = A.zxzg + r4, 

A.sx = A.3xg + rs, 

A.6 = A_4g + r6, 

where r; E .ß7. After some finagling we find for the remaining generator 

x6 = { 5x 2g + (!x- l 5x 2)(xgx)- -fs(A.gx) + ro, (6.6) 

where r0 E .ß7• Thus (6.4) follows from Lemma 5.2. 

Remark. One might also use Lemma 5.1, but this is quite tedious. 

As our next step in deriving (6.2) we show that 

.ß4(A.) c RT(x5 + b:3 + A.2). (6.7) 

Now .ß4 (A.) is generated by x4 A., x 3 A.2, .•. , A.5• Foreach ofthese generators, 
we have the representation 

x4 A. = x(xgx) + rl> 

x3A_2 = x3g + rz, 

x2 A. 3 = x 2g + r3 , (6.8) 

xA.4 = A.2xg + r4, 

A.s = A_3g + rs, 

were r; E.ß6. But .ß6 c RT(g), so both terms on the right in (6.8) belong 
to RT(g). This proves (6.7). 

We argue similarly to show 

(6.9) 
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specifically, we have 

x.A? = xg + r1, 

A..A? = A.g + r2, 

where riE.ß6 + .ß4(.A.) c RT(g). 
It follows by combining (6.4), (6.7), and (6.9) that 

.ß6 + .ß4(.A.) + .ß(A.2) c RT(g). 
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(6.10) 

To complete the derivation of (6.2) we must specify the elements of RT(g) 
that arenot contained in the left-hand side of (6.10). Now RT(g) consists of 
the totality of germs of the form 

ag + b(xg,,) + c(.A.g,), (6.11) 

where a, b, c E tff x, ;.· Note that A.gx already belongs to the left-hand side of 
(6.10); thus this generatorwill not contribute any new elements of RT(g). 
Although g and xgx do not lie in the left-hand side of (6.10), we do have the 
following: 

For any a E tff x,;. we may write 

a = a(O, 0) + a, 

where ii E .ß; thus 

ag = a(O, O)g + iig, 

and by (6.12) the term ag belongs to the left-hand side of (6.10). Similar 
remarks hold for b(xgx). In conclusion, every germ of the form (6.11) may be 
written as 

a(O, O)g + b(O, O)xgx + r 

where rE .ß6 + .ß4(.A.) + .ß(A.2 ), which completes the proof of (6.2). 
Let us reflect on the transition from (6.10) to (6.2). We know that .ß6 has 

finite codimension in tff x, ;. , so a fortiori the larger ideal .ß6 + .ß4 (A.) + 
.ß(.A.2) has finite codimension in the smaller space RT(g) c lffx,A; i.e., there 
exists a finite-dimensional subspace V suchthat 

In deriving (6.2) we showed that V is two dimensional, with g and xgx as a 
basis. 

We now derive conditions on a function which characterize membership 
in RT(g). (Remark: Lemma 5.1 provides a Straightforward but tiresome 
procedure for doing this; here we use ad hoc methods that we will formalize 
in the next section.) First we claim that f E RT(g) ifand only ift f E RT(g), 
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where l f is the fifth-order Taylor polynomial of f To see this we observe 
that 

f = lf + (f -lf); 
by (5.3) the second term here belongs to .ß6 c RT(g), and the claim follows. 
Let us write 

jsf = L a .. x"''A."'', 
I«ISS 

(6.13) 

using multi-index notation. It follows from (6.7) and (6.9) that many of the 
coefficients in (6.13) have no bearing on whether or notlf E RT(g). Consider, 
for example, a4 , 1 , the coefficient of x4 A.. We observe that 

j 5f = U5!- a4, 1X4A) + a4, 1x4,t 

Because x4 A. e.ß4 (A.) c RT(g), lf belongs to RT(g) if and only if the sum 
(6.13) with the x4 A. term omitted belongs to RT(g). On dropping in this way 
all the monomials in (6.13) that are contained in .ß4 (A.) + .ß(A.2 ), we find 
that j 5f E R T(g) if and only if 

(aoo + a1oX + azoX2 + a3oX3 + a4oX4 + asoX5) 

+ (a01 + a11x + a21x 2 + a 31x3)A. + a22 A.2 (6.14) 

belongs to RT(g). Most of the coefficients in (6.14) must vanish for f to 
belong to RT(g). Let us see why. The three generators g, xgx, A.gx of RT(g) 
all satisfy 

( :xy f(O, 0) = 0, 

(:A.) (:xy f(O, 0) = 0, 

j = 0, 1, 2, 3, 4, 

j = 0, 1, 2, 

and any combination of these generators as in (6.11) must also satisfy these 
conditions. Thus f can belong to RT(g) only if 

Assuming (6.15) holds, (6.14) reduces to the three terms 

This polynomial belongs to R T(g) if and only if it can be written as a linear 
combination of the basis vectors x5 + A.x3 + A.2 and 5x5 + 3A.x3 in (6.2); 
i.e., if and only if 

3a50 - 5a31 + 2a02 = 0. (6.16) 
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EXERCISE 

6.1. Show directly that .ß6 + .ß4()..) + .ß(A.2) c RT(x5 + A.x3 + A.2) using Naka
yama's Lemma. First verify that .ß6 + .ß4(A.) + .ß(A.2) = (x 6,x4 A.,xA.2, ).3), 
then show that each generator x6, x4 )., xA. 2 , A. 3 is contained in 

RT(xs + ).x3 + ).2) + .ß7 + .ßs(A.) + .Jt2().2). 

§7. Principles for Calculating RT(g), III: 
Intrinsic Ideals 

The ideas used in the calculation of R T(x 5 + A.x3 + A. 2 ) in the previous 
section are generally applicable. In this section we formalize these ideas. 
We will draw on the concepts described here in stating our main results 
in the next section. Like §§4 and 5, the earlier sections entitled "Prin
ciples for Calculating RT(g) .. . ", this section introduces some algebraic 
concepts. In the earlier sections these concepts were a standard part of 
algebraic terminology; by cantrast the concepts here are quite specialized 
to our task, and the terminology is not at all standard. In particular, these 
concepts only apply to tff x,;., rather than tS n for arbitrary n, as now we deal 
with equivalence transformations. 

(a) Basic ldeas Concerning Intrinsic Ideals 

We shall call an ideal J c S x, ._ intrinsic if the following implication is valid: 
For all g, h E tff x, 4 , 

g E J and h ,...., g => h E J, 

where h ,...., g means h is strongly equivalent to g. Alternatively put, an ideal 
is intrinsic if, as a set, it is invariant under all strong equivalence transforma
tions. 

For example, in Exercise 7.1 we ask the reader to verify that .ß and (A.) 
are intrinsic ideals. Also, if J and ,I are intrinsic ideals, so are J + ,I and 
J · ,1. To see this for J + ,1, suppose that g E J + ,I and h = Sg(X, A.) is 
stronglyequivalent to g. We may writeg = g1 + g2 whereg1 EJ and g2 E ,1. 
Thus 

But Sg1(X, A.) E J, since J is intrinsic, and similarly SgiX, A.) E ,/. Therefore 
h E J + ,1. This shows I + ,I is intrinsic; the prooffor J ·,I is similar. The 
following proposition shows that the most general intrinsic ideal can be 
obtained from the two basic examples, .ß and (A.), through these two opera
tions. 
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Proposition7.1. Let J c ßx,'- be an ideal of finite codimension. Then J is 
intrinsic if and onl y if it can be written 

(7.1) 

for some finite set of nonnegative integers k;, I;. 

In (7.1) we use the convention that A/0 = ßx,J.· Weshall normally require 
that 

(a) 0 < 11 < 12 < · · · < l., 

(b) k > k1 + /1 > kz + /2 > · · · > ks + ls > 0, (7.2) 

so that each summandin (7.1) actually contributes something to J. We will 
prove this proposition in subsection (b) below. 

Now Iet us argue that for any ideal J in ß x,;. of finite codimension, there 
is a largest intrinsic ideal that is contained in J. By Proposition 5.7 there is 
an integer k such that Alk c J. It follows from Proposition 7.1 that there 
are only finitely many intrinsic ideals f such that 

Alk c f c J. (7.3) 

The sum of all these is an intrinsic ideal which also satisfies (7.3); thus it 
must be the largest intrinsic ideal contained in J. We denote it Itr J. Be
cause of (7.3), Itr J has finite codimension. 

Formula (6.2) shows that in general RT(g) need not be an intrinsic ideal. 
However, we may interpret the calculations of §6 in terms of this concept 
as follows: First we found the largest intrinsic ideal contained in RT(g), 
namely Itr RT(g) = A/6 + A/4 ()..) + A<A.2 ), and then we characterized 
what was left over. This is a generally applicable method; in the rest of sub
section (a) we explore this method more fully. 

Let J c ß x,;. be an ideal of finite codimension. We use the notation J .l 

for the finite-dimensional vector subspace of ß x,;. spanned by the monamials 
not belanging to f. For example (Alk+ 1 ).l consists of all polynomials of 
degree kor less. We claim that for any ideal of finite codimension 

(7.4) 

We derive (7.4) as follows. Since J has finite codimension, Proposition 5.7 
implies that there is an integer k such that Alk+ 1 c J. For any f E ß x,;. 
we may write 

f = l! + (f - /f). (7.5) 

The second term on the right-hand side of (7.5) belongs to Alk+ 1 c J. Thus 
to determine whether f is in J + J .l we need only consider whether the 
polynomial/f is in J + J.l. However, the set of monamials of degree less 
than k + 1 divide into two sets: those in J and those not in J. Using this 
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division we may write lf = / 1 + f 2 where / 1 E J and / 2 E J .1. This proves 
the claim. 

In general, it is not the case that J nJ.L = {0}-theexample (x2 + A.2 , A.x) 
shows this. However, for intrinsic ideals the situation is different. 

Lemma 7.2. If J is intrinsic ideal offinite codimension, then 

8x;.=JE9J.L. 

PROOF. In view of (7.4), one need only prove that J n J.L = {0}. This fact 
follows directly from the next proposition, and the latter is proved in sub
section (b) below. 0 

Proposition 7 .3. Let J be an intrinsic ideal of finite codimension. A polynomial 

p(x, A.) = L aax"-' A."-2 

belongs to J if and only iffor every 0( suchthat a,.. #- 0, the monomial x"-'A."-2 

belongs to J. 

Corollary 7 .4. Let J c 8 x,;. have finite codimension. Then 

J = (Itr J) E9 V, 

where V= J n (Itr J).L. 

(7.6) 

PROOF. Since V c (Itr J)\ it follows from Lemma 7.2 applied to Itr J that 
(Itr J) n V= {0}. On the other hand, for any f E 8 x,;. we may write f = 
/ 1 + / 2 where / 1 E Itr J and / 2 E (Itr J).L. If f E x, then f 2 E J, since f E 

Itr J c J. Thus / 2 E J n (Itr J).L = V. This shows that (Itr J) + V = J 
which completes the proof. 0 

Remark. The conclusion of this corollary, formula (7.6), is also valid if J is 
just a vector subspace of 8 x,;. containing .ßk for some integer k. See Exercise 
7.3. 

We noted above that the calculation of RT(g) may be divided into two 
stages: First to determine Itr R T(g) and then to characterize the remaining 
elements of RT(g). Corollary 7.4 sets a context for this second stage of the 
calculation-specifically, it is required to find the subspace V in (7.6). For 
example, it may be seen from (6.2) that for our example g(x, A.) = x 5 + 
A.x3 + A.2 we have 

V= IR{x5 + A.x3 + A.2 , 5x5 + 3A.x3}; 

in particular, dim V = 2. More generally, for any g E 8 x.;. such that R T(g) 
has finite codimension, (Itr RT(g)).L isafinite-dimensional subspace of tffx,;.; 
indeed, since the monomials provide a distinguished basis for (Itr RT(g))\ 
this subspace is canonically isomorphic to illN for some N. Moreover, all 
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calculations in determining V may be performed within this space. In other 
words, this part of the calculation of R T(g) only involves linear algebra. 

(b) Further Study of Intrinsic Ideals 

The primary task of this subsection is to prove Propositions 7.1 and 7.3 
above. These proofs are based on the following Iemma. 

Lemma 7.5. Let ß c tff x,;. be an intrinsic ideal of finite codimension. lf a germ 
f belongs to ß, then xfx and A.j~ also belang to ß. In particular, if f E ß, then 
RT(f) c ß. 

Remark. The conclusion of Lemma 7.5 remains valid if f is a polynomial, 
even if ß does not have finite codimension. See Exercise 7.4. 

PROOF. Since ß has finite codimension, there is a k such that ._Hk+ 1 c §. 
By Taylor's theorem 

f(x, A.) = /f(x, A.) + r(x, A.), 

where r E ._Hk+ 1. Since xr x and A.r x certainly belong to ._Hk+ 1 c ß, we may 
replace f by lf in the Iemma. Thus it suffices to prove the Iemma when f 
is a polynomial of degree k or less; in symbols, when f E (._Hk+ 1).L n ß. 
Observe that f(tx, A.)E(.ßk+ 1).L n ß for all t > 0, since ß is intrinsic. It 
follows that 

( ) f(tx, A.) - f(x, A.) 
pt = ~--~~----

t- 1 

is in (.Ak+ 1 ).L n ß for each t. However, ß n (.ltk+ 1 ).L is a closed set, being 
a linear subspace of the finite-dimensional space (.ltk+ 1 ).L. Hence limt-+ 1 p(t) 
is in (.Ak+ 1 ).L n ß; but this Iimit is just xfx(x, A.). 

Similarly f(x + tA., A.) E ß for all t since ß is intrinsic. Differentiation 
with respect to t and evaluation at t = 0 yields the germ A.fx(x, A.), and this 
is in ß. D 

PROOF OF PROPOSITION 7.3. lt is trivial that p E ß if a~ i= 0 only when x"1 A"2 

belongs to ß. To prove the converse, we consider an arbitrary multi-index 
IX = (1, m) such that a" i= 0, and we show that x1A.m E ß. Choose a k such 
that .ltk + 1 c ß. If l + m > k, then the desired conclusion follows trivially; 
thus we assume that l + m :s; k. As in proving Lemma 7.5, we may reduce 
to the case that p is a polynomial of degree k or less. W e group the terms in 
p according to degree in x-say 

(7.7) 
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We claim that pj(A.)xi is in J for 0 :::; j :::; k. To prove this we observe, as in 
the proof of Lemma 7.5, that 

p(tx, A.) = Po(A.) + tp1(A.)x + · · · + tkpk(A.)xk 

is in J for every t > 0. Repeated differentiation with respect to t yields 
germsstill belonging to J. Differentiating k-times, we see that the last term, 
Pk(A.)xk, is in J. The claim follows from a simple induction argument proceed
ing from the last term forward. 

Now we focus on p1(A.), the coefficient of x1 in (7.7) Let us write 

pz(A.) = b0 + b1A. + · · · + bk_,;..k-z_ (7.8) 

This polynomial cannot vanish identically, since bm = a1m =F 0. Let bll be the 
first nonvanishing coefficient in (7.8); then J1 :::; m. Thus 

Pz(A.) = }..llq(A.), (7.9) 

where q(O) =F 0; this means that 1/q E tff x, 4, so that (7.9) may be inverted. 
Therefore 

x'A.m = }..ll-m(A.Ilxm) = ;..rm _1_p,(A.)xm. 
q(A.) 

But p1(A.)xmeJ and J is an ideal; therefore, x1A.mef D 

PRooF OF PROPOSITION 7.1. Clearly every ideal of the form (7.1) is intrinsic, 
since sums and products of intrinsic ideals are intrinsic and At and (I..) are 
intrinsic. 

For proving the converse we use the following corollary of Lemma 7.5. 

Corollary 7.6. lf a monomial x1A.m belongs to J, where J is an intrinsic ideal 
of finite codimension, then vlt1(A.m) c J. 

PRooF OF COROLLARY 7.6. To show this we must prove that the generators 
of .A1(A.m) belong to J; in symbols 

(7.10) 

But (7.10) follows from repeated application of A. a;ax to x1A.m as in Lemma 7.5. 
D 

PROOF OF PROPOSITION 7.1 (Continued). Assurne that J is an intrinsic 
ideal of finite codimension. We choose the smallest integer k such that 
vltk c J. Suppose that there are nonzero elements in J "' vftk. (Note: Here 
the symbol "' indicates the difference of sets, not equivalence.) We may 
take thesetobe polynomials. By Proposition 7.3 there are monomials x1A.m 
in J "'vftk. As noted above, if x1A.m E J, then .A1(A.m) c J. Applying these 
ideas to each of the finitely many monomials not contained in vftk, we con
clude that J is the sum of ideals of the form vftk'(A.1'), as in (7.1). On elimi
nating redundancies we obtain (7.2). D 
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Remark 7.7. We have shown in this classification that intrinsic ideals are 
invariant under all equivalences, not just strong equivalences. This follows 
because .lt and (A.) are invariant under changes of coordinate in A. of the 
form A(A.), as well as invariant under strong equivalences. See Exercise 7.2. 

In the above proof we showed that the smallest intrinsic ideal containing 

is 
.l(k + .l(k!(A.It > + ... + .l(k·<A.'·>· 

We incorporate that fact in the following definition. 

(7.11) 

(7.12) 

Definition 7.8. Assuming (7.2) holds, we call the monimals (7.11) the intrinsic 
generators of the ideal (7.12). 

EXERCISES 

7.1. Show that the ideals .Jt and (A.) are intrinsic. 

7.2. Show that the ideals .Jt amd (A.) are invariant under all equivalences, including 
those involving A. 

7.3. Let J c 8 "· .< be a vector subspace containing .Jtk for some k. 

(a) Show that J 1 + J 2 c J whenever J 1, J 2 are intrinsic ideals contained in J. 
(lt follows that Itr .§ is weil defined.) 

(b) Prove that Corollary 7.4 is valid for J. 

7.4. Verify that the proof of Lemma 7.4 is valid assuming that f E J is a polynomial 
and that J is intrinsic, but not necessarily of finite codimension. 

7.5. Prove the converse ofLemma 7.5. That is, show that an ideal J offinite codimension 
in lfx,). is intrinsic if for every p in J, R T(p) c J. 

§8. Formulation of the Main Results 

As we indicated in §0, our algorithm for solving the recognition problern 
splits monomials into three classes: low-, intermediate-, and higher-order 
terms. We discuss the three classes in sequence: low-order first, then higher
order, and intermediate-order last. 

(a) Low-Order Terms 

In describing the low-order terms we need to speak of"the smallest intrinsic 
ideal containing a germ h." Let us argue that such an object exists. If J and 
,f are two ideals in Sx,J.• then the intersection J n ,f is also an ideal-this 
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statement and the ones following areeasy exercises left to the reader. More
over, if J and J are both intrinsic, so is J n J. Indeed, for an arbitrary 
collection of intrinsic ideals {J "'}, the intersection n"' J"' is an intrinsic ideal. 
Thus we may identify the smallest intrinsic ideal containing h as the inter
section of all intrinsic ideals which contain h. 

Definition 8.1. lf h E lfx,J.• we denote by f/(h) the smallest intrinsic ideal 
containing h. 

The next proposition lists several properties of f/(h). Note that in spite 
ofthe purely existential description of f/(h) above, part (b) ofthe proposition 
characterizes f/(h) explicitly. 

Proposition 8.2. Let h E C x,;. be a germ such that R T(h) has finite codimension. 

(a) f/(h) is an intrinsic ideal of.finite codimension. 

(b) f/(h) = L {.ß"''(A."' 2 ): D"'h(O, 0) =F 0}. (8.1) 
OE=(IX1,1X2) 

(c) lf g is equivalent to h, then f/(g) = f/(h). 

PRooF. (c) Suppose g is equivalent to h. Since we have h E f/(h) and 
since f/(h) is intrinsic, we deduce that g E f/(h). (This holds even though we 
consider general equivalences, not just strong equivalences-see Remark 7. 7.) 
In other words, f/(h) is an intrinsic ideal which contains g; therefore f/(g) c: 
f/(h). Reversing the roles of g and h, we obtain the reverse Containment. 

(a) By construction f/(h) is an intrinsic ideal; we need only show that 
f/(h) has finite codimension. We reduce to the case where h is a polynomial as 
follows. Since R T(h) has finite codimension, .l(k c: R T(h) for some integer k. 
lt follows from Corollary 5.4(b) that h is equivalent to /h and from part (c) 
ofthe present proposition that f/(h) = f/Ukh). Thus we may assume without 
loss of generality that h is a polynomial. 

To show that f/(h) has finite codimension, we prove that RT(h) c: f/(h). 
Indeed, each ofthe three generators of RT(h) belongs to f/(h)-by definition 
h E Y(h), and it follows from Exercise 7.4 that xhx, Ahx E f/(h). Thus f/(h) 
has finite codimension. 

(b) As in part (a) we may reduce to the case where h is polynomial. 
(Thus the sum in (8.1) is effectively finite.) Since h E Y(h), it follows 
from Proposition 7.3 and Corollary 7.6 that !l'(h) contains the right-hand 
side of (8.1). For the reverse containment, we observe that the right-hand side 
of (8.1) is an intrinsic ideal to which h belongs; since !l'(h) is the smallest 
intrinsic ideal containing h, we see that f/(h) is contained in the right-hand 
side of (8.1 ). D 
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We Iabel the next result a theorem, in spite of the simplicity of its proof, 
because it characterizes the low-order terms in the recognition problern for 
h-low order terms are those which belong to Y(h)j_. 

Theorem 8.3. Let h be in t!x,;., and suppose RT(h) has finite codimension. 
lf g is equivalent to h, then for every monomial xa'Aa2 E Y(h)j_, we have 
D"g(O, 0) = 0. 

PROOF. Suppose xa'il."2 E Y(h)j_ but Dag(O, 0) -:j:. 0. By Proposition 8.2(b), 
xa'A"2 E Y(g) = Y(h), a contradiction. D 

Y(h) also yields some information ahout intermediate-arder terms in the 
recognition problern for h. Specifically, we have the following result. (We 
remind the reader of Definition 7.8, where intrinsic generators are intro
duced.) 

Theorem 8.4. Let h EI! x,;. and suppose RT(h) has finite codimension. lf g 
is equivalent to h, then for every intrinsic generator x"' Aa2 of Y(h), we have 
D"g(O, 0) =I= 0. 

PRooF. Consider an intrinsic generator xkA.1 of Y(h); we ask whether 
xkA.1 E Y(g). By Theorem 8.2 

(8.2) 

What summands in (8.2) might contribute a term xkA.1 to Y(g)? By Theorem 
8.3, Dag(O, 0) = 0 for all multi-indices rx such that x"' il."2 E Y(h)j_, so these 
terms contribute nothing. Of the terms which remain, only .Ak<A.1) can 
contribute. By Proposition 8.3(c), xk A.1 E Y(g), so this term must contribute 
in (8.2); i.e., 

(a~ r ( :A. y g(O, 0) =!= 0. D 

Let us illustrate the usefulness ofthese concepts on the pitchfork, h(x, il.) = 
x3 - A.x. By Proposition 8.2(b), Y(h) = .ß3 + .A(A). Now 

Y(h)j_ = ~{1, x, A., x 2}, 

and the intrinsic generators of Y(h) are x3 and A.x. From Theorems 8.3 and 
8.4 we deduce that if g is equivalent to h, then at (x, A.) = (0, 0) 

(8.3) 

As we saw in (0.3), this information provides essentially the complete solution 
of the recognition problern for the pitchfork; only the signs of gxxx and g;.x 

are lacking. Of course, for more complicated normal forms the information 
given by Y(h) will not be so complete. 
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(b) Higher-Order Terms 

What do we mean by higher-order terms in the recognition problern for h? 
This concept should meet the following requirements: If p is a higher-order 
term, then h + p is equivalent to h. However, it turns out that a more useful 
theory results if we strengthen this requirement, as follows: If p is a higher
order term, then for any g equivalent to h, g + p is equivalent to g. In our 
formal definition we make use of Theorem 2.2 to give this idea an algebraic 
formulation. 

Definition 8.5. If h E tS x, l, we define []lJ(h) by the following condition: p E []lJ(h) 
if for every g strongly equivalent to h and for every t E IR 

RT(g + tp) = RT(g). 

In words, []lJ(h) is the set ofhigher-order terms in the recognition problern 
for h. (We use the Ietter "p" for perturbation.) The following proposition 
gives two properties of []lJ(h). 

Proposition 8.6. (a) Ifp E []lJ(h) and if g is strongly equivalent to h, then g + p 
is strongly equivalent to g. 

(b) If R T(h) has finite codimension, then []lJ(h) is an intrinsic ideal of finite 
codimension. 

Part (a) of the Iemma follows immediately from Theorem 2.2; we merely 
record it here for reference. Part (b) will be proved in §12 below. 

The following theorem completely characterizes []lJ(h) in an effectively 
computable way. It is the most important result of §8; indeed, of Chapter Il. 

Theorem 8.7. If RT(h) hasfinite codimension, then []lJ(h) = Itr cf(h), where 

cf(h) = (xh, A.h, x 2hx, A.hx). (8.4) 

We prove Theorem 8.7 in §13. 
The following isanother formula for cf(h): 

cf(h) = A · RT(h) + IR{A.hx}. (8.5) 

This result identifies the higher-order terms which cannot enter into the 
solution of the recognition problem. To illustrate this Iet us apply it to the 
pitchfork, x 3 - A.x. According to (6.3) 

RT(x3 - A.x) = .ß3 + A(A). 

Substituting into (8.5) and computing A.hx = 3x2). - ). 2 we find 

cf(x3 _ A.x) = .ß4 + .ß2().) + (A.2). (8.6) 

In this example we see that cf(h) is already intrinsic, so []1J(x 3 - A.x) is also 
equal to the right-hand side of (8.6). 
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What are the consequences (8.6)? Consider, for example, the monomial 
x4 E &'(x3 + A.x). By Proposition 8.6(a), if a germ f is strongly equivalent to 
x3 - A.x, then so is f + tx4 for any t E R By varying t we can make 
(a;ax)4f(O, 0) achieve any value whatsoever. In other words, (a;ax)4-j"(O, 0) 
cannot enter into the solution ofthe recognition problern for x3 - A.x. Similarly, 
for higher-orderderivatives with respect to x and for derivatives associated to 
monomials in .ß2 (A.) or (A.2 ); e.g., (a;ax)2(a;aA.)f(O, 0), (a;aA.) 2 f(O, 0), etc. 
Of course, none of these derivatives appears in (0.3), our solution of the 
recognition problern for x3 - A.x. 

More generally, we shall describe a bifurcation problern h as k-determined 
if h + p is equivalent to h for every p E .ßk+ 1• (Thus x3 - A.x is 3-deter
mined.) For h to be k-determined, it is necessary and sufficient that .ßk+ 1 

c &'(h). 

(c) Intermediate-Order Terms 

Our treatment of intermediate-arder terms is not so clean as our treatment 
of low- and higher-order terms, for the following reason: A concise descrip
tion ofwhat is going on at this Ievel requires fairly sophisticated mathematical 
concepts from the theory of Lie groups, and some of the complexities of 
representation theory for Lie groups play a significant role. We don't address 
these issues in a serious way in this text. In this subsection we Iimit ourselves 
to the following three tasks: 

(i) We complete the solution of the recognition problern for the pitchfork. 
(ii) We solve the recognition problern for x 5 + A.x 3 + A.2 , the example 

considered in §6. 
(iii) We sketch briefty what is required of intermediate-arder terms in the 

solution of the recognition problern in general. 

The methods that we use for items (i) and (ii) are elementary, and they suffice 
for all the examples we consider in §9. The discussion under item (iii) is 
intended more as a focus for our thinking than as a guide for computing; 
basically, this material is just a formalization of the methods used for the 
examples. In Chapter V we will indicate by example some ofthe complexities 
of the general case. There are many interesting theoretical issues needing to 
be investigated more fully, but we do not pursue these. 

Our first task is to complete the solution of the recognition problern for 
the pitchfork. This is quite easy, given our results above. Let g E tS x,;. be a 
germ strongly equivalent to x3 - A.x. Combining the information in (8.3) 
and (8.6) we see that 

g(x, A.) = ax3 + bA.x + p(x, A.), 

wherea =F O,b =F O,andpE&'(x3 - A.x).ByProposition8.6,g(x, A.)isstrongly 
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equivalent to x 3 - ilx if and only if 

g(x, il) = ax3 + bilx (8.7) 

is strongly equivalent to x3 - ilx. We may transform g into ex3 + <5ilx, where 
e = sgn a and b = sgn b, by scaling transformations; specifically we have 

/a,l/2 (/bll/2 ) ex3 + bilx = b3 g ~ x, il . 

Because ofthe restrictions (0.2) on the sign of Sand Xx, it is not possible to 
change the sign ofthe two coefficients in (8.7) by an equivalence transforma
tion. Therefore, g is strongly equivalent to the pitchfork if and only if a > 0, 
b < 0; i.e., if (0.3) is satisfied. Our analysis also shows that reversing an in
equality in (0.3b) merely changes a sign in the normal form ± x 3 ± ilx. 

Next we solve the recognition problern for h(x, il) = x 5 + ilx3 + il2 . The 
treatment of low- and higher-arder terms here is the same as for the pitch
fork; we have chosen this example for the new phenomena that appears in 
the intermediate-arder terms. By Proposition 8.2(b ), 

Y'(h) = vl/5 + A 3 <il) + <il2 ). 

It follows from Theorems 8.3 and 8.4 that if g is strongly equivalent to h then 

g(x, il) = ax5 + bilx3 + cil2 + p(x, il), 

where a =f. 0, b =f. 0, c =f. 0, and 

(8.8) 

Next we compute (cf. Exercise 8.2) that t?J(h) is precisely the right-hand side 
of (8.8), so g is strongly equivalent to h if and only if 

(8.9) 

is strongly equivalent to h. We claim that the latter statement holds if and 
only if 

a > 0, (8.10) 

(Remark: It follows from (8.10) that b > 0.) To show the sufficiency of(8.10), 
let us consider the effect of a pure scaling equivalence on (8.9); i.e., an equiv
alence of the form 

S(x, il) = oc, X(x, il) = ßx. 
We find 

(8.11) 

By matehing the three coefficients in (8.11) with those in h, we obtain three 
equations for two unknowns, oc and ß; these equations have a solution with 
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rx > 0, ß > 0 if and only if (8.10) holds. In other words, (8.10) is a sufficient 
condition for g to be equivalent to h. We leave the proofthat (8.10) is also 
necessary to the reader in Exercise 8.3. The basis of this part of the proof is 
the fact that only scaling equivalences make a useful contribution towards 
transforming (8.9)- higher-order terms in S or X only affect higher-order 
terms in g. Expressing the above calculation in terms of g, we find that g 
is strongly equivalent to h if and only if g = gx = gxx = gxxx = gxxxx = g). = 

g).x = g).xx = 0, 

gxxxxx > 0, g).). > 0. (8.12) 

It is instructive to contrast the above two examples. The solution (0.3) to 
the recognition problern for the pitchfork consists of the equalities (0.3a) 
and the inequalities (0.3b). All of the former came from consideration of 
low-order terms; all of the latter, from intermediate-order terms. In (8.12) 
most ofthe equalities came from the low-order terms, but one equality came 
from the intermediate-order terms. In complicated examples the inter
mediate-order terms often contribute equations as weil as inequalities to 
the defining conditions of a singularity. This is related to the issue of moduli 
which we take up in Chapter V. 

Let us attempt to describe the above treatment of intermediate level 
terms in a general context. Consider the recognition problern .for a normal 
form h: Is a given germ g strongly equivalent to h? The essential idea in 
the above calculation is the following: Having reduced g modulo Y'(h) to 
as few terms as possible, we perform explicit changes of coordinate on 
g modulo Y'(h) to determine precisely when g is equivalent to h. In symbols, 
we attempt to find S and X such that 

g = Sh(X, A.) mod Y'(h). (8.13) 

The "mod Y'(h)" in (8.13) is ofthe utmost importance-modulo Y'(h) equiv
alence transformations simplify enormously. Without the "mod f!J!(h)" the 
unknowns S and X in (8.13) would be arbitrary functions; with the 
"mod Y'(h)" only finitely many terms in the Taylor series of X and S actually 
contribute to (8.13). More specifically, if .l(k+ 1 c Y'(h), only terms of degree 
k or less in the Taylor series of S and X can contribute to (8.13), and usually 
only a fraction ofthese actually contribute. Indeed, for the calculations above, 
only the lowest-order terms contributed. 

To conclude, our treatment of intermediate-order terms in the recognition 
problern is an explicit calculation involving a finite number of undetermined 
parameters. These calculations must be done on a case-by-case basis. The 
information provided by Theorem 8.4 is most useful in starting these calcula
tions. In elementary examples the intermediate-order terms only contribute 
inequalities in the recognition problem; in more complicated examples they 
may contribute one or more equalities as weil. 
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The natural context for these calculations is the theory of Lie groups. 
For the benefit of readers familiar with Lie theory we describe the calcula
tions in these terms. Consider the action of the group of strong equivalence 
transformations on fl'(h); this action is a linear representation of the group. 
Now t?l(h) is an invariant subspace of this action, so there is an induced 
representation on fl'(h)/t?l(h), a finite-dimensional space. In this induced 
representation, theinfinite dimensional group of equivalence transformations 
reduces to a finite-dimensional algebraic group. The treatment of inter
mediate-arder terms in the recognition problern for h may be summarized 
as follows: A germ g is equivalent to h if and only if g belongs to the orbit of 
hin fl'(h)/t?l(h) under this action. 

EXERCISES 

8.1. Rederive Corollary 5.4(b) as a consequence ofTheorem 8.7. 

8.2. Compute f(x 5 + x3 A. + A.2) and verify that 

g'(xs + x3A. + A_2) = .ß6 + .ß4(A.) + .lt(A.2). 

8.3. Show that g in (8.9) is strongly equivalent to h(x, A.) = x 5 + x3 A. + A.2 precisely 
when (8.10) is valid. Hint: Compute the general strong equivalence of h modulo 
.!f>(h). 

8.4. We call a bifurcation problern g(x, A.) k-determined if g + p is equivalent to g for 
every p(x, A.) in .l(k+ 1• Prove that g is k-determined if 

.ltk+ 1 c .1t · RT(g). 

§9. Solution of the Recognition Problem for 
Several Examples 

In this section we illustrate the use of the theorems in the previous section by 
solving the recognition problern for the following normal forms: 

(a) exk + b.il, k ~ 2, 

(b) exk + b.ilx, k ~ 3, (9.1) 
(c) e(x2 + b.il2), 

(d) ex3 + b.il2. 

Here e and b equal ± 1; i.e., we consider all possible signs in (9.1). Note that 
(9.1a, b) are actually infinite sequences of norl.lllll forms indexed by k. In 
particular, if k = 3 then (9.1b) yields the pitchfork, which we already 
analyzed in §8. Also we considered (9.1c) in the Introduction. 
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We consider the four normal forms (9.1) in sequence in the four proposi
tions below. In starting these propositions we use the following convention 
concerning nondegeneracy conditions such as (9.2b): The equation e = 

sgn(A) includes the requirement that A -=1- 0. Our proofs of the last three 
propositions are much terser than the first, as all four proofs have much 
the same character. The only exception to this is that the treatment of 
intermediate-arder terms for (9.1c) is a little more involved-in this case 
more than just a simple scaling is required. (Indeed, this is a good example 
to study in order to gain insight about the treatment of intermediate-arder 
terms in general.) 

Proposition 9.1. A germ g E cff x,;. is strongly equivalent to (9.la), ~:xk + 8A., if 
and only if at x = A. = 0 

g = a: g = ... = ( :x) k- 1 g = o, (9.2a) 

and 

(9.2b) 

PROOF. We prove the proposition in three stages, which correspond to the 
divisions of §8. 

For brevity Iet us write h(x, A.) = ~:xk + 8A.. First, we apply Proposition 
8.2(b) to conclude that 

ff(h) = d(k + (A.). 

1t follows from Theorems 8.3 and 8.4 that if a germ g is strongly equivalent 
to h, then 

g(x, A.) = axk + bA. + p(x, A.), (9.3) 

where a -=1- 0, b -=1- 0, and 

p E d{k+ 1 + df(A.). 

In particular, (9.2a) must hold. 
Next, we compute that 

RT(h) = (xk, kxk-1, A.) = dtk + (A.). 

1t follows from Theorem 8.7 that 

In other words the remainder term p in (9.3) has no influence on whether or 
not g is equivalent to h. 
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Finally, we ask whether g(x, il) = axk + bA. is strongly equivalent to h. 
If (9 .2b) is satisfied, then we ha ve a simple scaling 

exk + <5A. = l!liJ(I~Il/k x,A.). 

If (9.2b) is not satisfied no such transformation is possible, because of 
conditions (0.2). D 

Proposition 9.2. A germ g E tff x,;. is strongly equivalent to (9.1 b ), exk + <5A.x, 
if and onl y if at x = il = 0 

g = :x g = ... = (:x)k-1 g = :il g = 0, (9.4a) 

and 

B = sgn(:xr g, 
a a 

<5 = sgn 8). ax g. 

PROOF. Wehave 

[l'(h) = Jtk + .ß(il) 

so that if g is strongly equivalent to h 

g(x, A.) = axk + bA.x + p(x, il), 

where 

(9.4b) 

(9.5) 

(9.6) 

Now it turnsout that t!l(h) is precisely the right-hand side of (9.6), so that we 
drop p(x, il) from (9.5). Finally, we may scale gto h ifand only if(9.4b) holds. 

D 

Proposition 9.3. A germ g E tff x,;. is strongly equivalent to (9.lc ), e(x2 + <5il2), 

ifand only ifat x = il = 0 

(9.7a) 

and 
B = sgn gxx• (9.7b) 

where d2 g is the 2 x 2 Hessian matrix ofthe second derivatives of g. 

PROOF. In this case we have [l'(h) = .ß2• From Theorems 8.3 and 8.4 we 
may conclude that 

g(x, A.) = ax2 + p(x, il), (9.8) 

where a "#- 0 and p E .ß3 + .ß(A.). Unfortunately t!l(h) = .ß3, so that not 
all possible remainders in (9.8) may be discarded. However, we may write 

g(x, il) = ax2 + bilx + cil2 + ß(x, il), 
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where ß E .ß3 • When is g(x, A.) = ax2 + bA.x + cA.2 equivalent to h? Because 
of the sign restriction (0.2), an equivalence transformation cannot change 
sgn 9xx or sgn det d2g, so (9.7b) is a necessary condition. Let us perform 
explicit changes of coordinates to show it is also sufficient. In this calculation 
it is convenient to use the fact that the composition of two equivalence 
transformations is also an equivalence transformation; therefore we may 
reduce g to hin steps. If (9.7b) is satisfied, we first eliminate the cross term 
A.x in g by considering 

and then we reduce to h with scalings as in the preceding cases. D 

Proposition 9.4. A germ g E 8 x,;. is strongly equivalent to the winged cusp 
(9.ld), ex3 + <5A.2 , if and only if at x = A. = 0 

and 

PR.ooF. Here f/(h) = .ß3 + (A.2) and i?J(h) = .ß4 + .ß2(A.). After elimina
tion of the low- and higher-order terms, a simple scaling suffices to reduce 
gtoh. D 

§10. The Recognition Problem: General 
Equivalences 

LethE 8 x,;. be a germsuchthat RT(h) has finite codimension. In this section 
we address the recognition problern for hin the context of general equivalence 
transformations; i.e., given g E 8 x,;., we ask whether there is a generat 
equivalence, possibly not a strong equivalence, which transforms g into h. 
In answering this question we again consider low-, higher-, and intermediate
arder terms, as in §8; moreover, our treatment of low- and higher-order 
terms is exactly the same as in the preceding case. More precisely, low-order 
terms are those in f/(h)l., higher-order terms are those in i?J(h), and inter
mediate-arder terms are those which are left over. In §8(a) the important 
results concerning f/(h), Theorems 8.3 and 8.4 already apply to general 
equivalences. In §8(b) we characterized i?J(h) (i.e., those terms which may be 
transformed away by a strong equivalence). Certainly these terms can be 
transformed away by a more generat equivalence. The only difference 
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between the strong and general equivalence contexts is in the intermediate
order terms; in the present case, there are a few extra parameters in the Taylor 
series of A(A.) that may help in the solution of (8.13). Even this difference 
doesn't change the solution of the recognition problern for many simple 
examples; in particular, for all of the normal forms considered in §9, the 
solution of the rec6gnition problern is the same in either context. 

Let us illustrate these remarks on two examples, the pitchfork and 
x 5 + A.x3 + A.2• First we discuss the pitchfork; suppose g is equivalent to 
x3 - A.x. As before, we deduce from Theorems 8.3 and 8.4 that 

g(x, A.) = ax3 + bA.x + p(x, A.), 

where a # 0, b # 0, and 

(10.1) 

Since &J(h) equals the right-hand side of (10.1), it follows that g is equivalent 
to h if and only if ax3 + bA.x is equivalent to h. The only obstacle to this is 
possible differences of sign. However, we require that A preserve orientation 
(in symbols A'(A.) > 0), so the additional ftexibility provided by A does 
not help. In other words, (0.3) is necessary and suffi.cient for g to be equivalent 
to h. 

Passing to the second example, we now suppose that g is equivalent to 
h(x, A.) = x 5 + A.x3 + A.2 • As always, the question reduces to whether a 
polynomial g(x, A.) = ax5 + bA.x3 + cA.2 is equivalent to h. In this case A 
provides a third scaling parameter that we may use to eliminate the compli
cated equality in (8.12) that came from the intermediate-order terms. More 
precisely, we can solve the equation 

with IX, ß, and y all positive if and only if 

a > 0, b > 0, c > 0. 

Expressing this in terms of g, we conclude that g is equivalent to x 5 + A.x3 + 
A. 2 if and only if 

g = 9x = 9xx = 9xxx = 9xxxx = 9;. = 9;.x = 9;.xx = 0, 

gxxxxx > 0, 9;.xxx > 0, g..._> 0. 

Remark. In this example the complicated equality in (8.12) drops out of 
the solution of the recognition problern when we consider general equiv
alences. However, as weshall see in Chapter V, the solution to the recog
nition problern for complicated singularities, even in the context of general 
equivalences, may include such equalities. 
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§ 11. Proof of Theorem 2.2 

Theorem 2.2 states that if 

RT(g + tp) = RT(g) (11.1) 

for all t E [0, 1], then g + tp is strongly equivalent to g for all t E [0, 1]. It 
turnsout that the following local version ofthe theorem is sufficient to derive 
the full result. 

Proposition 11.1. Let g, p E $ x,;. be germs such that (11.1) is validfort near 0. 
Then g + tp is strongly equivalent to g for all t sufficiently near 0. 

PROOF OF THEOREM 2.2 (Assuming Proposition 11.1). Define t 1 and t 2 in 
[0, 1] tobe equivalent if g + t 1p is strongly equivalent to g + t2 p. We claim 
that Proposition 11.1 implies that equivalence classes of t's in [0, 1] are open. 
If the claim is valid, then it follows from either the compactness or connected
ness of [0, 1] that there is exactly one equivalence dass. Hence g + tp is 
strongly equivalent to g for all t E [0, 1]. 

To verify the claim Iet h = g + t0 p for some t0 E [0, 1]. Then 

RT(h + sp) = RT(g + (s + t0 )p) = RT(g) = RT(h) 

for all s sufficiently near 0. It follows from Proposition 11.1 that h + sp 
is strongly equivalent to h for all s near 0. Thus g + tp is strongly equivalent 
to g + t 0 p for all t near t0 , and the equivalence classes of t's are open. The 
claim is verified. D 

The main step in the proof of Proposition 11.1 is to construct the strong 
equivalence between g + tp and g by solving certain ODE's. The following 
Iemma specifies the precise information from hypothesis (11.1) that we need 
to formulate the ODE's. 

Lemma 11.2. If (11.1) is valid for all t near 0, then there exist coefficients 
a and b E $ x, ;., 1 such that 

p(x, A.) = a(x, A., t)G(x, A., t) + b(x, A., t)Gx(x, A., t), (11.2) 

where G(x, A., t) = g(x, A.) + tp(x, A.). In addition b(O, 0, t) = 0. 

Remark. Foreach fixed t the validity of (11.2) follows directly from (11.1), 
since (11.1) implies that p E R T(g) = R T(g + tp ). The point of Lemma 11.2 
is that a and b can be chosen to vary smoothly in t. 

PROOF. Assurne that (11.1) is validfort = t0 where t0 =f. 0 is near 0. Assump
tion (11.1) implies that each generator of RT(g + t0 p) may be written as a 
linear combination of the generators of R T(g ). Let us elaborate. Recall that 
RT(g) is generated by g, xgx, and A.gx, and RT(g + t0 p) is generated by 
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g + t0 p, xgx + t0 xpx, and Arlx + t0 A.Px· Thus there exist germs A;, B;, C; 
(i = 1, 2, 3) such that 

g +toP= A1g + B1xgx + C1Arlx• 

xgx + toXPx = A2g + B2xgx + C2ArJx, 

Arlx + toA.Px = A3g + B3xgx + C3Arlx· 

(11.3) 

We may rearrange the terms in the system (11.3) to obtain a matrix equation 

(X~x) = Q(x~x)• 
APx A.gx 

(11.4) 

where Q is a 3 x 3 matrix whose entries are smooth germs in tS x,;.. Now 
for any germ h, we introduce the notation v(h) for the column vector 

v(h) = (x~x)· 
A.hx 

Using this notation, we rewrite (11.4) in the form 

v(p) = Qv(g ). 

Recalling that G = g + tp, we have 

v(g) = v(G) - tv(p). 

Substituting (11.6) into (11.5) and rearranging we find 

(I + tQ)v(p) = Qv(G). 

(11.5) 

(11.6) 

(11.7) 

Observe that (11.7) is a system of equations with smooth dependence on t. 
Since I is invertible, it follows that for sufficiently small t, I + tQ is an 
invertible 3 x 3 matrix. Thus (I + tQ)- 1 is a 3 x 3 matrix whose entries 
are smooth germs in 8x,;., 1 ; in particular, these germs are smooth in t. The 
invertibility of I+ tQ and (11.7) imply 

v(p) = (I + tQ)- 1Qv(G). (11.8) 

Equating the first components on each side of (11.8) yields the equation 

p = rxg + ßxGx + yA.Gx, 

where rx, ß, and y are in tSx,A,t· Finally, one obtains (11.2) by setting a = rx 
and b = xß + A.y. 0 

PRooF OF PROPOSITION 11.1. Lemma 11.2 states that (11.2) is valid for germs; 
hence this relation holds on some neighborhood of (0, 0, 0) in xA.t-space. 
Choose intervals K, L, M such that (11.2) is valid on K x L x M. 
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We wish to prove that G(·, ·, t) is strongly equivalent to g for each t 
sufficiently near 0. Specifically, we will construct mappings X(x, A., t) and 
S(x, A., t) varying smoothly in t and satisfying 

(a) S(x, A., t)G(X(x, A., t), A., t) = g(x, A.), 

(b) X(O, 0, t) = 0, X(x, A., 0) = x, (11.9) 

(c) S(x, A., 0) = 1. 

The functions X and S are found by solving certain ODE's. Specifically, 
consider 

dX 
(a) dt (x, A., t) = - b(X(x, A., t), A., t), (11.10) 

(b) X(x, A., 0) = x, 

and 

dS 
(a) dt (x, A., t) = -a(X(x, A., t), A., t)S(x, A., t), (11.11) 

(b) S(x, A., 0) = 1, 

where a and bare the coefficients in (11.2). 

To understand the reason for this choice of coefficients, let us assume for 
the moment that (11.10) and (11.11) have solutions on K x L x M and 
differentiate the left-hand side of (11.9a) with respect to t. This yields: 

d 
dt [S(x, A., t)G(X(x, A., t), A., t)] = S,(x, A., t)G(X(x, A., t), A., t) 

+ S(x, A., t)G;x(X(x, A., t), A., t)X1(x, A., t) 

+ S(x, A., t)G1(X(x, A., t), A., t). (11.12) 

The right-hand side of (11.12) simplifies considerably using the facts that 
X and S solve the ODE's (11.10) and (11.11) and that G = g + tp. Setting 
y = X(x, A., t) we obtain 

d 
dt [S(x, A., t)G(y, A., t)] = S(x, A., t)[ -a(y, A., t)G(y, A., t) 

- b(y, A., t)G ,b, A., t) + p(y, A.)]. (11.13) 

It follows from (11.2) that the right-hand side of (11.13) is identically zero. 
Hence 

S(x, A., t)G(X(x, A., t), A., t) = S(x, A., O)G(X(x, A., 0), A., 0) 

= g(x, A.). 
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In other words, (11.9a) follows if X and S satisfy (11.10) and (11.11), respec
tively. 

We claim that the initial conditions (11.9b) and (11.9c) also follow if X 
and S satisfy (11.10) and (11.11). Of course, the second equation in (11.9b) 
is just the initial condition (11.10b), and (11.9c) is just the initial condition 
(11.11b). Thus we need only show that X(O, 0, t) = 0. However, by Lemma 
11.1, b(O, 0, t) = 0, so the function X(O, 0, t) = 0 is a solution of (11.10). By 
uniqueness of solutions, it is the only solution. 

We end our proof by discussing why the ODE's (11.10) and (11.11) have 
solutions on K x L x M. We may, in fact, have to shrink K and L, but this 
will not disturb the argument above. 

As we observed above, X(O, 0, t) = 0 is a solution to (11.10) for all t and 
thus for all t in M. The standard existence theorem for ODE's with smooth 
dependence on parameters states that the interval in t on which one can 
solve an ODE like (11.10) varies continuously with the parameters. Cf. 
Hirsch and Smale [1974], p. 169. Thus there exist intervals K, L containing 
0 and an X defined on K x L x M solving (11.10). 

Once X has been defined, the ODE (11.11) is linear and as such has a 
solution for all t. D 

EXERCISES 

Exercises 11.1-11.5 form a block of material covering the basic determinacy 
results for elementary catastrophe theory. 

11.1. Let f and g be germs in $ •. We call fand g right equivalent if there exists a germ 
ofa diffeomorphism cf>: IR"--+ IR" with cf>(O) = 0 suchthat g(x) = .f(cf>(x)). Compute 
the restricted tangent space RT,.(.f) of the germ .f under right equivalence. More 
precisely, Iet 

f.(x) = .f(cf>(x, t)), 

with cf>(O, t) = 0. Compute all possible tangent vectors (d/dt)f.(x)l,=o· Answer: 
RT.,(.f) = .ß · J(.f) where J(.f) = (iJ.ffiJx 1, ... , iJ.ffiJx.). (Note: J(.f) is called the 
Jacobian ideal of f) 

11.2. Prove that if p(x) is in RT.,(.f) and 

RT.(.f + tp) = RT.,(.f) for all t, 

then .f + p is right equivalent to f Hint: Mirnie the proof of Theorem 2.2. 

11.3. The germ .f in c. is called k-determined with respect to right equivalence if f + p 
is right equivalent to f for every p e .1't'k+ 1• U sing Exercises 11.1 and 11.2, prove 
that if 

.ßk+ 1 c .ß2 . J(.f), 

then f is k-determined with respect to right equivalence. 
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11.4. A germfin te. has a singularity at 0 if 8f/8x;(O) = 0 for 1 ::;; i::;; n. This singularity 
is nondegenerate if the hessian matrix 

<a2n° = (a:rxj <o)) 
is nonsingular. Using Exercise 11.3, show that ifjhas a nondegenerate singularity 
at the origin then f is 2-determined with respect to right equivalence. (This is the 
classical Morse Iemma.) 

11.5. Show that x 3 + xy2 (the elliptic umbilic) and x 3 - xy2 (the hyperbolic umbilic) 
are 3-determined with respect to right equivalence. 

§12. Proof of Proposition 8.6(b) 

Proposition 8.6(b) states that for a normal form h of finite codimension the 
higher-order terms &J(h) constitute an intrinsic ideal of finite codimension. 
Recall that &J(h) is defined to be the set of those germs &J for which R T(g + tp) 
= RT(g) for all t in IR and all g which are strongly equivalent to h. We 
subdivide our proof of Proposition 8.6(b) into three parts. We first prove 
that &J(h) is an ideal, then that &J(h) is intrinsic, and finally that &J(h) has 
finite codimension. 

Lemma 12.1. &J(h) is an ideal. 

PROOF. To prove that &J(h) is an ideal we must verify two points. First, if 
Pt and p2 are in &J(h) then so is Pt + p2 , and second, if p E &J(h) and f E tff x,;. 

then fp E &J(h). 
Suppose Pt• p2 E &J(h) and that g is strongly equivalent to h. We must 

compute RT(g + t(pt + p2)). Since Pt in &J(h) we know that g = g + tpt 
is strongly equivalent to g and hence to h. (Cf. Proposition 8.6(a).) Since 
p2 E &J(h) it follows that RT(g + sp2 ) = RT(g) for all s. Settings = t implies 
RT(g + t(pt + p2)) = RT(g + tpt) = RT(g), the last equality following 
from the fact that p1 E &J(h). Thus Pt + p2 is in &J(h). 

Next, we show that fp E &J(h) whenever p E &J(h) and f E tff x, ;.· We do this 
in two parts. First we use Taylor's theorem to write f as 

f(x, A.) = s + k(s, A.), 

where s = f(O, 0) and k(O, 0) = 0. Then, using the addition property for 
&J(h) proved above, we may show that fp E &J(h) by proving that sp E &J(h) 
and kp E &J(h) separately. The first step is easy. Observe that 

RT(g + t(sp)) = RT(g + (ts)p) = RT(g) 

since p E &J(h). Thus sp E &J(h). 
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We shall prove that kp E PJ>(h) by use of Nakayama's lemma. Since 
RT(g + p) = RT(g), it follows that the generators of RT(g + p) are also 
in RT(g). This implies, in particular, that 

p, XPx and APx E RT(g). 

A direct calculation using the fact that k E Jt shows that 

kp, x(kp)x and A.(kp)xE.ßRT(g). 

lt follows by Corollary 5.4(a) that 

RT(g + tkp) = (g + tkp, xgx + tx(kp)x, A.gx + tl..(kp),.) 

= (g,xgx,A.gx) 

= RT(g). 

Thus kp E PJ>(h). 

(12.1) 

D 

In the second step of the proof of Proposition 8.6(b) we show that the 
ideal PJ>(h) is intrinsic. This proof proceeds most smoothly after the intro
duction of some notation and the proof of a preliminary lemma. The question 
we address is: How are R T(g) and R T(h) related when g and h are equivalent? 
The answer is given in Lemma 12.2 below. 

Consider the change of coordinates 

<l>(x, 1..) = (X(x, A.), A(A.)), 

where <1>(0, 0) = (0, 0). Define the pull-back mapping <I>*: <f x,;. --+ <f x,;. by 

<l>*(g)(x, A.) = g(<l>(x, A.)). 

The map <I>* has several useful properties; namely 

(a) <l>*(g + h) = <l>*(g) + <l>*(h), 

(b) <l>*(g . h) = <l>*(g) . <I>*( h ). 

In words, (12.3) states that <I>* isaring homomorphism. 

(12.2) 

(12.3) 

We are interested in invertible changes of coordinate, so that <I> is a local 
diffeomorphism. This means that <I>* is invertible; in fact 

(12.4) 

If J is a vector subspace of <f x, ;., let <I>*(J) denote the vector space of all 
germs of the form <l>*(g) for g in J. Let us show that if J is an ideal, so is 
<I>*(J). By (12.3a), <I>*(J) is closed under sums. Suppose g E J and f E <f x,;.. 

Then (<1>- 1)*(/). g E J. Applying (12.4), we deduce that f · <l>*{g) E <I>*(J). 
Thus <I>*(J) is an ideal.In particular, if J = (p 1, ... , Pk) is a finitely generated 
ideal, then <I>*(J) is the ideal (<l>*(p1), ... , <l>*(pk)). 
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An equivalence transformation y consists of a diffeomorphism <I>(x, A.) 
= (X(x, A.), A(A.)) as above plus a pre-multiplying function S(x, A.). We can 
think of y as a mapping 

defined by 

y(h) = S(x, A.)h(<I>(x, A.)). 

We make two observations about the mapping y. First, y is invertible, and 
y- 1 is also an equivalence. Explicitly 

1 1 1 1 
y- (g) = S(<I> 1(x, A.)) g(<I>- (x, A)). 

Second, 

y(J) = <I>*(J), 

whenever J c C x, ._ is an ideal. This property holds even though y is not a 
ring homomorphism-the analogue of (12.3b) fails because 

y(g. h) = s- 1y(g). y(h). 

We denote the identity equivalence (S = 1, X = x, A = A.) by 1. 

Lemma 12.2. Let g and h be equivalent, where the equivalence y is given by 

g(x, A.) = S(x, A.)h(<I>(x, A.)) = y(h), 

and Cl>(x, A.) = (X(x, A.), A(A.)). Then 

RT(g) = y(RT(h)) = C!>*(RT(h)). 

(12.5) 

(12.6) 

Remark. This Iemma may be proved either algebraically (by verifying (12.6) 
directly with the aid of Nakayama's Iemma) or geometrically (using the fact 
that RT(g) is a tangent space). We prefer the latter, asthat proofwill be useful 
in other contexts. A sketch of the algebraic proof is given in Exercise 12.5. 

PRooF OF LEMMA 12.2. We define a smooth curve of strong equivalences (jr to 
be a pair S(x, A., t), X(x, A., t), both of which depend smoothly on t. In 
addition, we demand that <50 = 1. The restricted tangent space RT(h) may 
be defined abstractly using curves of strong equivalences as follows: p is in 
RT(h) if and only if there is a curve of strong equivalences (jr (with ()0 = 1) 
suchthat 

p = dd Or(h) I . 
t t=O 

(12.7) 

We use this representation to verify (12.6). Firstlet us show that 

y(RT(h)) c RT(g). (12.8) 
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Suppose p E RT(h)o Then from (1207) 

y(p) = (y :t c5r(h) I,=J (12o9) 

However y is independentoft and may be brought through the differentiationo 
Thus we have 

y(p) = dd yc5t(h) I = dd yc5~y-1 y(h) I 0 

t t=O t t=O 
(12010) 

But y(h) = g; Iet us define t51 = yc51y- 1o Rewriting (12010), we see that 

d ~ I y(p) = dt c5r(g) t=O 0 

Now 31 is itself a smooth curve of equivalences, so by (1207), y(p) E RT(g)o 
Similarly, by interchanging the roles of g and h we may show that 

y- 1(RT(g)) c RT(h)o 

The lemma follows from combining (1208) and (12011)0 

(12011) 

D 

We now complete the second part of the proof of Proposition 806(b )o 

Lemma 12.3. The ideal fJJ(h) is intrinsico 

PRooFo Let p be in fJJ(h) and Iet y: rffx,A--+ rffx,A be a strong equivalenceo We 
must show that y(p) E fJJ(h)o Suppose g is strongly equivalent to ho Wehave 

RT(g + ty(p)) = RT(y(y- 1(g) + tp)) 

= yRT(y- 1(g) + tp), (12012) 

the second equality in (12o12) following from Lemma 12020 Now y- 1(g) is 
strongly equivalent to g and hence to ho Since p E fJJ(h) 

RT(y- 1(g) + tp) = RT(y- 1(g))o 

Combining with (12.12) we see that 

RT(g + ty(p)) = yRT(y- 1(g)) = RT(g), (12013) 

the second equality in (12013) following from Lemma 12020 Equation (12013) 
implies that y(p) E fJJ(h), as desiredo D 

In the final part ofthe proof of Proposition 806(b) we show that if R T(h) has 
finite codimension then fJJ(h) is an intrinsic ideal of finite codimensiono 
More precisely, we prove: 

Lemma 12.4. Itr .ß 0 RT(h) c fJJ(h) if codim RT(h) < OOo 
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We claim that Lemma 12.4 completes the proof of Proposition 8.6(b). If 
RT(h) has finite codimension, then .ßk c RT(h) for some k. (Cf. Proposition 
5.7.) Thus .ßH 1 c Itr .ß · RT(h) c &(h) by Lemma 12.4, and hence &(h) 
has finite codimension. 

Before proving Lemma 12.4 we state and prove the next Iemma. 

Lemma 12.5. Let .F be an intrinsic ideal. Assurne that RT(h + p) = RT(h) 
for all p in .F. Then .F c &(h). 

Remark. The point of Iemma 12.5 is that if .F is known to be an intrinsic 
ideal, we do not have to compute R T(g + tp) for all g strongly equivalent to h. 

PROOF. Let p be in .F, Iet t be in IR, and Iet g be strongly equivalent to h. We 
must show that RT(g + tp) = RT(g). 

Let y be the strong equivalence satisfying y(h) = g. Then 

RT(g + tp) = RT(y(h + y- 1(tp)) 

= yRT(h + y- 1(tp)), (12.14) 

the second equality in (12.14) following from Lemma 12.2. 
Observe that tp E .F since J is an ideal, and that y- 1(tp) E .F since J is 

intrinsic. Thus 

RT(h + y- 1(tp)) = RT(h). 

Combining with (12.14), and using Lemma 12.2, we see that 

RT(g + tp) = RT(g). 
D 

PROOF OF LEMMA 12.4. Let .F = ltr .ß · RT(h). By Lemma 12.5, to prove 
.F c &(h) it suffices to show for each pe.F that RT(h + p) = RT(h). We 
do this by Nakayama's Iemma in the form of Corollary 5.4(a). 

Let p be in .F. Since .Fis intrinsic and of finite codimension, Lemma 7.5 
implies that xpx and A.pxef Since J c .ß ·RT(h), we see that p, xpx, and 
A.px E .ß · RT(h). We now use Corollary 5.4(a) to conclude that 

RT(h + p) = (h + p, xhx + xpx, A.hx + A.px) = (h, xhx, Ahx) 

= RT(h). 

D 

EXERCISES 

12.1. Prove: If J is an ideal and ~x, A.) = (X(x, A.), A(A.)) is an invertible coordinate 
transformation, then 

ltr J = Itr cll*(J). 

12.2. Prove that if g, h E rffx,A are equivalent then codim RT(g) = codim RT(h). 
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12.3. Let J c 8 x. 1 be an ideal. Prove that 

Itr J = n cl>*(J), 
<I> 

where the intersection is taken over all diffeomorphisms cl>. 

12.4. Let hEtffx.l· Use Exercise 12.3 to prove 

ltr RT(h) = n {RT(g): g ~ h}, 

where ~ indicates strong equivalence. 

12.5. Complete the algebraic proof of Lemma 12.2. (Hint: Show that 

cl>*(RT(h)) = (cl>*h, cl>*(xhx), cl>*(Ah,)) = (cl>*h, x(cl>*h)x, A.(cl>*h)x).) 
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We divide the proof ofTheorem 8.7 into two parts: 

(a) Itr f(h) c &'(h), 

(b) &'(h) c ltr f(h). 
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The complete proof of part (b) is much more technical than the proof of part 
(a). Moreover, only part (a) will be used in applications. Part (b) gives a 
moreelegant "if and only if" result, but its proof may be omitted without 
loss of continuity. 

(a) Proofthat Itr /(h) c f/J(h) 

The ideas needed for part (a) have already been introduced. In Lemma 12.4 
we proved that .ß · RT(h) c &'(h). Recall that .ß · RT(h) = (xh, A.h, x2hx, 
A.xh", A.2hx) while J(h) = (xh, A.h, x 2hx, Ahx>· The only new issue here is 
how to deal with the term A.hx which belongs to f(h) but not .ß · RT(h). 
Because of the following Iemma, the same techniques in fact suffice for this 
term, too. 

Lemma 13.1. Suppose h E .ß has a singularity of finite codimension at the 
origin. Ifp E Itr f(h), then A.px E .ß · RT(h). 

Remark. Note that the operator A.(8/8x) is nilpotent on 8 "· ;./.ßk for any 
k-this operator preserves the degree of homogeneity of any monomial 
but substitutesapower of A. for one of x. We do not use this fact in any way 
in our proof, but it provides motivation for why A.p" might be different 
from XPx· 
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PROOF. First we dispense with the case where h;.(O, 0) =F 0. (We assume that 
hx(O, 0) = 0-otherwise h would not have a singularity.) We claim that 

J(h) = Jt · RT(h) if h;.(O, 0) =F 0, (13.1) 

so that the Iemma follows trivially in this case. Since RT(h) has finite Co
dimension, h is strongly equivalent to g = ±xk ± A. where k ;;:::: 2. We 
compute that 

Jt. RT(g) = Jtk+ t + .ß(A.). 

Denote the strong equivalence between g and h by y; that is, h = y(g). Using 
Lemma 12.2 and that fact Jt and Jt · RT(g) are intrinsic we have 

Jt · RT(h) = Jt · y(RT(g)) = y(Jt · RT(g)) = Jt · RT(g). 

As noted above, hx(O, 0) = 0. Hence A.hx E .ß(A.), so J(h) = Jt · RT(h), as 
claimed. 

We now prove Lemma 13.1 assuming that h;.(O, 0) = 0. We claim that if 
p E Itr J(h), then xpx and A.px also belong to ltr J(h). To see this, note that 
RT(h) has finite codimension, so that .f(h) also has finite codimension. 
Thus Itr .f(h) is an intrinsic ideal of finite codimension. Therefore the claim 
follows from Lemma 7.5. 

Since we have 

XPx• APx E Itr J(h) c f(h) = (xh, A.h, x 2hx, A.hx), 

there exist smooth coefficients oc, ß, y, (j such that 

where 

(a) XPx = och + ßhx, 

(b) APx = yh + (jhx, 

(a) oc(O, 0) = ß(O, 0) = ßx(O, 0) = 0, 

(b) y(O, 0) = ö(O, 0) = öx(O, 0) = 0. 

We will prove further that 

(j ;.(0, 0) = 0. 

It may then be seen from (13.2b) that A.pxE.ß · RT(h). 

(13.2) 

(13.3) 

To prove (13.3) we multiply (13.2a) by A., (13.2b) by x, and subtract, 
obtaining 

(A.oc - xy)h + (A.ß - xö)hx = 0. 

However, h and hx generate an ideal of finite codimension-in particular, 
RT(h) c (h, hx>· It follows from Proposition 5.10 that there exists a smooth 
germ Q such that 

(a) A.oc - xy = -Qhx mod .ß\ 

(b) A.ß - xb = Qh mod .ß\ 
(13.4) 
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where k is as large as we like. We take the mixed partial derivative with 
respect to x and 2 of (13.4b) and evaluate at the origin. This yields 

() ;,(0, 0) = - Q(O, O)hx;,(O, 0), 

where we have used the relations 

ßx(O, 0) = h(O, 0) = hx(O, 0) = h;,(O, 0) = 0. 

On differentiating (13.4a) with respect to 2, evaluating at the origin and 
eliminating terms which vanish, we see that 

Q(O, O)hx;,(O, 0) = 0, 

from which (13.3) follows. The proof of Lemma 13.1 is complete. D 

PROOFTHAT Itr f(h) c &>(h). Our proof is based on an application of 
Lemma 12.5. The main step is to show that for any p E Itr f(h), 

RT(h + p) = RT(h). (13.5) 

lt then follows from the Iemma that ltr f(h) c &>(h). (Remark: The idea we 
use to prove (13.5) already occurred in Lemma 11.2.) 

If p E Itr f(h), then by Lemma 7.5 

Xpx, 2px E Itr f(h) c f(h). 

Thus there exist smooth coefficients such that 

p = A 1h + B1xhx + C12hx, 

XPx = A 2 h + B2 xhx + C2 2hx, (13.6) 

where 

A;(O, 0) = B;(O, 0) = 0, i = 1, 2, 3. 

Moreover by Lemma 13.1, C3(0, 0) = 0. We may write (13.6) in a matrix 
notation 

(X~x) = Q(x~x)' 
2px 2hx 

(13.7) 

where Q(O, 0) is strictly upper triangular; i.e., upper triangular with zeros 
along the diagonal. Adding h to both sides of (13.7) we have 

But I + Q is invertible in some neighborhood of the origin, since Q(O, 0) is 
upper triangular. Thus the generators of RT(h) and RT(h + p) are related 
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by an invertible linear transformation; in other words, (13.5) follows by 
Lemma 4.2. 0 

(b) Proofthat PJ1(h) c ltr f(h) 

The idea behind our proof is the calculation in §2 with which we motivated 
the definition of RT(h). (This calculation occurs several times above, but we 
repeat it here.) Suppose p E &J(h). By Proposition 8.6(a), for any t, h + tp is 
strongly equivalent to h. Moreover, the equivalence transformation varies 
smoothly with t and equals the identity when t = 0. Thus we have 

h(x, .A.) + tp(x, .A.) = S(x, .A., t)h(X(x, .A., t), .A.), (13.8) 

where 

X(O, 0, t) = 0. 

On differentiating (13.8) with respect to t and setting t = 0 we find 

p(x, .A.) = S(x, .A., O)h(x, .A.) + hx(x, .A.) Xx(x, .A., 0). 

The crux of the present proof is to show that 

S(O, 0, 0) = Xx(O, 0, 0) = 0. 

(13.9) 

(13.10) 

(13.11) 

lt will then follow from ( 13.1 0) that p E f(h). In other words, verifying ( 13.11) 
will show that ~(h) c f(h); since ~(h) is intrinsic, this will show that 
~(h) c Itr f(h), as desired. 

In verifying (13.11) weshall in fact prove that 

S(O, 0, t) = 1, Xx(O, 0, t) = I. (13.12) 

(Henceforth weshall suppress the dependence of Sand X on t.) The intuition 
behind our analysis is as follows. Equation (13.8) states that the equivalence 
transformation (S, X) applied to h may change the higher-arder terms 
(represented by p), but only higher-arder terms are affected. Our strategy is to 
isolate two "lower-order terms" in h and to extract (13.12) from the fact that 
S, X does not change these lower-order terms. One of these terms is easy to 
identify; the following simple Iemma is useful in this task. 

Lemma 13.2. (a) ~(h) c Y'(h). 
(b) The intrinsic generators of Y'(h) do not belang to ~(h). 

Proof We already know that 

~(h) c RT(h) c Y'(h), 

which verifies part (a). For part (b), suppose xk.A.1 is an intrinsic generator of 
Y'(h) which also belongs to ~(h). By Proposition 8.6(a), h + txk .A.1 is equivalent 
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to h for any t E IR. Yet there is a choice of t which makes the derivative 

(:xr (:A)'<h + txkA') 

vanish. By Theorem 8.4, h + tp for this choice of t is not equiva1ent to h. 
This contradiction proves the lemma. D 

We identify the first of the "low-order terms" in h as follows. Since h has 
finite codimension, there is an integer k such that 

h(x, 0) = axk mod vl(k+ 1, 

where a =1= 0. Then xk is an intrinsic generator of Y'(h). However, according 
to Lemma 13.2, xk~&(h). In other words, if pE&(h), then p(x, 0)E.Ak+ 1. 

Let us compute the coefficient of xk on the left and the right in (13.8). On the 
left we have 

LHS(x, 0) = axk mod .Ak+ 1, 

while 
RHS(x, 0) = aS(x, O)Xk(x, 0) mod vl(k+ 1• 

But 

X(x, 0) = Xx(O, O)x mod .A2 , 

SO that Xk+ 1 E .ßk+ 1 and 

Xk(x, 0) = X~(O, O)xk mod vl(k+ 1• 

Therefore matehing coefficients of xk in (13.8) yields the relation 

S(O, O)X~(O, 0) = 1. (13.13) 

We need to identify a second lower-order term in h and to extract a relation 
analogaus to (13.13). This requires very little effort if Y'(h) has at least two 
intrinsic generators; i.e., if the decomposition 

(13.14) 

according to Proposition 7.1 contains at least two distinct terms. Thus at this 
juncture we sp1it the proof into two cases. 

Case I. In (13.14), s > 0. 

Case II. Y'(h) = .ßk. 

Case I. Let xk1Ah be an intrinsic generator of Y'(h) as indicated in (13.14). By 
matehing the coefficients of xk 1 A11 in ( 13.8) we shall show that 

S(O, O)X~1 (0, 0) = 1. (13.15) 

Since k1 =I= k, (13.12) then follows from (13.13) and (13.15). 
In deriving (13.15) we introduce an appropriate notion of higher-order 

terms. Let :Yt be the ideal 

(13.16) 
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this is the largest intrinsic ideal that does not contain xk'Ä.1'. In particular, 
the other intrinsic generators of [!l(h) allbelang to .Jr, and we may deduce 
from Lemma 13.2 that PJ(h) c :tf. Thus we have in (13.8) 

LHS = bxk•A." (mod .Yt'), 

where b :f= 0. Moreover, since .Yt' is intrinsic we also have 

and 

Xk'Ä.1' = X~'(O, O)xk'A.1' (mod .Yt'). 

Therefore (13.15) follows by matehing the coefficients of xk'A." in (13.8). 
This completes the analysis of Case I. 

Case II. In the present case where [!l(h) = .11\ it does not seem to be 
possible to prove that PJ(h) c Itr J(h) by working with h directly; rather we 
work with a carefully constructed germ g that is equivalent to h. Specifically, 
we will show for this g that PJ(g) c Itr J(g). To obtain the desired conclusion 
that PJ(h) c Itr J(h), we need to know that PJ(h) = PJ(g) and 

Itr J(h) = Itr J(g). 

The first equality is obvious from the definition of PJ. The second equality we 
state here as a Iemma; the proof is given at the end of this section. 

Lemma 13.3. lf g, h eS x, .._ are equivalent, then 

Itr J(g) = Itr J(h). 

We now show how to construct g from h, and then we prove that 

PJ(g) c Itr J(g) 

for this g. 
Order the monamials in .l(k by 

If g is any germ equivalent to h, then we may write 

g = axk + bxk'A." + · · ·, (13.17) 

where a :f= 0, b :f= 0, and · · · refers to later termsrelative to the above ordering 
of terms. Let us justify (13.17). Since [!l(g) = [!l(h) = .11\ all monamials 
appearing in the Taylor series of g must be of degree at least k, and the 
coefficient of xk cannot vanish. Moreover, there must be at least one more 
monomial with a nonvanishing coefficient; otherwise g, and hence h, would 
have infinite codimension. Indeed we may refine the argument to obtain an 
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upper bound on k1 + /1 as follows. Suppose .ßK c Jt. RT(h). Then 
.AK c Itr Jt. RT(h), so by Lemma 12.4 

.ßK C f!IJ(h) = f!IJ(g). 

Now if g were equal to axk + p where p E .ßK, then g would be equivalent 
to axk, contradicting the hypothesis of finite codimension. In other words in 
(13.17) we must have k1 + 11 < K. The existence of this a prioribound on 
k1 + 11 makes the following construction possible: among all g's equivalent 
to h, choose g so that the first nonzero term after xk in ( 13.17) has maximal 
degree with respect to the above ordering. 

The verification for the g just defined that 

f!IJ(g) c Itr ,I (g) (13.18) 

proceeds in much the same way as the calculations for Case I. More precisely, 
if p E f!IJ(g), differentiate the relation (13.8) expressing the equivalence of 
g + tp with g. Our task is to derive (13.11). In fact we prove that (13.12) is 
valid. 

We will verify (13.12) by matehing low-order terms in (13.8), replacing 
h by g. By low-order terms we mean terms not belonging to the intrinsic 
ideal .Yt' defined by (13.16). For reference below we note that 

x"')..V ri .Yt' iff ll + v < k1 + 11 + 1 and v < 11 + 1. (13.19) 

We claim that f!IJ(g) c .Yt'. We prove this by showing that 

xk,A_I, ri f!IJ(g) (13.20) 

and recalling that .Yt' is the largest intrinsic ideal not containing xk,A.It. To 
prove (13.20) we argue by contradiction. If xk'A.It E f!IJ(g), then g - bxk•A.1' 
would be equivalent to g, and its first nonzero term after xk would occur 
further along in the ordering than xk•A.It. This contradicts the construction 
of g, thereby proving (13.20). 

Let us begin to match low-order terms in (13.8). Since p E ~(g) c .Yt' we 
have 

LHS = axk + bxk•A_It mod .Yt'; 

because .Yt' is intrinsic, x"' A. E .Yt' iff X"' A.• E .Yt', so 

RHS = aSXk + bSXk,A_It mod .Yt'. 

(13.21) 

(13.22) 

It is easy to match the coefficients of xk by restricting to A. = 0 and computing 
modulo J~k+ 1. Indeed this argument was carried out above; it yields the 
conclusion (13.13); i.e., 

S(O, O)X~(O, 0) = 1. (13.23) 

It is tempting to differentiale (13.21) and (13.22) 11 times with respect to A. and 
match coefficients of xk'. It seems this would Iead to the relation 

S(O, O)X~'(O, 0) = 1, (13.24) 
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which could be combined with (13.23) to yield (13.12). In fact, (13.24) is a 
valid equation and the proof of Theorem 8.7 does indeed emerge from these 
considerations as indicated, but the justification of (13.24) is considerably 
more subtle. The difficulty is that the naive argument above overlooks the 
possibility that Xk might contribute to the coefficient of xk•;V•. For example, 
if k 1 + /1 = k (i.e., if both terms in (13.21) have the same degree) and if 
X(x, A.) = X+ cA., then the expansion of xk includes a term in Xk 1A11 . As it 
turns out, this possibility does not actually occur, for the following reason: 
for alt monamials not belanging to :Yf, the coefficients in (13.21) and (13.22) 
must match, not just for xk and xk• A.h. However this must be shown; we do so 
in the Iemma below. (Remark: lt is shown in the proof of this lemma that 
k 1 i= k so that (13.23) and (13.24) are actually independent relations.) 

Lemma 13.4. The coefficient ofxk'A1' in (13.22) equals 

bS(O, O)X~'(O, 0). (13.25) 

PROOF. It is clear that (13.25) represents the contribution of the second term 
in (13.22) to the indicated coefficient. We must show that the first term does 
not contribute. 

First, we claim that k1 :::; k - 2. For suppose otherwise; i.e., suppose 
k1 ?: k - 1. lf, in fact, k1 ?: k, we may transform away the term xk'A11 by an 
equivalence transformation on the range, 

which contradicts the construction of g. If k1 = k - 1 we may transform 
xk•Jch away by an equivalence transform on the domain, 

g( x - :a A.h, A.) = axk mod :Yf, 

which is again a contradiction. Thus 

kl :::; k - 2. (13.26) 

In the proof we will need the following assertion: Let </J 1, </J 2 E Jt be two 
germs such that <jJ 1 = <jJ 2 mod Jt~' where 11 ?: 1 ; then 

<P~ = </J~ mod Jt~'+k-l. 

This assertion is proved by writing <jJ 1 = </J 2 + r where r E ._if~' and expanding 
(</J 2 + r)k by the binomial theorem. We leave this to the reader. 

The main task ofthe proofis to show that there is a germ Y suchthat 

X(x, A.) = xY(x, Je) mod Jtk,+Z.-k+z. 

Given (13.27), it follows from the above assertion that 

xk = xkyk mod ._jtk,+!,+t, 

(13.27) 
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so that in (13.22), Xk cannot contribute to the coefficient of xk1J..11 • 

We prove (13.27) by induction. Suppose that 

X= xY modJti 

for some j satisfying 
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(13.28) 

(13.29) 

(Wemaytriviallystarttheinduction withj = 1,sinceX(O, 0) = O.)Modifying 
Y if necessary, we deduce from (13.28) that 

X = xY + cJ..i mod Jti+ 1 

for some c e ~. By the assertion above 

Xk = (xY + cJ..i)k mod Jtk+ i, 

and, moreover, 

(xY + cJ..it = (xY)k + k(xY)k- 1(cJ..i) mod(J..2i) 

(13.30) 

We may deduce that xk- 1J..ifj::K by operating on (13.29), using (13.26), to 
obtain the criterion (13.19). Thus the coefficient of xk- 1 J..i in (13.22) equals 

aS(O, O)X~(O, O)c. 

Equating this to zero, the value of the corresponding coefficient in (13.21), 
we see that c = 0. Thus, comparing with (13.30) we see that the induction 
continues. This completes the proof of Lemma 13.4 and ofTheorem 8. 7. D 

We end this section by proving Lemma 13.3. Webegin by observing that 
J(h) is a "tangent space" under a restricted form of strong equivalence. 

Definition 13.5. A J-equivalence is a strong equivalence defined by a pair of 
functions S(x, A.) and X(x, A.) satisfying 

S(O, 0) = 1, Xx(O, 0) = 1. (13.31) 

It is an easy exercise to show that if b1 is a curve of J -equivalences satisfying 
b0 = 1 then 

p = dd b,(h)\ 
t r=O 

(13.32) 

is in J(h). In fact J(h) consists of all germs defined according to (13.32). 
Thus J(h) is the tangent space to h obtained by considering J-equivalences. 

Remark. The essence of the above proofthat &>(h) c Itr J(h) was to show 
that if p e &>(h) then the equivalence between h + tp and h must be a J
equivalence for each t. Differentiation with respect to t then shows that 
p eJ(h). 
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Lemma 13.6. Let y be an equivalence (not necessarily a .f-equivalence) 
operating on S x, ._ and Iet y(h) = g. Then 

.f(g) = y.f(h). 

The proof of Lemma 13.6 is identica1 to the proof of Lemma 12.2, except 
that one uses a curve of f -equiva1ences rather than a curve of strong 
equivalences. The details are 1eft to the reader. 

PROOF OF LEMMA 13.3. Let g = yh. By Lemma 13.6 we have 

.f(g) = y(.f(h)). 

Therefore 

Itr .f(g) = Itr y.f(h) = Itr .f(h) 

since intrinsic parts are invariants of equivalences. 0 

ßiBLIOGRAPHICAL COMMENTS 

As we stated in the Preface, singularity theory is largely the creation of 
John Mather-our contribution was to adapt his work to the context of 
bifurcation problems. In particular, the papers of Mather relevant to the 
present chapter include Mather [1968], [l969b]. There are several books 
describing local singularity theory including Martinet [1982], Amold 
[1981], Gibson [1979], and Brocker [1975]. The global theory may be 
found in Golubitsky and Quillemin [1973]. 



CHAPTER III 

Unfolding Theory 

§0. Introduction 

As we saw in Chapter I, bifurcation diagrams may change their form drama
tically when the defining equation is subjected to a small perturbation. The 
study of such changes is often termed "imperfect bifurcation". In this chapter, 
we address the general problern of imperfect bifurcation, using the theory 
of universal unfoldings as the main tool. The construction of universal 
unfoldings is now a standard procedure in singularity theory; we adapt this 
method to the specific context of bifurcation theory. 

Our goal is to present an algorithm allowing us to enumerate, up to equiv
alence, all perturbations of a given bifurcation problern g(x, A.) = 0. This 
algorithm divides neatly into two parts, an analytic part and a geometric 
part. Bothofthese have been described, by example, in Chapter I. We recall 
the following two points from Chapter I, §1 for reference below: 

(A) Equation (1,1.13) gives a formula forauniversal unfolding of the pitch
fork. 

(B) Perturbations of the pitchfork are enumerated in Figure 1,1.5. This 
includes both the diagrams shown in the open regions of Figure 1,1.5 
and the transition diagrams (i.e., those which occur between regions 
in Figure 1,1.5) that are sketched in Figures 1,1.6 and 1,1.7. 

These two points correspond to the division of this chapter into an analytic 
and a geometric part, as mentioned above. Before continuing, let us attempt 
a definition of"universal unfolding." Roughly speaking, a universal unfolding 
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of g is a parametrized family ofmappings G(x, Ä., cx), where cx lies in a parameter 
space ~k, satisfying the following two conditions: 

(a) G(x, Ä., 0) = g(x, Ä.). 

(b) Any sufficiently small perturbation of g is equivalent (0.1) 
to G(·, ·, cx) for some cx near 0. 

(Remark: We call any parametrized family satisfying (0.1a) an unfolding of 
g; this is our description for perturbations of g.) 

As we have indicated above, the algorithm given in this chapter divides 
into two parts. These extend points (A) and (B) above to a general normal 
form. The first four sections of the chapter present the analytical part of the 
algorithm; the last six present the geometric part. The principal result from 
the first part is the Universal Unfolding Theorem, Theorem 2.3; the principal 
result from the second part is Theorem 6.1 which shows that perturbed 
bifurcation diagrams can be enumerated by certain open regions in parameter 
space. The mathematical techniques presented in these two parts are quite 
different. In the first part we continue to use the algebraic constructions of 
Chapter II; in the second part we use methods from differential topology 
in deforming bifurcation diagrams. 

We now summarize the contents of this chapter section by section. 
Sections 1-4 together show how to find and work with universal unfoldings. 
In §1, we give precise definitions of unfoldings and universal unfoldings. 
In §2, we state the Universal Unfolding Theorem, which gives a necessary 
and sufficient condition for an unfolding to be universal. Interestingly, the 
necessity of this condition is found by considering only traditional one
parameter perturbations. This derivation Ieads to a basic concept in our 
theory, the tangent space to g, denoted T(g). We defer the proof of sufficiency 
until Volume II, as it is quite technical. One important aspect oftbis theorem is 
that it characterizes the precise number of unfolding parameters needed to 
capture all possible perturbed behavior. This number is called the codimen
sion of the germ g. There are several different ways of defining the codi
mension of g; the equivalence of these definitions is shown in Corollary 2.4. 
In §3, we apply the theorem to compute unfoldings for several normal forms; 
the guidance provided by the theorem makes the calculations elementary. 
In §4, we extend the universal unfolding theorem in a way that is useful for 
applications. Specifically, Iet G be an unfolding of a germ g, where g is equiv
alent to anormal form h; we show how to decide when Gis universal. We 
call this the recognition problern for universal unfoldings. As with the 
recognition problern for a normal form in Chapter II, our solution only 
depends on G and finitely many ofits derivatives at the origin. This is import
ant for applications, where an explicit formula for G is often unavailable or 
unwieldy. 

Before describing the second half of Chapter Ill, we make two comments 
about the tangent space T(g) and the universal unfolding theorem. 



§0. Introduction 119 

(i) Consider a normal form h such that R T(h) has finite codimension. 
Once RT(h) has been computed, only Straightforward linear algebra is 
required to compute T(h). In fact, for any such germ h there is an integer l 
such 

See §2(b). 
(ii) The universal unfolding theoremstatesthat finding a universal unfolding 

of h is equivalent to finding a basis for a complementary subspace of 
T(h) in tffx,A.· lt is a pleasant fact that the unfolding theorem is relatively 
easy to apply, even though it is difficult to prove. The harrlest aspect of 
applying the theorem is determining RT(g), and we dealt with this issue 
in Chapter II. 

The second half of Chapter III deals with the geometric part of our 
algorithm. The main idea is to show that certain bifurcation diagrams are 
unchanged, up to equivalence, by small perturbations; we call such diagrams 
persistent. More precisely, we show that a diagram is persistent if its only 
singularities are Iimit points and if no two Iimit points have the same A.
coordinate. This result Ieads to an enumeration analogous to Figure I,1.5 
of the qualitatively different perturbed bifurcation diagrams. The highlights 
of this derivation are as follows. First, we classify the kinds of nonpersistent 
behavior. Then we show that the set of parameter values in !Rk for which 
nonpersistent obtains is a finite union of (possibly singular) hypersurfaces 
in !Rk. For example, in Figure I,l.5 nonpersistent behavior occurs along the 
two curves a1 = 0 and a 1 = aV27; the associated bifurcation diagrams are 
shown in Figures I,l.6 and I,l.7. In the general case, as in Figure I,l.5, these 
hypersurfaces divide !Rk into finitely many regions. Any two choices of para
meter from within one such region give equivalent bifurcation diagrams
the diagrams must be equivalent, since one parameter may be deformed 
into the other without encountering any nonpersistent behavior. Thus these 
regions in !Rk enumerate the different perturbed diagrams. 

Section by section, the second half of the chapter breaks down as follows. 
Nonpersistent behavior is classified in §§5 and 10; the latter section deals 
with the case where singularities may cross the boundary of the neighbor
hood under consideration. The main theorem is stated in §6. In §§7 and 8, 
we apply the algorithm of §6 to a simple example and a complicated example; 
the pitchfork and the winged cusp, respectively. In §9, we sketch a proof of 
the main theorem from §6. This section is primarily to convey the ideas in
volved; in a careful treatment we prove the main theorem of §6 as a corollary 
of a moreglobal theorem, which westatein §10 and prove in §11. The proof 
sections, §§9 and 11, use techniques from differential topology. 

Finally, in §12, we describe the path formulation for bifurcation problems. 
This pictorial formulation connects bifurcation theory with elementary 
catastrophe theory. lt has proven useful in finding organizing centers in 
certain applications and in analyzing certain specific bifurcation problems. 
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Wehave frequently emphasized that our theory is a local one. Neverthe
less, often seemingly global properties of bifurcation diagrams can be 
derived by studying degenerate local bifurcation problems and their per
turbations. Already in the model studied in Chapter I, §2 we obtained such 
apparently global information. Understanding what the definition of un
foldings means sheds light on this paradox. We address this point at some 
length in § 1. 

§1. Unfoldings and Universal Unfoldings 

In this section we define the basic concepts of unfolding theory, and we 
discuss how these definitions relate to germ concepts. The intent of this 
discussion is to clarify how a local theory can Iead to information about 
global behavior. 

First we define "unfolding." This concept is the notion of perturbation 
with which we work. Let g be in 8 x,;. ; a k-parameter unfolding of g is a germ 
GE sx,A,a.• where ()( = (ocl, ... ' ock) E ~k. suchthat for ()( = 0 

G(x, ;., 0) = g(x, }.). (1.1) 

Here Gis a germ in all the variables: x, ;., oc 1, ••• , ock. Thus Gis defined and 
C'x' on a neighborhood of zero in ~k+ 2 • The restriction to oc = 0 in (1.1) is 
compatible with germ concepts. 

Let G(x, ;., oc), oc E ~k and H(x, ;., ß), ß E ~~ be unfoldings of a germ g, 
where l and k need not be equal. Suppose that for each ß E ~~. H(·, ·, ß) is 
equivalent to some member of the unfolding G; in symbols, 

H(·, ·, ß) - G(-, ·, A(ß)), (1.2) 

where A: ~1 - ~k. In such a case we would say that all the perturbations in 
H are contained in G. Let us formalize this in the following definition. 

Definition 1.1. Let G(x, A., oc) and H(x, ;., ß) be unfoldings of a germ g. We 
say that H factors through G if there exist smooth mappings S, X, A, and A 
suchthat 

H(x, A., ß) = S(x, ;., ß)G(X(x, ;., ß), A(}., ß), A(ß)), (1.3) 

where for ß = 0 the following hold: S(x, ;., 0) = 1, X(x, A., 0) = x, A(}.,O) = 
;., and A(O) = 0. 

We make two comments about this definition. 

Remarks 1.2. (a) Since G and H are both unfoldings of the same germ g, 
it is natural to require that when ß = 0 the equivalence of g with itself in
duced by ( 1.3) be the identity equivalence. This is the reason for the conditions 
on S, X, A, and A when ß = 0. 
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(b) We do not require that (X(O, 0, ß), A(O, ß)) = (0, 0); i.e., when ß is 
nonzero, the equivalence need not preserve the origin. We shall amplify 
this point considerably in our discussion below. 

An unfolding H may factor through another unfolding which contains 
fewer parameters. For example, consider the one-parameter unfolding 

H(x, A., ß) = x3 - A.x + ßx (1.4) 

of the pitchfork. Observe that H factors through the zero-parameter unfold
ing of the pitchfork G(x, A.) = x3 - A.x; indeed we may Iet A(A., ß) = A. - ß. 
The point at wntch the pitchfork bifurcation occurs moves from (x, A.) = 

(0, 0) to (x, A.) = (0, ß). From a qualitative point of view, this change is 
insignificant. 

Rather remarkably, for most germs g there are special unfoldings G of 
g which contain all perturbations of g, up to equivalence. More formally, 
such an unfolding G has the following property: Every unfolding of g may 
be factored through G. This property is by far the most important property 
of a universal unfolding, but is is not quite the definition-we reserve the 
term "universal" for an unfolding with this property such that there is no 
redundancy in the parameters. The following definition formalizes this most 
important concept. 

Definition 1.3. An unfolding G of g is versal if every other unfolding of g 
factors through G. A versal unfolding of g depending on the minimum number 
of parameters possible is called universal. That minimum number is called 
the codimension of g. 

We augment this definition with the following convention: If g does not 
possess a versal unfolding we say that g has codimension in.finity. 

The following formula gives a versal unfolding of the pitchfork which is 
not universal because there isaredundant unfolding parameter. (Cf. (I, 1.13).) 

G(x, A.) = x3 - A.x + ~1 + ~2 x + ~3 x2 . 

As with (1.4), the term ~2 x may beabsorbed into a change ofthe A.-coordinate 
and is therefore redundant. 

In the next sections we consider how to find universal unfoldings. The rest 
of this section is a theoretical discussion expanding on Remark 1.2(b) 
above; viz., in (1.2) when ß # 0 the equivalence (X, A) need not preserve 
the origin in IR2 • We have already seen a simple illustration of why this is 
appropriate in the unfolding (1.4) of the pitchfork. However, the issues 
here are far more important than this; in particular, they relate to the 
possibility of obtaining apparently global behavior from a local theory. 

First Iet us discuss how such global information may emerge from local 
considerations. A single degenerate singularity may split, upon perturbation, 
into severalless degenerate singularities. Fora specific perturbed bifurcation 
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(a) x3 + ).2 = 0 (b) Perturbationof x3 +.'.2 =0 

Figure 1.1. The winged cusp and a perturbation. 

diagram the exact way in which these less degenerate singularities are 
connected yields global information about that bifurcation diagram. For 
example, we recall from Chapter I, §2 that perturbation of the winged cusp 
x3 + .P can Iead to the bifurcation diagram shown in Figure l.l{b ). Note that 
this perturbation of the winged cusp contains four Iimit points, two of which 
are connected to form an isola (i.e., an isolated solution branch). It would 
indeed be impossible to understand this behavior merely from a local study 
of one point on the perturbed diagram in Figure l.l(b), but this behavior 
follows naturally in a local analysis of the degenerate diagram and its per
turbations. The point is that as the size of the perturbation tends to zero, all 
four Iimit points in Figure l.l(b) collapse into a single degenerate singularity; 
in other words, for sufficiently small perturbations, the interesting portion 
of the bifurcation diagram will be completely inside any given neighborhood 
of the degenerate singularity. 

Let us relate these ideas to germ concepts. One important aspect of germs 
is that they have base points; i.e., a germ is defined locally in the neighbor
hood of some given point. (For convenience we have set the base point of 
germs in 8 x,;. at the origin.) In the unperturbed bifurcation diagram of 
Figure l.l{a) there is indeed a distinguished point which may serve as the 
base point of a germ. However, in the perturbed diagram Figure l.l{b) there 
are several, and vital information would be lost by focusing on one to the 
exclusion of the others. In other words, for oc =/= 0 in an unfolding, it is of 
the greatest importance not to have a base point. But how is this compatible 
with germ concepts? The difficulties here are resolved by a careful definition 
of unfolding. The simplicity of this definition is deceptive. We defined an 
unfolding as a germ in 1Rk+ 2 ; thus the point x = A. = oc 1 = · · · = ock = 0 is 
distinguished, and no other. In conclusion, it might seem that the two notions 

(i) G E s x, ;., a. 

and 

(ii) ( Vot:)G(-, ·, ot:) E 8 x,;. 

are virtually indistinguishable, but this is far from true; because ofproblems 
with base points, the second notion would be wholly unsatisfactory for our 
purposes. In fact, historically, this distinction was of importance in the 
development of singularity theory. 
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§2. A Characterization of Universal Unfoldings 

The main objective of this section is to formulate a necessary and suffi.cient 
condition which characterizes precisely when an unfolding is universal. 
This result, Theorem 2.3, is stated in subsection (b). In subsection (a), we 
present a motivating discussion that in fact Ieads to a proof of necessity. 
In subsection (b ), besides stating the main result, we also derive three corol
laries from Theorem 2.3. Subsection (c) is concemed with how to use the 
theorem to derive a universal unfolding of a germ g. Specifically, we show 
that only linear algebra is needed to apply the thorem, once RT(g) has been 
determined. 

(a) Motivation of the Theorem 

Suppose that G(x, A., cx), cx E !ffi\ is a universal unfolding of a germ g E 8 "· ._. 
This means, in particular, that all one-parameter unfoldings of g may be 
factored through G. In this subsection, we explore the implications of this 
factorization. 

For any q E 8 "· ._, consider the one-parameter unfolding of g 

H(x, A., 8) = g(x, A.) + 8q(x, A.). 

Since G is universal, H factors through G. Thus we may write 

H(x, A., 8) = S(x, A., 8) · G(X(x, A., 8), A(A., 8), A(8)), (2.1) 

where 
S(x, A., 0) = 1, X(x, Ä., 0) = x, A(A., 0) = A., A(O) = 0. (2.2) 

On differentiating (2.1) with respect to 8 and evaluating at 8 = 0, we find 

q(x, A.) = : 8 [S(x, Ä., 8)g(X(x, A., 8), A(Ä., 8))] l.=o 
k • iJG 

+ i~l A;(O) ocx; (x, A., 0), (2.3), 

where A(8) = (A 1(8), ... , Ak(8)) in coordinates and dot indicates a derivative 
with respect to 8. The first term in (2.3) is strongly reminiscent of what oc
curred in the derivation of RT(g) in Chapter II, §2. However, there are the 
following two important differences: 

(i) Before we had A(A., 8) = A.; here A can be any smooth germ; 
(ii) Before we had X(O, 0, 8) = 0 for all 8; this is not required here. 

Our treatment of this term is similar to that of Chapter II, §2. We apply the 
chain rule to the first term in (2.3) and use (2.2) to obtain 

S(x, A., O)g(x, A.) + g;x:(x, A.)X(x, A., 0) + g._(x, A.)Ä(A., 0). (2.4) 



124 111. Unfolding Theory 

In the following definition we define the tangent space to g as the set of all 
germs that can arise from this construction. 

Definition 2.1. The tangent space to a germ g in tffx,A denoted by T(g), con
sists of all germs of the form 

ag + bgx + cgA, 

where a, b, E fffx,A and c E tffA. 

Remark 2.2. Unlike the restricted tangent space, T(g) is not an ideal. The 
difficulty lies with the term c(A.)g;.(x, A.)-multiplication of this term by an 
arbitrary germ in tff x. A does not preserve its form. This fact is a consequence 
of our assumption that changes of Coordinates in A. are independent of 
x. In subsection (c), we discuss how this difficulty affects computations with 
T(g). 

We now derive a necessary condition for G to be a universal unfolding 
of g. We showed above that any germ q E tffx,A admits the representation 
(2.3). The first term here is just an element of T(g). The second term is an 
element of the vector subspace of tff x, A spanned by the k germs 

oG oG 
~ (x, A, 0), ... , -;--- (x, A., 0) 
voc1 vock 

since the coefficients Äi(O) are scalars. Thus if G is a universal unfolding of 
g, then 

{ 8G oG } 
tffx,A = T(g) + lffi ooc 1 (x, A, 0), ... , oock (x, A., 0) . (2.5) 

(b) Statement of the Results 

The main theorem in this subject states that the necessary condition (2.5) is 
also sufficient. 

Theorem 2.3. (Universal Unfolding Theorem). Let g be a germ in tffx,A• and 
let G be a k-parameter urifolding of g. Then G is a versal unfolding of g if and 
only if 

{ 8G oG } 
tff X, Ä = T(g) + lffi 00(1 (x, A, 0), ... ' oock (x, A., 0) . (2.6) 

We defer the proof of sufficiency in this theorem until Volume II. 
According to Definition 1.3, a versal unfolding G of a germ g is universal 

if G contains the minimum number of parameters. The above theorem Ieads 
to a convenient characterization of this minimum number. Specifically, 
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the minimum number of parameters in a versal unfolding of g is the minimum 
number for which equation (2.6) can hold. But the latter number is precisely 
the codimension of T(g), as defined in Definition 11,5.6. We record this fact 
in the following corollary. 

Corollary 2.4. A versal unfolding G of a germ g is universal if and only if the 
number of parameters in G equals the codimension of T(g ). 

The following special case of the above results is the version we will 
most commonly apply. 

Corollary 2.5. Let g be a germ in lff x,-< o.f codimension k, and suppose there 
exist k germs p t> ••• , Pk E lff x, .< such that 

Then 
k 

G(x, A., cx) = g(x, A.) + I cxip/x, A.) 
j= 1 

is a universal un.folding of g. 

(2.7) 

(2.8) 

Above we observed that codim g, as given in Definition 1.3, equals 
codim T(g), as given by Definition II,5.6. In the last corollary of this sub
section we show that both these notions of codimension are equal to a third 
notion of codimension that we now introduce. 

Let g E lff x, .< be a germ of finite codimension. By the orbit of g we mean 
the set of all germs .f E lff x,.< that are equivalent to g; in symbols, 

We think of (!)9 as a "submanifold" of lffx,.<· Suppose we apply the methods 
of Chapter II, §10 to characterize germs equivalent to g by a set of defining 
conditions 

P;(.f, Df, ... , D"'f) = 0 at x = A. = 0; i = 1, ... , K, (2.9) 

and a set of nondegeneracy conditions (i.e., inequalities). Our third notion 
of codimension is K - 2, where K is the number of equations in (2.9). This 
definition is in analogy with the definition of codimension of submanifolds 
in finite dimensions. In a N -dimensional space a system of K equations 
(typically) defines a manifold of dimension N - K, or codimension K. Here 
we regard (!) 9 as the solution set in the infinite dimensional space lff x, .< of 
the K equations (2.9). The minus two arises from the fact that in Chapter II 
we considered equivalence of germs with a fixed base point, whereas in the 
present context we allow translations in x and A.. (Alternatively, given the 
fact that every singularity satisfies g = 9x = 0, we may regard K - 2 as the 
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number of defining conditions beyond these basic two.) In the following 
proof it will turn out that because of finite determinacy, the infinite-dimen
sional set (!) g can in fact be analyzed with finite-dimensional techniques. 

Corollary 2.6. lf g is a germ of finite codimension in $ x, .1., the following three 
integers are equal: 

(i) codim g (Definition 1.3). 
(ii) codim T(g) (Definition II,5.6). 

(iii) (the number ofdefining conditionsfor g) - 2. 

PROOF. As noted above, the equality of the first two integers is a direct con
sequence of Theorem 2.3. To prove equality of the last two we apply some 
techniques from Lie groups. The reader not familiar with these concepts 
may skip the proof without loss of continuity. Let r be the group of all 
equivalences acting on Sx,J./&'(g). Since r is an algebraic group, the orbit 
of g in Sx,.~.!fl'(g) is a smooth submanifold. The tangent space to this orbit 
at g isjust (RT(g) + s.~.{A.g.~.})f&'(g)); that is, those vectors in T(g) generated 
by curves of diffeomorphisms (X(x, A.), A(A.)) which fix the origin. Thus the 
codimension of the orbit of g is codim T(g) + 2. The number of defining 
conditions is just the number of equations which specify the orbit of g; this 
number is the codimension ofthe orbit of g. This proves the second equality. 

(c) Computation of Universal Unfoldings with 
Linear Algebra 

0 

In Remark 2.2 above, we noted that T(g) is generallynot an ideal, in cantrast 
to RT(g). This means that many of the algebraic techniques of Chapter II 
arenot directly applicable to T(g). However, in this subsection we show how 
these techniques may be adapted to the present context. More specifically, 
suppose we wish to find a universal unfolding of a germ g E 8 x, .~. and that we 
have already determined RT(g). In this subsection we show that the calcula
tions needed to apply the universal unfolding theorem may be divided into 
the following three stages, each of which requires only linear algebra: 

(i) Determine an integer l such that 

T(g) =RT(g) E9 11\11{gx, g.~., A.g.~., ... , A.1g.~.}. 

(ii) Decompose T(g) in the form 

T(g) = [Itr T(g)] E9 Yg, 

where Yg = T(g) n [Itr T(g)JL. 

(2.10) 

(2.11) 
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(iii) Find a basis for a complement to Yy in the finite-dimensional space 
[Itr T(g)].L; in symbols, find linearly independent germs p1, ... , Pk in 
[Itr T(g)].L suchthat 

[Itr T(g)F = Yy EB IR{p 1, ••• , Pd· (2.12) 

Then (2.8) provides a universal unfolding for g. In §3 below we compute 
universal unfoldings for several examples following these steps. In the present 
subsection we prove in general that the various constructions above are 
possible and lead to the desired goal; i.e., a universal unfolding for g. 

The next lemma, due to J. Darnon [1980] is the first step in this program. 

Lemma 2.7. RT(g) has finite codimension if and only if T(g) has finite Co
dimension. 

Since RT(g) c T(g), one direction of the implication is automatic. We 
sketch the reverse implication at the end of this subsection. 

Let g E tff x.-< be a germ with finite codimension. Let us show that there is 
an integer l suchthat (2.10) holds. We recall that a typical germ in T(g) has 
the form 

a(x, A)g + b(x, A)gx + c(A)g;.. 

Such a germ is in RT(g) ifboth b(O, 0) = 0 and c(A) = 0. Thus 

T(g) = RT(g) + IR{gx} + lff;.{g;_}. (2.13) 

By Lemma 2.7, RT(g) has finite codimension, which implies that A5 E RT(g) 
for all sufficiently large s. Hence A•g~. E RT(g). Since RT(g) is an ideal there 
is a unique l satisfying 

(2.14) 

Equation (2.10) follows from (2.13) and (2.14). (Remark: In many simple 
examples (2.10) is satisfied with l = 0. In particular, this is always true for 
quasi-homogeneaus polynomials-see Exercise 2.1 for a definition and 
further exploration of this topic.) 

Concerning (2.11), we repeat the construction of Chapter II, §7 to show 
that T(g) has a well-defined intrinsic part. By Lemma 2.7, RT(g) has finite 
codimension, so by Proposition 11,5.7, RT(g) contains .Jtk for some k. T(g), 
being larger, also contains .Jtk. It follows from Proposition 11,7.1 that there 
are only finitely many intrinsic ideals f suchthat 

.Jtk c f c T (g ). 

The sumofall these is the largest intrinsic ideal contained in T(g), denoted 
ltr T(g). 

In Corollary 11,7.4 we showed that a decomposition of the form (2.11) 
is possible for any ideal of finite codimension, and Exercise 11,7.3 extended 
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this result to subspaces which contain .ßk for some k. Thus this earlier work 
shows that the decomposition (2.11) is possible. 

Let p1, ••• , Pk E [Itr T(g)].L be chosen as in (2.12), where k = codim T(g). 
It follows from (2.11) that condition (2.7) holds; thus by Corollary 2.4, 
(2.8) is a versal unfolding of g. Since p1, ••• , Pk are linearly independent, 
(2.8) is, in fact, a universal unfolding. 

SKETCH OF PROOF OF LEMMA 2.7. We assume that T(g) has finite codimension 
and show that RT(g) also has finite codimension, reasoning by contradiction. 

The first step in Damon's [1980] proof is to reduce the case where g 
is a polynomial. This allows us to consider the equations 

(2.15) 

over the complex numbers; i.e., as two equations for two unknown complex 
scalars. 

Suppose that the ideal(g, gx) has infinite codimension. This is equivalent 
to assuming that RT(g) has infinite codimension since 

If R T(g) has infinite codimension then the solutions of (2.15) arenot isolated; 
indeed (2.15) defines a nontrivial algebraic variety in C2 • The curve selection 
Iemma (Milnor [1968], p. 25) allows us to quantify this "nonisolatedness." 
This result states that the solution set of (2.15) contains a nonconstant 
smooth curve X(t), A(t), where t is a real parameter, such that X(O) = A(O) 
= 0; in symbols, 

(a) g(X(t), A(t)) = 0, 

(b) gx(X(t), A(t)) = 0. 

Differentiating (2.16a) with respect tot and applying (2.16b) yields 

g;,(X(t), A(t)) · A'(t) = 0. 

(2.16) 

(2.17) 

By continuity, either g (X(t), A(t)) = 0 or A'(t) = 0. The first case coupled 
with (2.16) shows that the ideal (g, gx, g,,) has infinite codimension. Since 
this ideal contains T(g) we have a contradiction. Hence A'(t) = 0. 

Since A(O) = 0, we see that A(t) = 0. Thus (2.16) implies 

g(X(t), 0) = 0, gx(X(t), 0) = 0. (2.18) 

Now consider the ideal ,I spanned by T(g) and .Ä.. It is easy to compute that 

J = (g(x, 0), gx(x, 0), .Ä.). (2.19) 

Since J :::J T(g), ,I must have finite codimension. However, it follows from 
(2.19) that ,I has finite codimension precisely when the ideal (g(x, 0), g x(x, 0)) 
has finite codimension in tf x· Thus x = 0 is the only common zero of g(x, 0) 
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= gx(x, 0) = 0. This means that in (2.18) we must have X(t) = 0, contra
dicting the choice of (X(t), A(t)). Thus the ideal (g, gx) must have finite 
codimension. 

EXERCISES 

2.1. We say that gisquasi-homogeneaus if there exist positive integers cx, ß, y suchthat 

(2.20) 

Let g(x, A.) E IB'x,A be quasi-homogeneous. Show that A.gA E RT(g) and that T(g) = 

RT(g) + IR{gx, gA}· 
Hint: Differentiate (2.20) with respect tot and evaluate at t = 1.) 

2.2. (Discussion) Consider bifurcation problems g(x, A.) which are constrained to have a 
trivial solution; that is, bifurcation problemssuchthat g(O, A.) = 0. We call two such 
bifurcation problems g and h t-equivalent if g and h are equivalent and the equiva
lence preserves the trivial solution; more precisely, if 

g(x, A.) = S(x, A.)h(X(x, A.), A(A.)), 

where (X, A, S) is an equivalence, then we require X(O, A.) = 0. 
By Taylor's, theorem, a bifurcation problern with a trivial solution rnay be 

written in the form 

g(x, A.) = xf(x, A.). (2.21) 

Compute 7;(g), the formal tangent space to g under t-equivalence. Answer: If g 
has the form (2.21), then 

(2.22) 

2.3. (Discussion) Let g(x, A.) be a bifurcation problern suchthat g(O, A.) = 0. If there is a 
finite dimensional subspace V of 8 x, A { x} such that 

IB'x,A{x} = 7;(g) EB V, 

we say that g has finite t-codimension, and we define codim1 g = dim V. It can be 
proved that a t-universal unfolding of g may be constructed from a basis for V. 
(Cf. Theorem 2.3.) 
(a) Show that x2 - A.x has t-codimension zero. (Remark: This singularity is 

persistent to perturbations preserving the trivial solution.) 
(b) Show that x3 - A.x has t-codimension one and that x3 - A.x + cxx2 is a t

universal unfolding. Graph the resulting bifurcation diagrams. 

§3. Examples of Universal Unfoldings 

In subsection (a) we compute universal unfoldings for two simple examples: 
the pitchfork and limit point singularities. For these examples we perform 
explicitly the steps described in §2(c) above. In subsection (b) we listuniversal 
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unfoldings for several examples considered in Chapter li, along with some 
highlights of the computation. Finally in subsection (c) we study further the 
three singularities of codimension one that occur in subsection (b). (In fact 
these are the only singularities of codimension one.) 

(a) Two Simple Examples 

Webegin this subsection by showing that both 

(a) G(x, A., 0(, ß) = x3 - A.x + 0( + ßx2 , and 

(b) H(x, A., 0(, ß) = x3 - A.x + 0( + ßA. 
(3.1) 

are universal unfoldings of the pitchfork, h(x, A.) = x3 - A.x. The first step 
is to compute T(x 3 - A.x). Recall from (II,6.3) that 

RT(x3 - A.x) = .ß3 + .ß(A.). 

Now observe that 

Ä.h;. = XÄ.E .ß(.il) c RT(x3 - A.x). 

It therefore follows from (2.10) that 

T(x 3 - A.x) = (.ß3 + .ß(A.)) $ IR{3x2 - A., x}, 

which is already in the form (2.11), Itr T(x 3 - A.x) $ Yg. Since 

[Itr T(x3 - A.x)].L = (.ß3 + .ß(.il)).L = IR{1, x, A., x2}, 

we need only find a basis for a complementary subspace to 

Yg = IR{3x2 - A., x} in IR{1, x, A., x2 }. 

It is easy to see that either {1, x2 } or {1, A.} form such a basis. Applying 
Corollary 2.4, we see that both unfoldings in (3.1) areuniversal and that the 
codimension of the pitchfork is two. 

Next we consider the simplest singularity h(x, A.) = x 2 + .il. Recall from 
(II,3.4) that 

RT(x2 + A.) = .ß2 + (A.). 

A short calculation using (2.10) shows that 

T(x2 + .il) = ~x,).· 

Hence the codimension of the limit point is zero and the limit point is its 
own universal unfolding. A consequence of this fact is that any small pertur
bation of the limit point is equivalent to the same normal form. This is the 
property of persistence which we will study below; indeed we will show 
that the only persistent singularity is the limit point. (Remark: Using the 
unfolding theorem to prove that limit points are persistent is a wasteful 
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use of mathematical power. In Appendix 1 we give a much simpler proof 
based on the implicit function theorem.) 

(b) A Tabutation of Some Simple Universal U nfoldings 

We Iist the universal unfoldings and codimensions of several germs in Table 
3.1. 

The calculations involved in completing Table 3.1 are now all elementary. 
The main computations are summarized in Table 3.2. 

Wehave shown above that once RT(g) has been computed, the computa
tion of universal unfoldings uses only linear algebra. We illustrate this by 
performing the calculations for one of the cases in the tables; viz., our 
academic example g(x, A.) = x 5 + x3 A. + A.2 • Recall from (11,6.2) that 
RT(x5 + x3 A. + .A?) is the entry given in Table 3.2. Next observe that 

A.2g;,(x, A.) = x 3A.2 + 2A.3 eRT(g). 

Thus by formula (2.10) 

g 

(1) 
(2) 

(3) 
(4) 
(5) 

T(xs + x3A. + A_2) = (.Jt6 + .Jt4(A.) + .Jt(A2)) 

x" + A. 
x"+A.x 

x2 ± ;t2 
x3 + ;t2 

g 

(1) 
(2) 
(3) 
(4) 
(5) 

$ ~{x5 + x 3 A. + .P, 5x5 + 3x3 A., gx, g;,, Ag;,}. 

Table 3.1. Universal Unfoldings for Several 
Examples. 

codimg Basis for V 

x• + A. (n;;::: 2) n-2 2 n-2 
X, X , ••• ,x 

x• + A.x (n;;::: 3) n - 1 1, x2, x3, ... , x"-1 
x2 ± ;t2 1 1 
x3 + ;t2 3 1, x, xA. 
xs + x3A. + A_2 6 1, x, x2, A., A.x, A.x2 

Table 3.2. Summary of Computations. 

RT(g) T(g) 

(n;;::: 2) .ß" + <A.> (.ß"- 1 + <A.)) E9 IR{1} 
(n;;::: 3) .ß" + .ß<A.> (.ß" + .ß<A.)) E9 IR{nx•-l 

+ A., x} 
.ß2 .ß 
.ß3 + <A.2) (.ß3 + 02)) E9 IR{x2, A.} 

xs + x3A. + A_2 .ß6 + .ß4<A.> + .ß<A.2) .ß5 + .ß3(A.) + <A.2) 
+ IR{x5 + x3 A. + A.2, 5x5 + IR{5x4 + 3x2A., x3 
+ 3x3 A.} + 2A.} 
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Observe that the vector space spanned by 

x 5 + x3A. + A.2 , 5x5 + 3x3A., and Ag;.= x3 A. + 2A. 2 

is the same as the vector space spanned by 

x 5 , x3 A., and ..1.2. 

These monimials when added to .116 + .1140) + .lt(A.2 ) generate the 
intrinsic ideal .115 + .1130) + (A.2 ). The formula for T(x 5 + x3A. + A.2) 

in Table 3.2 follows from the comment that gx = 5x4 + 3x2 A. and g;. = x 3 + 
2A.. 

To complete our calculation of the universal unfolding of x 5 + x3 A. + A.2 

we note that 

(.11 5 + .1{3 (A.) + (A.2 ))j_ = IR{l, x, x2 , x3 , x4 , A., A.x, A.x 2 } (3.2) 

whose dimension is 8. To find a universal unfolding for x 5 + x3 A. + A.2 we 
need only find a basis for a subspace of (3.2) which is complementary to 
IR{gx, g;_}. Such a complement is six dimensional, and we have chosen a 
particular basis in Table 3.1(5). 

(c) Singularities of Codimension One 

We end this section with a discussion ofthe universal unfoldings ofthe three 
types of codimension one singularities which appear in Table 3.1; namely, 
x 2 - A.2 , x2 + A.2 , and x3 + A.. In Chapter IV, weshall prove that these are, 
in fact, the only codimension one singularities. These singularities of Co
dimension one are important in the second half of this chapter. Unlike the 
Iimit point considered above, they definitely are not persistent-a small 
perturbation yields a diagram with different qualitative behavior, as can be 
seen from the figures. 

W e call the normal form x 2 - A. 2 simple bifurcation as it is the normal 
form for the simplest bifurcation problern (in the sense oflowest codimension) 
in which bifurcation in the classical sense occurs. The bifurcation diagrams 
contained in the universal unfolding x 2 - A.2 + 1:1. are given in Figure 3.1. 

The bifurcation problern x2 + A.2 is called an isola center. This bifurcation 
problern was first brought to our attention by E. L. Reiss who observed that 
such bifurcation problems appear frequently in the chemical engineering 

X)( 
~<0 ~=0 ~>0 

Figure 3.1. Simple bifurcation x 2 - A? + rx = 0. 
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0 • no solutions 

oc<O oc=O oc>O 

Figure 3.2. The isola center x 2 + .A? + cx = 0. 

5 
oc<O oc=O oc>O 

Figure 3.3. The hysteresis point x 3 - A + cxx = 0. 

literature. Our discussion ofthe CSTR in Chapter I supports this observation. 
The bifurcation diagrams contained in the universal unfolding of the isola 
center x 2 + A. 2 + oc appear in Figure 3.2. 

We call the bifurcation problern x3 - A. a hysteresis point. The bifurcation 
diagrams contained in the universal unfolding x3 - A. + ocx = 0 are pre
sented in Figure 3.3. The justification for this terminology was given in our 
discussion ofthe pitchfork in Chapter I, §l(e). We note that hysteresis points 
yield (when oc < 0) the S-curve frequently observed in combustion theory. 

§4. The Recognition Problem for 
Universal Unfoldings 

In this section we consider the following situation which often arises in 
applications: Let G(x, A., oc) be an unfolding of a germ g, where g is equivalent 
to some normal form h. Is Ga universal unfolding of g? We call this the recog
nition problern for universal unfoldings. Theorem 2.3 provides a way to 
answer this question, but an attempt to apply this theorem directly often 
Ieads to unwieldy calculations. In this section we show how to reduce the 
calculations, taking advantage of the simplicity of the normal form h, to one 
very specific task. More precisely, we show that Gis a universal unfolding of 
g if and only if a certain m x m determinant is nonzero, where m is the CO

dimension ofltr T(h). The entries oftbis determinant are various derivatives 
of G. For example, if Gis a one-parameter unfolding of a singularity g which 
is equivalent to the hysteresis point x3 + A., then G is a universal unfolding 
of g if and only if 

(4.1) 

when x = A. = oc = 0. 
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This section is divided into three subsections. In subsection (a) we present 
some theoretical facts needed to justify our method. We analyze three 
explicit normal forms in subsection (b): hysteresis points (mentioned above), 
the pitchfork, and winged cusp. For each of these we obtain a characteriza
tion of universal unfQ).dings analogaus to (4.1). In the last subsection we 
briefly summarize the method in general. 

( a) Theoretical Basis of the Method 

As above, let G be a k-parameter unfolding of g, where g is equivalent to a 
normal form h. Combining Theorem 2.3 and formula (2.11) we see that G 
isauniversal unfolding of g provided 

{ aG aG } 
8 X,;. = Itr T(g) Ef> Yg Ef> IR orxl (x, A., 0), ... ' OCI.k (x, A., 0) . (4.2) 

The following Iemma provides the first simplification of the calculations. 
(Cf. Lemma 11,12.2 concerning the analogaus result for RT(g).) 

Lemma 4.1. lfg and h are equivalent germs in lfx,l.• 

Itr T(g) = Itr T(h). 

We prove this Iemma at the end of subsection (a). 
We will show below that the validity of ( 4.2) can be tested by calculations 

performed in the finite-dimensional space [Itr T(h)]l. Now by Lemma 4.1, 
Vg is already contained in [Itr T(h)]l. However, the third summand in (4.2) 
is not contained in [Itr T(h)]l. To deal with this difficulty let us construct 
explicitly the projection 

J: Gx.l. ~ [Itr T(h)]l 

associated to the decomposition 

lfx,;. = Itr T(h) Ef) [Itr T(h)]l. 

We claim that for any f E Gx,;. 

Jf =I':, D"f(O, O)x"•A."2, 

" . 

(4.3) 

(4.4) 

(4.5) 

where I' indicates the (finite) sumover monamials x"•A."2 not betonging to 
Itr T(h). Certainly Jf E [Itr T(h)]l and (f- Jf) E Itr T(h), so the claim 
follows. (Remark: If by chance Itr T(h) = .Jtk + 1, then J f = lf This is the 
reason for using the Ietter J in (4.3).) 

Lemma 4.2. Let G be a k-parameter unfolding of a germ g of codimension k. 
Formula (4.2) is valid ifand only if 

j_ { aG aG } [Itr T(h)] = Yg + IR J orx1 (x, A., 0), ... , J orxk (x, A., 0) . (4.6) 
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Remark. It follows by counting dimensions that if (4.6) holds, the sum (4.6) 
is in fact a direct sum. 

Lemma 4.2 provides the foundation for our solution of the recognition 
problern for universal unfoldings with linear algebra calculations; i.e., to 
prove that Gis a universal unfolding of g it suffices to verify (4.6). Now (4.6) 
can be verified by computing that a certain determinant is nonzero. However, 
to show this, it is necessary to choose a basis for Yg, and this can only be done 
on a case by case basis. Let us elaborate. Yg may be characterized as the image 
of T(g) in [Itr T(g)Jl under J. It follows from Definition 2.1, the definition 
of T(g), that Yg is spanned (as a vector space) by the germs 

J(x'Äsg), J(x'Äsg"), J(Äsg;), (4.7) 

where r, s ;;:::: 0. Of course, by finite determinancy only finitely many of the 
terms in (4.7) are nonzero. Even so, there remains the problern ofwhich ones 
to select to obtain a basis for Yg. In attacking this problem, we use information 
about the recognition problern for normal forms to make this selection in a 
way that requires less computation. However, we prefer to discuss this issue 
by example first; thus we consider three specific examples in the next sub
section, and in subsection (c) we return to a theoretical discussion of this 
method. 

PR.ooF OF LEMMA 4.1. Since g and h are equivalent, there exist S, X, and A 
satisfying 

h(x, Ä) = S(x, Ä) · g(X(x, Ä), A(Ä)). (4.8) 

Moreover, we can think of the triple (S, X, A) as being a fixed equivalence y 
and define the action y(g) of y on g by the right-hand side of {4.8). Since y is 
an equivalence, there is an inverse equivalence, which we denote by y- 1. In 
particular, 

1 
y-l(h) = S(<l>-l(x, Ä)). h(<l>-l(x, Ä)), 

where <l>(x, Ä) = (X(x, Ä), A(Ä)). 
Now suppose p is in Itr T(g). It follows that y- 1(p) is in ltr T(g) c T(g). 

Upon recalling the definition of the tangent space T(g), we conclude that 
there is a curve of bifurcation problems g1(x, A.) with g0(x, Ä) = g(x, A.) 
satisfying 

:t 9t "=0 = y-l(p). (4.9) 

(Remark: Here subscript "t" merely indicates another variable on which 
9r depends, not a partial derivative.) Applying the equivalence y, which is 
independent of t, to ( 4.9) yields 

p = y (:tgt t=J = :t y(gt) 1,=0. 
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Since y(g0 ) = y(g) = h, it follows that y(g1) is a curve ofbifurcation problems 
based at h and that p is in T(h). Hence Itr T(g) c Itr T(h). Interchanging 
the roles of g and h yields equality. 0 

PROOF OF LEMMA 4.2. This proof proceeds most naturally by a quotient 
space argument. Let 

n: Cx,;.--> Cx,;./Itr T(h) 

be the standard projection. Then 

no] = n. (4.10) 

We introduce n for the following reason: A subspace W is a complementary 
subspace (to Itr T(h) in C x, ;.) if and only if n(W) = C x, ;./Itr T(h). 

Now let W = Yg + IR{Ga,, ... , Ga)· In this notation the Iemma states 
that W is a complementary subspace if and only if J(W) = Itr T(h)1.. How
ever, we see from (4.10) that W is a complementary subspace if and only if 
J(W) is a complementary subspace. Since J(W) c Itr T(h)J. and 

Cx,;. = Itr T(h)EB[Itr T(h)]l. 

it follows that J(W) is a complementary subspace if and only if J(W) = 
[Itr T(h)]1.. 0 

(b) Three Examples 

In this subsection we solve the recognition problern for hysteresis points, 
the pitchfork, and the winged cusp, in that order. We treat the first case in 
some detail; since all three calculations are rather similar we are somewhat 
briefer with the last two. 

Proposition 4.3. Suppose g is equivalent to h(x, II.) = ± x 3 ± II., and Iet G 
be a one-parameter unfolding of g. Then G isauniversal unfolding of g if and 
only if 

(4.11) 

at x = II. = a = 0. 

Remark. Since for a = 0, we have G(x, II., 0) = g(x, II.), in the first row of 
( 4.11) we could replace g by G. 

PRooF. To avoid cumbersome notations, we display only the normal form 
h(x, II.) = x 3 + II.; consideration of the other possible signs is no different. 
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We carry out the steps outlined in subsection (a) above. From Table 3.2 we 
see that 

T(x 3 + A.) = (.ß2 + (A.)) EB ~{1}. 

Therefore 

[Itr T(g)].L = [Itr T(h)].L = ~{1, x}. 

The projection J in (4.5) reduces to 

Jf = f(O, 0) + f;x;(O, O)x, (4.12a) 

or in components 

J f = (f(O, 0), f;x;(O, 0)). (4.12b) 

According to Lemma 4.2, G is a universal unfolding of g if and only if 

~{1, x} = Yg + ~{J ~~}. (4.13) 

Now we must choose a basis for the (one-dimensional) space Yg from the 
Iist (4.7). At this stage we use information about the recognition problern for 
germs. Specifically, since g is equivalent to x 3 + A. we know that 

g = gx = gxx = 0 at X = A = 0. 

Substituting into (4.12) we see that 

Jg = 0, J(A.g;.) = 0. 

In other words, on the Iist ( 4. 7) only the term J g ._ is nonzero. Thus, J g ._ is a 
basis for Yg, and we may rewrite (4.13) 

~{1, x} = ~{Jg._, JGIZ}. (4.14) 

To conclude, G is a universal unfolding of g if and only if (4.14) holds. 
Writing these two vectors in terms of components as in (4.12b) Ieads imme
diately to ( 4.11 ). 0 

Remarks. (i) Note that (4.11) contains the derivative g._x which does not enter 
into the solution of the recognition problern for the normal form x 3 + A.. 
This is typical-terms which are higher-arder in the recognition problern 
for normal forms may not be higher order in the recognition problern for 
universal unfoldings. 

(ii) Since x 3 + A. + ocx is a universal unfolding of x 3 + A., it is tempting 
tothinkthat Gis a universal unfolding of g if GIZX =F 0. However, we see from 
(4.6) that this Statement is valid only if g._x = 0. Although g._x = 0 for the 
normal form x3 + A., g._x is not zero for every g equivalent to x3 + A.. 
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Proposition 4.4. Let G(x, A., IX, ß) be a two-parameter unfolding of a germ g 
equivalent to h(x, il.) = ± x3 ± A.x. Then G is a universal unfolding of g if and 
only !f 

0 

(4.15) 
det(l. 

Gp 

at X = A = IX = ß = 0. 

PROOF. We display only the case h(x, A.) = +x3 - A.x. From Table 3.2 we see 
that 

Thus 

Jf = f(O, 0) + f,.(O, O)x + fJ.(O, O)A. + !f",.(O, O)x2• (4.16) 

According to Lemma 4.2, G is a universal unfolding of g if and only if 

(4.17) 

To choose a basis for Yg from the Iist (4.7), we recall that if g is equivalent to 
the pitchfork, then 

(4.18) 

at x = A. = 0. Therefore 

Jg = 0, J(A.g).) = 0. 

In other words, only Jg" and JgJ. are nonzero in (4.7). We rewrite (4.17) as 

IR{1, x, A., x2} = IR{Jg", JgJ., JG .. , JG11 }. (4.19) 

We obtain (4.15) on writing (4.19) in components and using (4.18) to elim
inate some terms which are zero. 0 

Proposition 4.5. Let G(x, A., IX, ß, y) be a three-parameter unfolding of a germ g 
equivalent to h(x, A.) = ±x3 ± ..1.2• Then G is a universal unfolding of g if 
and only if 

0 0 0 gxxx gxx). 
0 0 g).). g).xx g).x). 

det G .. G .. " G(l.). G .. "" G .. "). #0 (4.20) 

Gp Gpx GpJ. Gpxx GpxJ. 
Gy Gyx Gy). Gyxx Gyx). 

at X = A = IX = ß = Y = 0. 
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PRooF. We display only the case h(x, A.) = +x3 + ..1.2• From Table 3.2 we 
see that 

Thus 

Jf = f(O, 0) + fx(O, O)x + f;.(O, O)A. + !fxx(O, O)x2 + /;.x(O, O)A.x. 

G is a universal unfolding of g if and only if 

~{1, x, A., x 2, A.x} = Yg + ~{JG", JGp, JGy}. (4.21) 

To choose a basis for Yg from the list (4.7), we recall that if g is equivalent to 
the winged cusp, then 

g = gx = g;. = gxx = gi.x = 0 

at x = A. = 0. Therefore 

Jg = 0, 

We rewrite (4.21) as 

J(A.g;) = 0. 

~{1, x, A., x 2 , A.x} = ~{Jgx, Jg;., JG", JGp, JGy}, 

from which (4.20) follows. 

(c) Summary 

0 

Let us summarize the above method for solving the recognition problern 
for universal unfoldings. Let G be a k-parameter unfolding of a germ g, 
where g is equivalent to some normal form h. We assume that h has codimen
sion k. The recognition problern for h must be solved before applying the 
present method; in particular, we regard Itr T(h) as known. The method Ieads 
to a m x m determinant characterizing the universality of G, where m is 
the codimension of Itr T(g). 

We isolate the following three conceptual steps in applying the method; 
only the second requires actual computations: 

(i) Given ItrT(h), construct the projection Jas in (4.5). 
(ii) Use the recognition problern for h to eliminate linearly dependent 

germs in the list (4.7); this Ieads to a basis for Yg, say Jp 1, ••• , Jp1 where 
l=m-k. 

(iii) Expand the m vectors 

Jpt, ... 'Jp~o JG"'' ... 'JG"k 

in the monomonial basis for [Itr T(h)].L to obtain the desired m x m de
terminant. Often some of the elements of this matrix are zero, because 
of defining conditions in the recognition problem. 
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§5. Nonpersistent Bifurcation Diagrams 

With this section we begin the second major theme of Chapter III. Sections 
1- 4 dealt with the first theme; viz., how to find or recognize universal un
foldings. The second theme is how to enumerate perturbed bifurcation dia
grams, given a universal unfolding. 

In carrying out the enumeration we focus on the following question: 
Which of the perturbed bifurcation diagrams in the universal unfolding of 
g would remain unchanged (in the qualitative sense of equivalence) if 
subjected to an additionalsmall perturbation? We call such diagrams per
sistent. Actually, we focus on nonpersistent diagrams. We will show that there 
are three sources of nonpersistence; namely, bifurcation, hysteresis, and 
double Iimit points. (See Remark 5.2(i) below concerning the isola center.) 
In Figure 5.1 we sketch these three phenomena, along with small perturba
tions which demoostrate their nonpersistence. In each case, note that the 
indicated perturbation changes the number of solutions x as a function of A.. 

More formally, Iet G: IR x IR x ~Rk -+ IR be a universal unfolding of a 
germ g: IR x IR-+ IR. We isolate the above nonpersistence phenomena in 
the following definition. 

Definition 5.1. 

(a) fJ4 = {cx E ~Rk: 3(x, A.) E IR x IR suchthat G = Gx = G._ = Oat (x, A., cx)}. 
(b) :K = {cxe~Rk: 3(x, A.)e~R x IR suchthat G = Gx = Gxx = 0 at (x, A., cx)}. 
(c) f!) = {cx E ~Rk: 3(x1, x2, A.) E IR x IR x IR, x 1 # x2 suchthat 

G = Gx = 0 at (x;, A., a), i = 1, 2}. 
( d) ~ = 91 u :K u f!) = transition set. 

The following remarks relate this definition to the codimension one bi
furcation problems studied in §3(c). 

Remarks 5.2. (i) We have grouped both simple bifurcation and the isola 
center into the set 91, since the recognition problern for each involves exactly 

c X 

Unperturbed X f L,l 
-=:> 

X 

Perturbed ) ( s c L,l 
~ 

Bifurcation Hysteresis Double Limit Point 

Figure 5.1. Nonpersistent phenomena. 
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the same equations; viz., 

(5.1) 

Only the nondegeneracy conditions are different for these two singularities, 
and we have ignored nondegeneracy conditions throughout in Definition 
5.1. 

(ii) Double Iimit points did not appear in §3(c) because they are quasi
global in the following sense: two distinct points are involved in the con
ditions defining ~- (By contrast, fJ6 and :Yf only involve one point.) However, 
double Iimit points can occur in arbitrarily small perturbations of a degen
erate singularity; in this sense this phenomenon is actually a local one. 
Consider the example h(x, il) = x4 - il - sx2 • If s = 0, h has a generalized 
hysteresis point at the origin, while if s > 0, h has a double Iimit point at 
il0 = - 3s2 /16. Thus, the global notion of double Iimit points is necessary 
in any local theory which handles small perturbations. 

We now argue, at least heuristically, that each of the three sets in Defini
tion 5.1 is described by a single scalar equation !J;;(rxt. ... , rxk) = 0, where 
the subscript i equals fJD, Jlf, or ~- Consider, for example, the defining equa
tions for fJ6: 

G(x, il, rx) = G x(x, il, oc) = G ;.(x, il, rx) = 0. (5.2) 

Ifwe solve two ofthe equations in (5.2) for x and il as functions of rx and then 
substitute the result into the third equation, we obtain a single equation for 
rx as claimed. Similar considerations apply to :Yf and ~-

This analysis is subject to three caveats. First, it seems conceivable that 
the three scalar equations in (5.2) arenot indpendent, which would of course 
spoil the argument. However, as it turns out, the hypothesis that G is a 
universal unfolding preculudes this possibility, at least in a suitably small 
neighborhood ofthe singularity. Weshall not prove this assertion in general; 
we will however derive it explicitly for each of the specific examples we 
consider. 

The second caveat isthat the elimination process may introduce singulari
ties into the defining equation !J;;. For example, the bifurcation set of the 
unfolded singularity 

is the cusped curve 

(See Exercise 5.1.) 
The third caveat comes from the fact that we are working over the real 

numbers; it may happen that in eliminating x and il certain inequalities 
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among the oc's appear. For example, consider the following hypothetical 
system where k = 2: 

.ii.=O, 

in eliminating x and .il. from this system one obtains 

a half line in the plane. A second, less academic, example comes from the 
double Iimit point set of x4 - .il.. (This was hinted at above; see Chapter 
IV, §3 for more details.) 

These ideas have the following simple but noteworthy consequence: 
for almost every oc E IRk the bifurcation diagram 

{(x, .il.): G(x, .il., oc) = 0} (5.3) 

consists of nonintersecting regular curves whose only singularities are 
Iimit points. This may be seen by combining the following three facts: 

(i) The bifurcation diagram (5.3) consists ofnonintersecting regular curves 
ifoc i fl. 

(ii) The only singularities which appear on (5.3) are Iimit points if oc i f4 u llf. 
(iii) f4 and :Yf are (possibly singular) surfaces in IRk of dimension k - 1. 

We summarize the above discussion in the next theorem. Let us change 
coordinates so that G is a polynomial in all its arguments; this is possible 
because g has finite codimension. In the theorem, we refer to the following 
concepts from algebraic geometry (i.e., the study of polynomials and their 
zeros). An algebraic variety S in IRk is a set which can be expressed as the 
simultaneous zeros of a finite number of polynomial equations: 

S = {oc E IRk: P;(oc1, .•• , ock) = 0, i = 1, ... , /}. 

Loosely speaking, the codimension of S is the smallest number of equations 
which may be used naturally in such a representation of S. In particular, 
a variety of codimension one is a hypersurface; however this hypersurface 
may have certain types of singularities such as self-intersections or cusps. A 
semi-algebraic variety is a subset of an algebraic variety which verifies certain 
additional polynomial inequalities, say 

S' = {oc ES: Qi(oc) ~ O,j = 1, ... , J}. 

Theorem 5.3. Let g: IR x IR-+ IR be a polynomial map of finite codimension, 
and let G(x, .il., oc) be a universal unfolding, also a polynomial. The set ~ of Defi
nition 5.1 is a semialgebraic variety in IRk of codimension 1. 

lt follows from this theorem that IRk "' ~ has finitely many connected 
components. We don't prove either the theorem or this corollary in general, 
although we derive bothin all specific cases we study. We do remark, however, 
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that the equation describing the union l: = !!J u Yf u ~ comes from the 
product 

where tjJ i = 0, i = f!J, .Jr, or ~. describes the surfaces f!J, .Jr, or ~. respectively. 
In addition, several inequalities may be needed to characterize 1:. 

EXERCISES 

5.1. Find the transition set for the universal unfolding x2 - A. 3 + oc 1 + oc 2 A.. 

5.2. Find the transition set for the universal unfolding x 3 - A.x + oc 1 + oc 2 A.. 

5.3. Let the I-parameter unfolding H(x. A., ß) factor through the k-parameter unfolding 
G(x, A., oc). That is, Iet 

H(x, A., ß) = S(x, A., ß)G(X(x, A., ß), A(A., ß), A(ß)), 

where S > 0, Xx > 0, A;. > 0. Show that A: IR1 --> IRk satisfies A(96'11) c 96'G, 
A(Jr11 ) c Jr G• and A(~11 ) c ~G, where 96', Jr, ~ indicate the bifurcation, hysteresis, 
and double Iimit sets of Definition 5.1, subscripted by the appropriate unfolding. 

5.4. Let G: IR x IR x IRk be a universal unfolding of some singularity. Show that for 
each oc E ~. the qualitative type of the bifurcation diagram {(x, A.): G(x, A., oc) = 0} 
may be changed by an arbitrarily small perturbation. 
(Discussion.) Suppose oc E 96'. If G( ·,·,IX) is equivalent to ±x2 ± A.2 , then the result 
is trivial to prove-we know from §3(c) that ±x2 ± A.2 has the stated property, 
and we may use the Universal Unfolding Theorem to deduce it for G( ·, ·, oc). However 
G( ·, ·, oc) might have a very degenerate singularity whose behavior is very difficult 
to analyze; how do we know that G still has this property? To show this, we ask 
the reader first to prove that if oc E 96', then for small 11 # 0 the function 

G(x, A., oc) + 11(x2 + A. 2) 

has a singularity equivalent to ±x2 ± A.2 , and then to perturb G + 11(x2 + A.2) to 
obtain the desired result. The analysis for oc E Jr and oc E ~ is similar and is also 
left to the reader. (Remark: The conclusion of this exercise still holds even if we 
restriet to perturbations in the given unfolding.) 

§6. Statement of the Main Geometrie Theorem 

For the most part, in this book we have formulated our results in terms of 
germs. With this formalism one may often avoid specifying explicit neighbor
hoods on which a theorem is valid; this can simplify the statement of results. 
The formalism works out best in cases where all calculations are performed 
in the neighborhood of some fixed point ( x0 , ..1.0 ); for example, this is the case 
with results about &l(g), the higher-arder terms associated with a given 
germ g. In such cases we have considered in our equivalences only diffeo
morphisms (X, A) which fix (x0 , ..1.0 ). However, in cases where we must 
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consider diffeomorphisms which leave no point fixed, the formalism of 
germs is less satisfactory. Such transformations occur in Definition 1.1, the 
definition of one unfolding factaring through another; nonetheless, germ 
concepts are still adequate for that topic. In the present section, however, 
the germ formalism must be temporarily abandoned. 

Let us briefly discuss what goes wrang with germs in the present context. 
Suppose g(x, A.) is a germ of finite codimension with universal unfolding 
G(x, A., tX), IX E IRk. Define ~ as in Definition 5.1, and let W be an appropriate 
neighborhood of zero in IRk. In loose terms, the main result of this section 
states that if tX 1, IX 2 belang to the same connected component of W ~ ~. 
then G(·, ·, tX 1) and G(-, ·, tX 2 ) are equivalent to one another. In other words, 
foreachpair tX 1, tX 2 in a given component of W ~ ~. there is an appropriate 
equivalence transformation linking G(-, ·, tX 1) and G(·, ·, tX 2 ). Since none of 
these diffeomorphisms need leave any points fixed, it seems impossible to 
pin down the situation adequately with germ concepts. 

Nevertheless, the result we seek does follow from local analysis. (We 
surely could not hope to prove the global equivalence of G(·, ·, tX 1) and 
G(·, ·, tX 2) on IR x IR, even for IX 1 and IX2 near the origin in IRk.) We will choose 
a carefully constructed neighborhood V of the origin in IR x IR, and then 
we will prove equivalence of G(·, ·, tX 1) and G(·, ·, tX 2 ) on V (for suitable IX 1, 

IX2 E W, as above.) Because we consider ditfeomorphisms (X, A) where A 
does not depend on x, it is most convenient to take V to be a reetangular 
neighborhood of (0, 0); i.e., a neighborhood of the form V = U x L where 
U and L are closed intervals. We will say a function g: U x L--+ IRis C"' if 
g admits a C"' extension to an open neighborhood of U x L. 

We now begin the presentation of our main result. Let g(x, A.) have a 
singularity offinite codimension at the origin. We first choose an appropriate 
neighborhood U x L of the origin on which to formulate this result. Speci
fically we will choose U x L such that 

(a) g and gx do not vanish simultaneously on 8(U x L). 
(b) g does not vanish on (8U) x L (the top and bottarn (6.1) 

faces). 

Why is this possible? First, since the ideal <g, gx) has finite codimension, 
we may conclude from Corollary 11,5.10 that the origin is an isolated solution 
to the pair of equations 

g(x, A.) = gx(x, A.) = 0. 

Thus any sufficiently small reetangle containing the origin will satisfy (6.1a). 
To verify (6.1b) we observe that by finite codimension 

g(x, 0) = ax1 + ßl(x1+ 1) 

for some integer l and some a -=P 0. In other words, the origin is an isolated 
zero of g(x, 0). Let U be a small (closed) interval containing zero suchthat 
no other zero of g(x, 0) belongs to U. Then g is nonzero on au x {0}; by 
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continuity we may choose an intervalLsosmall that g is nonzero on (8U) x 
L, thus verifying (6.1b). 

Let G(x, A., oc), oc ECk be a universal unfolding of g. Now G( ·, ·, 0) = g, 

which satisfies conditions (6.1a, b) above. By continuity we may choose a 
neighborhood of zero W c !Rk such that for any oc E W 

(a) G and Gx do not vanish simultaneously on 8(U x L). 

(b) G does not vanish on (8U) x L. (6.2) 

In constructing the bifurcation, hysteresis, and double Iimit point sets 
associated to G, we modify Definition 5.1 by restricting (x, A.) to U x L; for 
example we take 

!JB = {oc E W: 3(x, ..1.) EU x L suchthat G = Gx = G;. = 0 at (x, A., oc)}, 
(6.3) 

with similar changes for Yf and :!iJ. Recall that the transition set L is f!ß u 

;Y{' u :!iJ. 

Theorem 6.1. Let g, G, U, L, W, and L be chosen as above. If oc 1, oc2 belang to 
the same connectec component of W ~ L, then there is a diffeomorphism 
(X(x, ..1.), A(A.)) mapping U x L onto itself and a positive function S(x, A.) 
suchthat 

G(x, A., oc 2 ) = S(x, A.)G(X(x, ..1.), A(A.), oc 1). 

The diffeomorphism maps each edge of U x L onto itself 

In other words, the persistent bifurcation diagrams in the unfolding G 

are enumerated by the components of W ~ L. A priori it is possible that 
equivalent diagrams could occur in two different components of W ~ L, 
but wehavenot found any examples where this actually occurs. 

When k is large, say k ~ 4, the determination of L is a nontrivial task. 
Even when k is small, the actual construction of the bifurcation diagrams 
associated to G, we modify Definition 5.1 by restricting (x, A.) to U x L; for 
see in our discusson of the unfolding of the winged cusp in §8, this construc
tion often proceeds more smoothly by first considering well-chosen transi
tion diagrams corresponding to oc in L. 

We will prove Theorem 6.1 in §10 as a corollary of a more general result. 
A more direct proof is sketched in §9. 

§7. A Simple Example: The Pitchfork 

In this section we apply Theorem 6.1 to derive the information contained 
in Figure 1.5, Chapter I, §1 about perturbations of the pitchfork. (We will 
make a similar, but technically more complicated, application to the winged 
cusp in §8 below.) 
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Let G(x, A., IZ, ß) = x3 - A.x + IZ + ßx 2 be the universal unfolding of the 
pitchfork, and let U, L c IR and W c IR2 be neighborhoods verifying the 
conditions ofTheorem 6.1. (In Exercise 7.1 below we guide the reader through 
one possible explicit choice for these neighborhoods.) Note that the only 
singularity of the unperturbed problern (i.e., solution of g = gx = 0) occurs 
at the origin, and of course the choice of U, L, and W guarantees that for 
IZ E W no singularity can escape across o(U x L). Thus the modification 
( 6.1) of Definition 5.1 has no effect here. 

We claim that there are no double Iimit points for the case at hand. We 
will use the following Iemma to verify this. 

Lemma 7.1. Ifh(x) is a polynomial of degree 3 or less suchthat h = hx = 0 at 
two distinct points x 1 and x 2 , then h = 0. 

PROOF. By performing a translation of axes, x ~ x - x 1, we may assume that 
x 1 = 0. Then h(O) = hx(O) = 0, which implies that h(x) has the form h(x) = 

ax3 + bx2 for some coefficients a, b E IR. Now the two equations h(x2) = 
hx(x2 ) = 0 may be written as a matrix equation 

( X~ X~ ) (a) = O 
3x~ 2x2 b · 

But the determinant of this matrix equals - xi =I= 0, which implies that 
a=b=Q D 

It follows from the lemma that it is not possible to satisfy G = G x = 0 
at two points x 1 and x 2 for fixed IZ, ß, and A., since G has degree 3 in x. This 
proves the claim. In symbols, 5:0 = 0. 

In order to compute f!4 and Jlt' we first calculate 

G = x3 + ßx2 - A.x + ll(, 

G x = 3x2 + 2ßx - A., 

G;. = -x, 

Gxx = 6x + 2ß. 

Todetermine f!4, note that G;. = Gx = 0 implies that x = A. = 0. From G = 0 
we obtain the equation il( = 0. Hence 

f!J = {(IZ, ß)E W: il( = 0}. 

To determine Jlt, note that G = G x = G xx = 0 yields 

X= -ß/3, 

A. = -ß2/3, 

il( = ß3/27. 
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(3) 

Figure 7.1. Nonpersistence set for the pitchfork x3 - A.x. 

(1) 

(3) 

~ 
c 
(2) 

(4) 
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Figure 7.2. Persistentperturbations of the pitchfork. (Numbers refer to Figure 7.1.) 

It follows that 

.Yf = {(oc, ß) E W: oc = ß3 /27}. 

As shown in Figure 7.1, W "' I: has four connected components. 
According to Theorem 6.1, any two choices of parameters in the same 

component of W "' I: give equivalent bifurcation diagrams. Thus to obtain 
the associated bifurcation diagram we could graph the solution set 

{(x, A.): G(x, A., oc, ß) = 0} 

for one choice of parameters from each region. In practice such calculations 
can be shortened considerably by considering the dividing cases in Figure 
7.1 (i.e., parameter values on fJB or .Yf) as was done in Chapter I, §1. In 
Figure 7.2 we indicate bifurcation diagrams for each region of Figure 7.1. 

EXERCISE 

7.1. (a) Showthatg(x, A.) = x3 - A.xsatisfies(6.1)when U = [ -1, 1] andL = [ -1, 1]. 
(b) Show that the universal unfolding of g, G(x, A., cx, ß) = x3 - A.x + cx + ßx2, 

satisfies(6.2)for U,Lasin(a)and W = {(cx,ß)EIR2 :cx2 + ß2 < 1}. 
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§8. A Complicated Example: The Winged Cusp 

In this section we study in detail the universal unfolding 

G(x, A., IX, ß, y) = x3 + A.l + YAx + ßx + IX (8.1) 

of the winged cusp singularity. We use Theorem 6.1 to Iist the various per
sistent bifurcation diagrams which can be found in the universal unfolding 
G. The details of many calculations will be left to the reader. 

Our procedure involves computing the subvariety l: of IR 3 given in Defin
ition 5.1. For ease of exposition we shall work globally in IR x IR x IR3 , 

noting that technically our results are valid only on the neighborhoods U, 
L, and W of Theorem 6.1. 

Webegin by observing that the double Iimit point variety !i) is empty for 
G. This fact follows directly from Lemma 7.1, since Gis a cubic polynomial 
in x. To find the varieties f!# and Jt' note that 

Gx = 3x2 + yA. + ß, 

GA= 2A. + yx, 

Gxx = 6x. 

(8.2) 

Our plan is first to calculate f!# and Jt' separately, second to construct 
l: = f!# u Jt', then to Iist the connected components of IR3 "' l: and finally 
to determine the associated bifurcation diagrams. 

Recall that the hysteresis variety Jt' is defined by G = G x = G xx = 0. It 
follows from (8.1) and (8.2) that 

(8.3) 

Jt' is the so-called "Whitney Umbrella" and is pictured in Figure 8.1(a). It 
is also convenient to graph slices of constant y; this is done in Figure 8.l(b ). 

(a) The Whitney umbrella: Jlf. 

(\ 
y=O 

(b) Slices of Jlf for y constant. 

Figure 8.1. The hysteresis variety for the winged cusp. 
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>-
y=O 

Figure 8.2. Slices of f!4 for y constant (the winged cusp). 

The bifurcation variety fJ6 is determined by solving the equations G = 
Gx = G;. = 0 simultaneously. For this it is easiest to give fJ6 in parametric 
form-parametrized by x and y-as: 

ß = - 3x2 + y2(xj2), 

rx = 2x3 - y2(x2 /4). (8.4) 

We can now graph slices of fJ6 given by y constant. When y = 0, we obtain 
the cusp (ß/3)3 + (rx/2)2 = 0. When y =1 0, we claim that one obtains a cusp 
curve which is tilted down as indicated in Figure 8.2. Observe · that the 
cusp point is defined by dajdx = dßjdx = 0 and occurs at x = y2 /12. To 
see that the cusp tilts down, compute dajdß = - x < 0 at the cusp point. 
To complete the picture, show that the two nappes ofthe cusp never intersect. 

We now discuss ~ = fJ6 u Yf. From the above discussion it seems most 
natural to graph slices of~ for y constant. This is donein Figure 8.3. Although 
the slices of ~ for y and -y are identical we have given bothin Figure 8.3 
as both copies are necessary in order to determine the number of connected 
components in the complement of ~. These connected components are 
enumerated in this figure. Let us discuss how to obtain this figure. 

The graph of ~ for y = 0 is easily recovered from the discussions of 
fJ6 and ;Yt above. For y = 0, the picture of ~ is plausible, given that ;Yt is a 
parabola opening downward and fJ6 is a cusp curve which tilts down. In order 
to confirm this picture we check two points. First, we show that for each 
nonzero y, fJ6 n ;Yt consists of two points, one on each nappe; and second, 
we show that at the intersection of the left-hand nappe of fJ6 with Yf, these 
two surfaces are tangent and cross one another. 

The first point is to compute !!4 n Yf. We do this by substituting the para
metrization (8.4) for !!4 into the equation (8.3) for Yf, thus obtaining the 
equation for x 

(8.5) 

.OJ 

Y<O y=O Y>O 

Figure 8.3. Slices of :I: for y constant (the winged cusp). 
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The two solutions of (8.5) are the two intersections. One intersection occurs 
on each nappe of f!J, since the cusp point occurs at x = y2 /12 and this point 
is between the two solutions of (8.5). To verify the second item, consider the 
solution x = 0 in (8.5); this lies in the lower nappe of 81. By (8.4), IX = ß = 0 
at this point. We claim that at this point the unfolding 

G(x, A., 0, 0, y) = x 3 + A.2 + yA.x 

has a pitchfork singularity at (0, 0). This is easily checked using the solution 
to the recognition problern for the pitchfork (Proposition II,9.2). (See 
Exercise 8.1.) Moreover, the two-parameter unfolding G(x, A., IX, ß, y) of 
G(x, A., 0, 0, y) is a universal unfolding; this follows from Proposition 3.4. 
Recalling our discussion of the pitchfork in §7, especially Figure 7.1, we see 
that BI and :Yf are tangent and cross one another at IX = ß = 0. 

Given the pictures in Figure 8.3 it is easy to enumerate the seven connected 
components of IR 3 "' I: as is indicated on the figure. Note that regions 4 and 
6 and that regions 5 and 7 are not connected in IR 3 c I:. 

To complete our discussion ofthe winged cusp, it remains to find the seven 
persistent perturbed bifurcation diagrams predicted by the analysis of I: 
above. These seven diagrams are given in Figure 8.4, with numbers corre
sponding to regions in Figure 8.3. Weshall use the existence ofthe pitchfork 
at IX = ß = 0, y # 0 heavily in our derivation of these figures. 

Webegin by graphing a particular diagram in region 1. Let ß = y = 0, 
IX > 0. The equation 

G(x, A., IX, 0, 0) = x 3 + A.2 + r:t. = 0 

can be solved easily, yielding 

(1) 

(4) 

~ ----
(6) 

x(A.) = -(A.z + a)l/3. 

... / 

___) '-
(2) 

(5) 

.,.----
(3) 

_/? -----
(7) 

(8.6) 

Figure 8.4. Persistent perturbations of the winged cusp. (Numbers refer to Figure 8.3.) 
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Figure 8.5. x3 + .A. 2 + r:x = 0, r:x < 0. 

Note that x(A.) is coo, since rx > 0. Thus one sees that the bifurcation diagrams 
corresponding to region 1 are typified by graph number 1 in Figure 8.4. 

Next we show that if ß = y = 0, rx < 0 (i.e., the half line opposite the case 
above) then the bifurcation diagram is the one shown in Figure 8.5; this has 
two hysteresis points. Note that (8.6) is still valid, so there is one solution x 
for each A.. However, G = Gx = Gxx = 0 at (x, A.) = (0, ±M) while 
Gxxx · G;. =f. 0 at these points. Using Proposition 11,9.1 we see that (0, ±..}fal) 
are both hysteresis points for G(x, A., rx, 0, 0). (Remark: The points we are 
considering lie on the line of self-intersections of Jf'.) By Proposition 3.3, 
the one-parameter unfolding G(x, A., rx, ß, 0) of G(x, A., rx, 0, 0) is a universal 
unfolding for either of these hysteresis points. Thus for ß =f. 0, there will be 
either 2 or 0 Iimit points near each hysteresis point, depending on the sign 
of ß. Since the bifurcation diagrams corresponding to region 1 have no limit 
points, it follows that those in region 2 must have four Iimit points and that 
the corresponding diagrams Iook like the mushroom of case 2 in Figure 8.4. 

Now recall that G(x, A., 0, 0 y) has a pitchfork bifurcation at (0, 0) for 
y =f. 0. The bifurcation diagrams for G(x, A., 0, 0, y) = 0 are given in Figure 
8.6. Let us fix y < 0 for further discussion. As we saw above, G(x, A., rx, ß, y) is 
a universal unfolding of the pitchfork G(x, A., 0, 0, y). 

Perturbation of the pitchfork with y < 0 in Figure 8.6 Ieads to the four 
bifurcation diagrams shown in Figure 8. 7; this may be derived from our 
discussion of the universal unfolding of the pitchfork in §7, especially Figure 
7.2. We claim that the four diagrams in Figure 8.7 may be identified with 
regions in Figure 8.3 as follows: 

Figure 8.7 
(a) 
(b) 
(c) 
(d) 

Figure 8.3 
(3) 
(6) 
(7) 
(2) 

We have already made the identification of (d) with region 2 in discussing 
Figure 8.5 above. Since one crosses f!4 when moving from region (2) to region 

y<O y>O 

Figure 8.6. x 3 + .A.2 + yx.A. = 0. 
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/? '--
(a) (b) 

~ 
~ 
' I 

__/(_ 
(c) (d) 

Figure 8.7. G = 0 for cx, ß small compared with IYI, y < 0. (Perturbation ofFigure 8.6.) 

(3) in Figure 8.3, the identification of (a) with region (3) follows. On the 
other hand, diagrams (a) and (b) correspond to the fat regions in Figure 
7.1 (the unfolding of the pitchfork) while diagrams (c) and (d) correspond 
to the thin regions in that figure. This Ieads to the remaining two identifica
tions: (b) with (6) and (c) with (7). A similar analysis with y > 0 allows us 
to complete Figure 8.4. 

EXERCISE 

8.1. Show that h = x 3 + A.l + yA.x has a pitchfork singularity at (x, .il) = (0, 0) when 
y # 0. Show that x3 + .il2 + yA.x + cx + ßx is a universal unfolding of h. 

§9. A Sketch ofthe Proof ofTheorem 6.1 

We must show that if IX and ß are in the same component of W,..., l: then 
G(·, ·,IX) and G(·, ·, ß) are equiva1ent on U x L. The main task in this proof is 
to show that G(·, ·,IX) and G(·, ·, ß) are equivalent when IX and ß are sufficiently 
close to one another and belong to the same component of W ,..., l:. The 
general case may be deduced from this special case by a simple connectivity 
argument, and in this sketch we concentrate only on the special case. 

Suppose that in fact 

G(x, ;., IX) = S(x, ).)G(X(x, ).), A().), ß), (9.1) 

where S, X, A satisfy the usua1 restrictions. Then G(x, ;., IX) = 0 if and only if 
G(X(x, A), A(A), ß) = 0. In other words, the diffeomorphism (X, A) maps 
the zero set of G(·, ·, IX) onto that of G(·, ·, ß). It turns out that by far the most 
difficult and most informative step in the proof is to construct the diffeo
morphism linking the two zero sets. Webegin with this step. 
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L 

u 

Ä.o Ä.1 Ä.2 Ä.3 Ä.4 

Figure 9.1. A possible zero set for G(x, A., IX). 
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In Figure 9.1, we indicate a possib1e zero set for G(·, ·, a) when a !f: ~-Note 
that the on1y singularities in this figure are Iimit points with different A 
coordinates, none ofwhich lie on the boundary, and that no solution branch 
crosses (oU) x L. We describe the construction of (X, A) in terms of this 
figure. Let us establish some notation. The three Iimit points in the figure 
are at A1, A2 , A3 ; Iet A0 and A4 be the endpoints of the interval L. On any 
open interval (Ai, Ai+ 1) the number of solutions x(A) is constant, say Ji. 
For Ai < A < Ai+ 1 define continuous solution branches xiA),j = 1, 2, ... , Ji, 
where, for example, the solutions are enumerated in order of increasing x. 

Now imagine that G(·, ·, a), and hence Figure 9.1, is perturbed slightly. 
Our task is to map Figure 9.1 diffeomorphically onto the perturbed diagram. 
If the perturbation is small enough, then there will be exactly three Iimit 
points on the perturbed diagram, although at slightly different locations. 
Suppose these occur at J.l1, J.l2 , J.1.3 . Also, on each interval (J.li, J.li+ 1) there will 
be the same number Ji of solutions on the perturbed diagram as solutions 
on (Ai, Ai+ 1) of the unperturbed diagram. (By convention we take J.lo = A0 , 

J.l4 = A4 .) For J.li < A < J.li+ 1 we denote the solutions on the perturbed 
diagram by yj(A),j = 1, ... , Ji. 

Now Iet us consider what is required for a diffeomorphism (X(x, A), A(A)) 
to map Figure 9.1 onto the perturbed zero set. Recall that such diffeo
morphisms preserve slices of constant A. It is clear that the slices in Figure 
9.1 which contain a Iimit point must be mapped into slices ofthe perturbed 
diagram which also contain a Iimit point. This gives rise to our first require
ment, namely 

i = 0, 1, 2, 3, 4. (9.2) 

To satisfy (9.2) is a simple interpolation problem, although the condition 
A'(A) > 0 must be bome in mind. We do not dwell on this-suppose that 
a A satisfying (9.2) has been chosen. 

Next we turn to the choice of X. To see what is involved, consider a A 
slice not containing any of the Iimit points; more specifically, suppose 
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). E (A.,, A.;+ 1). For (X, A) to map Figure 9.1 onto the perturbed diagram, we 
must have 

j = 1, ... , J;. (9.3) 

This is again an interpolation problem, subject to the auxiliary requirement 
Xx(x, A.) > 0, but there is an additional complication here-X must vary 
smoothly with A.. Actually it is easy to satisfy (9.3) with an X that varies 
smoothly in A., provided A. stays away from the Iimit points. However, special 
care is required near a Iimit point, as at such points two of the branches 
x;(A.) meet one another. To deal with this difficulty, we first construct X 
near each of the Iimit points, and then we extend X to the intervals between 
Iimit points using well-established techniques from differential topology. 

Let us elaborate on the first part of this argument-we construct X 
near a Iimit point A.; as follows. Let Cl>; be a diffeomorphism mapping a 
portion of Figure 9.1 near this Iimit point into the zero set of the normal 
form for a Iimit point, namely ±x2 ± ). = 0; and Iet 'Pi do likewise for the 
perturbed diagram near /1-i· We obtain X near A.i from 'Pi- 1 o Cl>i. 

The complete construction of (X, A) turnsout to be fairly technical be
cause there are quite a few details to be kept straight. However, we have 
presented all the ideas involved. Once we have the diffeomorphism from the 
zero set of G(·, ·, a) onto that of G(·, ·, ß), it is quite simple to argue that 

G(x, A., a)/G(X(x, A.), A(A.), ß) 

is a smooth, nonvanishing function on U x L, which yields the function 
S required in (9.1). (In fact we need only apply Proposition I,4.2-since a and 
ß arenot in 91, the functions G, Gx, and G._ cannot vanish simultaneously.) 
This completes our sketch of the proof of Theorem 6.1. D 

§ 10. Persistence on a Bounded Domain in a 
Parametrized Family 

In this section we formulate a result which extends Theorem 6.1 in the follow
ing two respects: 

(i) We consider an arbitrary parametrized family of bifurcation problems, 

F(x, A., a) = 0, (10.1) 

where a E ~k. By contrast, in §6 we considered only the universal unfold
ing of one singularity. 

(ii) We discuss the solution set of (10.1) on a bounded domain in ~ x ~. 
with no assumption that this domain is small. By contrast, in §6 we 
worked in a carefully constructed neighborhood of one point. 
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The second of these two generalizations is by far the more significant. In 
particular, it suggests numerical procedures for exploring parameter 
space in applications. For example, Balakotaiah and Luss [1981, 1984] have 
conducted a global study of the CSTR using these methods. 

First we establish the notation. Let U, L c IR be closed intervals, and Iet 
W c IRk be a closed disk. Let F: U x L x W -4 IR be coo in thesensethat 
F may be extended to a coo function on some open set in IRk+ 2 containing 
U x L x W. We ask for what o:, ß E Ware F(·, ·, o:) and F(·, ·, ß) globally 
equivalent on U x L, where we define this term as follows. We call two 
bifurcation pro blems J, g: U x L -4 IR g lobally equivalent on U x L if there 
exists a diffeomorphism <!>: U x L -4 U x L of the form <l>(x, Ä.) = 
(X(x, Ä.), A(.l.)) and a positive function S(x, Ä.) such that 

g(x, Ä.) != S(x, Ä.)f(X(x, Ä.), A(Ä.)), (10.2) 

whereXx > Oon U x L,A' > OonL,and<l>mapseachfaceofo(U x L)onto 
itself. We summarize the latter condition as 

<I>(au x L) = au x L, <l>(U x oL) = U x oL. (10.3) 

As in §6, we proceed by considering persistent bifurcation diagrams; 
i.e., diagrams which remain qualitatively unchanged by small perturbations. 
In this section also, we Iist the possible sources of nonpersistence. Of course, 
the three sources listed in §6 (viz., bifurcation, hysteresis points, double 
Iimit points) are possible sources of nonpersistence in the present context. 
However, there is now a new source of nonpersistence, which is related to 
how bifurcation diagrams meet the boundary, o(U X L). In fact, it turnsout 
that there are many possibilities (at first bewildering) for nonpersistence 
on the boundary. Thse are illustrated in Figures 10.1 and 10.2. We use the 
following concept in dividing the cases between the two figures: A phenom
enon is local if only one point in U x L is involved, global otherwise. 
Already in §6 both categories occurred; bifurcation and hysteresis points 
are local, while double Iimits are global. (Remark: This use of global has 
no relation to "global" in global equivalence.) 

Let us discuss the motivation for these figures. We focus temporarily on 
the local case, which is a little more straightforward. Recall that the Iimit 
point is the only persitent singularity. The solution to the recognition 
problern for the Iimit point has two defining equations; viz., 

g = gx = 0. 

Any local phenomenon which has three or more defining conditions neces
sarily is nonpersistent We saw this in §6, and the same analysis applies here. 
The phenomena in Figures 10.1 all have three defining conditions. Indeed 
this Iist is a complete enumeration of the local phenomena on the boundary 
which involve exactly three defining conditions. (Remark: Wehave already 
shown that equivctlences preserve singularities, i.e., if g is singular, so is 
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Perturbed Unperturbed Perturbed 

~CD EJ EJ 
(a) Diagram meets corner. 

(b) Limitpoint on horizontal face. 

(c) Limitpoint on vertical face. 

(d) Diagramtangent to boundary. 

Figure 10.1. Local nonpersistence on the boundary. 

Sg(X, A). Similarly, global equivalences preserve the boundary phenomena 
of Figures 10.1 and 10.2.) 

Before deriving equations that characterize the phenomena in Figure 
10.1, we note that the relation 

(x, A.)Eo(U x L) 

amounts to one scalar equation-(10.4) can hold only if 

xEoU or A.EoL, 

Perturbed Unperturbed Perturbed 

~~~ [1d G 
(a) Limit point with same A.-value as boundary point. 

(b) Two boundary pointswith same A.-values. 

Figure 10.2. Global nonpersistence on the.boundary. 

(10.4) 

(10.5) 
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and either condition specifies a value of one scalar quantity. For both rela
tions (10.5) to hold (i.e., for (x, A.), to be in a corner), two scalar equations 
must be satsified. 

We now derive equations for Figure 10.1. Specifically F(·, ·,IX) exhibits the 
phenomena of Figures 10.1 (a, b, c, d) if and only if IX belongs to the set 

!l' c = {IX E W: 3(x, A.) E iJU x iJL suchthat F(x, A., IX) = 0}, (10.6a) 

!l' sn = {IX E W: 3(x, A.) E (iJU) x L suchthat F = Fx = 0 at (x, A., IX)}, 
(10.6b) 

!l'sv = {IX E W: 3(x, A.) EU x (iJL) suchthat F = Fx = 0 at (x, A., IX)}, 
(10.6c) 

21' = {IX E W: 3(x, A.) E (iJU) x L suchthat F = F;. = 0 at (x, A., IX)}, 
(10.6d) 

respectively. Note that each of these sets involves exactly three defining 
conditions. For example, with -Psv, one equation comes from A. E iJL and two 
come from F = Fx = 0. 

For the global case, F(·, ·,IX) exhibits the phenomena of Figure 10.2(a, b) 
if and only if IX belongs to the set 

<§1 = {IXE W:3(x, A.)E U x Land (x0, A.)E(iJU) x Lwith 
x0 =I= x suchthat F(x0 , A., IX)= 0 and F = Fx = 0 at (x, A., IX)}, 

(10.6e) 

<§2 = {IX E W: 3(x1, A.), (x2 , A.) E (iJU) x L with x 1 =I= x2 suchthat F = 0 
at (X;, A, IX)}, (10.6f) 

respectively. Here each set involves exactly four defining conditions. Four 
equations Iead to nonpersistence for a global phenomenon involving two 
points (x1 , A.) and (x2 , A.) with the same A.-coordinate (Cf. §6). Figure 10.2 
enumerates the global boundary phenomena with exactly four defining 
conditions. 

For the reader's convenience we repeat the definition of the bifurcation, 
hysteresis point, and double Iimit point sets. 

!l'ar = {IXE W: 3(x, A.)E U x Lsuch that F = Fx = F;. = 0}, 

2.1!'. ={IX E W: 3(x, A.) EU X L suchthat F = Fx = Fxx = 0}, 

(10.7a) 

(10.7b) 

<§rß = {IX E W: 3(x1> A.), (x2, A.) EU x L suchthat F = Fx = 0 at (x;, A.), 

We define 

i = 1, 2}. (10.7c) 

2 = 2aru 2,rru 2c u 2sHU 2svU 2T, 

<§ = <§!!J u <§1 u <"dz, 

'E = 2u <§. 

(10.8) 
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The main theorem in this subject states that if oc and ß are in the same 
connected component of W "' l: then F(·, ·, oc) and F(·, ·, ß) are globally 
equivalent on U x L. The proof of this theorem is not particularly deep, 
but it is complicated. In order to reduce this complication, we only prove a 
simpler result; this is sufficient for our purposes. This simpler result still 
retains the essential flavor of the complete theorem. For the simpler result 
we assume that the family F has no zeros on (oU) x L. (This situation occurs 
naturally if, for example, there is an a priori estimate which guarantees that 
for each fixed A., all solutions must lie inside some bounded set.) Under this 
assumption five of the nine forms of nonpersistence cannot occur; specifically 

.P = .Pf!IJ u .P.Tf u fL'sv. 

~ = ~[!J· 

Weshall prove the following result in §11. 

Theorem 10.1. Let F: U x L x W--+ ~ be afamily ofbifurcation problems 
satisfying 

F(x, A., oc) =P 0 for 'Vx E au, VA. E L, 'Voc E w. (10.9) 

Let oc and ß be in the same connected component of W - l:. Then F(·, ·, oc) and 
F(·, ·, ß) are globally equivalent on U x L. 

Remark. Theorem 10.1 applies to an arbitrary parametrized family of bi
furcation problems, F: U x L x W--+ ~. In this generality there is no 
guarantee analogaus to Theorem 5.1 that l: is a hypersurface in ~k of Co
dimension one. For example, one could imagine a degenerate situation in 
which F was independent of oc so that l: = W; in such a case, oc E W "' l: 
would never be satisfied. Of course, such artificial examples are unlikely 
in applications. 

Our main use of Theorem 10.1 is to prove the local result, Theorem 
6.1. This we now do. 

PRooF OF THEOREM 6.1. Recall that in §6 we constructed W so that no Iimit 
points of G occur near the boundary of U x L and no zeros of G are found 
in (oU) x L. lt follows that (10.9) is satisfied and that .fl!sv is empty. Thus 
Theorem 6.1 is a corollary of Theorem 10.1. D 

As we mentioned above, Theorem 10.1 and the more general result with 
nine nonpersistence sets (that we never actually formulated) suggest a numer
ical procedure for exploring parameter space by computing the various 
nonpersistence sets directly. Such a procedure is sometimes easier to imple
ment than a direct numerical search for the bifurcation diagrams associated 
with F. 
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§11. The Proof of Theorem 10.1 

We divide the proof ofTheorem 10.1 into two parts. In the first part, Proposi
tion 11.4, we show that the bifurcation diagram 

{(x, ..1.)1F(x, ..1., o:) = 0} (11.1) 

is the union of a finite number of branches when o: ~ L. Roughly speaking, 
a branch is a curve (B(..1.), ..1.) in (11.1) which connects a boundary or Iimit 
point of (11.1) with another such point. In this proposition, we also show 
that when o:0 and o: 1 are in the same connected component of W....., L then 
the bifurcation diagrams corresponding to oc0 and o:1 decompose into the 
same number of branches which, moreover, may be identified in a natural 
way. This identification allows one to reconstruct, the bifurcation diagrams 
corresponding to o:0 and o: 1, at least in a qualitative fashion. In fact, for most 
applications of Theorem 10.1, the information contained in Proposition 
11.4 suffices. 

The second part of the proof ofTheorem 10.1, summarized by Proposition 
11.5, is much more technical. Here we must construct a diffeomorphism 
(X(x, ..1.), A(..1.)) of U x L which maps the bifurcation diagram corresponding 
to o: 1 to the one corresponding to o:0 • This construction requires certain 
interpolation and extension Iemmas from differential topology. Here we 
sketch the structure of the proof, indicating where the technical points occur; 
we will not attempt to prove the needed Iemmas. (Cf. Golubitsky and 
Guillemin [1973], p. 132 concerning proofs of such Iemmas.) 

In order to state Proposition 11.4 in a coherent manner, we need to make 
several definitions. Let f: U x L -+ IRI be a smooth mapping. 

Definition 11.1. A branch of the bifurcation diagramf(x, ..1.) = 0 is a contin
uaus function 

which is smooth on the open interval (A1, A2) and satisfies: 

(a) f(C(..1.), ..1.) = 0 in [A1, A2]; and 
(b) either Ai E oL or (C{Ai), Ai) is a Iimit point of J, i = 1, 2. 

Definition 11.2. The smooth mapping f is combinatorially regular if: 

(a) The only singularities of f are Iimit points and no Iimit point occurs in 
a(u x L). 

(b) There are a finite number of Iimit points 

i = 1, ... , s with ..1.1 < · · · < ..1. •• 

(c) Let L = [..1.0 , ..1..+ 1]. There are a finite number of left-hand boundary 
points Y; = (yi, ..1.0 ), i = 1, ... , m with y1 < · · · < Ym and a finite number 
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of right-hand boundary points Zj = (zj, A.s+ 1), j = 1, ... , n with 
Z 1 < · · · < Zn COmprising the SO}utions to j = 0 On oL. 

(d) The bifurcation diagramf = 0 is the union of (m + n + 2s)/2 branches. 

Remarks. (1) Part ( d) of Definition 11.2 just reflects the fact that there are no 
solutions to f = 0 on (oU) x L, the upper and lower boundaries of U x L. 
Solution curves must begin and end at limit points or boundary points. 

(2) The enumeration of branches follows trivially from the observations 
that each branch has a beginning and an end, each Iimit point lies on exactly 
two branches and each boundary point lies on precisely one branch. 

(3) There are analogous definitions in the general case when l: consists 
of nine sets. 

If f is combinatorially regular then each branch of f = 0 is uniquely 
specified by its two endpoints, with one exception. The exception concerns 
isolas, as illustrated in Figure 11.1 If an isola contains just two limit points, 
say Q 1 and Q2 , then there are two distinct solution branches which have 
endpoints Q 1 and Q2 • In this case we distinguish between the two branches 
by referring to "upper" and "lower" branches. 

In the next definition we describe what it means for two bifurcation 
diagrams to have the same combinatorial scheme. Loosely speaking, two 
bifurcation diagrams are combinatorially equivalent if their branches are 
in one-to-one correspondence. Now branches are specified by their end
points, which are either limit points or boundary points. Thus to show that 
two bifurcation diagrams are combinatorially equivalent, we must first 
establish a correspondence between their respective limit points and their 
respective boundary points. Concerning boundary points, note that there is 
a natural order for enumeration of the left-hand boundary points on a 
bifurcation diagram-the point Y1 with the smallest x-coordinate comes 
first, and so forth. Thus iftwo bifurcation diagrams have the same number of 
left-hand boundary points, this enumeration provides a natural corre
spondence between their respective left-hand boundary points. Similarly, if 
two bifurcation diagrams have the same number of right-hand boundary 
points, there is a natural correspondence between these points. lt is perhaps 
less obvious that if two bifurcation diagrams have the same number of limit 

f(x, A.) =0 g(x, A.) =0 

G) 
A.1 Az A.3 A.4 A.1 Az A.3 A.4 

Figure 11.1. Bifurcation diagrams illustrating the need for part ( c) in Definition 11.3. 
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points, there is again a natural correspondence between them, provided 
both diagrams are combinatorially regular. The idea hereisthat there are no 
double Iimit points in a combinatorially regular bifurcation diagram, so 
that its limit points may be uniquely enumerated in order of increasing 
A.-coordinate. This enumeration provides the desired correspondence. 

Suppose that fand g define combinatorially regular bifurcation diagrams 
in U x L which have equal numbers of left-hand and right-hand boundary 
points and of limit points. In the following definition, if K 1 is a boundary 
or limit point ofj, we write KY for the corresponding boundary or Iimit point 
ofg. 

Definition 11.3. Let J, g: U x L --+ IR be smooth combinatorially regular 
mappings. We say that fandgare combinatorially equivalent if: 

(a) The mappings fand g have the same number of Iimit points, say s; of 
left-hand boundary points, say m; and of right-hand boundary points, 
say n. 

(b) The natural correspondence of boundary and limit points which exists 
as a consequence of (a) induces a bijection between branchesoff and 
branches of g in the following sense. If there is a branch (K{, K{) then 
there is a branch (K~, K~) and conversely. If K{ and K{ are limit points 
spanning an isola then so are K~ and K~. 

(c) The bijection of branches of f to branches of g preserves the ordering 
of branches. 

Remark. Let us elaborate on condition ( c) of this definition. Let A.i_ 1 and A.i 
be the A.-coordinates of consecutive limit points of f. Since branches of f 
cannot intersect one another in the interval (A.i_ 1, A.i), we may order the 
branches of f on this interval according to increasing x-coordinates. Figure 
11.1 shows a case when the bijection does not respect this ordering. 

Proposition 11.4. (i) Ifr.x is in W"' I:, then F(·, ·, r.x) is combinatorially regular. 
(ii) lfr.x0 and r.x 1 are in the same connected component ofW"' I:, then F(·, ·, r.x.0 ) 

and F(·, ·, r.x. 1) are combinatorially equivalent. 

It is an easy exercise to show that if fand g are globally equivalent com
binatorially regular mappings, thenf and gare combinatorially equivalent. 
In fact, the converse is also true. 

Proposition 11.5. Let J, g: U x L--+ IR be combinatorially regular mappings 
suchthat f · g > 0 near (oU) x L. Then fandgare globally equivalent if and 
only if fand g are combinatorially equivalent. 

Remark. The proofs of Propositions 11.4 and 11.5 together consitute a proof 
ofTheorem 10.1. Let us begin these proofs. 
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PROOF OF PROPOSITION 11.4. (i) Let IX be in W ,..., I: and Iet f(x, A.) = F(x, A., IX). 
To show that f is combinatorially regular we must show that (a)-(d) of 
Definition 11.2 are satisfied. Using Remark (1) after that definition and the 
assumption in Theorem 10.1 that F does not vanish on (oU) x L, we see 
that ( d) is satisfied. Since IX rj; .P ft' u .P 118 c I: it follows that the only singu
larities of f are Iimit points. Since IX rj; .Psv these Iimit points are not on the 
boundary and thus (a) is valid. 

Since limit points are isolated (consider the normal form ±x2 ± A.), and 
since U x L is compact, there can be at most a finite number of Iimit points 
for f; thus (b) is satisfied. 

To show that (c) is satisfied we argue by contradiction. Suppose that there 
is an infinite number of boundary points; suppose for definiteness there are 
infinitely many on the left-hand boundary. Denote these points by li = 
(y;, ..1.0 ) i = 1, 2, .... Since U is compact the y/s have a convergent sub
sequence converging to y oo. By continuity, f(y oo, ..1.0 ) = 0. Since f is assumed 
not to vanish on (oU) x L we deduce that Yoo is in the interior of U. The 
mean value theorem coupled with the fact that f(yi, A.) = 0 for all i implies 
that fx(Y oo, ..1.0 ) = 0. But this information contradicts the fact that IX rj; .Psv; 
i.e., that there are no singularities on the vertical boundary. 

(ii) We use a homotopy argument. Let 1X(t) be a curve in W ,..., I: connecting 
1X(O) = IX0 to IX(l) = IX 1 . We will show that F(·, ·, 1Xo) is combinatorially 
equivalent to F(x, A., 1X(t)) for every t. Of course, setting t = 1 yields the pro
position. 

Let C: [Al> A2]--+ U be a branch of F(·, ·, 1X0). We will prove there is 
unique continuous extension 

B(t): [A1(t), Ait)] --+ U (11.2) 

of C where for each t, B(t) is a branch of F(·, ·, 1X(t)). In particular, A1(t) and 
A2 (t) are Iimit or boundary points of F(·, ·, IX(t)) depending smoothly on t. 
This construction will also show that all Iimit and boundary points of 
F(·, ·, 1X(t)) are obtained by these functions Ai(t) starting from Iimit and boun
dary points of F(·, ·, 1X0 ). It follows that for each t, F(·, ·, 1X(t)) is combinatorially 
equivalent to F(·, ·, 1X0), for the following reason: The natural identification 
of Iimit and boundary points is given by Ai --+ Ai(t), and if a branch ( or two 
branches) connect A1 with A2 then there is a branch (or two branches) 
connecting A1(t) with Ait). Moreover the x-coordinates along the branches 
cannot be interchanged by this construction. 

The construction of B(t) is made locally in t. In particular, we start with 
the branch B(t0 ) and find the unique extension for all t sufficiently close to 
t0 • The compactness of the interval [0, 1] guarantees that we can patch to
gether the local extensions and define B(t) for all t e [0, 1]. 

First we prove that if Ai(t0 ) is a Iimit point then we can extend Ai to t 
near t0 by the implicit function theorem. Define 

<D(x, A., t) = (F(x, A., 1X(t)), F x(x, A., IX(t))). 
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Then <I>(x, A., t) = 0 if and only if F(·, ·, a(t)) has a singularity. Moreover, 
since F(·, ·, a(t)) is combinatorially regular, its only singularities are Iimit 
points; thus F "" · F;. i= 0 at zeros of <I>. Now observe that the determinant of 
the Jacobian of <I> with respect to x, A. is - F "" · F;. i= 0. Thus the implicit 
function theorem implies the existence of a smooth curve Ai(t) for t near t 0 

suchthat A;(t0 ) is the initiallimit point and Ai(t) is a Iimit pointfor F(·, ·, a(t)). 
There is a similar construction for left- and right-hand boundary points. 

Let 

'P(x, t) = F(x, A.0 , a(t)). 

Zeros of 'P are left-hand boundary points of F( ·, ·, a(t)). Moreover, 'P" = 
F" i= 0 at boundary points, since the combinatorial regularity of F(·, ·, a(t)) 
implies that there are no singularities on the boundary. Using the implicit 
function theorem we may construct a smooth function Yi(t), with Yi(O) any 
given left-hand boundary point of F(·, ·, oc0), such that (yi(t), A.0) is a left
hand boundary point for F(·, ·, a(t)). 

We claim that these smooth functions are then globally defined on the 
interval [0, 1] and, moreover, they induce a one-to-one correspondence 
between boundary and Iimit points of F(-, ·, a0 ) with those of F(·, ·, a(t)). To 
see this, observe that each such point for F at a0 is connected to precisely 
one such point at a(t); this uses the uniqueness part of the implicit function 
theorem. Moreover, this correspondence of boundary and Iimit points is 
the natural, order-preserving one. For boundary points this is obvious, 
since a crossing of two such curves would contradict uniqueness. For Iimit 
points two such implicitly defined curves could, in principle, have their A.
values cross without their intersecting. However, this would imply the exis
tence of a double Iimit point in F for some value of a(t), which we have ruled 
out by hypothesis. 

Having defined the curve Ai(t), we now construct the branch B(t) whose 
existence we asserted in (11.2). As mentioned above, it suffices to construct 
B(t) locally near each t E [0, 1] and then patch together. Consider such a point, 
say t0 • Recall that the branch B(t0 ) satisfies the equation 

F(B(t0 )(A.), A., a(t0 )) = 0 

for AE [A1(t0), A2(t0)]. Note that F" i= 0 for all A.E(A 1(t0), A2(t0 )) since 
branches do not go through singularities. Thus, for any fixed A. E (A1 (t0 ), 

Ait0 )) the equation 

F(x, A., a(t)) = 0 

may be solved uniquely from the initial condition X = B(t0 )(A.), t = t0 • 

(The implicit function theorem applies, since F" i= 0.) This solution is valid 
for all t within some fixed e of t0 ; however, e does depend on A.. The same 
construction works at the endpoints A;(t0) ifthe endpoint is a boundary point 
since no singularities occur on the boundary. If A;(t0) is a Iimit point, 
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however, the fact that the width e of the interval of solvability tends to zero 
near a Iimit point requires a different argument, as follows. 

Suppose B(t0 ) has a Iimit point A1(t0 ) as an endpoint. Limit points have 
two branches attached to them; Iet us assume, for definiteness, that B(t0 ) 

is the upper branch. Now at the Iimit point F(·, ·, 1X(t0)) is equivalent to the 
normal form ±x2 ± A; for definiteness Iet us consider the signs x2 - A. 
The Iimit point is its own universal unfolding. Since F(-, ·, 1X(t)) is a one
parameter unfolding of F(·, ·, 1X(t0)), there are equivalences suchthat 

F(x, A, IX(t)) = S(x, A, t){X 2(x, A, t) - A(A, t)} (11.3) 

near the Iimit point at t0 • Because Xx > 0 we may solve (11.3) for x on the 
upper branch; i.e., solve 

X(x, A, t) = J A(A, t) 

for x. Thus we obtain B(t) near the Iimit point. ForA near A1(t) this construc
tion of B(t) matches with the construction of B(t) by the implicit function 
theorem given in the last paragraph, because of uniqueness of solutions. 
By compactness of [A1(t0 ), Ait0 )] there exists an e, independent of A, 
suchthat if t is e close to t0 then the branch B(t) exists. 0 

SKETCH OF PROOF OF PROPOSITION 11.5. We assume that f, g: U X L--+ ~ 
are both combinatorially regular and combinatorially equivalent. We show 
that fand g are globally equivalent on U x L. Suppose there exists a diffeo
morphism (X(x, A), A(A)) on U x L mapping the zero set of f to the zero 
set of g. Then we claim that 

S(x, A) = f(x, A)jg(X(x, A), A(A)) 

is defined and coo on U x L and bounded away from zero. This follows 
from Chapter I, Proposition 3.2 and the observation that combinatorial 
regularity implies that V f =F 0 on f = 0 and similarly for g. Moreover, 
S > 0 since f · g > 0 near (8U) x L. 

We sketch the construction of (X, A) in several steps. Let A1 < · · · < A.. 
be the Iimit points of fand let f..l1 < · · · < f.ls be the Iimit points for g. Let 
L = [A0 , As+l]. The first step is the construction of a diffeomorphism 
A: L--+ LsatisfyingA(A1) = f..l1,i = 1, ... , s,andA(8L) = oL. Theng(x,A(A)) 
has Iimit points at the same values of A. as f Henceforth we assume that the 
Iimits points of fand g have the same A-coordinates-because equivalence 
is a transitive relation, there is no loss of generality in this assumption. 

Let the Iimit points for f and g with A.-coordinate A1 be (x1, A1) and 
(xi> A1), respectively. Now construct an orientation preserving diffeomorph
ism X(·, A.1): U--+ U for which X(x;, A.1) = x1 and X(oU, A1) = oU. One may 
extend X to u X L suchthat XX > 0, X(o(U X L)) c: au, X(x, A.) = X when 
I A - A.d > e where e < min(A1 - A1_ 1, A1+ 1 - A1)/2. Thus f(x, A.) and 
g(X(x, A), A) both have Iimit points at (x1, A.1). Making s such constructions 
allows us to assume, without loss of generality, that fand g have the same 
Iimit points. 
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We next make a similar construction moving the boundary points of f to 
those of g; here we require that X(x, A.) = x when A.0 + s < A. < A.. - s. 
Thus, we may assume that fand g have the same boundary and Iimit points. 

The penultimate step is to use the normal form theorem for Iimit points 
(which is proved by finding a strong equivalence) to construct locally about 
a given Iimit point a mapping X such that (X(x, A.), A.) maps the zero set of 
f to that of g near the Iimit point. We may extend X to be the identity on 
some slightly larger neighborhood of the Iimit point. Making s + 2 such 
constructions allows us to assume that f and g have the same Iimit and 
boundary points and the same zero sets near the Iimit points. Here we use the 
combinatorial equivalence of f with g to conclude that the Iimit points of f 
and g both point in the same directions, subcritical or subcritical. 

Finally, we construct a diffeomorphism (X, A.) mapping a fixed branch of 
f to the corresponding branch of g. This is possible since (X, A.) may be 
chosentobe the identity near Iimit points. We must perform this construction 
once for each branch, taking care not to move apart branches that have 
already been identified. Since branches do not intersect except at Iimit 
points, this construction is possible. D 

§12. The Path Formulation 

The following thesis is the underlying theme of this section: Every bifurcation 
problern g(x, A.) in lffx,;. may be viewed as a path in the universal unfolding 
space of one of the cuspoids of elementary catastrophe theory. Making the 
correspondence between bifurcation theory and catastrophe theory gives 
us a different view of a bifurcation diagram and its perturbations which is 
useful in certain contexts. In particular, this path formulation is helpful in 
finding organizing centers. 

We divide this section into three parts: 

(a) A comparison of catastrophe theory, singularity theory, and bifurcation 
theory. 

(b) The path formulation. 
(c) Elementary bifurcations and the cusp catastrophe. 

Aspart of subsection (a) we discuss the similarities and differences between 
elementary catastrophe theory, singularity theory and steady-state bi
furcation theory. 

(a) A Comparison of Catastrophe Theory, Singularity Theory, 
and Bifurcation Theory 

As a mathematical topic, catastrophe theory is the study ofthe local structure 
of critical points ofreal-valued functions f in tff". In this section we use the 
term "singularity theory" to refer to the study of the local structure of the 
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zeros ofmappings h: !Rn-+ !Rn. In this book we have used the term "bifurca
tion theory" to refer to the stud y of the local structure of the zeros of mappings 
g: !Rn x IR-+ !Rn depending on a distinguished parameter. 

These three subjects are intimately related; there are common ideas and 
techniques in their study. This is not surprising since the critical points of 
f are found by looking for zeros of the mapping h = V J, and bifurcation 
problemsgare just one-parameter families of mappings h. The path formula
tion for bifurcation problems is related to this last observation. There are 
some differences, however. The natural equivalence relation in catastrophe 
theory is right equivalence. Two functions f 1, f 2 e t! x are right-equivalent if 
there exists a diffeomorphism germ X(x) with X(O) = 0 and a constant K 
satisfying 

The natural equivalence relation in singularity theory is John Mather's 
notion of contact equivalence. Two mappings h 1 and h2 are contact equivalent 
ifthere exists a diffeomorphism germ X(x) with X(O) = 0 and a nonsingular 
n x n matrix S(x) depending smoothly on x suchthat 

h1(x) = s(x) · hiX(x)). 

This is the most general set of equivalences of mappings h which preserve 
the structure of the zeros of h. Our notion of equivalence for bifurcation 
problems is a one-parameter version of contact equivalence specialized to 
the case n = 1. In addition, because we are interested in the linearized stability 
of solutions ( cf. Chapter I, §4), we have restricted S(O) and X x(O) tobe positive; 
but these are minor points. 

In each category we can analyze the recognition problern and find 
universal unfoldings in much the same way as we have described in Chapters 
II and III here. John Mather [1969a, 1969b] first proved the unfolding 
theorem for contact equivalence and then for right equivalence. Martinet 
[1977] reworked Mather's proofs into a nice geometric form, and our proof 
of the unfolding theorem for bifurcation problems (tobe given in Volume II) 
is an adaptation of Martinet's proof. The important point here is that 
unfolding theory is much the same in each category; given our purpose, we 
have described universal unfoldings from the point of view of bifurcation 
theory. 

When n = 1 the clear separation discussed above between catastrophe 
theory and singularity theory becomes blurred. In both cases the functions 
f: IR-+ !Rand themappingsh: IR-+ !Rareelementsof Sx. However, theequiv
alence relations in the two categories are different. Nevertheless, it turns out 
that the unfolding theory in the two categories have identical structure. 
In the first place, each function f(x) of finite codimension is right-equivalent 
to ±xm for some m. Similarly, each mapping h(x) of finite codimension is 
contact equivalent to ± xm for some m. (The normal forms ± xm are called 
cuspoids in elementary catastrophe theory.) In the second place, the forms 
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of the universal unfolding of xm in the two categories are related in a way 
which we now describe. 

In catastrophe theory, the cuspoid xm+ 1 has codimension m - 1; a 
universal unfolding of xm+ 1 with respect to right-equivalence is: 

F(x, a) = xm+ 1 + am_ 1xm- 1 + · · · + a 1x. 

In singularity theory, the cuspoid xm (one lower degree) has the same Co
dimension m - 1; a universal unfolding of xm with respect to contact equiva
lence is: 

H(x, ß) = Xm + ßm-2Xm-l + · · · + ß1x + ßo· 

Upon differentiation of the first unfolding we obtain, apart from some trivial 
rescaling of parameters, the second unfolding. 

In our discussion below of the path formulation for bifurcation problems 
we shall use the universal unfoldings of the cuspids with respect to contact 
equivalence. Nevertheless, the pictures of catastrophe theory, which are 
generated by solving of/ox = 0, are precisely the same in the singularity 
theory category. The only difference is that in the latter case, we solve the 
equation H = 0. 

The following remark is an aside for those readers interested in the con
troversies surrounding catastrope theory. One criticism of various applica
tions of catastrophe theory is that for many applications, there did not exist 
a potential function. However, as long as the reduction to n = 1 is appropri
ate, we believe this criticism isared herring. We could just as weil use con
tact equivalence and obtain the same set of pictures. Moreover, when n = 1 
the correspondence between catastrophe theory and singularity theory 
can be made in either direction, through differentiation or integration, as 
appropriate. In other words, for n = 1, potential functions always may be 
constructed. 

(b) The Path Formulation 

We now relate bifurcation problems g in one state variable (n = 1) to a path 
through the universal unfolding of a cuspoid. Suppose g(x, A.) has finite 
codimension. Then g(x, 0) = axm_,. 1 + · · · for some m where a =F 0. (This 
fact is not hard to prove. For the interested reader it will be proved in Lemma 
IV,2.4(a).) We assume for convenience that a > 0. Now g(x, A.) may be viewed 
as a one-parameter unfolding (singularity theory context) of the mapping 
g(x, 0). Thus g(x, A.) may be factored through the universal unfolding (singu
larity theory context) for the cuspoid xm+ 1 ; in symbols 

g(x, A.) 

= S(x, A.)[X(x, A.)m+ 1 + Am_ 1(A.)X(x, ;.r- 1 + .. · + A1(A.)X(x, A.) + A0(A.)] 
(12.1) 
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for some functions S, X, and Ai. Using the mappings Sand X we see that the 
bifurcation problern g(x, A.) is equivalent to the normal form 

h(x, A.) = xm+ 1 + Am_ 1(A.)xm- 1 + · · · + A 1(A.)x + A0(A.). (12.2) 

This normal form has the special property that all the A.-dependence is 
isolated in the coefficients of low powers of x. 

In (12.2) we have identified the bifurcation problern g with an integer m 
and a path in the rn-dimensional parameter space of the universal unfolding 
of xm + 1 ; namely 

(12.3) 

We refer to this identification as the pathformulation ofbifurcation problems. 
Let us show that this identification can be extended to perturbations. 

Specifically, we identify universal unfoldings of bifurcation problems with 
families of paths in the unfolding space of the cuspoids. 

Let h(x, A.) be the bifurcation problern (12.2). Let G(x, A., oc) be a universal 
unfolding (as a bifurcation problem) of h, depending on k parameters. Let 
us regard Gas a (k + 1 )-parameter unfolding of G(x, 0, 0). Then the unfolding 
theorem (singularity theory context) for the cuspoid states that 

G(x, A., oc) = S(x, A., oc)[X(x, A., ocr+ 1 + Am_ 1(A., oc)X(x, A., ocr- 1 

+ · · · + A0 (A., oc)], (12.4) 

where X(x, A., 0) = x, S(x, A., 0) = 1, and AiA., 0) = AiA.). 
From (12.4) we see that the universal unfolding G is equivalent to the 

following universal unfolding (bifurcation theory context) of h: 

H(x, A., oc) = xm+ 1 + Am_ 1(A., oc)xm- 1 + · · · + Ao(A., oc). (12.5) 

As with (12.2), we extract from (12.5) the k-parameter family of paths 

A. --. (A0 (A., oc), A 1 (A., oc), ... , Am- 1 (A., oc)) 

through the universal unfolding of the xm+ 1• In other words, the universal 
unfolding of any bifurcation problern (offinite codimension, in one variable) 
may be identified with a parametrized family of paths through the universal 
unfolding of the cuspoid. 

( c) Elementary Bifurcations and the Cusp Catastrophe 

By the cusp catastrophe we mean the universal unfolding (singularity theory 
context) ofthe cuspoid x 3• We write this unfolding as 

x 3 - Bx + A = 0. (12.6) 

The universal unfoldings of all bifurcation problems h(x, A.) which satisfy 

h(x, 0) = x3 
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Table 12.1. Elementary Paths Through Cusp. 

Normal Form Universal Unfolding A(A.) B(A.) 

Hysteresis x 3 + A.- lXX A. a 
Pitchfork x3 - A.x + IX1 + IXzA IX1 + IXzA A. 
Winged Cusp x 3 + A. 2 + a + ßx + yxA. A.z + a -(ß + yA.) 

may be written as parametrized families of paths through the cusp. These 
bifurcations include the hysteresis point, the pitchfork, and the winged cusp. 
In Table 12.1 we present these paths explicitly. (Also see the cubic bifurcation 
problems of Chapter V.) 

For the examples in Table 12.1, we give the pictures associated with these 
paths and another method for seeing the perturbed bifurcation. We begin 
by describing the geometry of (12.6). See Figure 12.1. 

In Figure 12.1, we have indicated the projection of the cusp surface 
defined by (12.6) onto the unfolding space, the AB-plane. In the AB-plane 
there is a separation given by the cusp curve 

1 Projection 

Figure 12.1. Geometry of the cusp catastrophe. 
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For points (A, B) inside this curve, the associated cubic has three distinct 
real roots; this fact is indicated in Figure 12.1 by the three points on the cusp 
surface lying above (A, B). For pointsoutside the cusp, the associated cubic 
has one real root and the cusp surface has one point lying above (A, B). 

The paths for each of the unperturbed bifurcation problems of Table 
12.1 are given in Figure 12.2. 

There is a simple way of recovering a bifurcation diagram from the path 
through the cusp given by Iifting the path to the cusp surface. One has to be 
careful to remernher that the path is parametrized by A. and that the path 
may traverse the same image in the AB-plane more than once, cf. the winged 
cusp. In Figure 12.3 we have given the Iiftings for the paths in Figure 12.2. 

From the topologist's point of view, the only time a bifurcation diagram 
which corresponds to a path through the cusp can have a singularity is when 
the path intersects the cusp curve (B/3)3 = (A/2)2• So we should try to under
stand the perturbed paths listed in Table 12.1 in terms ofthese intersections. 
Typical perturbed paths are given in Figure 12.4. For the hysteresis point the 
perturbations contained in the universal unfolding are obtained by translating 
the line in the B-direction. For the pitchfork we can both translate (path (a) 
in the figure) and rotate (path (b)) the path. The universal unfolding theorem 
states that no new phenomena can be obtained (up to equivalence) by any 
other perturbation. This gives a geometric explanation of why the pitchfork 
has codimension 2. (In Exercise 12.1 we ask the reader to show that the path 
in Figure 12.5 Ieads to the bifurcation diagram in that figure.) 

The perturbations of the winged cusp, given in Figure 12.4, provide some 
insight into the structure of the universal unfolding of the winged cusp. 
First note from Figure 12.3 that the perturbed paths are (possibly degenerate) 
parabolas whose axes of symmetry are parallel to the A-axis. Since such 
parabolas are defined by three pai:"ameters-two for the vertex and one for 
the Iatus rectum-one has geometric confirmation of the fact that the winged 
cusp has codimension 3. The reader should reconstruct the bifurcation dia
grams corresponding to the parabolas listed in Figure 12.4 and convince 
hirnself that these diagrams correspond to five of the seven persistent pertur
bations of the winged cusp which are given in Figure 8.4. 

We end this section with two remarks about the path formulation-one 
positive and one negative. The negative point stems from the fact that the 
diagrams associated with regions 5 and 7 of Figure 8.4 are missing in the 
paths ofFigure 12.4. These two persistent diagrams correspond to a parabola 

I 
I 
I 
I 

A • 
Hysteresis point Pitchfork Winged cusp 

Figure 12.2. Pictures of paths through the cusp. 



Hysteresis point 

Pitchfork 

Winged Cusp 

Figure 12.3. Liftings of paths through the cusp. 
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--------~ 
(b) '(a) 

' I 

Hysteresis point Pitchfork Winged cusp 

Figure 12.4. Perturbations of paths through the cusp. 

Figure 12.5. Perturbations of the pitchfork. 

like that in Figure 12.6, transversed in either direction. It is probably not 
obvious to the reader that a parabola whose axis is parallel to the A-axis 
can intersect the cusp curve four times-once on the left-hand nappe and 
three times on the right-hand nappe. Yet this is exactly what our analysis 
of §8, using the bifurcation and hysteresis varieties, proves. In other words, the 
the path formulations can be misleading unless we are careful. 

The positive remark is that the path formulation is often helpful in finding 
organizing centers. For example, suppose we have a family of bifurcation 
diagrams each of which contains at most three solutions x for each A.. Then 
the bifurcation diagrams correspond to paths through the cusp. By staring 
at these paths we can sometimes pick out one path which has all of the paths 
in the family as small perturbations. This (presumably degenerate) path is 
a good candidate for an organizing center for the problem. Indeed this was 
the method by which Golubitsky and Keyfitz [1980] originally found the 
organizing center for the CSTR (Cf. Chapter I, §2). 

I 

I 
'II 

' \ 
I 

Figure 12.6. "Difficult" perturbation ofthe winged cusp. 



§12. The Path Formulation 173 

EXERCISE 

12.1. Consider the path (A(A.), B(A.)) = (A., A.) in the universal unfolding of the cusp 
singularity x 3 - Bx + A. Show that this path and the associated bifurcation 
diagram 

are the ones pictured in Figure 12.5. In particular, note that there is a hysteresis 
point at the origin. 

ßiBLIOGRAPHICAL COMMENTS 

The unfolding theorem was conjectured by Thom and proved by Mather 
[1969a]. Our results in §§1-4 are primarily an adaptation ofthis work to the 
context of bifurcation problems. Our proof of the unfolding theorem, see 
Golubitsky and Schaeffer [1979a], is modeled on the proof of Mather's 
theorem in Martinet [1982]. A more general version of the unfolding 
theorem will be proved in Valurne II. The methods discussed in §§5-12 
were first presented in Golubitsky and Schaeffer [1979a]. 



CASE STUDY 1 

The CSTR 

In Chapter I, §2 we outlined a program of analysis for the continuous flow 
stirred tank chemical reactor; in this Case Study we carry out that pro gram. 
Let us recall that (after scaling) equilibria of the CSTR are described by the 
equation 

BA. 
G(x, A.; B, i5, A.) = (1 + A.)y - 11 - 1 + i5A.d(x) = 0, (Cl.l) 

where 

d(x) = exp{- 1 : J. 
(Remark: We do not include y as an argument in (Cl.l), since we do not 
vary this parameter.) Our goal is to analyze (Cl.l) in terms of the winged 
cusp singularity; i.e., 

(C1.2) 

Specifically, the task of this Case Study is to prove the two theorems below. 
Let Q c IR 5 be the set of physically acceptable parameter values; viz., 

Q = {(x, A., B, i5, 11): B, A., i5 > 0 and x, 11 > -1}, (Cl.3) 

By way of explanation of (Cl.3), we recall that x and 11 are temperature 
parameters and that absolute zero has been scaled to - 1; and that A., i5 are 
transfer coefficients which must be positive. It will turn out for the problern 
we consider that B > 0; i.e., the reaction is exothermic. We also recall that 
y is !arge, typically y > 10. 
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Theorem Cl.l. F or any ')' > i, there exists a unique point 

Zo = (xo, Ao, Bo, bo, IJo)Ef! 

such that G(x, A., B0 , <50 , IJo) is equivalent to the winged cusp (Cl.2) in a neigh
borhood of(x0 , A.0 ). Thefollowing asymptotic expressionsfor Z 0 hold when y is 
Zarge: 

1 
Xo ,......_, -, 

')' 

4 
Bo ~ -, 

')' 
IJo ~ -!. (C1.4) 

Theorem C1.2. The three-parameter urifolding G(x, A.; B, b, IJ) in (Cl.l) is a 
universal urifolding ofG(x, A.; B0 , b0 , 1Jo) near (x0 , A.0). 

In Chapter Ill, §8 we studied the universal unfolding 

H(x, A.; oc, ß, y) = x 3 + A.2 + oc + ßx + yA.x 

of (C1.2). Universal unfoldings of equivalent singularities only differ by a 
change of coordinates. Thus it follows from Theorems Cl.l and Cl.2 that 
as B, b, 1J vary near B0 , <5 0 , IJo, (Cl.l) exhibits exactly the seven persistent 
perturbations listed in Figure Ill,8.4. Moreover, the regions in parameter 
space where the various perturbations occur in the two unfoldings ar.e 
diffeomorphic, but we shall not determine this diffeomorphism. 

Let us interpret the parameter values (Cl.4) of the winged cusp point in 
terms of the original, unscaled variables of the CSTR. The flow rate r and the 
reaction rate Z are of the same order, with r larger by a factor of e. The rate 
constant k for cooling is much smaller than either r or Z, being reduced by a 
factor of y- 1 . The coolant temperature 7;, is much lower than the feed 
temperature 1f-on the absolute scale Tc = 'If/2. The reaction is only 
mildly exothermic, and the steady-state temperature in the reaction vessel 
is only slightly elevated from the feed temperature 'If. 

These results were first presented in Golubitsky and Keyfitz [1980]. The 
results there are a little stronger than here. Specifically, to obtain the winged 
cusp, one need only assume that the reaction rate term .YI is a C 00 -function 
which is C 3 close to Arrhenius form. Moreover, all other singularities which 
occur in the family G, for any parameter values, are singularities already 
found in the universal unfolding of the winged cusp. This fact along with the 
numerical work of Uppal et al. [1976] suggested that these local results 
obtained by singularity theory techniques were probably valid globally. 
In fact, Balakotaiah and Luss [1982] performed numerical calculations 
verifying that the local description of the bifurcation diagrams given by 
unfolding the winged cusp is indeed global. Their method involved following 
numerically the bifurcation, hysteresis, and double Iimit point varieties 
away from the winged cusp point. 

The theoretical framework for proving Theorems Cl.l and C1.2 is clear. 
Both theorems correspond to recognition problems-for normal forms in 
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Theorem Cl.l, for universal unfoldings in Theorem Cl.2. Thus to prove 
these two theorems we must carry out the calculations specified in Proposi
tion II,9.4 and Proposition III,4.5, respectively. Below we shall present the 
full details of these calculations. (We won't do so for the other two Case 
Studies. lt seems important to see such calculations in their entirety for at 
least one example; we have chosen this one because it is the simplest tech
nically.) 

PROOF OF THEOREM Cl.l. According to Proposition 11,9.4, we must show 
that for each fixed y there is a unique solution (x0 , A.0 , B0 , b0 , 11o) = Z 0 in 
n to the system of five equations 

G = G X = G XX = G). = G XA = 0 (Cl.5a) 

in the five unknowns x, A., B, c>, 11 and that for this solution 

Gxxx > 0 and G;.;. > 0 at Z 0 . (Cl.5b) 

(Remark: In Theorem C 1.1, the restriction y > i arises from the requirement 
that Z 0 lie in the physical region Q.) 

Webegin by computing the derivatives in (Cl.5a). To simplify the nota-
tion, we write 

ß = 1 + bA.d(x) 

for the denominator in (Cl.l). Then we have 

(a) G = (1 + A.)y- 11 - BA.jß, 

(b) G;. = x - Bjß2 , 

(c) Gx = (1 + A.) + BbA.2 d'jß2 , 

(d) GXA = 1 + 2B(JA.d'jß3 , 

(e) Gxx = BbA. 2 [ßd"- 2bA.(d') 2]jß3• 

We also record the derivatives of d(x), 

(a) ( -yx) d = exp 1 + x > 0, 

(b) 
I -y 

d = ( 1 + x)2 d(x) < 0, 

(c) d" = y2 + 2y(1 + x) d( ) 0 
(1 + x)4 x > ' 

where the inequalities hold at least for x > - 1. 

(C1.6) 

(Cl.7) 

The main difficulty in solving (Cl.5a) lies in the fact that the dependence 
on x of the derivatives in (C1.6) is so horribly nonlinear. Weshalldeal with 
this difficulty by manipulating (Cl.5a) to extract a simple equation which 
depends only on x. Having solved this equation for x, it will be relatively 
easy to solve for the remaining unknowns. 
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Specifically, we proceed as follows. Observe from (Cl.6b) that 

B = Ll2x. 

177 

(C1.8) 

Starting from the two equations Gx;, = Gxx = 0 in (Cl.5a), we process these 
by substituting the value (C1.8) for B in (C1.6d), by canceling the nonzero 
factors B6il2 L1- 3 in (Cl.6e), and by writing out the remaining factors of Ll; 
we obtain 

(a) 6il(d + 2xd') = -1, 

(b) 6il[2(d')2 - dd"] = d". 
(Cl.9) 

Next we multiply (C1.9a) by sl", add it to (Cl.9b) and divide the result 
by 26ild' to deduce 

d' + xd" = 0. (Cl.lO) 

Because (Cl.lO) is homogeneous, the exponential cancels; specifically 
substituting (C1.7) into (Cl.lO) yields 

x 2 + yx- 1 = 0. (Cl.ll) 

Equation (Cl.11) has a unique solution x0 satisfying x 0 > -1. (Note that 
in fact x 0 > 0, since y > 0.) 

Now we solve for 6 and il. Substituting the value (Cl.8) for B into the 
equation G x = 0, we deduce 

6ilxd'(x) = - 1 : il. (C1.12) 

But (Cl.9a) gives a value for the product 6il on the left in (C1.12), depending 
only on x 0 . Substitution of (Cl.9a) into (C1.12) yields 

, __ d + 2xd'\ 
Ao - -A -A' ' 

J4Jl + XJ4Jl x=xo 

and substitution in turn of (C1.13) into (C1.9) yields 

~ _ d + xd' I 
0 0- + '2 . 

(d + 2xd) x=xo 

Finally, we have from (C1.8) that 

B0 = x 0 Ll5, 
where 

Ll0 = 1 + 60 il0 d(x0 ), 

and setting (Cl.6a) equal to zero yields 

'1o = (1 + ilo)Xo - Bo ilo / Llo · 

(Cl.13) 

(C1.14) 

(Cl.15) 

(C1.16) 
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This solves (Cl.5a); it remains to check that Z 0 lies in the physical region, 
to verify (Cl.5b), and to obtain the asymptotic formulas (C1.4). We leave 
the latter task to the reader. 

First we shall prove that Z 0 lies in the physical region. In this direction, 
we needto determine the signs ofthe numerator and denominator in (Cl.13), 
the formula for A.0 . We claim that 

(a) d(x0 ) + x0 d'(x0 ) > 0, 

(b) d(x0 ) + 2x0 d'(x0 ) < 0, (C1.17) 

the second inequality holding if y > 8/3. To derive (C 1.17a), we substitute 
the value x 0 = -d'(x0)/d"(x0 ) from (Cl.lO) into (Cl.17a) to obtain 

I I - d d" - (..91')21 d+xd - d" . 
x=xo x=xo 

By (C1.7), d" is positive and d is nonzero; since we are only interested in 
signs, we may replace the factor sil" in the denominator by .912 to conclude 

I (d d" _ (..91')2) I 
sgn(d + xd') _ = sgn .912 _ • 

x-xo x-xo 

But the right-hand side of this equation is simply the second derivative of 
log d, and we compute that 

(log d)" = (1 ~y x)3 > 0. 

This proves (Cl.17a). 
For (Cl.17b), we observe from (Cl.9a) and (C1.9b) that 

I 1 2(..91')2 - dd"l 
(d + 2xd') = - - = - ----=-----

x=xo (joA.o d" x-xo· 

As above, we invoke the signs in (C1.7) to conclude that 

I (2(..91')2 _ d d") I sgn(d + 2xd') _ = - sgn .912 _ • 
x-xo x-xo 

Using (Cl.7) to evaluate these derivatives, we see that 

2(..91')2 - dd" y- 2(1 + x) 
=y ..912 (1 + x)4 

which is positive precisely when 

y 
x<2-l. (C1.18) 

But x0 defined by (Cl.ll) satisfies (Cl.18) if and only if y > 8/3. This proves 
(Cl.17b). 
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We now show that Z 0 lies in Q. In solving (Cl.ll) we chose x0 > -1. It 
is immediate from (C1.17) that e0 > 0 and <50 > 0. We need only show that 
1'/o > - 1. To do this we manipulate (Cl.16) to express 1'/o in terms of x0 ; 
we claim that 

1'/o =--d....,. 
x+-

d' x=xo 

To show this, we substitute (Cl.8) for B into (C1.16), obtaining 

(C1.19) 

1'/o = (1 + Ao)Xo - X0 A0 ~0 . (C1.20) 

On the other hand, combining (Cl.6c) and (Cl.6d) we conclude that 

20 ~0 = 2(1 + 20 ), 

which when substituted into (Cl.20) yields 

(C1.21) 

The claim (C1.19) follows from substituting (C1.13) for A.0 into (Cl.21) and 
rearranging. Note from ((C1.7b) and (C1.17a)) that the denominator in 
(C1.19) ls negative; thus to show that 1'/o > -1 we must show that 

x~ < - [xo + :, (x0)]. (Cl.22) 

On rearranging terms and taking d/d' from (Cl.7b), we see that (Cl.22) 
is equivalent to 

2 (1 + Xo)2 0 
Xo + Xo- < , 

y 
(Cl.23) 

and (Cl.23) may be derived from (Cl.ll). This proves 1'/o > -1. 
Finally, it remains to prove (Cl.5b). We first compute that 

(a) Gu = 2Bt5d/~3 , 
(Cl.24) 

(b) Gxxx = Bt5A.2 {~d"'- 3<5A.d'd"}/~3 ; 

the second formula holding only if Gxx = 0. To prove G;.;.(Z0 ) > 0, note 
that ~0 = 1 + <5 0 20 d(x0 ) is positive since <5 0 , A. 0 , and d are positive. 
Thus all factors in (Cl.24a) are positive, and GH(Z0 ) > 0. Let us turn to 
Gxxx(Z0 ). We ignore all the factors outside the brackets in (Cl.24), as they are 
positive. We substitute the value 

(d')2 
~0 = 2<50 20 d" 

obtained from Gxx = 0 (i.e., (C1.6e)) into (Cl.24). Thus 

{ (d')2d" }I sgn Gxxx(Z0 ) = sgn 2 d" - 3d'd" _ . 
x-xo 
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We multiply by d"/(d') 3, which by (Cl.7) is negative; this yields 

{ (d") 2 d"} I sgn GxxiZ0 ) = sgn 3 -, - 2-11 • 

d d x=xo 
(Cl.25) 

We compute that the right-hand side of (C1.25) equals y/(1 + x0 ) 4 , so 
GxxiZ0 ) > 0. (Remark: Apart from sign, the right-hand side of (Cl.25) is 
the Schwarzian derivative of d.) D 

PROOF OF THEOREM Cl.2. According to Proposition 111,4.5, we must show 
that the determinant of the matrix 

0 
0 

G~ 

0 
0 

GBx 
Göx 
G~x 

0 

Gu 
GB;. 

GÖA 
G,,;. 

Gxxx Gxx.l. 
G;.xx Gux 
GBxx GBxJ. 
Göxx Göx.l. 
G~xx G~XA 

evaluated at the winged cusp point Z0 is nonzero. Observe from (Cl.l) 
that G~ = 1 identically; thus the 5, 1-entry is the only nonzero entry in the 
bottom row of this matrix. Expanding in minors about the fifth row, we 
reduce to the determinant of 

(Cl.26) 

We simplify this determinant by operating on the second and fourth rows. 
We claim that at Z 0 

Gö;. Göxx Göx.l. )l 

G;.;. G;.xx G.l.x.l. J. (Cl.27) 

Thus we may annihilate the last three columns of the fourth row of (C1.26) 
by subtracting ..:l/6 times the second row from the fourth row; this shows that 
the determinant of (Cl.26) equals 

(Cl.28) 

Now we verify (Cl.27). Observe that .1 = 1 + ()Jld(x) depends on (J and 
)l only through the product 6Jl. lt is immediate from (Cl.6b, d) that G;. and 
G J.x also have this property. But if f(Jl, 6) = h(()Jl), then föl /;. = A/6. This 
verifies the first and third equalities in (Cl.27), and it remains to consider 
Göxx/G;.xx· Forthis we rewrite (Cl.6e) as Gxx = B6Jl2Q/.1\ where 

Q = .1d" - 26Jl(d')2 • 
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Since Q = 0 at Z 0 , we have Gbxx/G;.xx = Qb/Q;. at Z0 . However Q depends 
only on <5A., so Qb/Q;. = A.j<5. This proves (C1.27). 

To complete the proof we will show that both factors in (Cl.28), G~x and 
the determinant, are nonzero. Regarding the first, we differentiate (Cl.6c) 
with respect to <5 to obtain 

Gbx = BA. 2d'(l- fJA.d)/113 . 

Substituting from (Cl.9a) we see that 

d+xd' I 1 - <5 0A0 d(x0 ) = 2 d 2 d' , 
+ X x=xo 

which is nonzero by (C 1.17). Thus G bx =f. 0. 
Finally, we show that the determinant in (Cl.28) is nonzero. First note 

from (Cl.6e) that 

Thus expanding the determinant we obtain 

Gxx/G;.x;.GB;. - GuGBx;.) - G~x).GBJ.· 

We compute the following derivatives in (C1.29) from (Cl.6). 

(a) GB;. = - 1/112, 

(b) GBxJ. = 2<5:1d'/113, 

(c) G;.x;. = 2BfJd'[l - 2fJ:1d]/114 . 

(Cl.29) 

We claim that (Cl.29) is positive. We see from (1.30a) that GB;. < 0, so the 
second term in (Cl.29) is certainly nonnegative. Concerning the first, we 
already know from (Cl.5b) that Gxxx > 0. Substituting from (Cl.30) (and 
from (Cl.24a) for Gu) we find 

G;.x;.GB;.- G;.;.GBxJ. = -2B[Jd'jl16 > 0, 

the inequality coming from (Cl.7b). Thus the first term in (C1.29) is positive, 
and the claim follows. 0 

ExERCISE Cl.l (Assumes Exercise I, 3.1). 

Consider the Liapunov-Schmidt reduction of the ODE (1,2.1) for the CSTR using the 
data M, N, v0 , and vö described in Exercise 1,3.1. Show that for the asymptotic parameter 
values (C1.4) we have 

<vo,vö) -t. 
In other words, show that the choice of data in Exercise 1,3.1 is consistent with the require
ment (1,4.10), needed to make correct stability predictions. (Warning: Recall that a minus 
sign is needed tobring (1,2.1) into the standardform (1.4.1).) 



CHAPTER IV 

Classification by Codimension 

§0. Introduction 

The main purpose oftbis chapter is to classify all bifurcation problems (in one 
state variable) of codimension three or less. We find that there are eleven 
such singularities, which we call the elementary bifurcation problems. In the 
course of the chapter, we tabulate the following data for each of these eleven 
singularities: 

(i) Normal form (Table 2.1). 
(ii) Algebraic data (i.e., Y'(h), RT(h), &l(h), T(h), a complement to T(h), 

codimension) (Table 2.2). 
(iii) Solution of the recognition problern for normal forms (Table 2.3). 
(iv) Universal unfolding (Table 3.1). 
(v) Solution ofthe recognition problern for universal unfoldings (Table 3.2). 

(vi) Equations for the bifurcation, hysteresis, and double Iimit point 
varieties (Table 4.1 ). 

(vii) Graphs of the persistent perturbed bifurcation diagrams (Figures 
4.1-4.3). 

Thus the chapter should also be useful as a compact reference. 
A complete classification of all singularities seems to be an impossible 

task. Hence we only attempt to classify singularities of low codimension. 
Of course, the degeneracy of a singularity increases with its codimension 
(cf. Corollary 111,2.6). Thus we are classifying the least degenerate singu
larities; i.e., the ones most likely to occur in applications. Indeed, in §1 we 
attempt to quantify the idea that singularities of low codimension are more 
likely in applications by relating codimension to the number of (non
dimensionalized) auxiliary parameters in a mathematical model. 
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One may of course ask, "Why stop at codimension three?" Our answer is 
that perturbed bifurcation diagrams with a singularity of codimension k are 
enumerated by regions in !Rk. If k > 3, visualization ofthese regions becomes 
very difficult. 

The chapter is divided into four sections. In §1 we discuss the kind of 
information about mathematical models that can be derived from codimen
sion. The main classification theorem, identifying all singularities of CO

dimension three or less, is stated and proved in §2. In §§3 and 4, we consider 
universal unfoldings and persistent perturbations of the elementary singu
larities, respectively. 

§1. Philosophical Remarks Concerning Codimension 

Consider a k-parameter family of bifurcation problems, 

G(x, A., IX) = 0, (1.1) 

which arises from a mathematical model for some physical problem. We 
imagine that (1.1) has already been nondimensionalized, so that the k 
parameters in (1.1) are essential. Suppose that for IX = IX0 , (1.1) has a singu
larity at x = x 0 , A. = A.0 whose codimension exceeds the number of auxiliary 
parameters; in symbols 

codim G(·, ·, 1X0) > k. (1.2) 

In this section we argue the following thesis: Such a mathematical model 
should be approached with caution. We believe this thesis isarather important 
principle of wide applicability in applied mathematics. lt derives from Rene 
Thom's work on catastrophe theory. The ultimate mathematical basis for 
this thesis is the simple fact that typically an overdetermined system of 
algebraic equations (i.e., more equations than unknowns) has no solutions. 

Actually (1.2) is just a readily applicable test addressing the following, 
morefundamental question: Is G(·, ·,IX) a universal unfolding for G(·, ·, 1X0), 

or even a versal unfolding? Surely not, under the assumption (1.2), since 
there arenot enough unfolding variables. Of course, G(·, ·, IX) might fail tobe a 
versal unfolding even when (1.2) is violated. However, in a given model 
detailed computations are required to decide whether this latter possibility 
actually occurs. By contrast (1.2) can be verified with little effort. In this 
section, we are interested in the information that can be derived from sing
larity theory without performing detailed computations, so we work with ( 1.2). 

We divide the section into two subunits: 

(a) Why (1.2) is usually grounds for caution, and 
(b) Special circumstances which modify codimension in (1.2). 
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(a) Why (1.2) is Usually Grounds for Caution 

Let us attempt to discuss the issues here in general terms. A mathematical 
model for a physical problern always neglects some physical effects, many of 
which are beyond the control ofthe experimenter. Thus (1.1) merely describes 
the system of the mathematical model; a more accurate description of the 
physical system would Iead to an equation 

G(x, A., IX) + p(x, A., IX) = 0, (1.3) 

where pisasmall perturbation that represents what the model neglects. We 
regard p as unknowable-a more accurate model might specify p partially, 
but no matter how accurate the model, some things will have been neglected. 

What is the effect of p in (1.3)? If G(-, ·,IX) is a versal unfolding of G(·, ·, 1X0), 

the effect of p is minimal. In mathematical terms (1.3) may be factared through 
the versal unfolding G(·, ·, IX). In physical terms, exactly the same bifurcation 
phenomena occur for (1.3) as for (1.1), justat slightly different values of the 
parameter IX. 

However suppose (1.2) holds. Equation (1.1) is an unfolding of G(·, ·, 1X0 ), so 
it may be factared through a universal unfolding of G(·, ·, 1X0). For definiteness 
let H(·, ·, ß) besuch a universal unfolding; suppose H requires l parameters, 
where l > k. Because (1.1) factors through H, all of the phenomena in (1.1) 
occur on a k-dimensional subset of unfolding space IR1• (Remark: We may 
describe this k-dimensional subset more explicitly as follows. By the unfolding 
theorem there is a map between parameter spaces A: IRk --+ IR1 such that 

G(·, ·, IX) ~ H(·, ·, A(1X)), 

where "' indicates equivalence. Only points on 

{ß E IR1: ß = A(1X) for some IX E IRk} (1.4) 

are associated with phenomena of (1.1).) Similarly, provided p is small 
enough, all of the phenomena in (1.3) occur on a different k-dimensional 
subset of IR1• However, these two subsets need not intersect one another; in 
this case, the perturbed family (1.3) will not even exhibit the original singularity. 

In conclusion, predictions of a mathematical model where (1.2) obtains 
are likely to be erratic. Experiments (described by (1.3)) will have new 
qualitativefeaturesnot predicted by theory (described by (1.1)). Moreover, 
in different experiments the perturbation p in (1.3) will probably be slightly 
different, so experiments may not be completely reproducible. 

In the remainder of subsection (a) we illustrate this general discussion 
with a specific example; viz., the experiments of Roorda [1965, 1968] on 
imperfection sensitivity in the collapse of the shallow arch. (These experi
ments are described on pp. 75-6 of Thompson and Hunt [1973].) The 
shallow arch is an infinite dimensional system; although it may be reduced 
to a one dimensional system with the Liapunov-Schmidt technique, we 
have not yet introduced the necessary theory in this text. Therefore we shall 
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Figure 1.1. Finiteelement analogue ofthe shallow arch. 

only consider a finite element analogue of the shallow arch. Even with this 
simplified system, the calculations are rather messy; a number of these cal
culations are left for the reader in Exercises 1.1-1.5. 

The (finite element analogue of the) shallow arch is illustrated in Figure 
1.1. This system consists ofthree rigid struts connected to one another and to 
rigid walls by pins which permit rotation in a plane. At the two interior 
pins there are torsional springs which resist rotation. The separation between 
the two outer pins is slightly less than the combined length of the three 
struts, so that in unstressed equilibrium the system bulges upward or down
ward. The system is stressed by a verticalload l which is applied at a distance 
~ from the center of the middle strut. 

We are interested in the behavior of the upward bulbing equilibrium 
configuration as I is increased. lt turns out that when l becomes too large, 
the arch collapses and snaps through to the downward bulging equilibrium 
configuration. Let us write Ic(~) for the Ioad at which the arch collapses if 
the Ioad is applied a distance ~ off center. The dependence of l.(~) on the 
parameter ~ is our main concern. This issue has engineering significance 
beyond the problern studied here. Specifically, l.(~) represents the load
carrying capacity of the shallow arch. The load-carrying capacity is greatest 
if ~ = 0. Normally one would design such a structure so that the Ioad is 
applied at ~ = 0 in order to take advantage of this maximum strength. 
However, real structures will inevitably differ from ideal structures through 
various imperfections. Applying the Ioad off center on the ideal structure is a 
convenient way to model imperfections. 

In our treatment of the shallow arch we will 

(i) derive theoretically an estimate for lc(~) when ~ is small; specifically, 

l.(~) = lo - c~2/3 + 0(~4/3), (1.5) 

where 10 = 1.(0) and C is a positive constant; 
(ii) discuss the inadequacy of (1.5) for describing the experimental data; 

and 
(iii) relate the discrepancy between theory and experiment to (1.2). 
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~ 

Figure 1.2. Notation to describe the shallow arch. 

Remark. The well-known 2/3-power in (1.5), originally derived by Koiter 
[1945], indicates that a small change in () can decrease the load-carrying 
capacity significantly. 

(i) A Theoretical Estimate for lc( ()) 
As a preliminary theoretical point, we show that the shallow arch of Figure 
1.1 has only one degree of freedom. After scaling, we may assume that the 
three struts have unit length. Let L be the separation of the end pins, and let 
</J, 1/J, and x be the angles defined in Figure 1.2. The fact that the two end pins 
are at the same height and are separated by a horizontal distance L Ieads 
to the two relations 

(a) cos </J + cos x + cos 1/J = L, 

(b) sin </J + sin x - sin 1/J = 0. 
(1.6) 

These equations determine <jJ and 1/J implicitly as functions of x. Therefore 
we may parametrize states of the shallow arch by the single variable x. 
(Strictly speaking, for each x there are two solution pairs (</J, 1/1) of (1.6), 
corresponding to upward bulging and downward bulging states. However, 
our analysis below is only local; i.e., restricted to a neighborhood of the 
upward bulging equilibrium. In such a neighborhood the solution of (1.6) 
is unique, so that x uniquely parametrizes states of the system.) 

The goal of this subunit is to derive (1.5), an estimate for the dependence 
on () of the Ioad at which collapse occurs. To begin, let us discuss how to 
express this collapse Ioad as a function of b. In Exercise 1.1 we ask the reader 
to derive an equation 

G(x, l, ()) = 0 (1.7) 

which characterizes the equilibria of the shallow arch, both stable and 
unstable. We regard (1.7) as a one-parameter family ofbifurcation problems 
in which x is the state variable, l the bifurcation parameter, and () an auxiliary 
parameter. Now the shallow arch collapses when, as l is increased, a stable 



§I. Philosophical Remarks Concerning Codimension 187 

solution x of (1. 7) loses its stability. In a system with one degree of freedom, 
such a loss of stability can occur only at a singularity of G; i.e., at a point where 

G(x, l, 15) = G,.(x, l, 15) = 0. (1.8) 

The function lc(o), as weil as the value of x at collapse, may be obtained by 
solving this 2 x 2 system for x and l as functions of 15. 

It would be rather difficult to obtain the estimate (1.5) by solving (1.8) 
directly. Therefore we shall use singularity theory methods to put the equa
tions in a particular tractable form before solving (1.8). Specifically weshall 
prove that when 15 = 0, collapse of the shallow arch results from a pitchfork 
bifurcation of(l.7); more precisely, near the bifurcation point, Gis equivalent 
to -x3 - A.x. Then we shall derive (1.5) by using the universal unfolding 
of the pitchfork to handle small, nonzero values of 15. 

First, we set 15 equal to zero and Iook for a pitchfork in {1.7). In Exercise 
1.1 we ask the reader to show that G{x, l, 0) is an odd function of x. {This 
property is a consequence of the symmetry of the problern (when 15 = 0) 
under reftection about the vertical axis.) Since G(x, l, 0) is odd, x = 0 is a 
solution of G(x, l, 0) = 0 for any l. For smalll this solution is stable; as l 
increases, this solution can lose stability only at a point where (1.8) is satisfied. 
In other words, when 15 = 0 collapse occurs at a Ioad 10 such that 

G(O, 10 , 0) = G,.(O, 10 , 0) = 0. 

However, since G(x, l, 0) is odd in x, it follows that 

G xx(O, lo, 0) = Gz(O, lo, 0) = 0. 

Combining these four equations, we see that near x = 0, l = 10 

G(x, l, 0) = C1x3 + C2 A.x + hot, (1.9) 

where A. = l - 10 • Generically C 1 and C 2 will be nonzero; if they are nonzero, 
then G(x, l, 0) is equivalent to a pitchfork ± x 3 + A.x. 

In Exercise 1.1 we also ask the reader to show by direct calculation that 
C 1 < 0 and C2 < 0. Herewe offer a heuristic proof concerning these two 
signs based on the following information: 

(a) The solution x = 0 of G(x, l, 0) = 0 is stable if l < 10 • 

(b) The arch collapses when l > 10 • 

We deduce that C2 < 0 from point (a) by using the sign of Gx to test for 
stability. (We remind the reader that A. < 0 if and only if l < 10 .) Concerning 
C 1, if C 1 < 0 then G(x, l, 0) has a subcritical pitchfork bifurcation as illustrated 
in Figure 1.3. Note that for l > 10 there are no stable equilibria in Figure 1.3. 
Hence this figure predicts discontinuous behavior near l = 10 , consistent 
with point (b) above. On the other hand, if C2 > 0 then the bifurcation is 
supercritical. In this case the nontrivial solution branch lies in the half 
plane {(x, l): l > 10 } and, by exchange of stability, these solutions are stable. 
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Figure 1.3 Pitchfork bifurcation - x 3 - A.x = 0 which occurs when (j = 0. 

This case Ieads to behavior contradicting point (b)-for l > 10 the system 
would move along the nontrivial branch, never suffering ajump. We conclude 
that c2 < 0. Thus near X= 0, l = lo, the function G(x, l, 0) is equivalent to 
-x3 - A.x:, where A. = 1- 10 . 

For any value of (), zero or nonzero, equilibria of the shallow arch are 
described by the equation G(x, l, ()) = 0. We know that G(x, l, 0) is equivalent 
to - x 3 - A.x:. By the universal unfolding theorem, G(x, l, b) can be factored 
through the universal unfolding of - x 3 - A.x:. In other words, for small b, 
G(x, l, b) is equivalent to 

H(x, A., b) = -x3 - A.x: + a:(b) + ß(b)x2 , (1.10) 

where A. = l - 10 and a:(b), ß((j) are smooth functions of () such that a:(O) 
= ß(O) = 0. In Exercise 1.2 we ask the reader to show that a:'(O) < 0; in 
particular a:'(O) =F 0. Let 

H(x,)., b) = x3 - A.x + a:1 b, (1.11) 

where a:1 = a:'(O); this isolates the dominant terms in H. Note that 

H(x, A., b) = H(x,)., b) + O(b2 , bx2 ). (1.12) 

Let us consider substituting H(x, A., b) for G(x, A., b) in (1.8); this yields 
the system 

H(x, A., b) = Hx(x, )., b) = 0 

tobe solved for x and A. as functions of b. Writing out (1.13), we have 

-x3 - A.x: + a:1b = 0 

-3x2 - A. = 0. 

On eliminating x from (1.14) and setting A. = l- 10 , we find 

( )
2/3 

l = lo - 3 ~1 (j2/3. 

(1.13) 

(1.14) 

In other words, if lc(()) were defined by solving (1.13) rather than (1.8), 
then the estimate (1.5) would be exact, with no error term necessary. 

In Exercise 1.3 we ask the reader to derive (1.5) by carefully analyzing 
the differences between (1.8) and (1.13). Let us summarize the issues. The 
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comparison of (1.8) with (1.13) proceeds in two steps, first comparing (1.8) 
with 

H(x, A., c5) = Hx(x, A., c5) = 0 (1.15) 

and then comparing (1.15) with (1.13). Let X, A be the diffeomorphism in the 
equivalence transformation which relates G to H; in the first step one must 
show that this diffeomorphism affects (1.5) only through a possible change 
in the constant C. In the second step one must show that, modulo the 
O(c54 ' 3 ) error in (1.5), the higher-order terms in (1.10) do not contribute to 
lc( c5). 

(ii) Comparison of(1.5) with Experiment 
In Figure l.4(a) we show the experimental values for lcCc5) from Roorda 
[1965]; for comparison, in Figure 1.4(b) we have graphed the theoretical 
estimate (1.5). Note that the experimental values (shown by circles) seem to 
lie on a collapse Ioad vs. c5 curve which is a slightly tilted cusp. The reader 
may question our drawing a cusped curve to fit these data-the cusp lies 

L. 
(a) Experiment. Data points shown schematically by circles. Cf. Roorda [1965]. 

(b) Theory: Cf. (1.5). 

Figure 1.4. Snap through Ioad as a function of fJ. 
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Figure 1.5. Discontinuity in lc as a function of ~ predicted by tilted cusp. Compare with 
experimental data given in Figure 1.4(a). 

in a region where there are no data points. It would seem from this informa
tion that fc(l5) is simply a discontinuous function of 15 such as sketched in 
Figure 1.5. To understand this issue, it is necessary to realize that the data 
in Figure 1.4(a) (taken from Roorda [1965]) were obtained by, for each value 
of 15, increasing the Ioad quasi-statically until collapse occurred. Thus 
there was no possibility of observing the upper branches in Figure 1.4(a). 
In other words, if the collapse Ioad vs. 15 curve is a tilted cusp, then in an 
experimentoftbis kind, the tilting will manifest itself simply as a discontinuity 
in the observed values for lc(15). 

Incidentally, the data from a subsequent experiment, which used a more 
sophisticated apparatus capable of detecting these upper branches, show the 
tilted cusp more clearly (cf. Roorda [1968]). Moreover, in the next unit we 
shall predict such tilting on theoretical grounds. 

(iii) Relation to (1.2) 
In deriving the estimate (1.5), we saw that G(x, l, 15) exhibits a pitchfork 
bifurcation when o = 0. Note that the pitchfork has codimension two but 
G has only one auxiliary parameter, 6. Thus (1.2) is satisfied here. 

In this subunit we show that the discrepancy between theory and experi
ment is a natural consequence of (1.2). Let us elaborate. As we discussed 
above, the effects of imperfections in real structures can be modeled by 
subjecting the governing equations to a small, random perturbation. Thus 
we replace (1.7) by 

G(x, l, o) + p(x, l, o) = 0; (1.16) 

this perturbation in turn modifies (1.8) to read 

G + p = Gx + Px = 0. (1.17) 

To determine the perturbed collapse Ioad vs. 15 curve, we must solve (1.17) 
for x and l as functions of o. In this subunit we show that for a generic 
perturbation p, the collapse load vs. o curve is a cusped curve that is slightly 
tilted with respect to the A.-axis. As we discussed above, such tilting accounts 
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for the principal discrepancy between theory and experirnent; viz., the 
discontinuity in lc((j) rneasured experirnentally. 

In the text we prove only that tilting occurs for the rnodel problern 

K(x, A., (), e) = fl(x, A., ()) + ex2, (1.18) 

where fl is given by (1.11) and e is a srnall pararneter. (In Exercise 1.4 we 
ask the reader to reduce the general case to (1.18). The important point-both 
for this reduction and for the choice of (1.18) as a rnodel-is that the right
hand side of (1.18) isauniversal unfolding of the pitchfork.) Let us substitute 
(1.18) into (1.17) and rewrite (1.17) as 

this yields 
1 

(j =- ( -2x3 + ex2 ), 
IXl 

,t = -3x2 + 2ex. 
(1.19) 

We would like to elirninate x frorn (1.19) and thereby express A. as a function 
of C>. Although it is not possible analytically to do so, nonetheless (1.19) 
gives a parametric representation of the collapse Ioad vs. (j curve in the 
C>A.-plane. Moreover, as desired, this curve has a cusp which, if e =/: 0, is 
slightly tilted with respect to the ..t-axis. The cusp arises frorn the cornrnon 
zero of dC>jdx and dA.jdx at x = e/3. The axis ofthe cusp points in the direction 

(~:~, ~:~)lx=e/3 = (- ~:• - 6). 

This cornpletes the discussion relating the discrepancy between theory and 
experiment to (1.2). 

Additional insight can be gained by viewing these issues geornetrically. 
As we saw in (1.10), the ideal problern G(x, A., ()) is equivalent to 

- x3 - A.x + IX(()) + ß( C>)x2• 

The coefficients 1X(C>), ß(C>) define a curve r 0 in the 1Xß-plane; i.e., in the param
eter space of the universal unfolding of the pitchfork, 

-x3 - A.x + IX+ ßx2 • (1.20) 

Figure 1.6 shows such a curve, along with the transition variety for (1.20). 
Note that r 0 passes through the origin since 1X(O) = ß(O). (Also note that 
IX'(O) =/: 0.) Similarly, a perturbed curve r may be associated to the perturbed 
problern (1.16), provided p is sufficiently small. However, a generic perturba
tion ojr 0 will not pass through the origin. There is an intirnate relation between 
the facts that generically r does not pass through the origin and that generi
cally, for a srnall range of (), the collapse Ioad vs. (j curve is a triple-valued 
function of C>. We ask the reader to explore this further in Exercise 1.5. 
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IX=O 

Figure 1.6. Curve r 0 in unfolding space of pitchfork. 

(b) Special Circumstances Which Modify Codimension 
in (1.2) 

Above we formulated the thesis that one should be cautious with a mathe
matical model which contains a singularity satisfying (1.2). However, this 
warning is predicated on the assumption that all perturbations of G(·, ·, oc0 ) 

should be included in the mathematical model G(·, ·, oc), at least up to our 
notion of equivalence. There are at least two special circumstances where this 
assumption should be questioned. These special circumstances will serve to 
change the notion of codimension used in ( 1.2) from the one given in Chapter 
III; they will not, however, invalidate the warning associated with (1.2). 

We discuss two special circumstances which call for a modification ofthe 
definition of codimension: 

(i) The occurrence of moduli. 
(ii) Special mathematical contexts: Symmetry. 

In Chapters V and VI, we shall analyze in detail specific examples of these 
two circumstances. Here we describe them briefly, in order that these terms 
may have some meaning for the reader at this stage. Indeed, the only reason 
to mention them now is to illustrate that the thesis of this section must be 
applied with sensitivity for the problern under study. 

(i) Moduli 
A universal unfolding G(x, A., oc), where oc E !Rk, of a singularity g is charac
terized by the following property: for any perturbation p, there is a map 
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A : IR -+ !Rk such that 

g + ep = SG(X, A, A(e)) (1.21) 

for some S, X, and A (depending on e). In (1.21), we have required that A, X, 
and A be coo. Let us consider weakening this hypothesis by only requiring 
these functions tobe finitely differentiable-this would not change the most 
important information in (1.21); i.e., the fact that both sides of the equation 
have the same number of solutions x as a function of A.. It tums out that to 
obtain the most natural modification of codimension it is necessary to 
weaken the coo -hypothesis drastically, as described in the following definition. 

Definition 1.1. Two germs g, h E tff x, ..1. are topologically equivalent if there is a 
map of the form (X(x, A.), A(A.)) satisfying the following: 

(i) (X(x, A.), A(A.)) and its inverse are continuous maps near the origin 
in IR2 • 

(ii) X(x, 0) and A(A.) are monotone increasing functions of x and A., respec
tively. 

(iii) (X, A) maps the zero set of gontothat of h, locally near the origin. 

In some examples, more complicated than any we have studied so far, 
fewer parameters are required to characterize perturbations of g up to 
topological equivalence than up to C 00-equivalence. In other words, the 
perturbations of g associated with certain parameters in the universal 
unfolding of g are topologically equivalent to g itself, although not C 00 -

equivalent; loosely speaking, we call parameters with this property modal 
parameters or simply moduli. We tentatively define the topological codimension 
of a singularity as its codimension minus the number of modal parameters. 
(This definition is subject to certain qualifications which we explore in 
Chapter V.) 

In applying the thesisoftbis section we should use topological codimension 
on the left in (1.2). In most simple examples, the topological codimension 
equals the codimension as defined in Chapter 111. A case where the two 
notions differ is explored fully in Chapter V. 

The above discussion may cause the reader to wonder whether topological 
equivalence is the fundamental notion that we should take as the basis of our 
theory. Indeed, several authors, Buchner et al. [1983] and Percell and 
Brown [1984], have worked on this. However, in our opinion, the following 
fact is a decisive reason for staying with C 00-equivalence: Two germs may be 
topologically equivalent but behave very differently under perturbation. 
The germs x and x3 provide a gross example of this. More subtle examples 
will occur in Chapter V. 

(ii) Special Mathematical Contexts: Symmetry 
Symmetry is by far the most important special mathematical context which 
can change the notion of codimension that is appropriate in (1.2). Wehave 
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already seen an example of this in the finite element analogue of the buckling 
of an Euler column, considered in Chapter I, §1. That model contains no 
auxiliary parameters, yet the analysis Ieads to a codimension two bifurcation 
problem; viz. the pitchfork. In other words, (1.2) holds here, running against 
the thesis of this section. However, there is a reflectional symmetry of the 
prob lern. Specifically, the potential energy in the buckled-up state is the same 
as the potential energy in the buckled-down state; it follows that the bi
furcation equation is an odd function of the state variable x. We suggest 
that this problern should be analyzed in a different mathematical context; 
i.e., in the class of germs which possess the same symmetry as the original 
problem. Indeed, we shall show in Chapter VI that in this context the pitch
fork x3 - A.x has codimension zero, thereby eliminating a case where (1.2) 
appears to be satisfied. This example is typical of the role of symmetry. 

Another example of a speciai context which changes codimension 
appears in the work of Dangelmayr and Stewart [1984]. These authors 
consider a restricted set of equivalences which are the natural changes of 
coordinates in describing certain sequential chemical reaction. 

We may summarize the above discussion by making the thesis of this 
section more specific: If a mathematical model Ieads to a singularity satis
fying (1.2), we should question whether the problern is formulated in the right 
context; especially, are there any symmetries that have not been included? 

(iii) Concluding Remarks 
Both of the above issues arise from questioning whether a mathematical 
model G(·, ·, oc) should include all perturbations of G(·, ·, oc0 ) up to C00 -

equivalence. Nonetheless, the two circumstances have different origins and 
different consequences. With moduli we ask whether the notion of equivalence 
is too strong; with symmetry we ask whether to consider fewer perturbations 
(i.e., only those which preserve the symmetry of the unperturbed mathe
matical model). With moduli the primary issues involve mathematical 
theory; with symmetry the primary focus is on the process of forming 
mathematical models of a physical situation. Moduli do not call for any 
particular response by the person applying the theory; by contrast, with 
symmetry, we have to decide which mathematical idealization best represents 
what we are trying to describe. 

Of course, it is perfectly possible to have both effects operating simul
taneously. As we shall see in Chapter VI, moduli in the symmetric case do 
occur; more than that, they occur in very low dimension. These issues will 
be important in both Case Sturlies 2 and 3. 

EXERCISES 

(Note: Exercises 1.1-1.5 are a block pertaining to the shallow arch. Some 
of the exercises require fairly messy calculations.) 
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1.1. (Discussion) The equilibria of the finite element analogue of the shallow arch 
may be found using the potential 

V= t(4J - x)2 + !(t/1 + x)2 + /(sin 4J + (! + c5) sin x). 

Here we have scaled the spring constants to unity, and 4J and t/1 are the functions 
of x obtained by solving (implicitly) the equations (1.6). Now the function G 
in (1.7) equals oVfox, so 

G(x, I, o) = (4J - x)(4J' - 1) + (t/1 + x)(t/1' + 1) + l(cos 4J 4J' + (t + o) cos x). 

(1.22) 

(a) ShowthatG( -x, l, 0) = -G(x, l, O).(Hint:Showthatsubstituting( -x, t/1( -x), 
4J( -x)) for (x, 4J(x), t/f(x)) also solves the system (1.6). Conclude using unique
ness of solutions in the implicit function theorem that t/f(x) = 4J( -x). Use 
this fact, along with (1.6b), to show that Vis even in x.) 

(b) For 5 = 0, find the Ioad 10 at which the upward bulging solution (x = 0) 
becomes unstable. 

(c) Show that for l = 10 the governing bifurcation equation G(x, I, 0) is equivalent 
to the normal form -x3 - A.x; that is, show that C1 and C2 in (1.9) are both 
negative. 

1.2. Prove that in (1.10) we have a'(O) < 0. (Hint: Show that sgn a'(O) = sgn(oGfoo) 
at (0, 10 , 0), and show that the latter derivativeisnegative by direct computation.) 

1.3. (Note: In this exercise we ask the reader to complete the verification of (1.5) by 
comparing systems (1.8) and (1.13).) 
(a) Let ..1-c(o) be defined by solving (1.15). Show that 

..1-c(o) = -3(~ r3 o2/3 + O(c54i3), 

where, as in (1.11), a 1 = IX'(O). (Hint: The system (1.15) differs from (1.13), 
for which wehavesuch an estimate, only by terms that are O(c52, c5x2).) 

(b) Let .ilc(c5) and lc(c5) be defined by solving (1.15) and (1.8), respectively. Let 
(X(x, ..1., c5), A(..1., c5)) be the diffeomorphism in the equivalence transformation 
which relates (G(x, l, c5) and H(x, ..1., c5). Show that 

lc( 0) = A(.ilc( 0), c5) 

and that 

A(O, 0) = 10 • 

(c) Combine (a) and (b) to obtain (1.5), where 

(
IX )2/3 

C = 3 ; A..(O,O). 

1.4. Let 

F(x, ..1., o, ll) = G(x, ..1., c5) + Bp(x, ..1., c5) 

be a small perturbation of the shallow arch equations, as in (1.16). Assurne that F 
is a universal unfolding of G(x, ..1., 0). Show that for ll fixed, small, and nonzero, 
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the graph ofsingularities of F in the <5..1.-plane is a tilted cusp. (Hint: Use the unique
ness of universal unfoldings to factor F through the normal form universal un
folding, as in (1.18).) 

1.5. Find the bifurcation diagrams for (1.20) associated to each of the four regions in 
Figure 1.6. (Cf. Chapter III, §7 for the pitchfork with the opposite sign, + x3 - Ä.x.) 
(Remarks: It turnsout that 
(a) in regions 1 and 2, the associated diagrams have only one singularity, and this 

is a Iimit point; and 
(b) in regions 3 and 4, the associated diagrams have exactly three singularities, 

and these are Iimit points. 

From these two facts it may be deduced that 
(a) when <5 "#- 0 in (1.7), collapse occurs at a Iimit point singularity; and 
(b) if perturbing the curve r 0 in Figure 1.6 Ieads to a curve r which crosses 

either region 3 or 4, then the collapse Ioad vs. <5 curve is triple valued for a range 
of <5, 

respectively.) 

§2. The Classification Theorem 

Theorem 2.1. Let g(x, A.) be a germ in tC x.;. satisfying g = 9x = 0 at (0, 0). If 
codim g ~ 3, then g is equivalent to one of the bifurcation problems listed in 
Table 2.1. 

Remark. In association with the names listed in Table 2.1, Iet us introduce 
the following terminology. Weshall apply the term supercritical to bifurca
tion problems such as x3 - A.x where the nontrivial solutions (i.e., x =F 0) 
lie entirely to the right of the bifurcation point at A. = 0. Similarly, subcritical 

Table 2.1. Normal Forms for Singularities 
ofcodim ~3. 

Normal Form Codim Nomenclature 

(1) ex2 + <5..1. 0 Limitpoint 

(2) e(x2 - ..1.2) 1 Simple bifurcation 
(3) e(x2 + ,.1.2) 1 lsola center 
(4) ex3 + <5). Hysteresis 

(5) ex2 + t5).3 2 Asymmetrie cusp 

(6) ex3 + t5).x 2 Pitchfork 
(7) ex4 + <5). 2 Quartic fold 
(8) ex2 + ,5).4 3 

(9) ex3 + ~5,.1.2 3 Wingedcusp 
(10) ex4+.:5..1.x 3 
(11) exs + <5..1. 3 

Note: e and .:5 are either + 1 or - 1. 
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refers to cases such as x3 + A.x where the nontrivial solutions lie to the left 
of the bifurcation point, and transcritical to cases such as x2 - A.x where 
the nontrivial solutions lie on both sides of the bifurcation point. 

We shall prove Theorem 2.1 later in §2, after some preliminary dis
cussion of the theorem. The proof is based on a careful examination of the 
solution to the recognition problem. In preparation for this proof we have 
tabulated data for each of the normal forms in Table 2.1, as follows: 

(i) Table 2.2: Algebraic data; i.e., fl'(h), RT(h), f/J(h), T(h), a complement to 
T(h), codimension. 

(ii) Table 2.3: Solution to the recognition prob lern. 

In making these tables, we took advantage of the fact that the eleven 
singularities in Table 2.1 may be divided into three families 

exk + <5A. (k ~ 2): Nurobers 1, 4, 7, 11, 

exk + <5A.x (k ~ 3): Nurobers 6, 10, 
ex2 + <5A.k (k ~ 2): Nurobers 2, 3, 5, 8, 

plus one singleton, the winged cusp: Nurober 9. Wehave already determined 
most of the data in the Tables 2.2 and 2.3 as follows: 

exk + <5A. (k ~ 2): Proposition 11,9.1, 

exk + <5A.x (k ~ 3): Proposition 11,9.2, 

ex2 + <5A.2 (i.e., k = 2): Proposition 11,9.3. 

The winged cusp: Proposition 11,9.4. 

Table 2.2. Algebraic Data for Singularities of Codimension :::::; 3. 

Normal Form BXk + ÖA(k ~ 2) (JXk + bh (k ~ 3) 

f/(h) vl(k + <A> vl(k + .ß(A.) 
RT(h) vl(k + (A.) vl(k + .ß(A) 
&J(h) .ßk+1 + .ß(A) vl(k+1 + .ß2(A_) + 0.2> 

T(h) .ßk- 1 + (A.) + IR{l} .ßk + .ß(A.) + IR{x, kBxk- 1 + bA.} 
Complement IR{x, x 2, ... , xk- 2} IR{l, x 2, ... , xk- 1} or 

to T(h) IR{l, A., x 2, ... , xk- 2} 

codim h k-2 k - 1 

Normal Form BX 2 + bA.k (k ~ 2) f:X3 + ÖA2 

f/(h) .ß2 v/(3 + (A.2> 

RT(h) .ßk + .ß(x) v/(3 + (A.Z) 

&J(h) vl(k+1 .ß4 + .ß2(A_) 

T(h) .ßk-1 + (x) .ß3 + (A.2) + IR{A., x2} 

Complement IR{l, A., •.. , A_k- 2 } IR{l, x, xA.} 

to T(h) 
codimh k-2 3 
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Table 2.3. Solution of the Recognition Problem for Singularities of 
Codimension :$;; 3. 

Normal Form Defining Conditions* Nondegeneracy Conditionst 

d + {j),(k;;:::: 2) 
if'-lg 

e = sgn(~! ). (j = sgn(g;~) g =···=--=0 
XX a:>(<-1 

exk + ()A.x (k :2::: 3) 
ak-lg 

gxx = ... = a:>(<-1 = gl = 0 (g) e = sgn oxk , (j = sgn(gx;t) 

e(x2 + (j).,2) gl = 0 e = sgn(gxx), (j = sgn(det d2g) 
ex2 + (j), 3 igl = det(d2g) = 0 choose e = sgn(gxx), (j = sgn(g ••• ) 

v =F 0 such that gvv = 0 
ex2 + (j).,4 igl = det(d2g) = g ••• = 0 e = sgn(gxx), (j = sgn(q) 

choose v =F 0 such that g •• = 0 where q = qvvvv. gxx - 3g~vx 
ex3 + ()),2 gl = gxx = gxA = 0 e = sgn(gxxx), (j = sgn(gu) 

* Defining conditions always include g = 9x = 0. 

t We make the convention that expressions like ö = sgn(g.) mean that g. =F 0 and ö is equal to the 
sign of g,.. 

t The subscript v indicates a directional derivative in the direction v. (See text.) 

In other words, the only missing information concerns the third family, 
ex2 + ()).k, when k ;;:::= 3. The algebraic data in Table 2.2 for the third family, 
k ;;:::= 3, is easily computed; we leave this as an exercise for the reader. 

Let us explain the notation gvvv that occurs in Table 2.3 in connection 
with the third family when k = 3 or 4. In both these cases det d2g = 0 is a 
defining condition for the singularity. In other words, zero is an eigenvalue of 
the Hessian of g. By ofov we mean a directional derivative along the eigen
vector associated with the eigenvalue zero. For example, if 

g(x, ).) = a(x + b).)2 + p, 

where a =1 0 and p E .A3, we may take the directional derivative a;av tobe 

a a a 
av =bOX- aA.· 

There is an interesting observation concerning the normal forms ex2 + ()A_k 

when k is large; namely, there are many intermediate-arder terms. Specifically, 
f/ = .A2 and f!IJ = ,Ak + 1, and all terms in between contribute to the solution 
of the recognition problem. Thus solving the recognition problern for 
ex2 + ()).k for all k ;;:::= 3 would be a difficult task. (Unlike for the other two 
families, in Table 2.3 the recognition problern is solved for ex2 + ()).k only 
when k = 2, 3, and 4.) 

In the following Iemma we describe the generat method for solving the 
recognition problern for the third family. 
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Lemma 2.2. Let g be a germ in Gx,A satisfying g = gx = g;. = 0 and 

e = sgn{g xx) =F 0. 

199 

Then there exist polynomial expressions Q2 , Q3 , Q4 , ••• in the derivatives of g 
evaluated at the origin, where Qk depends only on /g, such that Q2 = · · · = 
Qk- 1 = 0 and ~ = sgn(Qk) =F 0 if and only if g is strongly equivalent to 
ex2 + ~).k. 

In other words, the recognition problern for ex2 + ~).k is solved by 

g = gx = g;. = Q2 = · · · = Qk-1 = 0, 

Remarks 2.3. (a) One consequence of this lemma bears on the proof of 
Theorem 2.1. Suppose that g = gx = g;. = 0, gxx =F 0, and codim g = k. 
Then g is strongly equivalent to ex2 + ~;.k+ 1• To see this, apply Lemma 2.2(b) 
inductively. If Q2 =F 0 then g is equivalent to ex2 + ~).2 which has codimen
sion one (since there is one defining condition beyond g = gx = 0). If Q2 = 0 
and Q3 =F 0, then g is equivalent to ex2 + ~).3 , which has codimension two, 
etc. 

(b) In Proposition 11,9.3 we showed that 

We claim that 

The explicit calculations verifying this claim are left as an exercise. 
(c) Suppose that g = a(x + bl.)2 + p where a =F 0 and p e .A3• As noted 

above, we may take iJjiJv tobe b iJjiJx - iJjiJA.. Thus, in general, all third-order 
derivatives of g contribute to Q3 = gvvv· 

PROOF OF LEMMA 2.2. Let Q2 = e det d2g. Recall from Proposition 11,9.3 that 
if Q2 =F 0 then g is strongly equivalent to ex2 + ~).2 where ~ = sgn Q2 • If 
Q2 = 0, then 

g = a(x + bl.)2 (mod .A3). 

Letting X(x, I.)= x + bl. and S(x, I.)= iar 1, we may change coordinates 
to deduce that g is strongly equivalent to 

(2.1) 
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We now assume inductively that Q2 , ••• , Qk have been defined with the 
property that if Q2 = · · · = Qk = 0, then g is strongly equivalent to 

gk(x, A.) = exz + rk+ 1• 

where rk+ 1 E v~tk+ 1. We write rk+ 1 in the form 

rk+ 1 = Ak(x,A.)x + Qk+ 1A.k + sk+ 2 , 

(2.2) 

where Ak is a homogeneaus polynomial of degree k, Qk+ 1 is a scalar, and 
sk+ 2 Evllk+z. Now Iet 

gk+ 1 (x, A.) = gk(x - ~ Ak(x, A.), A.) 

= exz + Qk+1A_k+1 + rk+z• 

where rk+ 2 E v1fk+ 2 • If Qk+ 1 =F 0, then g is strongly equivalent to ex2 + (iA_k+ 1 

where Ci = sgn Qk+ 1 ; here we use the fact from Table 2.2 that 

v~~k+z c [!l>(exz + ()A_k+1). 

If Qk+ 1 = 0, then comparing with (2.2), we see that the induction continues. 
lt remains to remark that the exact value of Qk at each stage depends 

only on sums and products ofthe terms in the Taylor expansion of g through 
order k; i.e., Qk is a polynomial depending only on /g, as claimed. D 

PROOF OF THEOREM 2.1. We proceed by enumerating all possible combina
tions of derivatives of gwhich could vanish, consistent with the requirement 
that codimension g be three or less. This enumeration is carried out in the flow 
chart of Table 2.4. The various arrows in this figure represent the solution to 
one of the recognition problems given in Table 2.3, except for the arrows 
leading to a box" codim g ~ 4." The latter arrows represent new information 
that must be derived here. The box in the first row follows directly from 
Remark 2.3(a). The remaining boxes are obtained using the algebraic esti
mates on T(g) contained in Lemma 2.4. (In other words the arguments in 
this Iemma constitute the only "new" idea in the proof of the classification 
theorem.) 

Lemma 2.4. Let g be a germ in S x.;. with a singularity and Iet g(x, 0) = x1a(x ). 
Then thefollowing restrictions on T(g) are valid: 

(a) T(g) c (x1, A) + IR{gx, g;_}. 
(b) lf 1 = 5 and g;. = 0, then T(g) c (x 5 , xA., A-2 ) + IR{gx, g;.}. 
(c) lf l = 4 and g;_ = gx;. = 0 then T(g) c (x4 , x 2 A., A2 ) + IR{gx, g;_}. 
(d) lf l = 3 and g2 = gx2 = g;.;_ = 0 then T(g) c vl/ 3 + IR{gx, g;.}. 

Moreover, itfollows in case (a) that codim g ~ l- 2 andin cases (b), (c), and 
(d) that codim g ~ 4. 
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PR.ooF. It is an easy task to verify the statements on codimension from the 
Statement on Containments. For example, consider (a). The codimension of 
(x1, A.) is l. Since T(g) c (x1, A.) + ~{gx, g;,) it follows that 

codim T(g) ;;;:: l - 2. 

The Containment Statements are also easy to verify. Using Taylor's 
theorem, we may write 

Thus 

g(x, A.) = x1a(x) + Ä.q(x, A.). 

(a) xgx = x1a(x) + xÄ.qx(x, A.), 

(b) Aux = A.x1- 1a(x) + A.2qx(x, A.), 

(c) A.g;, = A.q(x, A.) + A. 2q;,(x, A.). 

Recall from equation (III,2.10) that 

(2.3) 

(2.4) 

Thus the containment Statementsare verified ifwe can show that g, xgx, A.ux, 
and Au;, belong to the indicated ideals. For example, it follows from (2.3) and 
(2.4) that these germs alllie in (x1, A.), thus proving (a). Using the stated 
hypotheses we may verify Statements (b), (c) and (d) in a similar fashion. 0 

EXERCISE 

2.1. Complete the classification of bifurcation problems with one state variable of 
codimension less than or equal to four. Solution: There are three new singularities of 
codimension four; BX5 + OA, BX5 + OAx, ex2 + 0..1.5• 

§3. Universal Unfoldings of the Elementary 
Bifurcations 

It is a Straightforward exercise usihg the data in Table 2.2 and the universal 
unfolding theorem (in the form of Corollary Ill,2.4) to determine universal 
unfoldings for the singularities listed in Table 2.1. We give these u~iversal 
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Table 3.1. Universal Unfoldings for Elementary Bifurcations. 

Unperturbed Bifurcation Diagrams (e = 1) 
Universal Unfolding 

(1) ex2 + bA. 

(2, 3) e(x2 + bA.2 + cx) 

(4) ex3 + bA. + cxx 

(5) ex2 + bA.3 + cx + ßA. 

(6) ex3 + bA.x + cx + ßx 2 

(7) ex4 + bA. + cxx + ßx 2 

(8) exz + bA.4 + cx + ßA. + yA.z 

(9) ex3 + bA.2 + cx + ßx + yA.x 

(10) ex4 + bA.x + cx + ßA. + yx2 

(11) ex5 + bA. + cxx + ßx2 + yx3 

b=-1 b=+l 

X 
_) 

-< 
-E 
,--
' ---
V , \ 
I I 

* Unstable solutions (gx < 0) are indicated by dotted lines. Stahle and unstable may be inter
changed if 1: = - 1. 

unfoldings in Table 3.1 along with pictures of the unperturbed bifurcation 
diagrams for F. = + 1. Note that unstable solutions in these diagrams are 
indicated by dotted lines. 

The solutions for the recognition problems for universal unfoldings of 
the elementary bifurcations are given in Table 3.2. We recall the statement of 
the recognition problern for universal unfoldings: Let h be anormal form of 
codimension k. Let g be equivalent to h and Iet G be a k-parameter unfolding 
of g. When is G a universal unfolding of g? As we showed in Chapter III, §4 
the answer to this question takes the form of determining whether the deter
minant of a certain matrix (whose entries are derivatives of G) is nonzero. 
The exact form of the determinants for normal forms (4), (6), and (9) were 
computed in Chapter III, §4. We leave the computations of the remaining 
entries in Table 3.2 as exercises. 
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Table 3.2. The Recognition Problem for Universal 
Unfoldings of Singularities with Cödimension :::;; 3. 

Normal Form Matrix 

(1) ex2 + <)..1. 

(2, 3) e(x2 + <)..1.2) G 

(4) ex3 + <)..1. 
(9;. 9;.x) 

G« G«x 

(5) ex2 + <)..1.3 

(~· 
9xx •.. ) 
G«x Gd 

Gp G(Jx Gp;. 

(6) ex3 + <)..lx 

(~. 
0 9x;. ·-) 9;.x 9u 9Axx 
G«X Gd G«xx 

Gp G(Jx Gp;. G(Jxx 

(7) ex4 + <>..1. c 9Ax ·~) G« G«x G«xx 

Gp Gpx Gpxx 

(8) ex2 + <)..1.4 0 0 0 9xx 9x;. 9u 
0 9xx 9xl 9xxx 9xxl 9xu 
0 0 0 0 9xx 2gxl 

G« G«x G«A G«xx G«XÄ G«AA 
Gp Gpx Gpl G(Jxx GpxA Gpu 

G7 Gyx Gyl Gyxx Gyxl Gyu 

(9) ex3 + <)..1.2 

(~. 
0 9xl ·-) 9Ax 9u 9Axx 
G«X Gd G«XX 

Gp Gpx Gpl G(Jxx 

(10) ex4 + <>A.x 0 9xl 0 

9Ax 9u 9Axx 
G« Gu G«A G«= 
Gp Gpx Gpl Gpxx 

GY Gyx Gyl Gy:u: 

(11) exs + <)..1. 

c 
9Ax 9Axx ·-) G« Gu G«XX G«XXX 

Gp Gpx Gpxx Gpxxx 

Gy Grx Gyxx G7XXX 
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§4. Transition Varieties and Persistent Diagrams 

In this section we present the catalog of pictures associated with the universal 
unfoldings of the elementary bifurcation problems. Specifically, we include 
the following items: 

(i) Table 4.1: Equations for the bifurcation, hysteresis, and double Iimit 
points, 

(ii) Figures 4.1-4.3: Graphs of the transition varieties and graphs of the 
persistent perturbed bifurcation diagrams. 

The formulas in Table 4.1 should serve as a guide for readers wishing to 
reproduce the pictures. We do not present the supporting calculations. (Some 
of the examples are worked out in detail in Chapter III.) In one case (viz.,!!) 
for normal form (11)) we do not give a formula, since we did not determine!!) 
by explicitly solving the equations. However, it is not hard to determine the 
persistent diagrams associated with this normal form. See Golubitsky and 

Transition variety I; Persistent perturbations of (0) 

2. Simple bifurcation: x2 - .A2 + IX = 0 I 

(1) (2) _....:....:....:....: _ __:....:.__IX 

3. Isola: x2 + ).2 + IX =il 
(1) (2) __ __:. ___ __:.__:. ___ IX 

j4. Hysteresis: x3 - ). + lXX = 0 

(1) (2) 

(O)y 
, ' 

~ 
(1) ,~-" 

(2JJ( 
~ ' 

(0) 

(1) 0 
(2) no solutions 

(0) _) 

r 
(1) '-, 

_./ 

(2)/ 

Figure 4.1. Persistent perturbations in codimension one. 



T
ab

le
 4

.1
. 

E
qu

at
io

ns
 f

or
 t

he
 T

ra
ns

it
io

n 
V

ar
ie

ty
 f

or
 S

in
gu

la
ri

ti
es

 o
f 

C
od

im
en

si
on

s 
T

w
o 

an
d 

T
hr

ee
. 

N
or

m
al

 F
o

rm
 

(5
) 

x2
 -

A. 3
 +

 cx
 +

 ßA
. 

(6
) 

x3
 -

A.
x 

+
 cx

 +
 ß

x2
 

(7
) 

x
4 

-
A. 

+
 cx

x 
+

 ß
x2

 

(8
)+

 
xz

 +
 A_

4 
+

 cx
 +

 ßA
. +

 yA
.z 

(8
)-

xz
 _

 A
_4 

+
 cx

 +
 ßA

. +
 yA

.2 

(9
) 

x3
 +

 A.
 2 

+
 cx

 +
 ß

x 
+

 yA
.x 

(1
0)

 
x4

 -
A.

x 
+

 cx
 +

 ßA
. +

 y
x2

 

(1
1)

 
x5

 -
A. 

+
 cx

x 
+

 ß
x2

 +
 y

x3
 

@
) (~r

 = 
(~r

 
cx

=
O

 

0 (
X

=
 

3A
.4 

+
 yA

.2,
 ß

 =
 

-4
A

.3
 -

2y
A.

 

(
X

=
 

-3
A

.4
 +

 yA
.2,

 ß
 =

 
4A

.3
-

2y
A.

 
y2

 
y2

 
cx 

=
 

2x
3 

-
-

x2
 ß

 =
 

-
3x

2 
+

 -
x 

4 
, 

2 

(X
 
+

 Y
ß2

 
+

 ß
4 

=
 

0 

0 

.Y
t' 0 (

X
=

 
ß3

/2
7 

(ir
 = 

-(
~r
 

0 0 cx
yz

 +
 ß

z 
=

 
0,

 cx
 :;

:; 
0 

y2
 

8 
(
X

+
-
+

-
y3

ß2
 =

 
0 

12
 

27
 

cx 
=

 
15

x4
 
+

 3
yx

2 ,
 ß

 =
 

-1
0

x
3 

-
3y

x 

fifi
 0 0 cx 
=

 
O

,ß
:;:

; 
0 

0 0 0 4c
x 

=
 

y2
, y

:::
;; 

0 

* 

N
 ~
 

~ (
j ~
 "' ~
 

!:?.
 

ö"
 

::s er
 

'<
 

(
j 

0 0
. §"
 "' ::s "' ö"
 

::
l 



§4. Transition Varieties and Persistent Diagrams 

Transition variety I: Persistent perturbations of (0) 

5. Asymmetrie cusp: x2 - A.3 +IX+ ßA. = 0 I 

1!8 (0) ~ 
' 

-<2) IX 

(1) Lp (1) 
,.; 
\ -... 

I 

~ ~""""""\ (2) ,_ ... I ...... 
I 

6. Pitchfork: x 3 - A.x + IX + ßx2 = 0 I 

(0) -E 
r-

(1) -c_-
Jt' IX 

(2) Lp r-- ----
1!8 (2) I 

/ 

' ...___ 

(3) ~ 
'---

(4) 
~ .... ---__...-" / 

'--

17. Quartic fold: x4 - A. + lXX + ßx2 = 0 

(0) 

Jt' 

~(~ (3)/ 
(2) 

Double Iimit variety ~ 

Hysteresis variety Jt' (3) 

Bifurcation variety 91 

r 
l ----,--. ' ...... __ _ 

r-
' \ 

r-"' 
' ----
' -... 
,/ 
' 

.... __ _ 
Figure 4.2. Persistent perturbations in codimension two. 
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Transition variety I: Persistent perturbations of {0) 

cx 

~P(tl 
y 

{2) 

(3) 

(0) 

(1) 

(2) 

no solutions 

'>--.! , ' 

(3) ~or 

19. The winged cusp: x 3 + A-2 + cx + ßA. + yxA. = 0 I 
(0) __/\..._ 

y<O 

(2) 

(3) 
~ .... __ 

----------Figure 4.3. Persistentperturbations in codimensionthree. 



.JF (1) 
y=O ~ ~·J 

91/(3)~ 

(4) 
i'>O 

Iw: x4- A.x + a. + ßÄ. + yx2- o I 

(JI 

1' >O=v (1) 

ß 

La. 

(4) 

(11) 

(1) 

(4) ~ ___ _/ 

(6) 

(7) _/? 
'-------

(0) ~-
/ __ ,.". 

~ 
(1) ---..... 

, _____ 
, 

.-'' 
,, 

(2) ~-... .... _ ... -

(3) ~ 
c-----

(4) -----, 
--*'' 

(6) ___.---:-:::: < _______ ... 

~ 
(7) _:.:.:;. ----------------

Figure 4.3 (continued) 
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[11: x 5 _ A + ax + ßx2 + 3 I )'X = 0 

y>O\ (1) f:if V (2) 

o Imension IV. Classification by C d" 

(8) ----....., 

(9) ~ c--~ --------

(10) 

(11) 

(12) 

___ ............. ' 

/ 
---~- ........ 

........ 

c-___;;; ,,------
'---.._ 

' _______ ................. 

(0) _;-----

(1)~ 

(2) ~ 
_/ 

(3) 

Figure4 3 ( · continued) 
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y=O "'\'Y:If 
(2) y 

(1) :lf 

y<O ~~(4) 
(7)~(6) 

(2) 

Double Iimit variety ~ 

Hysteresis variety :lf 

Bifurcation variety f!4 

(4) 

(5) 

(6) 

(7) 

Figure 4.3 (continued) 
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Schaeffer [1979a], p. 52. From this information, we may piece together a 
description of ~-

In Figure 4.1, foreachnormal form, we assume that s = 1 and, with one 
exception, make one choice of sign for 6. In every case except the normal form 
(8), sx2 + (JA.4 , diagrams for the other choice of (J may be obtained by con
sidering orientation reversing changes of coordinate; i.e., x-+ - x and/or 
A.-+ - A.. For (8), we consider both (J = + 1 and (J = - 1. Similarly, the 
case s = - 1 can be derived by multiplying the equations by S(x, A.) = - 1, 
although this interchanges stable and unstable solution branches. In this way 
we avoid needless duplication of essentially identical figures. For the reader's 
convenience we show the unperturbed bifurcation diagram under the 
Iabel "0." 

BIBLIOGRAPHICAL COMMENTS 

Rene Thom [1972] was the first to emphasize the importance of codimension 
in classifying singularities. In particular, in the context of potential functions, 
the notorious list of seven elementary catastrophes arises from consideration 
of codimension -there are precisely seven catastrophes of codimension four 
or less. Cf. Mather [1969b] and Zeeman and Trotman [1975]. (This list 
has been extended to higher codimension, primarily by the Russian 
school. See Arnold [1976].) Thom selected the cut off of codimension four 
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because he wanted points in unfolding space to be identified with points in 
physical space-time. 

The classification of singularities changes if distinctions are made between 
various unfolding parameters. (Such distinctions first arose from identifying 
unfolding parameters with physical space-time and treating time differently 
from spatial coordinates.) Singularities of potential functions with a 
distinguished parameter are classified by Wassermann [1975]. Our clas
sification ofbifurcation pro blems is similar in that we consider a distinguished 
parameter but different in that we do not assume the existence of a potential 
function. Allofthis work derives from Mather's [1971] fundamental paper 
which considers mappings that have no distinguished parameter and that 
are not derivable from a potential function. 



CHAPTER V 

An Example of Moduli 

§0. Introduction 

In this chapter we analyze in detail bifurcation problems of the form 

g(x, ..1.) = Ax3 + Bh2 + CA. 2x + DA. 3 + p(x, ..1.), (0.1) 

where A, B, C, D E IR and p E .i/4 . Such problems provide the first occur
rence (i.e., lowest codimension) of moduli, and that is the reason we study 
(0.1). However, problems of the form (0.1) have codimension 5 or greater, so 
their analysis, especially exploration of parameter space, is not a simple 
matter. (Remark: In different mathematical contexts (e.g., bifurcation prob
lems with symmetry) moduli occur in much lower codimension. For 
example, we analyze cases with codimension 3 in Chapter VI and in Case 
Study 3; in Valurne II we shall encounter an example with codimension one 
where the one unfolding parameter is a modal parameter !) 

In §1 ofthis chapter we motivate the occurrence ofmoduli in (0.1). Sections 
2-4 contain the main analysis of (0.1); these sections consider in sequence 
the recognition problern for (0.1), universal unfolding of (0.1), and persistent 
perturbations of (0.1). As part of §3 we give a careful definition of moduli. 
In §5 we explore the moduli space associated to (0.1) more fully. In §6, we 
summarize the lessons we wish to draw from this chapter. Finally in §7, we 
briefly consider a mathematical model from the chemical engineering 
Iiterature which Ieads to a singularity of the form (0.1). (In other words, in 
spite of the high codimension, moduli occur in real applications; this point 
is made more emphatically by Case Studies 2 and 3.) 
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§1. The Problem of Moduli: Smooth Versus 
Topological Equivalence 

We recall Definition IV,1.1 which states, in essence, that two germs are 
topologically equivalent if there is a continuous change of coordinates 
mapping the zero set of one germ onto the zero set of the other. In Chapter 
IV, §1(b) we observed that moduli are associated with perturbations of a 
germ g that are topologically equivalent to g but not C00 -equivalent. In this 
connection Iet us consider the one-parameter family of bifurcation problems 

gm(x, A.) = x(x + A.)(x - m.A.), (1.1) 

where m e ~; for simplicity we suppose m > 0. (Note that (1.1) is a special 
case of (0.1).) The zero set of (1.1) consists of three straight lines which 
intersect at the origin; viz. 

L 1(m): {x = 0}, 

L 2(m): {x = -A.}, 

L 3(m): {x = m.A.}. 

(1.2) 

As we have indicated, this zero set depends on m, but from a qualitative 
point of view the dependence on m seems very mild indeed. More to the 
point, in the first Iemma below we show that all the germs gm in (1.1) for 
m > 0 are topologically equivalent. However, in the subsequent Iemma we 
show that these bifurcation problems are not C 00-equivalent. In other 
words, the parameter m in (1.1) isamodal parameter. 

Lemma 1.1. For any positive numbers m and n, the bifunction problems gm 
and gn are topologically equivalent. 

PRooF. Since equivalence isatransitive relationship, it suflices to show that 
for any m > 0, gm is topologically equivalent to g 1 • The following transfor
mation maps the zero set of gm onto that of g1 : 

{
1 
-X 

X(x, A.) = : 
if x.A. ~ 0, 

if x.A. ~ 0, 

and A(A.) = A.. D 

Remark. Lemma 1.1 may be extended as follows: Let {L1, ... , Lk} and 
{M1, ••• , Mk} be two sets of k-distinct lines in ~2 containing the origin. 
Then there exists a continuous, invertible change of coordinates <1>: ~2 ~ ~2 

such that <I>(Li) =Mi, i = 1, ... , k. (Such a theorem may be proved by 
considering polar coordinates and interpolating on the unit circle.) In 
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Lemma 1.1 we took k to be three, but we also demanded that <I> = (X, A) 
have the specialform where A does not depend on x. 

Lemma 1.2. Let m and n be positive numbers. The bifurcation problems, 9m 
and gn, oftheform (1.1) are C 00 -equivalent if and only ifm = n. 

PROOF. If two such germs are C00 -equivalent, then there is a diffeomor
phism <l>(x, A.) = (X(x, A.), A(A.)) which maps the zero set of 9m onto that of 
9n. Let A = (d<l>)o,o be the differential of this map at the origin. We claim 
that A also maps one zero set onto the other. To see this, choose vectors 
V; E L;(m), i = 1, 2, 3. If t E IR, then for each i there is some index j such that 

<l>(tv;) E Lin). 

On differentiating (1.3) with respect tot at t = 0 we find 

Av; E Lin), 

which proves the claim. 

(1.3) 

(1.4) 

In applying (1.4) it will be useful to have specific vectors in L;(m); thus 
we define 

Next observe that A has an upper triangular form 

(1.5) 

because A(A.) does not depend on x. Moreover, the fact that equivalences are 
orientation preserving means that a, c > 0. 

At this juncture we split the proof into three cases according to whether 
Av1 belongs to L 1 (n), L 2(n), or L3(n). In the text we consider only the first 
case; in Exercise l.1 we ask the reader to analyze the other two cases. Given 
that Av1 E L 1 (n), we deduce that b = 0 in (1.5). Now Iet us ask whether 
Av2 belongs to L 2(n) or L 3(n). (Since Ais invertible, Av2 E L 1 (n) is impossible.) 
If Av2 E Lin), then it follows that n = - ajc; since a and c are positive, this 
contradicts the hypothesis that n > 0. Thus Av2 E Lz(n), which in turn 
implies that a = c in (1.5); in other words, Ais a multiple of the identity. To 
conclude. we use the fact that Av3 E Lin ). Since A isamultiple of the identity, 
we see that v3 E L3(n). However, v3 E L3(n) if and only if m = n. D 

Remarks. (1) The C00 -hypothesis in Lemma 1.2 is much stronger than 
needed. Indeed, the proof shows that it is impossible to find a map that is 
even once differentiable which sends the zero set of 9m to that of 9n unless 
m = n. 

(2) The proof of Lemma 1.2 is related to the following geometric fact 
concerning linear maps: Let {L1, ... , Lk} and {M1, ... , Mk} be two sets of k 
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distinct lines in IR 2 • Then there exists a linear mapping A: IR 2 --+ IR2 satisfy
ing A(La = M;, i = 1, ... , k if k $; 3 but not, in general, if k ;:::: 4. See 
Exercises 1.2 and 1.3. In Lemma 1.2 the linear map A must conjugate Jour 
lines. Besides the three obvious lines associated with gm = 0 and gn = 0, A 
must also map the A.-axis into itself. This follows from our basic assumption 
that A(A.) is independent of x. 

(3) There is a well-known geometric invariant of four lines in the plane, 
called the cross ratio, with the following property: There exists a linear map 
sending one set of four lines to another such set precisely when the 
associated cross ratios are equal. In the context of (1.1), the number m is the 
cross ratio. Thus, in this case, we can give the modal parameter a geometric 
interpretation. A discussion of the cross ratio may be found in Ahlfors 
[1976], p. 78. See Exercise 1.3. 

EXERCISES 

1.1. Complete the proof of Lemma 1.2 by considering the possibilities Av 1 E Lin), 
j = 2, 3. 

1.2. Let {L1, L 2 , L3 }, {M1, M 2 , M3 } be two sets of three distinct lines in the plane. 
Show that there exists an invertible linear map A: ~2 -> ~2 satisfying 
A(L) = Mi,j = 1, 2, 3. Hint: Choose vectors vi E Li, wiE Mi (j = 1, 2, 3) such 
that v3 = v1 + v2 , w 3 = w 1 + w 2 . Define A(v) = wi,j = 1, 2. 

1.3. Let !I! = {L1, L 2 , L 3 , L4 } be an ordered set of four distinct lines in ~2 . Let Ii be 
the slope of Li. Define the cross ratio of !I! to be 

CR(!I!) = (I, - lz)(l3 - l4). 
(I, - 13)(12 - 14) 

(1.6) 

(a) Let A: ~2 -> ~2 be an invertible linear mapping. Define A(!l!) to be the set 
{A(L1), A(L2 ), A(L3 ), A(L4 )}. Verify that 

CR(A(!I!)) = CR(!I!). (1.7) 

(b) Use (1.7) to conclude that, in general, there does not exist a linear 
transformation mapping one set of four !in es in the plane onto another. 

§2. The Recognition Problem for 
Nondegenerate Cubics 

Proposition 2.2 below is the main result of §2. This proposition draws on 
the following concept. 

Definition 2.1. Let cp(x, A.) = Ax3 + BA.x2 + CA. 2x + DA. 3 be a homogeneaus 
cubic. We call cp nondegenerate if the polynomial 

cp(x, 1) = Ax3 + Bx2 + Cx + D (2.1) 

has three distinct roots (not necessarily real). 
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If (2.1) has three roots, then, in particular, A # 0. Assuming A # 0, <jJ is 
nondegenerate unless (2.1) has a multiple root; i.e., unless for some x 

o</J 
</J(x, 1) = ox (x, 1) = 0. (2.2) 

Let </J(x, A.) be a homogeneaus cubic such that A # 0. To better under
stand nondegeneracy, we make a preliminary change of coordinate to 
eliminate the A.2x term in </J(x, A.) and to reduce the coefficient of x3 to ± 1. 
Specifically Iet 

1 ( B 
ljl(x, A.) = IAT<P x - 3A (2.3) 

then 
(2.4) 

where e = sgn A, 

(2.5) 

Clearly ljJ is nondegenerate if and only if </J is nondegenerate. Applying (2.2) 
to ljJ we conclude that ljJ is nondegenerate if and only if 

c3 + d2 # 0. (2.6) 

Note that (2.3) defines an equivalence transformation. Thus for any 
bifurcation problern g of the form (0.1) with A # 0, we may apply (2.3) to 
simplify the calculations. After such a transformation the cubic terms in the 
Taylor series of g will be given by (2.4); in particular, in the following 
theorem a, c, and d are computed from the coefficients of /g according to 

(2.5). 

Proposition 2.2. Let g be a bifurcation problern of the form (0.1) such that / g 
is nondegenerate. 

(i) If d = 0, then g is equivalent to 

h(x, A.) = a(x3 + .:5.Ah), 

where (j = sgn c. 
(ii) If d # 0, then g is equivalent to 

hm(x, A) = a(x3 - 3m.A2x + 2()A.3 ), 

where (j = sgn d and 
c 

m =- d213 · 

Remarks. (i) By (2.6), m # 1. 

(2.7) 

(2.8) 

(2.9) 

(ii) Formula (2.7) corresponds to the Iimit m ~ ± oo in (2.8); that is, 
a~o. 
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Proposition 2.3. No two distinct bifurcation problems of the form (2.7) or (2.8) 
are equivalent. In other words: 

(i) (2.7) is never equivalent to (2.8). 
(ii) Two bifurcation problems of the form (2.7) are equivalent if and only if 

01 = 02. 
(iii) Two bifurcation problems of the form (2.8) are equivalent if and only if 

m1 = m2 and ol = 02. 

PRooF OF PROPOSITION 2.2. We have already dealt with the lower-order 
terms by imposing the form (0.1) on g. Concerning the higher-order terms, 
below we shall prove the following: if 4J(x, A.) is a nondegenerate homo
geneous cubic then 

.ß4 = &(4J). (2.10) 

Let us complete the proof given (2.10). Since g = 4J + p where p E .ß\ it 
follows from (2.10) that g is equivalent to 4J. To handle 4J, the intermediate 
order terms of g, we first apply (2.3) to 4J, leading to (2.4). If d = 0, we 
reduce (2.4) to (2.7) by taking A(A.) = lci1'2 A.; if d =1= 0, we reduce (2.4) to 
(2.8) by taking A(A.) = I d 1113 A.. 

lt remains to prove (2.10). Let us show that 

(2.11) 

Tobegin we apply (2.3) to transform 4J to t/J. Now .ß · RT(t/1) is generated 
by the five functions 

xt/J, A.t/1, X2t/lx, A.xt/Jx, A2t/lx, 

each of which is a homogeneaus quartic. These generators can be written as 
linear combinations of the five generators x4, A.x3, A. 2 x2, A. 3 x, A. 4 of .ß4 as 
follows: 

x4 x3A. x2A_2 xA.3 A_4 

xt/J 1 0 3c 2d 0 
A.t/1 0 1 0 3c 2d 
ix2t/Jx 1 0 c 0 0 
iA.xt/Jx 0 1 0 c 0 
iA.2t/Jx 0 0 1 0 c 

The determinant of this 5 x 5 matrix is 4(c3 + d2 ), which is nonzero by 
(2.6). Thus (2.11) follows from Lemma 11,4.2. 

Recall that 

,/(t/1) = .ß · RT(t/1) + IR{A.t/lx}. 

From (2.11) we have 

ltr ,/(t/1) = .ß4 = &(t/1) 
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and hence 
:?J(</J) = ,_ß4 

which proves (2.10). 0 

The proof of Proposition 2.3 is based on examining when two cubic 
polynomials are equivalent modulo higher-order terms. In this case the 
set of higher-order terms, &, is .A4 , and only linear terms in the equivalences 
need be considered. We ask the reader to supply the details of the proof in 
Exercise 2.1. 

EXERCISE 

2.1. Complete the proof of Proposition 2.3. 

§3. Universal Unfolding; Relation to Moduli 

For brevity we only consider the normal form (2.8). In Exercise 3.1 we ask 
the reader to derive the universal unfolding of (2.7). 

Proposition 3.1. A universal unfolding for (2.8) when m i= 1 is given by 

H(x, Je, ll1, ll2, a3, a4. n) 
= e{(x3 - 3nl2 x + 26..1.3 ) + a1 + a2A + a3 x + a 4 h}. 

(3.1) 

In particular, h has codimension 5. 

Remarks. (i) We use a different notation for the fifth unfolding parameter in 
(3.1) because, as we show below, n isamodal parameter. 

(ii) Since (3.1) is to be a small perturbation of (2.8), we suppose that 
ai ~ 0 and n ~ m. 

PROOF OF PROPOSITION 3.1. Since .A4 c R T(h ), it follows that 

T(h) = .A4 EB ~{x3 - 3ml 2x + 2()Jc3 , x 3 - ml2 x, 

x 2Jc- ml3 , x 2 - ml2 , mA.x- 6Jc2 }. 

It is easily seen that {xl2 , h, x, Je, 1} spans a complementary subspace to 
T(h) in lffx,:<. Thus codim h = 5 and (3.1) provides a universal unfolding of h. 

D 

We now discuss moduli more carefully. Let G(x, Je, a), where a E ~k, be a 
universal unfolding of a germgoffinite codimension. (In contrast to (3.1), 
here we include all unfolding parameters in the vector a, even possible modal 
parameters.) For many a E ~k different from zero, there will be points (x, A.) 
where G(·, ·, a) has a singularity with positive codimension; indeed, this 
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occurs precisely when rx belongs to the transition set L introduced in Definition 
III,5.1. In our examples before the present chapter, all singularities for rx =F 0 
have had lower codimension than the fundamental singularity at rx = 0 
that is being unfolded. In this connection the winged cusp of Chapter III, §8 
is a good example to consider. Moduli are associated with the breakdown of 
such behavior, i.e., there are singularities for rx =F 0 of the same codimension 
as for cx = 0. This idea is the basis of the following definition. 

Definition 3.2. Let G(x, A., cx) be a universal unfolding of g. The codimension 
constant variety C(f is given by the formula 

C(f = {cx E !Rk: 3(x0 , A.0 ) near (0, 0) suchthat 
codim G(x + x0 , A. + A.0 , cx) = codim g}. 

Remarks. (i) In this definition G(x + x0 , A. + A.0 , cx) denotes the germ 

(x, A.)~ G(x + x 0 , A. + A.0 , cx), 

where (x, A.) is close to (0, 0). This awkward notation results from our con
vention that germs are defined on neighborhoods of the origin rather than 
on neighborhoods of a more general base point. Basically in this definition 
we want to restriet G(·, ·, cx) to a small neighborhood of a possible singularity 
at (x0 , A.0 ). 

(ii) Of course C(f is contained in L, the transition variety. 

In the following proposition we apply this definition to the universal 
unfolding (3.1). (Exercise 3.2 contains a simpler, although highly academic, 
illustration ofhow to work with Definition 3.2.) In the proposition we return 
to the notational convention of letting cx = (cx 1, cx2 , rx3 , cx4 ) refer only to 
nonmodal parameters. 

Proposition 3.3. For the universal unfolding (3.1) 

C(f = {(cx 1, cx 2 , cx 3 , cx4 , n) E IR 5 : cxi = 0, i = 1, 2, 3, 4}. 

PROOF. It is easily seen that if cx = 0 then (3.1) has a singularity of 
codimension 5 at the origin. Indeed, if rx = 0 then (3.1) simply reproduces 
the normal form (2.8) with a different value of m. In other words, points (cx, n) 
where rx = 0 belang to C(f. The proofthat C(f contains only pointsoftbis form is 
more involved. This proof is based on the recognition problems whose 
solutions were summarized in Table IV,2.3 while proving the classification 
theorem. 

Suppose that (x0 , A.0 ) is a singular point of p(x, A.) = H(x, A., cx, n). Then 
p = Px = 0 at (x0 , A.0 ). Observe that PxxxCx0 , A.0 ) =F 0. If p;.(x0 , A.0 ) =F 0, then 
codim p ~ 1 since p is equivalent to either ±x2 ± A. or ±x3 ± )" near 
(x0 , A.0 ). So we assume that p;.{x0 , A.0 ) = 0. 

Now suppose that Pxx(x0 , A.0 ) =F 0. If det d2p =F 0 at (x0 , A.0 ) then p is 
equivalent to ± x 2 ± A. 2 and codim p = 1. Thus, we assume that 
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det d2p = 0 at (x0 , A.0 ). The following trick will be of great help in these 
calculations. Make the change of coordinates y = x - x0 , Jl. = A. - A.0 . It 
follows that p = Py = p11 = det d2p = 0 at (0, 0) and Pyy(O, 0)-:/: 0. This 
implies that the quadratic terms in p(y, Jl.) have the form l(y + qA.)2 • Letting 
z = y + qA. we see that 

p(z, Jl.) = z3 + rz2 Jl. + SZJ1. 2 + tjl. 3 + lz2 

with I-:/: 0. Note that the cubic terms in p(x, Jl.) arestill nondegenerate as we 
have only made linear changes of coordinates in going from (x, A.) to (z, Jl.). 
We now use the solution to the recognition problems for ±x2 ± A.3 and 
±x2 ± A.4 given in Table IV,2.3. In particular, if t-:/: 0, then p is equivalent 
to ± x 2 ± A. 3 and has codimension 2. If t = 0, then s -:/: 0, since the cubic 
terms in p are nondegenerate; in this case it may be shown that p is equivalent 
to ±(x2 - A.4 ) and p has codimension 3. Thus all the singularities which 
occur when Px:ix0 , A.0 ) -:/: 0 have codimension ~ 3. 

Finally, we consider the case when Pxx(x0 , A.0 ) = 0. In fact, we have now 
assumed that p = Px = P;. = Pxx = 0 at (x0 , A.0 ). If Px;.(x0 , A.0 ) -:/: 0, then p is 
the pitchfork and has codimension 2. If Px;.(x0 , A.0 ) = 0 and Pu(x0 , A.0 ) -:/: 0, 
then p is equivalent to the winged cusp and has codimension 3. If p = Px = 

P;. = Pxx = Px = Pu = 0 at (x0 , A.0 ) then (x0 , A.0 ) = (0, 0) and p(x, A.) = 
hix, A.) which is the singularity of codimension 5 considered at the be
ginning of this discussion. Thus C{f is the n-axis as claimed. 0 

In most of the examples in this book the codimension constant variety is 
a smooth submanifold of IRk; i.e., the unfolding parameters may be chosen 
such that for some l < k, 

C{f = {a E !Rk: cxi = 0, i = 1, ... , l}. (3.2) 

If (3.2) obtains we shall say that the singularity g has modality k - l, and 
we shall refer to a1+ 1, ••• , ak as either moduli or modal parameters. If C{f is 
not a manifold (so that no formula such as (3.2) exists), we must interpret 
these concents using ideas from algebraic geometry. See Exercise 5.2 for an 
example where C{f is not a manifold. 

EXERCISES 

3.1. Find the universal unfolding of(2.7), h(x, A.) = e(x3 + oA.2x). 

3.2. Let 

F(x, A., IX) = X3 - Ax + IX1 + IX2 X + IX3 X 2 , 

which is a versal unfolding ofthe pitchfork x3 - A.x. Note that F depends on three 
parameters but the pitchfork only has codimension two. In analogy with Definition 
3.2, Iet 

't'= {IX E IR3 : 3(x0 , A.0) near (0, 0) suchthat codim F(x + x0 , A. + A.0 , IX)= 2}. 
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(This is only an analogy because in Definition 3.2 we have required that G be a 
universal unfolding; i.e., that G contain only the minimum number of unfolding 
parameters.) 

Show that 
C6' = {1XE ~3 : IX1 = IX3 = 0}. 

(Remark: In this simple example, the remaining parameter, cx 2 , is not a modal 
parameter because the various bifurcation problems F(·, ·, IX) obtained by varying 
IX2 are all equivalent.) 

§4. Persistent Perturbed Diagrams 

In this section we tabulate the persistent bifurcation diagrams that occur in 
(3.1), the universal unfolding of (2.8). The first, rather obvious, point to 
make isthat the bifurcation diagram of (2.8) consists of one or three straight 
lines according as m < 1 or m > 1, respectively. A fortiori, the perturbed 
bifurcations are different for m < 1 and m > 1. The two cases are illustrated 
for J > 0 in Figures 4.1 and 4.2, respectively. lt is far less obvious that the 
perturbed diagrams for m < 1 depend on whether m < 0 or 0 < m < 1. 
Figure 4.1 covers both cases-diagrams common to these cases are shown 
at the top of the figure, above those which are different for the two cases. 
(Although we have illustrated only the case (J = + 1, the diagrams with 
(J = -1 are simply mirror images; this may be seen from the fact that the 
substitution A.--+ -A. reduces one normal form to the other.) 

The determination of all these perturbed diagrams is a rather tedious 
calculation which we omit here. We refer to Golubitsky et al. [1981] and to 
Stewart [1981], for the case m < 1; toStewart and Woodcock [1982, 1983] 
for the case m > 1. However, it is useful to explain briefly the method of 
calculation; in particular, the use of the letters L and R in Figures 4.1 and 
4.2 is related to this method of calculation. Moreover, this construction will 
allow us to prove that the sets of perturbed bifurcation diagrams for the 
cases m < 0 and 0 < m < 1 are different. This fact is perhaps the most 
important item in this section. 

The calculation of perturbed diagrams is based on the path formulation 
discussed in Chapter III, §12. In particular, we recall Figure III, 12.1 which 
graphs the cusp surface in three-dimensional (x, A, B) space defined by 

x 3 - Bx + A = 0. (4.1) 

To relate (4.1) to (3.1), we rewrite (3.1) as 

H(x, A., rt., n) = c:{x3 + (rt. 3 + rt.4A.- 3nA.2 )x + (a 1 + rt. 2A. + 2JA.3 )}. (4.2) 

For given values of the unfolding parameters a, n, we regard (4.2) as a one
parameter family of equations (4.1) depending on the one parameter A., 
where 

(4.3) 
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<P------

0 
RR ------

0 LL 

LR---2_ 

LRRLC) ~LRRR 

LRRR~ ~LLLR 

LRRLLR~ 

LRRRRL ~ 

Jo<m<lJ 

~RLLLLR 

I -<X>< m < o I 

LRLR~ ~RL 

LRLRRR~ ~RRRL 

LRLRLR~ _s-;;;- RLLL 

Figure 4.1. Persistentperturbations of x3 - 3mxA.2 + 2A.3, m < 1. 

In Figure 4.3, we have drawn the path (4.3) when cx = 0, n = m as a dashed 
line in the A, B-plane for three cases: (i) m < 0, (ii) 0 < m < 1, and (iii) m > 1. 
(Remark: This figure indicates why the cases m < 0 and 0 < m < 1 might 
be different.) The solid line in the figure represents the singular curve in the 
projection of(4.1); i.e., the cusp 

(4.4) 

Let us show how to construct the bifurcation diagram associated to a 
path (4.2) given the sequence of intersections of the path with the left- and 
right-hand nappes of the cusp (4.4). We denote such intersections by a 
sequence of L and R's. For example, the sequence LRLR is a shorthand for 
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LR 

RL 

---LLLL :::::> O C 
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::::::> C) C:: RRRR .......-------

LLRL ::::::> ~ ~C:RLRR 

LLRR 

~~RRLR 

RRLL ~ __ S_c 
LLLLRL~ ~RLRRRR 

LLRLRR ~ 

LLRRLL ~ r--
~ c__:) c 

LRLLLL~ 

~RRLLRR 

~RRRRLR 

Figure 4.2. Persistentperturbations of x3 - 3mx.l.2 + 2.l. 3, m > 1. 



§4. Persistent Perturbed Diagrams 

' / ' ./ 
~ ." 

I I 
Ii 

m=O----~~~-- '---~~~----

O<m<l __ _ 

Figure 4.3. Paths representing the cross ratio m < 1. 
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the path shown in Figure 4.4. The bifurcation diagram associated to this 
path is also shown in the figure. The following three principles suffice for 
constructing bifurcation diagrams from the path (4.3): 

(i) For a given ..1, there are one or three points x on the bifurcation 
diagram according as (A(A.), B(A.)) is outside or inside the cusp (4.4). 

(ii) If a path crosses (4.4), two new solutions appear or disappear on the 
bifurcation diagram; in other words, Iimit points are associated with 
crossings of (4.4). 

(iii) Such Iimit points are associated with the bottom two solution branches 
for crossings of the left nappe; the top two, the right nappe. 

We now use this information to prove that persistent perturbations of hm 
for m < 0 are different from those of hm for 0 < m < 1. We begin by 
observing that B(A.) in (4.3) is a quadratic polynomial in ..1; hence B'(A.) = 0 
is satisfied at precisely one point ..10 . We claim that it is impossible to obtain 
the sequence LRLR from (4.3) when m < 0. Such a path would have to 
start in the second quadrant and end in the first quadrant (see Figure 4.3) 
and Iook like the path in Figure 4.4 in the middle. For this to happen, B' 
would have to vanish at three or more values of ..1. On the other band, if 
0 < m < 1, then the perturbation 

A(A.) = 2(..13 - tA.); B(A.) = 3(m..12 + t) 
has the intersection sequence LRLR for every t > 0. 

/ " 
/ ' 

"' I( I 
I 

L R 

Figure 4.4. A perturbed path and the associated bifurcation diagram. 
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§5. A Picture of the Moduli Family 

In this section we describe some of the complicated behavior that is 
associated with moduli. We hope that our abstractionswill help the reader 
to synthesize the information contained in a moduli family. We do not 
attempt to prove that our abstractions are valid for all moduli families, 
even those of modality one. 

In Proposition 2.2 we showed that each nondegenerate cubic is equiva
lent to precisely one of the two normal forms (2.7) and (2.8) which we repeat 
here: 

(a) h(x, A.) = e(x3 + uA.2x), 

(b) hm(x, A.) = e(x3 - 3mA.2x + 2<5A. 3), m=/=1. 
(5.1) 

We recall that e, u, and <5 represent choices of signs and m isareal parameter. 
This section is divided into five parts; we summarize the information 

contained in each part. 
(a) The moduli family consists of two circles, one for e = + 1 and one for 

e = -1. These circles are pictured in Figure 5.1. The right half of each circle 
corresponds to <5 = + 1 ; the left half to b = - 1. On each circle the right and 
left halves are joined at the points where m = + oo and m = - oo; the points 
at which m = + oo correspond to (5.1a) with u = -1, and the points at 
which m = - oo correspond to (5.la) with u = + 1. 

(b) The moduli circles are divided into disjoint arcs by distinguished 
points. For any two points on an arc between a pair of distinguished points, 
the two associated germs are topologically equivalent and exactly the same 
persistent perturbations occur in the universal unfoldings of both germs. 
We describe such behavior by saying "the universal unfolding is topologi
cally trivial". By distinguished points we mean points in the moduli family 
where topological triviality of the universal unfolding fails. 

Wehave already discussed in §§3 and 4 why the points where m is 0 or 1 
are distinguished. In subsection (b) we will show that the points where 
m = ± oo arealso distinguished. 

15 = -1 

8 = -1 
m=+oo 

m=-oo 

m=1 

m=O 

8 = +1 
m=+oo 

m=-oo 

• Indicates distinguished point. 
D Indicates connector point. 

Figure 5.1. Circles of moduli with distinguished points. 
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As to the remaining points, it follows from the analysis of Stewart [1981] 
that along the arcs in Figure 5.1 the universal unfoldings are topologically 
trivial. His method of proof is to show that the transition set ~ in the 
universal unfolding of hm in (5.1) remains constant, up to a continuous 
change of coordinates, along any interval in m not containing one of the 
distinguished points. (Cf. §6(a) for further discussion of topological 
tri viali ty.) 

(c) There are two types of distinguished points: regular distinguished 
points and connector points. In example (5.1), the distinguished points 
where m is 0 or ± oo are regular. To understand what this means, Iet us 
refer to Proposition 2.2. In that proposition we showed the following: if g1 

and g2 are germs whose linear and quadratic terms vanish and whose cubic 
terms yield identical values of e, <5, and m, then g1 and g2 are equivalent, as 
long as m =F 1. In particular, any germ that yields m = 0 is equivalent to h0 

in (5.1b) with the appropriate signs for e and <5, and similarly for m = ± oo 
and (5.1a). In general, we call a distinguished point regular if the modal 
value uniquely determines a singularity (more precisely, an equivalence class 
of singularities). 

By contrast, a connector point corresponds to a value of the modal 
parameter having at least two inequivalent singularities which share that 
value. In subsection (c) we show that the points on the moduli circles where 
m = 1 are connector points. This fact is indicated by the boxes in Figure 
5.1. 

(d) In subsection (d) we discuss the connector points where m = 1 more 
fully. Let us summarize the issues. Suppose that g is a singularity cor
responding to one of these connector points and that G is a universal 
unfolding of g. Consider the codimension constant variety of G; this will be 
contained in the set of points in the moduli family near the connector point. 
It turns out that the codimension constant variety of G consists of exactly 
two arcs of nondistinguished points. In this situation we say that these two 
arcs of nondistinguished points are connected by the singularity g. For 
example, we shall show that the two arcs 

e = +1, <> = -1, 1 < m < oo, 
and 

e = +1, <> = -1, 0 < m < 1, 

are connected by the (codimension 5) singularity 

{x3 - 3.A.ZX - 2 .. P) + .A.4 • 

Foranother singularity g, also corresponding to m = 1, a different pair of 
arcs may be connected in this way. For example, weshall show that the arcs 

e = -1, lj = +1, 1 < m < oo, 
and 

e = +1, <> = -1, 1 < m < oo, 
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m = 0 m =0 

m=O m=O 
E=-1 6=+1 

Figure 5.2. The moduli bracelet. 

are connected by the (codimension 5) singularity 

(-x2A. + _A3) + x4. 

Note that this singularity connects arcs on different circles in Figure 5.1. In 
other words, it is natural to identify the points e = + 1, (j = -1, m = 1 
and e = -1, (j = + 1, m = 1 in Figure 5.1. A similar identification holds 
for e = +1, (j = +1, m = 1 and e = -1, (j = -1, m = 1. The resulting 
topological space is indicated in Figure 5.2. We refer to this space as a 
"bracelet." 

At a connector point P, for some pairs of arcs abutting P there is a 
singularity g which connects this pair; for others, there is not. We call the 
set of all possible connections through P the connector complex of P. The 
connector complexes for the two connector points in Figure 5.2 are shown 
in Figure 5.3 below. 

(e) It seems that connectors are related to interesting global properties of 
the bifurcation diagrams associated with the moduli family. This point will 
be discussed in subsection (e). 

6 = -1 
15 = +1 

l<m<oo 

(5.9) &1 = -1 
&2 = -1 

~5:)_1 I ~I ~5:) + 1 
15=+1 ~ 15=-1 

(5.9) &1 = -1 
&2 = +1 

&~-+1 
15 = +1 

1<m<oo 

(5.9) &1 = + 1 
&2 = -1 (5.6) 1~1(5.6) 

e=+1 &=-1 
15=+1 ~ 15=-1 

(5.9) &1 = +1 
62 = +1 

\ ~':-~ 
~<1 

Figure 5.3. The connector complexes at m = 1. 
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(a) Circles in the Moduli Family 

Recall that the normal forms (5.1) were obtained from the general cubic by 
considering certain equivalence transformations. The first step was to put 
the cubic in the form (2.4) which we repeat here: 

(5.2) 

The next step was to scale d to ± 1 if d =F 0; and if d = 0 to scale 3c to ± 1. 
This led to normal form (5.1) with m = -cjd213 • This was convenient for the 
discussion in the previous sections. 

For the present section we rescale (5.2) so that c2 + d2 = 1. In particu
lar, we Iet X(x, ii) = ax and S(x, ii) = a- 3 . Then 

( 
3 3c 2 2d 3) 

S(x, ii)t/I(X(x, ii), ii) = B x + a2 ii x + a3 ii · 

We leave it to the reader to verify there is a unique positive scalar a which 
satisfies the equation 

Assuming that c2 + d2 = 1, we set c = - sin 0 and d = cos 0. This yields 
the normal form 

(a) t/J(x, ii, 0) = e(x3 - 3 sin 0 ii 2 x + 2 cos 0 ii 3 ), 

where (5.3) 
(b) m = sin 0/(cos 0) 213 • 

Note that 6 = + 1 when cos 0 > 0 which is valid for 0 in the right half 
circle, as indicated on Figure 5.1. The values 0 = n/2 and 3n/2 correspond 
to m = - oo and m = + oo in (5.la), respectively. 

(b) The Distinguished Points 

There are two standard ways in which a value of the modal parameter may 
be distinguished. In the first case, the topological type of the unperturbed 
diagrams changes at the point in question; in the second case the persistent 
perturbations undergo change, although the unperturbed diagrams are not 
affected. (Remark: At least for our example, the first case occurs at 
connector points, the second at regular distinguished points.) In earlier 
sections we have seen both instances of these changes occur. We review our 
results. 

In Lemma 1.1 we showed that all the bifurcation problems hm with 
m > 1 are topologically equivalent; also, all of the bifurcation problems 
with m < 1 are topologically equivalent. Indeed, the bifurcation diagrams 
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associated with m > 1 consist of three straight lines, while the bifurcation 
diagrams associated with m < 1 contain just one single line. In particular, 
there is a change in topological type of hm at m = 1. For this reason alone, 
the points on the moduli circle where m = 1 are distinguished. (As we have 
indicated above, there are other, more complicated, reasons why m = 1 is 
distinguished. We return to this point below.) 

In §4 we showed that the persistent perturbations of hm when m < 1 are 
different, depending on whether m < 0 or 0 < m < 1. Thus the points on 
the. moduli circle where m = 0 are distinguished by a change in the 
persistent perturbations of hm. 

A similar change in the persistent perturbations occurs when m = + oo 
or m = - oo. We describe this change for m = - oo; the case m = + oo is 
similar. lt may be seen from Figure 5.1 that for either sign of e, the point 
m = - oo separates the two arcs 

(J = -1, m<O 

and 

(J = + t, m< 0. 

Let us show that the set of persistent perturbations of hm, m < 0 and 
(J = + 1 is different from the set with m < 0 and (J = -1. (At m = - oo, the 
set of persistent perturbations of h _ oo is the union of those for hm, m < 0, 
with either sign of 6.) First observe that the orientation reversing change 
of coordinates, A. --+ - A., sends hm with (J of one sign to hm with 6 of the other 
sign; that is, 

Thus, we can find the persistent perturbations of hm with (J = - 1 by looking 
at the persistent perturbations of hm with (J = + 1 and reading from right to 
left. According to Figure 4.1 the bifurcation diagram LR occurs as a 
perturbation of hm when m < 0 and (J = + 1, but RL is not a perturbation 
of that germ. For (J = -1 the result is reversed, with RL appearing as a 
perturbation of hm but not LR. This proves that the two sets of per
turbations are different, and hence that m = - oo is a distinguished point. 

( c) ProofThat There Are Connector Points at m = 1 

We now return to our discussion of the points where m = 1. The first 
remark is that these points do not seem to belong on the moduli circle, 
at least not according to the analysis of h1 given heretofore. More precisely, 
the normal form 
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is a degenerate cubic since it has a double root. Indeed, the tangent space to 
h1 has infinite codimension! (This can be verified directly from (5.4), as in 
Example 11,5.9b.) 

The resolution of this difficulty stems from the fact that higher-order 
terms affect the structure of h1 . Indeed, there are singularities which satisfy 

lg = hl, 

but still have codimension 5; i.e., the same codimension as hmfor m =f. 1. For 
example, if we take a = ± 1 and let 

g = e(x3 - 3x.A.2 + 2()). 3) + a..l.4 , (5.5) 

where B = ± 1, then g has codimension 5. (See Exercise 5.1.) Note that the 
two choices of sign for a in (5.5) give inequivalent bifurcation problems. 
Thus our original moduli family can be extended in two distinct ways at 
m = 1 to give one-parameter families of codimension five singularities; 
namely, for a = ± 1 let 

gm = B(x3 - 3mx..l.2 + 2()).3) + a..l.4 • (5.6) 

Recall that we have defined a connector point to be a modal parameter 
value which has at least two inequivalent singularities sharing that value. 
The two functions in (5.5) show that the points in the modal family where 
m = 1 are connector points. We have indicated this fact in Figure 5.1 by 
putting boxes around the points where m = 1. 

However, the situation in the moduli family at points where m = 1 is yet 
more complicated. We continue our discussion of these points in sub
sections (d) and (e) below. 

(d) The Connector Camplex at m = 1 

In this subsection we are concerned with two related questions: (i) Which 
pairs of arcs of nondistinguished points in the moduli family are connected at 
the connector points and (ii) which connector points should be identified? 
For example, ifwe take B = 1, () = -1 in (5.6), then gm provides a connection 
of the arc B = + 1, (j = -1, 0 < m < 1 with the arc B = +I, () = -1, 
1 < m < oo through the singularity g of (5.5). Our first task in this 
section is to show that the arc B = - 1, (j = + 1, 1 < m < oo may also be 
connected with the arc B = + 1, (j = -1, 1 < m < oo using a different 
codimension five singularity. Then we address the more systematic questions 
above. 

Our discussion of the nondegenerate cubic 

1;(x, ..l.) = Ax3 + Bx2 ). + Cx..l.2 + D..l. 3 

began with the hypothesis A =f. 0. We now describe the simplest (i.e., lowest 
codimension) singularity where A = 0, as this provides the connection we 
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are seeking. We assume that B =F 0 and that the resulting quadratic cjJ(x, 1) 
has distinct roots. We claim that under these hypotheses, cjJ is strongly 
equivalent to 

(5.7) 

where 81 = ± 1, 82 = ± 1. To verify this claim we make a linear change of 
coordinates in x so that C' will vanish, where C' is the coefficient of xA. 2 

after the transformation. Then D', the new coefficient of A. 3, must be 
nonzero; otherwise, x = 0 would be a double root, contradicting our 
hypothesis above. Now scale to arrive at (5.7). 

The homogeneous cubic ljJ in (5.7) has infinite codimension. Thus, we 
must consider higher-order terms in order to define a singularity of finite 
codimension. 

In Exercise 5.2 we ask the reader to verify that 

(5.8) 

where 83 = ± 1, has codimension 5 and that k has modality one. Moreover, 
we claim that this singularity belongs in the modal family at m = 1. In 
order to verify this claim we consider the one-parameter unfolding 

(5.9) 

when a =F 0. The singularity of ka at the origin is a nondegenerate cubic of 
the form we studied in Proposition 2.2. Thus ka is equivalent to hm in (5.1) 
for some values of the parameters. We ask the reader to substitute into (2.5) 
and (2.9) to verify that 

m = -A-(~: 8 a2)2/3, 

27 2 

15 = 8 1 sgn(a), 8 = sgn(a). (5.10) 

From (5.10) we see that lima-+o m = 1. Thus the singularity k should be 
inserted into the moduli family at m = 1. 

We now use example (5.10) to argue that the two points (m, 8, 15) = 
(1, -1, + 1) and (m, 8, b) = (1, + 1, -1) should be identified. Consider the 
unfolding (5.9) in the 8 1 = -1 and 82 = + 1. From (5.10), we see that m > 1 
when a is nonzero (but small). In addition, we see that if a > 0 then 
(8, 15) = ( -1, + 1), and if a < 0 then (ö, 8) = ( + 1, -1). Thus the family 

k(x, A., a) = 8 3x4 + ax3 + x2A. + A.3 (5.11) 

provides a connection between modal parameter values on the circle 
8 = + 1 with those on the circle 8 = - 1. The only way this connection 
could be made continuously (and we expect continuity, since a varies 
continuously) is to identify the two distinct points listed above. Similar 
considerations suggest identifying (m, 8, 15) = (1, + 1, + 1) and (m, e, 15) = 
(1, -1, -1). 
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In the moduli bracelet, Figure 5.2, there are after identification, two 
connector points. In Figure 5.3 we present the connector complexes of each 
of these points. Observe that there are four branches of the moduli family 
which abut each connector point. The singularities (5.5) and (5.8), or more 
properly their one-parameter unfoldings (5.6) and (5.9), generate four 
connections in each connector complex. These connections and the singu
larities which generate them are shown in Figure 5.3. Note that each 
connection is, in fact, generated by two singularities; the choice of u in (5.5) 
and e3 in (5.8) does not affect which branches are connected. 

A complete description of this codimension 5 unimodal moduli family 
may be found in Keyfitz [1984]. The situation is still more complicated 
than we have indicated here. (See Exercise 5.2.) 

(e) Perturbations Near m = 1: Global Considerations 

As we have stated before, we Iook for organizing centers in order to analyze 
global behavior using local techniques. This kind of analysis must be applied 
with some care. For example suppose we encounter a bifurcation problern 
ofthe form 

0.001x2 - A.x + p(x, A.) = 0, (5.12) 

where p E .J/3. According to our solution of the recognition problem, in 
some neighborhood of the origin, (5.12) is equivalent to the normal form 
x2 - A.x. In this neighborhood, (5.12) exhibits transcritical bifurcation. 
However, the point of this example is that in (5.12) the coe:fficient of x2 is 
extremely small. Thus if the higher-order terms in (5.12) contain a term ax3 

with even a moderately !arge coefficient a, the neighborhood on which this 
analysis is valid will be extremely small. In such a situation it makes more 
sense to view (5.12) as a perturbation of the pitchfork x3 - A.x. This point 
of view Ieads to a modification of the transcritical behavior of (5.12) as 
sketched in Figure 5.4; in particular, this point of view suggests that the 
bifurcation diagram of (5.12) may have a Iimit point close to the origin. 

The present subsection is concerned with near degeneracies analogous to 
(5.12) but involving a modal parameter. To make this more definite, suppose 
we are studying a bifurcation problern with a cubic singularity such that the 
analysis of §2 Ieads to the normal form (5.lb) with e = (J = + 1 and m = 
1.001. We know that the associated bifurcation diagram consists of three 

Figure 5.4. A "barely transcritical" bifurcation. 
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nonsingular curves intersecting at the origin. However, because the modal 
parameter is so close to the distinguished point m = 1, we also know that 
this analysis is valid only on a small neighborhood of the origin in the xA.
plane. 

As we illustrated in subsections (c) and (d), there are two types of 
degeneracies at m = 1 connected to e = ö = + 1 and m > 1. First there 
is (5.5), which corresponds to the cubic terms 

x3 - 3xA.2 + 2A.3 ; 

and second there is (5.8), which corresponds to the cubic terms 

xzA. _ A.3. 

(Cf. Figure 5.3.) 

(5.13a) 

(5.13b) 

How does this apply to our hypothetical bifurcation problern above 
where m = 1.001? If in that problern the coefficient of x3 is large (in 
absolute value), then we would guess that the original bifurcation problern 
is close to (5.13a). If, on the other band, the coefficient of x3 is approxi
mately 0, then we would guess that the original bifurcation problern is 
close to (5.13b). Unfortunately, it is not easy to decide which case applies in 
a strict singularity theory context. The problern is that the notion of 
whether a coefficient is large or small is not invariant under scalings of x 
andA.. 

There are several possible approaches in such a situation. One approach 
would be to measure the size of the coefficient of x3 relative to a distinguished 
scaling of x and A.; for example, physical considerations in a given problern 
might indicate a natural nondimensionalization of these variables. This 
approach suggests further investigation on the connection between singu
larity theory and applied mathematics, but so far there is little specific 
information available. A second approach would be to introduce an additional 
parameter into the problern and to attempt to vary this parameter so that the 
modal parameter equals one exactly; the singularity which occurs when 
m = 1 would presumably be equivalent to either (5.13a) or (5.13b), and this 
would indicate which singularity was relevant. A third approach relates to 
the global behavior ofthe bifurcation diagram; we discuss the third approach 
more fully. 

Let us consider what information the choice between (5.13a) and (5.13b) 
provides about the global character of the bifurcation diagrams. In Figure 
5.5 we present the bifurcation diagrams associated with the unfoldings 

(a) G(x, A., a) = x 3 - 3(1 + a)xA.2 + 2A.3 + uA.\ 
(b) k(x, A., a) = x2A.- A. 3 + e3x4 + ax3, 

(5.14) 

where a ~ 0, e3 = ± 1 and u = ± 1. (Cf. (5.6) and (5.9).) The global features 
we find in (5.14a) are the bow which occurs for a > 0 and the nearby 
solution branch which occurs for a < 0. We call (5.14a) the bowtie 
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(5.14a)a~-1 + 
(5.14b) ,, ~ +I ~ 

(5.14b) ,, ~ -I ~ 
a<O a=O a>O 

Figure 5.5. Global information near a connector complex. 

bifurcation. The global feature we find in (5.14b) is the turn araund of one of 
the three intersecting branches. Observe the different character of the 
bifurcation diagrams of (5.14a) and (5.14b). In analyzing a given physical 
problem, one could use information about its global behavior to make 
conjectures about whether (5.13a) or (5.13b) is the governing singularity. 

Remark. Part ofthe difficulty ofthe present example stems from the fact that 
its codimension is so large. In §§5-8 of Chapter VI we consider a singularity 
which exhibits similar behavior but has codimension three. In this case it is 
possible to see (literally) the changes in global behavior as the unfolding 
parameters vary. 

EXERCISES 

5.1. Show that (5.5), namely, g = e(x3 - 3xA.2 + 2!5A.3 ) + uA.4 has codimension 5. 
Find a universal unfolding of g which includes m as in (5.6) as one of the 
unfolding parameters. 
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5.2. (a) Show that k(x, A.) = x4 + x 1 A. + A.3 has codimension 5 and that 

K = x4 + x1 A. + A.3 +IX+ ßx + y.A. + px3 + t.A.2 (5.15) 

is a universal unfolding of k. 

(b) Show that the codimension constant variety ((/ for (5.15) consists of the two 
lines in the plane IX = ß = y = 0 defined by the equations p = 0 and -r = 0. 
It follows that ((/ is not a submanifold of ~5 for this example. (See the 
classification theorem for singularities of codimension ::;; 7 in Keyfitz 
[1984] for more information.) 

§6. Discussion of Moduli and 
Topological Codimension 

In this section we summarize the lessons we wish to draw concerning 
moduli and topological codimension. The section is divided into four 
subsections which address the following points: 

(a) The modification of the definition of topological codimension to include 
topological equivalence of the perturbed bifurcation diagrams. 

(b) The relation of the present example to the thesis of Chapter IV, §1. 
(c) The observation that moduli families typically reduce under topological 

equivalence to afinite number of inequivalent bifurcation problems. 
{d) A formal justification of the word "codimension" in the term topological 

codimension. 

(a) Qualifications in the Definition of 
Topological Codimension 

In Chapter IV, §1, we defined the topological codimension of a germ to be 
equal to its C00 -codimension less the modality. In symbols, if g is in tffx,).• 

then 

top-codim g = (C00 -codim g)- modality (g). (6.1) 

However, there is an important restriction we place on g in order for this 
definition to apply: We require that the universal unfolding G of g be 
topologically trivial. This restriction has the important consequence that 
the structure of the set of persistent perturbations in G does not change as 
the modal parameters are varied. Let us define the term "topologically 
trivial". 

Let g be a germ in tE'x,;. of codimension k, and Iet G(x, A., a) be a universal 
unfolding of g. Let CC be the codimension constant variety of G (cf. 



§6. Discussion of Moduli and Topological Codimension 237 

Definition 3.2). We assume that CC has dimension k- l, and we choose G so 
that CC has the form 

CC = { OC E IRk: OCi = 0, i = 1, ... , l}. 

Let us write oc = (ß, m) where ß E IR1 and m E IRk-l; this indicates the modal 
parameters explicitly. Let I: be the transition variety of Gin !Rk, and Iet 

I:o = {ß E IR': (ß, 0) EI:}. 

In words, 1:0 is the intersection of I: with the i-dimensional subspace of 
nonmodal parameters. 

Definition 6.1. The universal unfolding G is topologically trivial if I: is 
(locally) homeomorphic to CC x 1:0 • 

It follows from Theorem III, 10.1 that if Gis topologically trivial, then for 
every (small) m the persistent perturbations of G(x, A., 0, m) are identical to 
those of g(x, A.) = G(x, A., 0, 0). To see this, for any m Iet I:m c IR1 be the 
transition set of the I-parameter unfolding G( ·, ·, ß, m) of G( ·, ·, 0, m). The 
connected components of IRk """ 1:0 and IR1 """ I:m are in one-to-one cor
respondence with one another. 

We have already seen that for our example (5.1), the universal unfolding 
is not topologically trivial if m = 0, 1, ± oo. As we mentioned in §5, the 
arguments in Stewart [1981] show that the universal unfoldings are topo
logically trivial when m # 0, 1, ± oo. Thus, we may say that hm has 
topological codimension 4 provided m =F 0, 1, ± oo. We do not attempt to 
define topological codimension at the exceptional values. 

(b) Relation with Chapter IV, §1 

Let us relate these concepts to the thesis of Chapter IV, §1; specifically, to 
the issue of whether to use C'"'-codimension or topological codimension in 
(IV, 1.2). Apart from the exceptional cases m = 0, 1, ± oo, nondegenerate 
cubics have C'"'-codimension 5 and topological codimension 4. Let us use 
these cubics to construct an example of a singularity with C'"'
codimension 5 in a four-parameter family F of bifurcation problems such 
that all small perturbations of F also contain a singularity of C'"'
codimension 5. This example illustrates that one should use topological 
codimension in (IV, 1.2). 

To construct our example, we fix a value m0 of the modal parameter, 
m0 =F 1, and we define F: IR x IR x IR4 --+ IR by 

F(x, A., ßt, ß2, ß3, ß4) = H(x, A., ßt, ß2, ß3, ß4, mo), 

where H is the universal unfolding (3.1). Consider an arbitrary perturbation 
of F, say F + ep. By the universal unfolding theorem F + ep may be 
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factored through H; i.e., there exists a mapping (A(ß, e), N(ß, e)) from IR 5 

into IR5 such that 

F( ·, ·, ß) + ep _, H( ·, ·, A(ß, e), N(ß, e)). 

When e = 0 

i, j = 1, 2, 3, 4. 

For small e, the Jacobian oA;/oßi is still nonsingular. Thus by the implicit 
function theorem, for allsmalle there is a (unique) value of ß suchthat 

A;(ß, e) = 0, 

In other words, for this value of ß, 

i = 1, 2, 3, 4. 

F( ·, ·, ß) + ep 

is equivalent to G( ·, ·, 0, N(ß, e)); the latter is a nondegenerate cubic and 
therefore has C""-codimension 5. This example shows how a cubic singu
larity of C""-codimension 5 can occur stably in a four-parameter family of 
bifurcation problems. In general terms, the reason for this is the following: 
A cubic singularity of C"" -codimension 5 in an unfolding F occurs stably 
provided F intersects the codimension constant variety rc transversely; since 
rc is a one-dimensional manifold, only four parameters are needed for such 
a transverse intersection. 

Moreover, as regards applications it seems that topological codimension 
is generally more appropriate than C""-codimension. Consider a k
parameter family of bifurcation problems, F(x, A., IX), such that for some IX0 , 

F( ·, ·, 1X0) is equivalent to (2.8); in symbols 

(6.2) 

If one wants (6.2) to hold for a precise value of m specified in advance, then 
F must depend on at least five parameters in order to avoid the erratic 
behavior of over-determined systems. However, if one merely wants (6.2) to 
hold for some value of m, the exact value not being important, then four 
parameters suffice to avoid such erratic behavior. Even if one insists that m 
lie in some range such as 1 < m < oo, four parameters are still sufficient. In 
this chapter we showed that the general properties of the bifurcation 
diagram of hm and its perturbations only depend on whether m > 1, 
0 < m < 1, or m < 0. These considerations also suggest using topological 
codimension in (IV, 1.2). 

(c) An Important Observation Concerning Moduli 

The picture of moduli we developed above is typical in that the moduli 
space divides into finitely many regions on which the unfolding is topologi
cally trivial. This is an important observation. We began our discussion of 
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moduli in §1 by showing that there exist continuous families of (C00 ) 

inequivalent germs, and we end our discussion (of the particular example) 
by showing that there are just a finite nurober (in our example, six) of regions 
on which all germs are (C0 ) equivalent. So, in this sense, a moduli family 
gives rise to afinite number of distinct bifurcation problems. 

(d) On the Interpretation of Topological Codimension 

In Corollary 11,2.6 we showed that the C00 -codimension of a germ g could 
be interpreted as the codimension of its orbit under equivalence. Let us 
discuss a similar interpretation for topological codimension. Let us recall 
the C00 -situation more carefully. Let S be the space of singularities in Sx,;.; 
that is, 

S = {g E tffx,;.:g = gx = Ü} = .ß2 + <A.). 

Let g be a germ in S and Iet 

(!)g = {h E tffx,J.: h is equivalent to g}. 

We showed in Corollary 11,2.6 that the codimension of (!)g inS is equal to 
both the coo -codimension of g and the nurober of defining conditions for g 
less two. 

Now suppose g ES is a germ offinite codimension with positive modality. 
Let C(J be the codimension constant variety. Define 

(!)'C = {h E tffx,;.: h is equivalent to some germ in C(J}. (6.3) 

Since the C00 -codimension of germs in the codimension constant variety is 
(by definition) constant we see that locally 

(!)w~(!)gxC(J. 

Thus the codimension of (!)w in S is equal to the codimension of (!)g in S 
minus the modality of g. Hence the right-hand side of (6.1) is the codimen
sion of (!)w inS. 

§7. The Thermal-Chainbranching Model 

The explosion peninsula is an interesting and perhaps even surprising 
phenomenon common to many oxidation reactions in chemical combtistion 
theory. W e discuss this phenomenon in part to demoostrate that there are 
reasonable mathematical models with many parameters whose analysis can 
be assisted by the use of singularity theory techniques. Moreover, in this 
particular example the moduli family discussed in this chapter appears, thus 
showing that even such seemingly esoteric examples may actually occur in 
applications. 



240 V. An Example of Moduli 

For ease of exposition we describe the explosion peninsula in terms of 
the oxidation of hydrogen to make water. This reaction proceeds by the 
overall reaction 

(7.1) 

although it is well accepted that a complete decomposition of (7.1) into 
elementary reactions would require over twenty reactions involving at least 
seven intermediate radicals. 

The main experimental fact of relevance here is that the reaction (7 .1) can 
proceed either at a slow speed or explosively fast, depending on initial 
conditions. Consider a mixture of hydrogen and oxygen in a closed 
container, initially at pressure P0 and temperature T0 and immersed in a 
bath of the same temperature. Experimental data concerning whether the 
reaction to produce water proceeds at a slow speed or explosively fast are 
summarized in Figure 7.1; let us interpret the figure. If the initial condition 
(T0 , P0 ) lies to the left of the curve in Figure 7.1 then the reaction proceeds 
at a slow speed, while if it lies to the right an explosion occurs. The 
noteworthy feature in this figure is the region of slow reactions between the 
curves labeled "second Iimit" and "third Iimit." To see what is interesting 
here, suppose that T0 is fixed between T0 and fo and consider a sequence of 
experiments beginning with (P0 , T0 ) in this region. lncreasing the pressure 
P0 is equivalent to increasing the fuel for the reaction, and it is not 
surprising that there should be a critical pressure at which the reaction 
proceeds explosively fast. However, it is indeed surprising, at least at first 
glance, that an explosive initial condition should be reached by decreasing 
P0 , as this decreases the available fuel. Yet this is what happens. 

The properties of the explosion peninsula have been much studied by 
chemists, for the following reason. If (7 .1) were modeled by a single reaction 
obeying Arrhenius kinetics, there would be no explosion peninsula-the 
separating curve in Figure 7.1 would be monotonic in T0 • Thus information 
about the explosion peninsula yields information about the individual 
elementary reactions in (7.1). 

Before introducing a specific model for (7.1), Iet us try to imagine 
bifurcation diagrams associated to this experiment. We assume that a 

No 
explosion 

Explosion 

Figure 7.1. The explosion peninsula. 
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steady-state approximation is sufficiently accurate to describe the experi
ments. The state variable in the bifurcation diagrams is the rate at which 
the reaction proceeds. We regard P 0 as the bifurcation parameter and T0 as an 
auxiliary parameter. Suppose we fix T0 between To and T0 . In order to 
relate the bifurcation diagram to experiment, there must be a sequence of 
low-temperature (i.e., slow reaction) and high-temperature states, depending 
on P0 , such as illustrated in Figure 7.2(a). In Figure 7.2(b) we have drawn 
possible bifurcation diagrams which yield the behavior required for Figure 
7.2(a). (Remark: There is experimental evidence that the transition from a 
low-temperature equilibrium to a high-temperature one at the first Iimit is 
given by an "S"-shaped curve. No such information exists near the other 
Iimits. Thus the simplest possibilities are those of Figure 7.2(b).) 

Note that these bifurcation diagrams occur in the Iist of Figure 4.1. 
(Mirror images should be included in Figure 4.1, to include both cases 
(J = ± 1 in (2.8).) It is therefore natural to conjecture (2.8) as a possible 
organizing center in a singularity theory analysis of this problem. 

Golubitsky et al. [1981] verified this conjecture, in a.sense that we now 
describe. To verify such a conjecture it is necessary to introduce a specific 
mathematical model for the physical problern under study. In that paper we 
chose the thermal-chain branching model of Gray and Yang [1965, 1967], 
as this is far more tractible than the full set of reactions but still yields an 
explosion peninsula. In this model, after nondimensionalization steady 
states may be described by an equation 

G(x, .A., IX) = 0, (7.2) 

where G: IR x IR x IR9 --+ IR. Here the 9 parameters represent reaction rates, 
activation energies, etc. in the various reactions. There is disagreement in 
the Iiterature concerning the exact values for these parameters, and we did 
not attempt to fit the experimental data. Rather we asked whether for any 
values of the parameters, (7.2) exhibits a singularity equivalent to (2.8). We 

First Second 
Iimit Iimit 

Third 
Iimit 

Figure 7.2(a). Necessary sequence of steady states in the explosion peninsula. 

' ... ... _ _) 
\ .... 

' I 
___./ 

' '" , ' 
I I 

\...___/ 
Figure 7.2(b). Possible bifurcation diagrams to effect the sequence in Figure 7.2(a). 
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found that such singularities did indeed occur and that the physical 
parameters provided a universal unfolding of the singularity. Interestingly, 
both cases in Figure 4.1 (i.e., m < 0 and 0 < m < 1) could occur, depending 
on the exact values of the parameters. We refer the reader to Golubitsky et 
al. for more detail. 

ßiBLIOGRAPHICAL COMMENTS 

The investigation of moduli is currently an active topic of research in both 
algebraic geometry and singularity theory. The first instance of moduli in 
algebraic geometry is the cross ratio (or, more generally, the J-invariant). 
Cf. Mumford [1965]. 

In singularity theory, moduli appeared in two separate ways, both involv
ing classifications. We discuss these in sequence. A smooth mapping 
g : !Rn ~ !Rm is called stable if every mapping near g is equivalent to g. 
(Roughly speaking, stable is the global version of "codimension zero ".) 
Mather proved that for a range of dimensions (n, m), called the nice dimen
sions, the stable mappings form a dense subset of the space of all smooth 
mappings. (Much of Morse theory and Whitney embedding theory follow 
from the fact that (n, 1) and (n, 2n + 1) are nice dimensions. Cf. Golubitsky 
and Guillemin [1973].) The obstruction to a pair of dimensions (n, m) 
being nice is the existence of moduli in low codimension. See Mather [1971]. 

The second situation where moduli appear in singularity theory is in 
Thom's classification of elementary catastrophes. Up to codimension six 
there is a finite Iist of singularities of potential functions, but this finite 
enumeration breaks down in codimension seven, where moduli first exist. 
(This breakdown led to some ofthe mystical numerology that has enshrouded 
catastrophe theory.) Arnold has suggested counting moduli families as one 
entity since this makes the Iist finite once again. See Arnold [1976]. This 
point of view, which we have adopted, is now generally accepted. However, 
there is some difficulty concerning the precise definition of a moduli family. 
Wehave used "codimension constant" in our definition; but there are other 
possibilities. Cf. Wall [1983]. 



CHAPTER VI 

Bifurcation with Z2-Symmetry 

§0. Introduction 

If g E sx,)., we say that g has Z2-symmetry if g is an odd function of X; in 
symbols, if 

g(-x, 2) = -g(x, A.). (0.1) 

We use this terminology because we think of a two-element group 
Z2 = {/, R} acting on the realline, where I is the identity and Rx = -x; 
equation (0.1) asserts that g commutes with the action of this group. In this 
chapter we study bifurcation problems with Z 2-symmetry. Bifurcation 
problems with this symmetry arise often in applications. For example, the 
buckling model of Chapter I, §1 was Z 2-symmetric; in that case the physical 
representation of the symmetry was reflection across the horizontal axis. 
Moreover, bifurcation problems of the form (0.1) play a central role in our 
treatment of the Hopf bifurcation in Chapter VIII. 

The importance of symmetry already appeared in Chapter IV, §1. There 
we presented the thesis that we should be cautious with a mathematical 
model that has a singularity whose codimension is greater than the number 
of parameters in that model. (Cf. (IV, 1.2).) However, we also said that we 
must interpret codimension in (IV, 1.2) within the class of functions that 
possess the symmetry appropriate to the given problem. Our main reason 
for studying Z 2-symmetric bifurcation problems here is to illustrate the 
profound effect that symmetry has on codimension, even so simple a 
symmetry group as Z2 . However, the theory is interesting in its own right. 
Moreover, symmetry will play a fundamental role in Volume li, and the 
present chapter foreshadows the directions we will take there. 
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This chapter is divided into eight sections. In §1, we present a simple 
physical example which illustrates how symmetry facilitates the occurrence 
of bifurcation problems which would have high codimension in the absence 
of symmetry. Sections 2-5 are a unit which develops the general theory of 
Chapters II-IV for bifurcation problems with Z 2-symmetry; specifically, we 
consider the recognition problern in §2, universal unfoldings in §3, the 
theoretical basis for enumerating perturbed bifurcation diagrams in §4, and 
a classification theorem by Z 2-codimension in §5. (In other words, §2 
corresponds to Chapter II, §§3 and 4, to Chapter 111, and §5 to Chapter IV.) 
In §6 we apply the theory to enumerate the persistent perturbed bifurcation 
diagrams of all Z 2-symmetric bifurcation problems of Z 2 -codimension three 
or less which do not have modal parameters. In §§7 and 8 we consider the one 
family of bifurcation problems of Z 2-codimension three or less which does 
have a modal parameter. Section 7 includes the persistent perturbations of 
this family near the nonconnector modal parameter values. Persistent 
perturbations of the connector points are given in §8. 

It will appear in §§2-5 that, almost without exception, there is a one-to
one correspondence between the theorems of Chapters II-IV and theorems 
in the present Z 2-symmetric context. (For clarity weshall sometimes use the 
term "nonsymmetric context" to describe bifurcation problems without 
symmetry.) Nevertheless, differences appear at unexpected places. For 
example, there are new sources of nonpersistence in the Z2-symmetric case. 
Even for general compact groups, most of the theoretical results of Chapters 
II-IV extend to the group context, but new calculations are still required 
for each new group. (Indeed, this is one reason why it is difficult to apply 
results from the singularity theory approach to bifurcation problems with
out actually understanding the theory.) 

One subtle difference between the symmetric and nonsymmetric context 
deserves particular emphasis. In the nonsymmetric context we localized 
germs around x = 0, but this was purely a matter of convenience-any 
point would do equally well. In the symmetric context, we again localize 
around x = 0, but now this is extremely important-considering any other 
point would Iead to very different results. The reason isthat x = 0 is a fixed 
point of the group under study, the only fixed point. In more physical 
terms, working near x = 0 means that we are studying the bifurcation of 
solutions which break the Z 2-symmetry from a trivial solution that is Z2-

symmetric. 

§1. A Simple Physical Exarnple with Z 2-Syrnrnetry 

In this section we discuss a simple mechanical system with Z 2-symmetry 
which was first brought to our attention in Poston and Stewart [1979]. 
This example demonstrates clearly how the existence of a single reftectional 
symmetry can cause problems of surprisingly high codimension to appear. 



§1. A Simple Physical Example with ZrSymmetry 245 

Figure 1.1. Finite-element analogue for buckling strut with compressible links. 

We modify the finite-element analogue of a buckling beam considered in 
Chapter 1, §1 by allowing both connecting links to be compressible. (See 
Figure 1.1.) Specifically, suppose that the connecting links are linear springs 
with equal spring constants k and uncompressed length unity. For sim
plicity, Iet us assume that there is a supporting frame (not shown in the 
figure) that forces the two springs to have equal compression or extension; 
this does not change the basic conclusion, but it does simplify the analysis 
by eliminating an inessential degree of freedom. As in Chapter I, §1, we 
assume the torsional spring connecting the two links has unit strength. 

We choose as coordinates x, the angle the links make with the horizon
tal, and y, the common lengths of the springs. Observe that there is a 
reftectional symmetry in the system given by x-+ -x. More precisely, the 
potential energy V, given by 

V= k(y- 1)2 + x2/2 + 2A.y cos x, 

is even in x. On differentiating V, we obtain the equations for equilibrium: 

0 V = x - 2A.y sin x = 0, ox 
av 
oy = 2k(y- 1) + 2A. cos x = o. 

If the second equation is used to eliminate y from this system, we are left 
with the single equation 

g(x, A.) = 2A.( 1 - ~ cos x) sin x- x = 0. (1.1) 

Observe that g is an odd function in x, a result of the reflectional symmetry. 
In particular, 

(:xy (:A) g(O, A.) = 0 ifj is even. (1.2) 

We are interested in the bifurcation from the trivial solution x = 0 that 
may occur in (1.1). Let us expand (1.1) in a Taylor series as follows: 

g(x, A.) = ( -1 + 2A. _ 2~2 )x + (~A: - ~)x3 + (:o- ~~:)x5 + O(x7 ). 

(1.3) 
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N ow bifurcation occurs only if 

2..1.2 
9x(O, A) = -1 + 2..1. - k = 0. (1.4) 

Solving (1.4) for A. we find 

(1.5) 

Thus for k > 2, there are two distinct bifurcations but for k < 2, none. 
What happens when k = 2. Note that A.c+(2) = A.c-(2) = 1. On inspection 

of (1.3) we find that near x = 0, A. = 1 

(1.6) 

It follows from Proposition V,2.2 that g is equivalent to the normal form 
(V, 2. 7), ax3 + <5..1. 2x, with e = + 1, b = -1. In other words, g exhibits a 
nondegenerate cubic singularity in this case; i.e., a singularity of codimen
sion five (neglecting symmetry). 

Now suppose k > 2. Then typically the two bifurcations in (1.5) are 
pitchforks. To see this we apply Proposition II, 9.2 which solves the 
recognition problern for the pitchfork. Note that g = g;. = 9xx = 0 by (1.2) 
and 9x = 0 if A. = A.{(k). Now if k > 2, then 9;.x is nonzero at the bifurcation 
point. For 9xxx• we have 

( 4..1.2 ..1.) 9xxx(O, A) = 6 }k - 3 ; (1.7) 

this is always nonzero at A. = A.c+(k) and is nonzero at Ac-(k) unless k = ! . 
Thus (1.1) has a pitchfork bifurcation at x = 0, A. = A.c±(k), with the one 
exception. 

Let us consider the case k = ! . Of course, (o/cx)4 g vanishes at the 
bifurcation point, by (1.2). We compute from (1.3) that (cjox) 5g < 0 at the 
bifurcation point. By Proposition 11,9.2, g is equivalent to -x5 + A.x at 
A.c-(J) = f. This singularity has codimension four (neglecting symmetry). 

The full bifurcation diagrams for (1.1) are shown in Figure 1.2. 
In this model there is only one auxiliary parameter; viz., the spring 

constant k. However, when k = 2 or J the model exhibits singularities of 
codimension five and four, respectively. Thus, without the symmetry this 
model would appear to present a clear violation of the thesis of Chapter IV, 
§1. However, we show in the present chapter that as Z 2-symmetric bifur
cation problems, both the above singularities have codimension one. In 
other words, there is no violation of the thesis of Chapter IV, §1 provided 
one uses the right notion of codimension in (IV, 1.2). 
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Figure 1.2. Bifurcation diagrams associated to a buckling strut with compressible 
links. 

§2. The Recognition Problem 

In this section we develop methods to solve the recognition problern for 
bifurcation problems with Z 2-symmetry. As in Chapter II, we focus pri
marily on strong equivalence, as it is mathematically convenient to do so. 

The section is divided into five subsections. In the first subsection, we 
address an algebraic difficulty that arises in extending our mathematical 
techniques to the symmetric case. The remaining four subsections follow 
Chapter II fairly closely-in subsections (b), (c), (d), and (e), we define the 
restricted tangent space in the symmetric context, study the appropriate 
notion of "intrinsic," state the main results, and work out two classes of 
examples, respectively. (Cf. Chapter II, §§2, 7, 8, 9.) We are fairly brief with 
proofs that are similar to their Counterparts from Chapter II. 
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(a) Resolution of an Algebraic Difficulty 

Let 1x,;.(Z2 ) be the set of all germs in cffx,;. that are odd in x; in symbols 

(2.1) 

(Remark: The arrow anticipates notation from Valurne II.) The following 
difficulty hampers the generalization of our mathematical techniques to the 
present context: The set 1x,;.(Z2 ) is not closed under multiplication. Indeed 
the product of two odd functions is even. This is potentially quite a serious 
problem, in that our theory relies heavily on algebraic operations for a 
compact description of RT(g) and for efficient computation with RT(g). 
However, the product of any element of sx,;.(Z2) by a function of X and A. 
which is even in x again belongs to Cx)Z2). Moreover, the set of functions 
which are even in x is a ring. (In mathematical language we may say that 
1x,;.(Z2 ) is a module over the ring of even functions.) It turns out that this 
mathematical structure is an adequate foundation for our techniques. Let 
us develop this structure. 

Lemma 2.1. If f E Sx,;. is even in x, then f may be expressed as a smooth 
function of x 2 and A.; in symbols 

f(x, A.) = a(x2, A.). (2.2) 

Remark. Ifjis analytic (i.e., ifjis given by a convergent power series), then 
a function a satisfying (2.2) may be obtained by substituting xi for x 2i in the 
power series of f In the coo case, Lemma 2.1 was first proved by Whitney 
[1943]. We give a slightly different proof which is self-contained except for 
one reference to the literature. This proof illustrates the issues involved in 
the Iemma. 

PROOF OF LEMMA 2.1. We use the notation u = x 2 • If (2.2) holds, then 
a(u, A.) must satisfy 

a(u, A.) = J(Ju, A.) for u ;;::: 0. (2.3) 

Let us define a(u, A.) for u positive by (2.3). lt is clear that a is coo on 
{u > 0}. We claim that allderivatives of a remain bounded as u ~ o+. If we 
attempt to prove this claim directly by simply differentiating the right-hand 
side of (2.3) with respect to u, we encounter powers of u in the denominator 
which make the Iimit u ~ o+ appear problematic. Rather we proceed as 
follows. For any integer k we use Taylor's theorem to write 

k-l 
f(x, A.) = L ap)x2i + x 2kg(x, A.) (2.4) 

j=O 
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for some smooth function g; only even terms appear in the sum in (2.4), 
since f is even in x. Combining (2.3) and (2.4) we see that for u > 0 

k-1 

a(u, A.) = L ai(A.)ui + ukg(.jU, A.). 
j=O 

(2.5) 

Clearly the first term in (2.5) is coo for all u, being a polynomial. The second 
term is coo for positive u, and because of the factor u\ derivatives of order k 
or less of the second term remain bounded as u--+ o+. However, we may 
apply the splitting (2.5) for any value of k. Thus all derivatives of a(u, A.) 
remain bounded as u--+ o+. This proves the claim. 

lt remains to define a(u, A.) for u < 0. It follows from the claim above that 
a C00-extension of a exists. There are several proofs of this in the literature; 
we recommend Seeley [1964]. D 

Remark. The proof shows that a(u, A.) in (2.2) is not unique. More precisely, 
if </J(u, A.) is any C00-function suchthat </J(u, A.) = 0 for u 2! 0, then 

f(x, A.) = a(x2, A.) + </J(x2 , A.) 

is another representation of the form (2.2). However, the derivatives of 
a(u, A.) to all orders at zero are determined. Typically the singularities we 
consider are finitely determined, and the Iack of uniqueness in (2.2) will be 
of no consequence for us. 

Corollary 2.2. If g E lx,iZ2), there is a smooth coefficient a(u, A.) suchthat 

g(x, A.) = a(x2 , A.)x. (2.6) 

PRooF. Since g(x, A.) is odd in x, g(O, A.) = 0. By Taylor's theorem, there is a 
smooth functionf(x, A.) suchthat 

g(x, A.) = f(x, A.)x. 

Moreover, f(x, A.) is even in x; (2.6) follows from applying Lemma 2.1 to 
f(x, A.). D 

Corollary 2.2 Ieads to a representation for l"' ;,{Z2) that is the basis of our 
study of Z 2-symmetric bifurcation problems; viz., 

(2.7) 

where u = x2 and eS'" ;, denotes the ring of all germs of smooth functions of u 
and A.. Observe that 'there are no symmetry restrictions on elements of c&'u,;.. 

The representation (2.7) is especially convenient precisely because it elim
inates symmetry restrictions that are awkward to work with. (In Valurne II 
such a representation is more a necessity than a convenience.) 

Let us extend the representation (2. 7) to (appropriate) subsets of lx ;,{Z2). 

We shall call a vector subspace J of lx.;,{Z2 ) a submodule of "lx,;,(Z2) if for 
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every g E J and every a E 6".,;_, we have a(x2 , A)g E ]. For example, Iet 
vlt = < u, ). ) be the maximal ideal in c&". ;. ; then for any k, vltk · { x} is a 
submodule of Cx ;.(Z2). In the next Iemma 'we show that every submodule of 
Cx,;.(Z 2) arises fr~m an ideal in 6".,;. in this way. 

Lemma 2.3. For every submodule J of Cx ;.{Z2 ) there is an ideal / c @"";. 
suchthat ' ' 

J = /. {x}. (2.8) 

Conversely, for every ideal / in 6".,.., (2.8) defines a submodule oflx,;.(Z2). 

PROOF. If j is an ideal in c&" •• .~., clearly j. {x} is a submodule of ~. ;.(Z2 ). 

Conversely, if J is a submodule ofCx,;.(Z2), Iet 

/ = {a E c&"u,;.: a(x2 , A)x E }}. 

Then / is an ideal in c&"u,;.. By Corollary 2.2, every g E J admits the 
representation g(x, ).) = a(x2 , A)x, so we see that J = f · {x}. 0 

We may use Lemma 2.3 to generalize various concepts involving ideals 
to submodules of C x,;.(Z2). Specifically we shall use the following three 
concepts: 

(i) If / = < a 1, ... , ak) is a finitely generated ideal in c&"u,;. and if 

J = <a 1, •.. , ak) · {x}, 

weshall say that J is generated by a 1(x2 , A)x, ... , ak(x2, A)x. 
(ii) If :J and J are submodules of Cx,;.(Z2), then the set of all sums from :J 

and J is also a submodule, denoted :J + }. In the notation of Lemma 
2.3, 

:J + J = (f + /) · {x}. 

(iii) If there is a k-dimensional subspace Vof ix, ;.{Z2) such that 

Cx,;.(Zz) = J EB V, 

we say that J has codimension k. In the notation of Lemma 2.3, 

codim J = codim /, 

where the latter codimension is computed in c&"u,;.. 

We shall use freely the following four facts concerning submodules of 
ßx,;.(Z2 ). Proofs rely on the representation (2.8) for submodules; we ask the 
reader to supply the details. The corresponding facts concerning ideals from 
Chapter II are ftagged in parentheses. In facts (iii) and (iv), vlt refers to the 
maximal ideal in c&"u,;.. 
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Facts 2.4. (i) If J is generated by Pt, ... , Pk and if Pk = 

atp1 + ··· + ak-lPk-t• then J is generated by Pt• .. ··Pk-t· (Cf. Lemma 
11,4.1.) 

(ii) If J is generated by Pt• ... , Pk and if 
k 

qi = L aiipi, i = 1, ... , k, 
i= t 

where aii E 8 u,;. and { aiiO, 0)} is an invertible k x k matrix, then J is also 
generated by q1, ••• , qk. (Cf. Lemma II, 4.2.) 

(iii) Let :J and J be submodules, with :J finitely generated. Then :J c J 
if and only if :J c J + .ß · :J. (Cf. Nakayama's Iemma, Lemma 11,5.3.) 

(iv) A submodule J has finite codimension if and only if Jtk · {x} c J 
for some k. (Cf. Proposition 11,5.7.) 

Remarks. (i) In the subsections below we define submodules of lx,;.(Z2 ) 

associated to the restricted tangent space, higher-arder terms, etc. We will 
not encumber the notation by putting an arrow above these spaces. 

(ii) We are aware that we have introduced a fair amount of algebraic 
terminology to deal with a problern that could be analyzed with "bare 
hands" techniques. We believe that in the long run the presentation will be 
clearer because of this terminology. There is also another consideration. 
The present terminology is a necessity in the situations we consider in 
Valurne II; i.e., more complicated symmetry groups or bifurcation prob
lems (even without symmetry) in several variables. In our estimation, 
seeing the terminology first in a relatively elementary application will 
simplify the reader's task in Valurne II. 

(b) The Restricted Tangent Space 

Let us define equivalence in the symmetric context. 

Definition 2.5. Let g(x, .lc) and h(x, .lc) be bifurcation problems with Z 2-

symmetry. We say that g and h are Z 2 -equivalent if 

h(x, .lc) = S(x, .lc) · g(X(x, .lc). A(.lc)), 

where the triple (S, X, A) is an equivalence transformation such that X is 
odd in x and S is even in x. If this relation holds with A(A.) = .lc, we say that 
g and h are strongly Z 2-equivalent. 

Remark. The only difference between equivalence and Zrequivalence is 
that the change of coordinates respects the Z 2-symmetry. More precisely, 
if S is even in x and X is odd in x then 

S(x, .lc) · g(X(x, .lc), A(.lc)) 

is odd in x for every g which is odd in x. Conversely, any equivalence for 
which this statement is true must be a Z 2-equivalence. (See Exercise 2.1.) 
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We now turn to the restricted tangent space in the symmetric context, 
denoted RT(g, Z 2). We motivate our definition of RT(g, Z 2) below by a 
calculation that is identical in form to the calculation in Chapter II, §2 
which motivates the definition of RT(g); the only difference is that here we 
use strong equivalences which preserve the Z 2-symmetry. Let g E "lx ;.(Z2); 

consider a one-parameter family Gofgerms strongly Z2-equivalent to'g, say 

G(x, A., t) = S(x, A., t)g(X(x, A., t), A.), 

where S(x, A., 0) = 1, X(x, A., 0) = x, S is even in x, and X is odd in x. Then a 
typical element of RT(g, Z 2) is given by 

a I . . -8 G(x, A., t) = S(x, A., O)g(x, A.) + gx{x, A.)X(x, A., 0), 
t t=O 

(2.9) 

where dot indicates a derivative with respect to t. In other words, RT(g, Z 2 ) 

is the totality of germs that can arise in (2.9) through the above 
construction. 

Let us work (2.9) into a form more suited to our algebraic concepts 
above. By Corollary 2.2 there is a smooth germ r(u, A.) such that 
g(x, A.) = r(x2, A.)x. Similarly, $ is even in x and X is odd, so we may write 
S(x, A., 0) = a(x2 , A.), X(x, A., 0) = b(x2, A.)x. Substituting into (2.9) we find 

aa G(x, A., t)l = a(u, A.)r(u, A.)x 
t t=O 

+ b(u, A.)[r(u, A.) + 2uru(u, A.)]x, (2.10) 

where u = x 2 • Now a and bare arbitrary elements of Su,A- Thus RT(g, Z2) is 
the module over su,.l. generated by the two elements 

r(u, A.)x, [r(u, A.) + 2uru(u, A.)]x. 

We formalize this in the following definition, taking advantage of Fact 
2.4(ii) to simplify the above generators. 

Definition 2.6. Let g(x, A.) be in "lx,;.(Z2), and assume g(x, A.) = r(x2 , A.)x. We 
define 

where u = x 2 • 

For example, RT(x3 - A.x, Z 2) = (u, A.) · {x} and RT(x3 - A.2x, Z 2 ) = 
(u, A. 2 ). {x}. (Note that x3 - A.x is the pitchfork, while x3 - A.2x is the 
nondegenerate cubic considered in (V,2.7).) 

Definition 2.6 shows that the module RT(g, Z 2) is generated by just two 
elements. By contrast, in the nonsymmetric context RT(g) requires three 
generators; viz., g, xgx, and A.gx. The origin of this difference lies in the 
following fact: In the nonsymmetric context, we must require explicitly that 
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X(O, 0) = 0, but in the symmetric context this follows naturally from the 
definitions; indeed, since X is odd in x, 

X(O, A.) = 0. (2.11) 

The following theorem, analogous to Theorem 11,2.2, provides the main 
sufficient condition for strong Z 2-equivalence. We do not prove this result, 
as the proof requires only minor variations from the proof of Theorem 
11,2.2. (See Exercise 2.2.) 

Theorem 2.7. Let h(x, A.) and p(x, A.) be bifurcation problems with Z 2-

symmetry. Assurne that 

RT(h + tp, Z 2) = RT(h, Z 2 ) for all t E [0, 1]. 

Then h + tp is strongly Z 2-equivalent to hfor all t e [0, 1]. 

(c) Intrinsic Submodules 

Weshall call a submodule J c Cx,;,(Z2) intrinsic if for all g, h E Cx,;,(Z2), 

g e J and h "' g = h E J, 
where h "" g means h is strongly equivalent to g. In the following propo
sition we characterize intrinsic submodules. This result is similar in spirit 
to Proposition II, 7.1, but the actual conclusions are quite different. For 
example, (u) · {x} is an intrinsic Submodule of Cx,;,(Z2), even though in the 
nonsymmetric context (x3 ) is definitely not an intrinsic ideal in lfx,;,. This 
difference has its origins in (2.11)-in the symmetric context the A.-axis (i.e., 
the set {x = 0}) is mapped into itself by Z 2-equivalences. The following 
analogy may be helpful in understanding this: In either context the x-axis 
(i.e., {A. = 0}) is mapped into itself by equivalences; because of this fact (A.) 
is an intrinsic ideal (in the nonsymmetric context) and (A.) · {x} is an 
intrinsic submodule (in the symmetric context). 

Proposition 2.8. Let J be a submodule oflx ;,(Z2) of finite codimension. Then 
J is intrinsic if and only if it can be written i~ the form 

J = (uk 1A.Z., .. . , uk•A.1•). {x}; (2.12) 

i.e., if and only if J is generated by monomials. 

Remarks. Usually in (2.12) we will require that 

(a) k1 > k2 > .. · > k, = 0, 

(b) 0 = 11 < 12 < ... < l •. 
(2.13) 

These ineq~alities are to avoid redundancies among the generators-if we 
bad two generators, say ukt.A,hx and uk2 A."x, where k2 ;;::: k1 and 12 ;;::: 11, we 
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could use Fact 2.4(i) to discard uk>).}>x. We justify the equality k. = 0 as 
follows. Let J be given by (2.12) where ki > 0 for i = 1, ... , s; then for 
every positive integer k, A_kx i ]. By Fact 2.4(iv), J would have infinite 
codimension. Thejustification of /1 = 0 is similar. 

PR.OOF OF PROPOSITION 2.8. Let g(x, A.) = r(x2 , A.)x be in Sx,;.(Z2). Let us 
apply a strong Z 2-equivalence (S, X) to g. We may write S(x, A.) = a(u, A.) 
and X(x, A.) = b(u, A.)x, where a(O, 0) > 0 and b(O, 0) > 0. Thus 

S(x, A.)g(X(x, A.), A.) = a(u, A.)r(U, A.)b(u, A.)x, 

where U = X(x, A.)2 = b(u, A.)2u. In particular, under a Z 2-equivalence, ukA.1x 
is mapped into 

Thus the submodule (ukA.1) • {x} is intrinsic. Since sums of intrinsic sub
modules are intrinsic, we see that (2.12) defines an intrinsic submodule. 

Conversely, it follows from Proposition 2.9 below that any intrinsic 
submodule of finite codimension may be written in the form (2.12). (Cf. the 
proof of Proposition II, 7.1.) D 

Proposition 2.9. Let J be an intrinsic submodule of"lx,;.(Z2) offinite codimen
sion, and let p(u, A.) be a polynomial, say 

p(u, A.) =I a"u"'A"2 • 

" 
Then p(u, A.)x belongs to / if and only if for every oc such that a" #- 0, the 
monomial u"' A."2x belongs to /. 

We leave the proof of this proposition for the reader, as it is rather 
similar to the proof of Proposition II, 7 .3, the counterpart of Proposition 
2.9 in Chapter II. 

Remark. We see from Proposition 2.8 that intrinsic submodules are in fact 
invariant under general (i.e., not necessarily strong) Z2-equivalences. (Cf. 
Remark II, 7.7.) 

Definition 2.10. Assuming (2.13) holds, we call the monomials in (2.12) the 
intrinsic generators of J. 

If J is a submodule of finite codimension, let / .L be the finite
dimensional vector subspace of "ix ;.(Z2 ) spanned by the monomials uk A.1x 
not in/. As in Chapter II, we may decompose such submodules as 

}=Itr}fdJ V, (2.14) 
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where Itr J is the intrinsic part of J and V = (Itr J)J. n J. In terms of the 
representation (2.7) of submodules, we have 

Itr J = (Itr ,/) · {x}, 

where Itr ,I is determined in@""·". 

(d) Statement of the Main Result 

For the duration of this subsection, let h(x, A.) = s(x2, A.)x be a germ in 
Gx)Z2) such that RT(h, Z 2) has finite codimension. We shall use this 
convention even when it is not made explicit. As in Chapter II, §8, we 
discuss in sequence low-order, higher-order, and intermediate-arder terms 
for the recognition problern for h. No proofs are given in this subsection, as 
they are similar to their counterparts in Chapter II. 

Let f!?(h, Z 2) be the smallest intrinsic submodule of 1x,;t(Z2) that contains 
h. f!?(h, Z 2 ) is an intrinsic submodule of finite codimension. In the next two 
results, the multi-index notation D" means (Of8u)"1(8/8Ä)"2 • 

Proposition 2.11. 

(a) 

where the sum extends over all multi-indices IX such that D"s(O, 0) -1= 0. 
(b) lf g is Z 2-equivalent to h, then f!?(g, Z 2) = f!?(h, Z 2). 

Theorem 2.12. Let g(x, A.) = r(x2 , Ä)x be equivalent to h. 

(a) For every monomial u"1Ä,.2x E f!?(h, Z2)J., we have Da.r(O, 0) = 0. 
(b) Foreach intrinsic generator of f!?(h, Z 2 ) we have Da.r(O, 0) "I= 0. 

We define ~(h, Z 2), the higher-arder terms associated to h, by the 
following condition: p E ~(h, Z 2) if for every g strongly Z 2-equivalent to h 
and for every t E IR 

It follows immediately from Theorem 2.7 that if p E ~(h, Z2) and if g is 
strongly Z 2-equivalent to h, then g + p is strongly Z 2-equivalent to g. Also, 
~(h, Z 2 ) is an intrinsic submodule of Gx)Z2 ) of finite codimension. The 
following theorem characterizes ~(h, Z 2 ) explicitly. 

Theorem 2.13. 

(2.15) 
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Camparisan of (2.15) with (II,8.5) shows that there is an extra term (i.e., 
A.hx) which contributes to f!IJ in the nonsymmetric context. This difference is 
a consequence of (2.11). The proof that f!IJ(h, Z 2) :::> Itr{.ß · RT(h, Z 2)} 

follows from Nakayama's Iemma as in Lemma II,5.3. The proof of the 
reverse containment is much simpler than the corresponding proof in the 
nonsymmetric cases. (Cf. Chapter II, §13.) The reason is that intrinsic 
submodules must have at least two intrinsic generators, unlike the non
symmetric case. (Cf. Exercise 2.3.) 

The treatment of intermediate-arder terms in the symmetric context 
involves the same issues as in the nonsymmetric context; i.e., having 
reduced a germ g modulo f!IJ(h, Z2), we perform explicit changes of coor
dinate on g to determine precisely when g is equivalent to h. 

(e) Two Simple Examples 

In this subsection we apply the above results to solve the recognition 
problern for the following two classes of normal forms: 

(a) (euk + 15A.)x, 

(b) (8u + t5).k)x. 

As usual, 8 and 15 equal ± 1; we suppose k ~ 1. 

(2.16) 

Proposition 2.14. Let g(x, A.) = r(u, A.)x be in lx,;,(Z2). Then g is strongly Z 2-

equivalent to (8uk + 15A.)x if and only if 

r = :: = .. · = (:u y-\ = 0 (2.17a) 

at u = ). = 0 and 

sgn(:uyr(O, 0) = 8, sgn r;,(O, 0) = b. (2.17b) 

PR.ooF. If h is the normal form (2.16a), then RT(h, Z2) = (uk, A.) · {x}. The 
defining conditions (2.17a) follow from Theorem 2.12(a). By Theorem 2.12(b) 
we may write 

g(x, A.) = (Auk + BA.)x + p(x, A.), 

where A =1- 0, B =1- 0, and 

(2.18) 

pE (uk+l, A.uk, A.2) · {x}. (2.19) 

We know that RT(h, Z 2) = (uk, A.) · {x}, so that .ß · RT(h, Z 2 ) is pre
cisely the right-hand side of (2.19), which is already intrinsic. Therefore, by 
Theorem 2.13 the term p in (2.18) does not affect whether g is equivalent to 
h. Finally, we may scale the coefficients A and B in (2.18) to 8 and 15, 
respectively, if and only if (2.17b) holds. 0 
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Proposition 2.15. Let g(x, A.) = r(x, A.)x be in -;ix,;.(Z2). Then g is strongly Z2 -

equivalent to (eu + öA.k)x if and only if 

r = ;~ = .. · = (:2J- 1
r = 0 (2.20a) 

at u = A. = 0 and 

sgn(:2Jr(O, 0) = 15. (2.20b) 

The proof of this proposition is left as an exercise for the reader. 

Remark. If k = 1 in either (2.16a) or (2.16b), we obtain the pitchfork. In this 
case there is only one defining condition in (2.17a). Of course, this is quite 
different from the nonsymmetric context, where the pitchfork has four 
defining conditions. (There is, however, a hidden defining condition in 
Proposition 2.14 in the implicit assumption that the singularity occurs on 
the axis of symmetry, x = 0.) 

EXERCISES 

2.1. Fix an equivalence X, A, Sand suppose 

h(x, A.) = S(x, A.)g(X(x, A.), A(A.)) 

is an odd function in x for every g which is odd in x. Show that S is even in x and 
X is odd in x so that the equivalence is a Z2-equivalence. 

2.2. Prove Theorem 2.7. Hint: Follow the proof of Theorem 11,2.2 in Chapter II, 
§11. To prove that the resulting strong equivalence is, in fact, a strong Zr 
equivalence, use the uniqueness of solutions to the initial value problern for ODE's. 

2.3. Prove Proposition 2.9. 

2.4. (a) Show that an intrinsic submodule of finite Z 2-codimension must have at 
least two intrinsic generators. 

(b) Prove Theorem 2.13, using the proofs in Chapter II, §13 as a guide. 

2.5. Prove Proposition 2.15. 

§3. Universal Unfoldings 

This section is a fairly Straightforward extension of the theory of universal 
unfoldings to the Z2-symmetric context. There are three subsections, which 
correspond roughly to §§1-3 of Chapter III. In subsection (a) we give the 
basic definitions, in subsection (b), we state the universal unfolding theorem 
in the symmetric context, and in subsection (c), we use the theorem to 
compute universal unfoldings for the germs (2.16) considered above. 
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(a) BasicDefinitions 

Let g(x, A.) be a bifurcation problern with Z 2-symmetry. We shall call 
G(x, A., a) a k-parameter Z 2-unfolding of g(x, A.) if G: ~ x ~ x ~k -+ ~ 
satisfies G(x, A., 0) = g(x, A.) and G(- x, A., a) = - G(x, A., a). 

Definition 3.1. (i) Let G(x, A., a) and H(x, A., ß) be Z 2-unfoldings of a germ g in 
1x,;.(Z2). The unfolding H factors through the unfolding G if 

H(x, A., ß) = S(x, A., ß) · G(X(x, A., ß), A(A., ß), A(ß)), 

where S(x, A., 0) = 1, X(x, A., 0) = x, A(A., 0) = A., A(O) = 0, S( -x, A., ß) 
= S(x, A., ß), and X( -x, A., ß) = -X(x, A., ß). 

(ii) The Z 2-unfolding Gofgis a Z 2-versal unjolding if every Z 2-unfolding Hof 
g factors through G. 

(iii) A versal unfolding of g is universal if it has the minimum number of 
parameters in a versal unfolding of g. We call this minimum number 
the Z 2-codimension of g; in symbols, codimz2 g. 

Definition 3.2. If g E Cx ;.(Z2), the tangent space of g is the following 
subspace ofCx,;.(Z2): ' 

T(g, Z 2 ) = RT(g, Z 2) + ch",.{g;.}. (3.1) 

In Chapter III, §2(a) we motivated the corresponding definition in the 
nonsymmetric context by showing the following: T(g) arises as the set of all 
possible derivatives 

ao S(x, A., t)g(X(x, A., t), A(A., t))l , 
t t=O 

where (S, X, A) is a one-parameter family of equivalence transformations 
such that (S, X, A) is the identity equivalence when t = 0. In the symmetric 
context, T(g, Z 2) has a similar motivation; we ask the reader to carry out 
the required calculation in Exercise 3.1. (Cf. §2(b) above.) 

Formula (3.1) differs slightly from its analogue in the nonsymmetric 
context; viz., 

T(g) = RT(g) + ~{gx} + c9';.{g;_}. 

This difference derives from the fact that in the symmetric context nec
essarily X(O, 0) = 0. 

Suppose that g(x, A.) = r(x2 , A.)x. Recalling the definition of RT(g, Z 2), we 
may rewrite (3.1) as 

(3.2) 
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(b) The Universal Unfolding Theorem 

Theorem 3.3. Let g(x, .A.) = r(u, .A.)x be in "lx,;.(Z2), and Iet G(x, .A., a) = 
R(u, .A., a)x be a k-pararneter Z 2-unfolding of g. Then Gis a versal Z 2-unfolding 
ifand only ifthe codirnension ofT(g, Z 2) in ix,;.(Z2) equals k and 

- {aR aR } cx,;.(Z2) = T(g, Z2) + IR OIXI (u, A, 0), ... , OIXk (u, A, 0) . {x}. (3.3) 

Just as in Chapter III, §2, the necessity of (3.3) can be derived by 
considering one-parameter unfoldings of g. (See Exercise 3.2.) We defer the 
proof of sufficiency for Volume II. 

1t follows from Theorem 3.3 that codimz2 g, as given in Definition 3.1, 
equals the codimension of T(g, Z 2) in "lx,;.(Z2). As in Chapter III, §2, this 
number may be related to the nurober of defining conditions of the 
singularity. The formulas are slightly different in the symmetric context, 
because the implicit assumption x = 0 represents an effective defining 
condition. We do not pursue this here. 

(c) Simple Examples 

First Jet us consider the pitchfork. We find that 

T(x3 - Ax, Z 2) =Cu,;.· {x}. 

Hence x3 - .A.x has codimension zero in the symmetric context and is its 
own universal unfolding. 

In the following proposition we give universal unfoldings for the singu
larities (2.16). 

Proposition 3.4. (a) The bifurcation problern (euk + b.A.)x, where e = ± 1 and 
b = ± 1, has Z 2-codirnension k - 1; a universal unfolding is provided by 

(euk + b.A. + IX 1u + · · · + 1Xk_ 1uk- 1)x. (3.4) 

(b) The bifurcation problern (eu + b.A.k)x, where e = ± 1 and b = ± 1, has 
Z 2-codirnension k - 1 and universal unfolding 

(eu + b.A.k + IX0 + IX 1 + · · · + ak_ 2.A_k- 2 )x. (3.5) 

Let us consider (3.4) and (3.5) when k = 2, so that these singularities 
have codimension one. In Figures 3.1-3.3 we have drawn bifurcation 
diagrams for these universal unfoldings. (Here and below we simplify Zr 
symmetric bifurcation diagrams by only drawing the portion for which 
x ~ 0. The part for which x < 0 is obtained by reftection.) These diagrams 
will play an important role in our analysis of persistent bifurcation diagrams 
in the next section. We shall see in §5 that these are the only bifurcation 
problems of codimension one in the symmetric context. 
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IX=O tx>O 

Figure 3.1. Bifurcation in the universal unfolding (u2 - A. + IXU)x . 

......... _ .. _____ ... , ..................... 

tx<O tx=O tx>O 

Figure 3.2. Bifurcation in the universal unfolding (u - 22 + !X)x = 0. 

tx<O IX=O tx>O 

Figure 3.3. Bifurcation in the universal unfolding (u + 22 + !X)x = 0. 

EXERCISES 

3.1. Carry out the required differentiation to show that T(g, Z 2) should be defined 
as in (3.1). 

3.2. Prove the necessity of condition (3.3) in the unfolding theorem, Theorem 3.3, 
using one-parameter unfoldings of g as in Chapter 111, §2. 

§4. Persistent Perturbations 

In this section we discuss the theoretical basis for enumerating all perturbed 
bifurcation diagrams (up to Z2-equivalence) arising from a singularity. This 
section generalizes the material in Chapter 111, §§5 and 6 to the Z2 -

symmetric context. On the whole, our methods here are rather similar to 
those of Chapter 111. Specifically, we begin by enumerating the sources of 
nonpersistence; then, given a k-parameter unfolding G(x, A., oc), we identify a 
hypersurface ~ in the parameter space ~k such that G( ·, ·, oc) exhibits 
nonpersistence when oc E ~; finally, we obtain an enumeration of the 
perturbed diagrams from the connected components of ~k,.... ~- However, 
the details of the construction are rather different, for the following reason. 
As we noted above, in the Z 2-symmetric context, the point x = 0 is different 
from all others, being the only fixed point of the group. Different bifurcation 
phenomena occur for x = 0 and x =1= 0. Moreover, in unfolding a de
generate singularity at x = 0, we must consider possible sources of nonper-
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sistence from both x = 0 and x =F 0. In other words, there are more sources 
of nonpersistence in the symmetric context. 

Let us begin to enumerate the sources of nonpersistence. Throughout the 
section, we consider a k-parameter, Z 2-symmetric universal unfolding 
G(x, .A., a) of a germ g E lx,;..(Z2). By Lemma 2.2 we may write G in the form 

G(x, .A., a) = R(u, .A., a)x, (4.1) 

where u = x 2 • We compile the following derivatives of G for use below: 

(a) Gx = R + 2uRu, 

(b) G;, = R;,x, (4.2) 

(c) Gxx = (6Ru + 4uRuu)x. 

First, we consider the case x =F 0 as this is more familiar. Indeed for 
x =F 0 the only real difference between the symmetric and nonsymmetric 
context is that in the former context, all phenomena occur in pairs
whatever occurs at (x, .A., a) is mirrored at (-x, .A., a). The three sources of 
nonpersistence in the nonsymmetric context (i.e., bifurcation, hysteresis, and 
double Iimit points) carry over to x =F 0 in the symmetric context essentially 
without change. Equations for these phenomena in the nonsymmetric 
context are given in Definition III, 5.1: one may express these equations in 
terms of R(u, .A., a) in (4.1). For example bifurcation is associated with a 
value of a E !Rk such that for some x, .A. 

G = Gx = G;. = 0 at (x, .A., a). (4.3) 

Using (4.2) and the fact that x =F 0, we see that (4.3) is equivalent to the 
equations 

R = Ru = R;. = 0 at (u, .A., a), (4.4) 

where u > 0. Thus we define the bifurcation variety 

86't(Z2) = {a E !Rk: 3(u, .A.), u > 0 such that R = Ru = R;. = 0 at (u, .A., a)}. 

(4.5) 

(The subscript "1" indicates a phenomenon occurring for x =F 0; this is tobe 
distinguished from &60(Z2), bifurcation phenomena occurring for x = 0.) 

Wehave listed equations for &6 1(Z2), for ~(Z) (i.e., hysteresis associated 
to x =F 0), and for ~(Z2) (i.e., double Iimit points) in Table 4.1. Let us 
comment on the definition of ~(Z2); viz., 

~(Z2) = {a E !Rk: 3(u1, u2 , .A.), u1 =F u2 and u; ~ 0 suchthat 

R = uRu = 0 at (u;, .A., a), i = 1, 2}. 
(4.6) 

In the Z 2-symmetric context, double Iimit points can occur in a persistent 
way-if there is a Iimit point at (x, .A., a), there is also a Iimit point at 
(-x, .A., a). By working with u = x2 in (4.6), we exclude such pairs from 
~(Z2). Also note that in ( 4.6) we only require u; ~ 0, not strict inequality. 
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Table 4.1. Sources ofNonpersistence in the Symmetrie Context. 

B6 1(Z2) = {cx E !Rk \3(u, A.), u > 0 suchthat R = R. = R;. = 0 at (u, A., cx)}. 

B60(Z2) = {cx E !Rk \3A. suchthat R = R;. = 0 at (0, A., cx)} 

~(Z2) = {cx E !Rk \3(u, A.), u > 0 suchthat R = R. = R •• = 0 at (u, A., cx)}. 

~(Z2) = { cx E !Rk \3A. such that R = R. = 0 at (0, A., cx)}. 

~(Z2) = {cx E !Rk\3A., u 1u2(u 1 =F u2 ; u1, u2 ~ O)such that 
R = uR. = 0 at (u1, A., cx) and (u2 , A., cx)} 

~(Z2) = B60(Z2) u B61(Z2) u ~(Z2) u ~(Z2) u ~(Z2) 

In other words, the definition of ~(Z2) mixes phenomena where x =f. 0 with 
phenomena where x = 0. To understand this better, suppose that u1 = 0 in 
(4.6). Then the equation uR. = 0 is satisfied automatically there; however, 
the equation R = 0 imposes a nontrivial restriction there. Indeed, by 
Proposition 2.14 (with k = 1), G( ·, ·, ct) exhibits a pitchfork at (u1, .A.), 
provided R. =f. 0, R._ =f. 0. Thus when ct E ~(Z2) and u1 = 0, a pitchfork 
bifurcation at x = 0 lies in the same .A.-plane as a Iimit point at x =f. 0. 

When x = 0 the nature of persistence changes dramatically. In parti
cular, a pitchfork at x = 0 is persistent with respect to Z 2-perturbations
this fact is the essential content of the statement that the pitchfork has Z2-

codimension equal to 0. (In other words, a pitchfork at x = 0 in the 
symmetric context behaves like a Iimit point in the nonsymmetric context; 
cf. the discussion of ~(Z2) above.) The solution to the recognition problern 
for the pitchfork (Proposition 2.14) is given by: 

R =0, R._ =f. 0 at (0, 0). 

Thus we have nonpersistent behavior if either 

or 
(a) R = R._ = 0 at u = 0, 

(b) R = R. = 0 at u = 0. 
(4.7) 

These two possibilities Iead to the sets f!40(Z2 ) and ~(Z2) in Table 4.1, 
respectively. We justify the nomenclature "bifurcation" and "hysteresis" for 
the sets as follows. According to Propositions 2.14 and 2.15, the simplest 
Z 2-symmetric bifurcation problems satisfying (4.7) are 

(a) ±(u ± .A.2)x = 0, 

(b) ±(u2 ± A.)x = 0, 
(4.8) 

respectively. If in (4.8) we exclude the zero solution x = 0 (this solution is 
forced by symmetry), then what remains in (4.8a) or (4.8b) is rather 
analogous to bifurcation and hysteresis in the nonsymmetric context. For 
example, {u = .A.2 } consists of two crossed lines in x, .A. space, and {u2 = .A.} 
consists of a single curve that makes a high order of contact with the 
line .A. = 0. The bifurcation diagrams of the universal unfoldings of (4.8) 
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are shown in Figures 3.1-3.3, and these graphs further support the 
nomenclature. 

Although we do not prove it here, the above five sets enumerate all the 
sources of nonpersistence in the Z 2-symmetric context. Thus we define 

l:(Z2 ) = .~\(Z2) u f!A0(Z2) u .n'l(Z2) u ~(Z2) u E&(Z2). 

If G is a versal unfolding of g, then l: is a hypersurface in ~k; i.e., has 
codimension one. 

The following result provides a method for enumerating persistent 
bifurcation diagrams. Let G be a k-parameter, Z 2-symmetric universal 
unfolding of a germ g E lx,;.(Z2) of finite codimension. In this theorem U, 
L, and W are appropriately small neighborhoods of zero in ~. ~. and 
~\ respectively. (We do not Iist the explicit requirements on these 
neighborhoods.) 

Theorem 4.1. If oc 1, oc2 belong to the same connected component of 
W "' l:(Z2), then there is a diffeomorphism (X, A) commuting with Z2, 
mapping U x L onto itselfand a positive, evenfunction S suchthat 

G(x, .il., oc 2) = S(x, .il.) G(X(x, .il.), A(.il.), oc 1). 

§5. The Z 2-Classification Theorem 

Theorem 5.1. Let g(x, .il.) = r(u, .il.)x be a germ in lx,;..(Z2 ) satisfying 
r(O, 0) = 0. lf codimz2 g ::;; 3 then g is equivalent to one of the bifurcation 
problems listed in Table 5.1. 

Table 5.1. Normal Forms for Singularities of codimz2 ::;; 3. 

NormalForm Z 2-Codimension Codimension 

(1) ex3 + öA.x 0 2 
(2) ex3 + öA.2x 1 5 
(3) ex5 + öh 1 4 
(4) ex3 + öA. 3x 2 8 
(5) ex1 + öh 2 6 
(6) ex3 + öA.4x 3 11 
(7) ex9 + öA.x 3 8 
(8) ex5 + 2mh3 + öA.2x 3* 9 

m2 =1- eö 
(9) </Jx1 + ex5 + 2uA.x3 + eA.2x 3 9 

(10) ex5 + uA.x3 + </JA. 3x 3 11 
(11) </Jx 7 + uA.x3 + eA. 2x 3 11 

where e = ± 1, ö = ± 1, <P = ± 1, u = ± 1. 
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Remarks 5.2. (i) The normal forms in Table 5.1 fit into three families. We 
have already studied the families (1), (2), (4), (6) and (1), (3), (5), (7) in 
Proposition 3.4. The new family consists of the moduli family (8) with 
distinguished points (9), (10), (11), all with Z2-codimension three. We shall 
analyze this moduli family in detail in §§7 and 8. 

(ii) Normal form (8) has modality one and topological Z 2-codimension 
two. We have indicated this fact in Table 5.1 by the * next to the Z2 -

codimension 3. 
(iii) We have included the regular codimension of those germs in Table 

5.1 to emphasize the degree of complexity of these singularities should one 
break the Z 2-symmetry. 

In Table 5.2 we Iist the algebraic data associated with each of the normal 
forms in Table 5.1. Also in Table 5.3 we tabulate the solutions to the 
recognition problems for the various normal forms. The flow chart for the 

Table 5.3. The Recognition Problem for Normal Forms of codimz2 :::;; 3. 

Normal Form Defining Conditiont 

(elf+ cU)x !: = .. · = (:u)k-lr = 0 
(k > 1) 

(8u2 + 2mJ.u + cU 2)x '• = rA = 0 
m2 ""'8b 

(tjJu3 + 8U2 + 2cUu + cl2)x r. = rA = 0, 
where {) = sgn(m) det d2r = 0 

Choose v ""' 0 such that '•• = 0 

* We use the convention sgn(A) = s means that A ""' 0. 

t We assume r = 0 always. 

Nondegeneracy Conditions* 

8 = sgn(r.) 

8 = sgn(r .. ) 
{) = sgn(r,u) 

m2 ""'8b 

where m = r.JJir .. · r.ul 
Note: m2 ""'8b-
det d2r""' 0 
8 = sgn(r •• ), 
{) = sgn(ruA) 
tjJ = sgn(r ••• ) 

8 = sgn(r •• ), 
{) = sgn(ruA), 
tjJ = sgn(rw) 

8 = sgn(r ... ), 
{) = sgn(ro.l), 
tjJ = sgn(rAl) 
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proof of the classification theorem, Theorem 5.1, is given in Table 5.4. The 
ftow chart is applicable to any Z 2-symmetric germ g(x, A-) = r(u, A-)x satisfy
ing r(O, 0) = 0. To use the chart, compute ru and r;. and then follow the 
instructions starting with the pair (ru, r;.) in the upper center of the table. All 
details are left to the reader. They are similar in spirit to the calculations 
needed to prove the regular classification theorem, Theorem IV,2.1. 

Table 5.4. Flow Chart for the Proof of Theorem 5.1. 

'"" ~ Q) (1) 

(=0, ;<0) 
1=0 

l=O 
1=0 

l=O 
(=0, =0) 1=0 

I codimz2 g 2 4 

codimz2 g 2 4 

(3) (2) 

@ (3) @ (3) 

* v is chosen as in Table 5.3 so that r,, = 0. 
t In these cases determining whether det d2r = 0 is equivalent to determining whether r.,~ = 0. 
Circled numbers refer to normal forms in Table 5.1. 
Numbers in parentheses indicate codimension. 
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Remark 5.3. From Table 5.4 we can see why normal forms (9), (10), and (11) 
correspond to distinguished members of the moduli family, normal form (8). 
In this family we look for "nondegenerate quadratics" satisfying ruu =I= 0, 
ru =I= 0, det d2r =1= 0. For certain distinguished values of the second-order 
terms, precisely one of these conditions fails. At these values we must look 
at an appropriate third-order term to see that finite determinacy is 
maintained. 

§6. Persistent Perturbations of the 
Nonmodal Bifurcations 

There are six singularities of Z2-codimension one, two, or three which do 
not have modal parameters. (Normal forms (2)-(7) in Table 5.1.) They fit 
into two families: ex2k + 1 + oA.x and ex3 + oA. kx with k = 2, 3, 4. The 
transition varieties and persistent perturbation, for each of these singular
ities is given in Figures 6.1-6.3. Analytic expressions for the transition 
varieties are given in Table 6.1. These expressions are derived using the 
formulas for the various components of the transition variety presented in 
Table 4.1. 

To reduce the number of cases, we consider only those examples for 
which the trivial solution is stable when A. < 0. In addition, we do not 
enumerate cases g(x, A.) which can be identified by the coordinates changes 
±g(x, ±A.). 

Table 6.1. Transition Varieties for the Simple Z 2-Singularities. 

Universal Unfolding 

x5 - .l.x + ax3 0 0 a=O 0 0 
ex3 + .l.2x + ax a=O 0 0 0 0 
x 7 - .l.x + ax3 + ßx5 0 0 a=O a = P2/3 a = ß2/4 

p~o fJ~O 
x 3 - .l.3x + (a + fl.l.)x (fJ/W = (a/2)2 0 0 0 0 
x9 - .l.x + ax3 + flx5 + yx 7 0 0 a=O a = 3yu2 + 8u3, 

fJ=-3yu-6u2 * 
u>O 

sx3 + .l.4x + (a + fJ.l. + y.l.2)x a = y.l_2 + 3.l.4, 0 0 0 0 
fJ = -2-y.l.- 4.l.3 

* Picture of gj}(Z2) in Figure 6.3 obtained geometrically. 
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Transition variety l: Persistent perturbations of (0) 

(0) ~ 
~ 

(1) (2) \, 

' (1) -------

(2) ~ 

3: -x3 + ~2x + lXX = 0 

(0) 

(1) 
........... ._. ....... ______ ,. ........ 

(2) 
(1) 

---...... ""'-.... ,, ,".,. 
' , 

(2) ' , __ __,_ __ ....__ 

(0) 

(1) (2) 
(1) 

(2)~ 
Figure 6.1. Persistent perturbations of Z 2-codimension 1. 
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Transition variety I: Persistent perturbations of (0) 

(0) 
___)_ __ 

(2) "" 
---y~o 

p 

L~ (1) 
(1) 

(2) 

(0) 

~ 
_q)l ' ' ' 

I (1) --------
\ (2) 

~ 

(4) 
(3)\ Lp ~ ' Jffo (2) 

(I) 
,----

Double Iimit variety ,q) ______2 _____ 
Hysteresis variety .tf 0 (3) 

-·---·-·- Hysteresis variety .tf 1 

Bifurcation variety r1i 0 

....... _____ ... 

-·-·-·-·- Bifurcation variety ffl 1 (4) 
_____c'_ _____ 

Figure 6.2. Persistent perturbations of Z2-codimension 2. 
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Transition variety I: 

!!Jo 

Y> 0 \:!!) 
(1) 

VI. Bifurcation with Z 2-Symmetry 

Persistent perturbations of (0) 

e = +1 
(0) 

(1) 

e = -1 
--- ... --............. , , ... ,.~-----

', 
(0) 

----... ... ... ---...... ...' ......... ____ .. 
(1) 

(0) 

·-... , ... --.......... \. ,' 
' ., ... -..... ,' 

(3) ----' --L...--.1--'"---

Figure 6.3. Persistent perturbations of Z 2-codimension 3, modality zero. 
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Transition variety !: 

C( 

~ 
Lß 

I 
i (1) y>O (3) \ 
'·, Jfo 

(2) 

.Jf1 
' · ........ 

y=O (3) '·--.,. 
(1) 

(2) 
Jfo 

y<O 

Double Iimit point variety 
.@(Z2) not shown 

Double Iimit variety.@ 

Hysteresis variety .Jf 0 

llysteresis variety .Jf 1 

Bifurcation variety fJB 0 

Bifurcation variety f!iJ 1 

Persistent perturbations of (0) 

(0) ~~---------
(1) ~ 

' ' ' ' (2) --------- .. 
,---
' ··-

(3) • ~------
' --- ..--- .... 

(3)b 
____c:_ _____ 

_______2:.) 

(4). 
........ , 

--------~----------

,----
------

""-- ... (4)b ___ _;, _________ _ 

"'-.:..:,:.:.:.:.: --(4). ----~----------

................. , 
,---
............... (4)d ___ ...,:, ________ _ 

~ 

(4)c -------·---~"' ----------

Figure 6.3 (continued) 
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§7. The Unimodal Family of Codimension Three 

In this section we discuss the normal form (8) in Table 5.1, which we repeat 
here for convenient reference 

(7.1) 

where e = ± 1, (J = ± 1, and m2 "# eb. We divide this section into three 
subsections, in which we establish the following points: 

(a) For any value of m such that m2 "# eb, the normal form (7.1) has 
codimension three. The parameter m in (7.1) isamodal parameter; thus 
one of the three parameters in a universal unfolding involves changes in 
m. This family of bifurcation problems may be viewed as a bracelet, 
analogaus to the moduli family studied in Chapter V, §5. The family 
(7.1) has connector points where m2 = eb or m = ± oo. The associated 
connector complexes give rise to the normal forms (9)-(11) of Table 5.1. 

(b) There are ordinary distinguished points when m = 0. We determine this 
fact by analyzing the structure of the persistent perturbations of (7 .1) at 
nondistinguished points and showing that there is a change in topologi
cal type of the Z 2-universal unfolding at m = 0. 

(c) The solution set of (7.1) near the values of m associated with connector 
points (i.e., m2 = eb and m = ± oo) indicates some elementary global 
properties of the bifurcation diagram. (In subsection (c), we consider 
only the unperturbed bifurcation diagrams; the persistent perturbations 
in the connector complexes will be presented in §8 below. In terms of · 
content the material in subsection (c) would fit more naturally into §8. 
However, we have divided the material on the basis of Ievel of 
dif.ficulty-the calculations of §8 are exceedingly technical, while the 
present section, including subsection (c), is relatively elementary.) 

We have two reasons for discussing this moduli family in detail. First, 
since the singularity has codimension three, the transition variety I:(Z2) is a 
subset of IR 3 ; thus pictures of :E(Z2 ) should help the reader understand how 
topological triviality fails at distinguished points. (Cf. subsection (b) below .) 
Second, this moduli family arises in our discussion ofthe clamped Hodgkin
Huxley equations in Case Study 2. 

(a) The Moduli Bracelet 

Webegin our discussion by recalling how the modal parameter m in (7.1) is 
defined. Consider the Z2-bifurcation problern 

g(x, A.) = (Au2 +BuA. + CA.2 + · · ·)x, (7.2) 

where the higher-arder terms in (7.2) are in .11;,;.. We see from Table 5.4 
that if A "# 0, C "# 0 and B2 - 4AC "# 0, then (7.2) is Z 2-equivalent to the 
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normal form (7.1). Moreover, one obtains the form (7.1) by scaling A and C 
to be ± 1. This Ieads to the formulas 

(a) e = sgn(A), iJ = sgn(C), 

(b) m = B/(2JiAq). 
(7.3) 

In the scaled variables the nondegeneracy condition B2 - 4AC =1= 0 be
comes m2 =I= eb. 

Alternatively, one can scale A, B, C so that 

lAI = 1, 

Since B4 + C2 = 1 is (topologically) a circle we see that the family (7.1) may 
be thought of as two circles, one corresponding to e = + 1 and one 
corresponding to e = -1. These circles are drawn in Figure 7 .1. In that 
figure {J = + 1 represents the upper semicircles and {J = - 1 represents the 
lower semicircles. Also, in anticipation of results below, we have made the 
circles into a bracelet by joining the points at m = + oo and m = - oo. 

In order to verify the information in Figure 7.1 we will now show that 
the points where m2 = eb or m = ± oo are connector points. (Recall that a 
connector point is a point on the moduli family corresponding to (at least) 
two distinct singularities.) First we consider the case m2 = eb. Referring to 
Table 5.4, we see that m2 = eb is equivalent to det d2r = 0 in that table. It 
follows that generically (i.e., when rvvv =I= 0) the addition of higher-order 
terms Ieads to the normal form (Table 5.1(9)) 

(7.4) 

where m = a = ± 1 and c/J = ± 1. (Note that when m2 = eb we must have 
e = b, as indicated in (7.4).) Now for each choice of e and a there are two 
singularities listed in (7.4) with Z2-codimension equal to three; namely, 
c/J = + 1 and c/J = -1. Thus, points where m2 = eb are connector points. 

We next prove that the points where m = ± oo are connector points. We 
see from (7.3b) that m may approach ± oo in two distinct ways; either 

<5 =-1 

Figure 7.1. The moduli bracelet in Z2-codimension three. 
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A -+ 0 or C -+ 0. From Tables 5.4 and 5.1, we see that these two routes to 
m = ± oo Iead (generically) to the singularities 

(a) 4Jx 7 + aA.x3 + c5.1.2x, 

(b) ex5 + aA.x3 + 4J). 3x. 
(7.5) 

We show below that in (7.5) a = + 1 corresponds to m = + oo and a = -1 
corresponds to m =- oo. Thus, (7.5a) and (7.5b) each have two singularities 
(4J = ± 1) corresponding to a point on the moduli bracelet where m = ± oo. 

To establish the correspondence between a = ± 1 in (7.5) and m = ± oo 
in (7.1), we consider the following one-parameter unfoldings of (7.5): 

(a) 4Jx 7 + ax5 + a).x3 + c5). 2x, 
(b) ex5 + a).x3 + b).2x + 4J).3x. 

(7.6) 

It may be seen from (7.3b) that for a =f. 0, (7.6a) is equivalent to (7.1) with 
2m= a/~; similarly, for (7.6b), with 2m= af.Jibl. Letting a-+ 0 and 
b-+ 0, we deduce that o = + 1 in (7.5) corresponds to m = + oo in (7.1) and 
a = -1 to m = - oo, as claimed. 

Moreover, we can compute from (7.3a) the signs e and c5 in the normal 
form (7.1) when a =F 0 and b =F 0. Specifically we obtain e = sgn(a) in (7.6a) 
and c5 = sgn(b) in (7.6b). Thus for example, if a = + 1 and c5 = + 1, the 
singularities in (7.5a) connect the branch e = + 1, c5 = + 1, 1 < m < oo with 
the branch e = -1, c5 = + 1, 0 < m < oo. This example shows why we have 
identified the points m = + oo on the two moduli circles e = + 1 and e = -1. 
Similarly, form = - oo. Enumerating all possible choices ofsigns in (7.6a, b) 
Ieads to the connector complex pictured in Figure 7.2. 

(j = +1 /
e=-1, 
O<m~oo 

)

(7.6a) u = +1, cfJ = ±1, Ci= +1( 
(7.6b) -------- (7.6b) 
(f = + 1, (f = + 1, 
c/J = ±1, c/J = ±1, 
e=+1 e=-1 

L__!7=1 
e=+y, (j = -1, 

O<m<oo 

= -1, 
= -1 
<m.::oo 

Figure 7.2. Connector complex at m = + oo. The connector complex at m = - oo is 
obtained by replacing u = + 1 with u = -1. 
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To complete our description of the moduli bracelet in Figure 7.1 we need 
to show that points on the moduli circle where m = 0 are distinguished and 
that all other points are nondistinguished. This information will be derived 
in the next subsection. 

(b) Persistent Perturbations of N onconnector Points 

In this subsection we picture the transition set ::E for the Z2-universal 
unfolding of the singularities in (7 .1); namely, 

H(x, .A, ()(, ß, m) = ex 5 + 2mh3 + b.A2x +()(X+ 2ßx3. (7.7) 

(Cf. Figures 7.3 and 7.4.) It will be apparent from these pictures that ::E is 
topologically trivial when m =!= 0 and that the topological type of ::E changes 
at m = 0. 

We present here only the results of calculations, some of which are 
lengthy. We hope that the interested readerwill be able to reproduce these 
calculations, if desired. 

The formulas for the various components of::E are: 

(a) ~: m2 (J( = -bß2, b(J( ~ 0, 

(b) f160 : ()( = 0, 

(c) f16 1 : ()( = -bß2/(m2 - sb), sgn ß = b sgn(m2 - eb), 

(d) ~ = ~ = 0. 

(7.8) 

In Figures 7.3 and 7.4 we consider the cases s = + 1, b = -1 and 
s = + 1, b = + 1, respectively. In these figures we first picture the transition 
variety ::E form fixed and nonzero; then we picture ::E on a neighborhood of 
m = 0. We also picture the persistent perturbations in (7.7). It follows from 
these pictures that m = 0 is a regular distinguished point. 

(c) Global Properties of Bifurcation Diagrams 
Near Connector Points 

Above we have shown that there are two types of connector points in the 
modal family (7.1), corresponding to the normal forms (7.4) and (7.5). 

(Normal form (7.4) is associated to m2 = eb, and (7.5), to m = ± oo.) We 
also know that in the universal unfoldings at all of these normal forms, the 
codimension constant variety is a line parametrized by the modal param
eter. In this subsection, we study the bifurcation diagrams occurring along 
this line. We do this to illustrate the global properties in the bifurcation 
diagrams which are associated with connector points. In the next section we 
will describe the persistent perturbations of each of these singularities. 
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Transition variety I: 
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Figure 7. 3. Persistent perturbations of (7 .2a). 
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Transition variety I: 

8: x 5 + 2mh3 + ..1.2 x + ccx + ßx3 = 0 
lml >I 

Double Iimit variety f» 

Hysteresis variety Jlf 0 

Hysteresis variety Jlf 1 

Bifurcation variety f!4 0 

Bifurcation variety f!4 1 
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Figure 7 .4. Persistent perturbations of (7 .2b ). 
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Transition variety 1: 

8: x5 + 2mb:3 + .il2x + lXX + Px3 = 0 

lml <I 

dll 
I 

(3) \ (4) 
·, dl 
(~0 
( (1) \ 

.tfo 

IX 

Lp 
0 < lml < 1 

m=O 

VI. Bifurcation with Z2-Symmetry 

Persistent perturbations of (0) 

(0) 

(1)' __j_~ m > 0 

(I)" __/2_ m < 0 

~ ...... ,,' 
' I (2) __ , ---'----

(3) 

(4) 

f11o --.... 
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Figure 7.4 (continued) 
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To reduce the nurober of cases, weshall not consider all possible signs in 
(7.4) and (7.5). Specifically, weshall analyze only the normal forms 

(a) qyx 7 + x 5 + 2mh3 + Ah, 
(b) 4Jx7 + .h3 + A.2x + ax5 , 

(c) x 5 + u.h3 - A. 3x - bA. 2 x. 

(7.9) 

Here 4> = ± 1 and u = ± 1, while m, a, and b are modal parameters with 
m ~ 1, a ~ 0, and b ~ 0. Formula (7.9a) derives from (7.4) by choosing 
B = + 1 and allowing the modal parameter to vary near the distinguished 
value m = 1; similarly, (7 .9b, c) derive from the one-parameter unfoldings 
(7.5a, b). The remaining cases in (7.4) and (7.5) may be obtained from (7.9) 
by using the orientation reversing coordinate changes A. --+ - A. and 
g(x, A.) --+ - g(x, A.). 

The bifurcation diagrams associated to the normal forms in (7.9) are 
illustrated.in Figure 7.5. 

<P=+l -----

<P = -1 
m<1 

<P = +1 

<P = -1 ----1--

a<O 

~ ~ 
a=+1 ~----

(J = -1 ~ 
b<O 

m = 1 

I 

~ 

a=O 

~ ...... ...... 
..... --- .. 

') 

m > 1 

..... ------
' ----) 
a>O 

~ 
_/_ ___ ~--

b>O 

Figure 7.5. Global implications of connector points. 
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§8. Perturbations at the Connector Points 

In the two subsections below, we describe the persistent perturbations of the 
singularities of (7.1) at the connector points where m2 = eC> and m = ± oo, 
respectively. 

(a) The Persistent Perturbations when m2 = e~ 

The normal form for singularities where m2 = eC> is: 

~x7 + ex5 + 2u.A.x3 + e.A.2 x, (8.1) 

where ~ = ± 1, e = ± 1, u = ± 1. (Cf. (7.4).) In order to reduce redundancy 
in our calculations we assume (as in §7(c)) that u = + 1 and e = + 1. 
Observe that the change of coordinates .A. --+ - .A. changes the sign of u in 
(8.1); thus, the bifurcation diagrams for u = -1 may be obtained by 
reading the diagrams below (for u = + 1) from right to left. The choice 
e = + 1 implies that the stationary solution is asymptotically stable (when 
.A. :F 0). 

A universal unfolding of (8.1) is given by 

H(x, .A., m, a, ß) = ~x7 + x 5 + 2m.A.x3 + .A.2x + ax + 2ßx3 , (8.2) 

where ~ = ± 1, m ~ 1, a ~ 0, and ß ~ 0. The various components of the 
transition set for the unfolding (8.2) are described by the following 
equations 

(a) 840 : a = 0, 

(b) .Yfo: a = -(ß/2m)2 , 

(c) fl4 1 : a = -(m2 - 1)u2 + 2~u3 ; 

(d) ~ = !I) = 0. 

(8.3) 
ß = 2(m2 - 1)u - 3~u2 , 

Pictures of this transition set are given in Figure 8.1. This figure includes 
both two-dimensional cross-sections of the transition set obtained by fixing 
m and a full three-dimensional sketch. In addition, the perturbed bifur
cation diagrams are given on this figure. 

(b) The Persistent Perturbations when m = ± oo 

We recall from (7.5) that there are two sets of normal forms corresponding 
to m = ± oo ; they are, in slightly altered notation, 

(a) ~x7 + 2u.A.x3 + C>.A.2x, 
(b) ~x5 + 2u.A.x3 - u.A.3x, 

(8.4) 
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Figure 8.1. Transitionset and persistent perturbations for (8.2). 
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Table 8.1. Equations for Transition Varieties of (8.5). 

K 

C( = b12 + 213 

ß = -2b1- 312 

ct = (! + b)A_l + 213, sgn(1) = -(J, 

ß = -2(! + b)1- 312, sgn ß = (J 

ct=Ü 

0 

0 

where </J = ± 1, (J = ± 1, and b = ± 1. In order to reduce the nurober of 
cases, we suppose that (J = + 1 and b = + 1. (Recall that the choice (J = + 1 
corresponds to m = + lXI.) The other cases in (7.5) may be obtained from 
(8.4) using the transformations A.-+ -A. and g(x, A.)-+ -g(x, A.). 

The universal unfoldings we analyze are: 

(a) H(x, A, a, 0(, ß) = </Jx 7 + A.x3 + A. 2x + ll(X + ßx3 + ax5 , 

(b) K(x, A., b, 0(, ß) = x 5 + (JAx 3 - A. 3x- ll(X- ßh- bA.2 x, 
(8.5) 

where <jJ = ± 1, (J = ± 1, and a, b, 0(, ß are near zero. For each of the 
unfoldings (8.5), equations for the various components of transition set are 
given in Table 8.1. Pictures of the transition set and the persistent per
turbations are given in Figures 8.2 and 8.3. 

ßiBLIOGRAPHICAL COMMENTS 

Although many authors have recognized the importance of symmetry in 
bifurcation, for us the pioneering work of Sattinger [1978, 1979, 1983] was 
most important. See also Thompson and Hunt [1973, 1977], Michel [1972], 
Marsden and McCracken [1976], Golubitsky and Schaeffer [1979b], Dancer 
[1980] and Vanderbauwhede [1982]. The role of symmetry in bifurcation is 
still an active area of research; in particular, much of Volume II will be 
devoted to this topic. 



CHAPTER VII 

The Liapunov-Schmidt Reduction 

§0. Introduction 

In Chapter I, §3 we described the Liapunov-Schmidt reduction in rather 
special circumstances. In this chapter we generalize the method in three 
distinct ways, as follows: 

(i) We consider infinite-dimensional systems. 
(ii) We allow the linearized operator to have a multidimensional kernel. 

(iii) We perform the reduction when the operator commutes with a com-
pact group of symmetries. 

This chapter is divided into six sections. The above three extensions of 
Chapter I, §3 are discussed theoretically in §§1 and 3; the first two 
extensions in §1, the third in §3. The remaining four sections illustrate the 
use of the method in applications. Specifically, we analyze the elastica (a 
classical buckling model) in §2 and reaction-diffusion equations in §§4-6. 
The last three sections break down as follows: §4, scalar equations; §5, 
general description of the Brusselator (a specific equation intended to model 
the Belusov-Zhabotinsky reaction); §6, Liapunov-Schmidt reduction of the 
Brusselator. Sections 2 and 4 illustrate the theory of § 1 ; §6 illustrates the 
theory of both §§1 and 3. (Chapter VIII, on the Hopf bifurcation, and Case 
Study 3 contain genuine applications, as opposed to illustrations, of the 
theory of §3.) 

Incidentally, §§4-6 contain some rather interesting phenomena concern
ing reaction-diffusion equations; specifically how diffusion can affect the 
stability of an equilibrium solution of an ODE and how rudimentary 
patterns can form from the competition between the reaction and the 
diffusion terms. 
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In our discussion of the Liapunov-Schmidt reduction in the finite
dimensional case, we showed that the (linear) stability or instability of 
bifurcating solutions was determined by the sign of g", the derivative of the 
reduced equation. Similar results are available in many infinite-dimensional 
settings. However, we do not discuss these here, as we believe the prereq
uisites from functional analysis are too high for the goals of this text. 

§1. The Liapunov-Schmidt Reduction Without 
Symmetry 

In this section, we treat the infinite-dimensional Liapunov-Schmidt re
duction at a multiple eigenvalue with auxiliary parameters; i.e., we consider 
generalizations (i) and (ii) above. We base our discussion on the five step 
summary of the Liapunov-Schmidt reduction given in Chapter I, §3(b). The 
principal difficulty in extending the method occurs in Step 1; i.e., forming 
complements in an infinite-dimensional space. In this connection we in
troduce some preliminary concepts. 

(a) Fredholm Operators oflndex Zero 

Definition 1.1. Let !r and OJJ be Banach spaces. A bounded linear operator 
L: !r -+ OJJ is called Fredholm if the following two conditions hold. 

(i) KerLisafinite-dimensional subspace of !r. 
(ii) Range L is a closed subspace of OJJ of finite codimension. 

Definition 1.2. lf L is Fredholm, the index of L is the integer 

i(L) = dim ker L - codim range L. 

The following result contains the main information we will need concern
ing Fredholm operators. 

Proposition 1.3. If L: !r -+ OJJ is Fredholm, then there exist closed subspaces 
M and N of f!( and OJJ, respectively, suchthat 

(a) f!( = ker L E9 M, (b) OJJ = N E9 range L. (1.1) 

This proposition is proved in Berger [1977], §1.3F. 

Remark 1.4. In all applications in this book L will be Fredholm with index 
zero. For such operators, in (l.lb) we have dim ker L = dim N. In partic
ular, if ker L = {0}, then L is onto and hence, by the closed graph theorem, 
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invertible. Thus, we have the following implication for Fredholm operators 
of index zero: 

Ifker L = {0}, then L is invertible. 

For differential operators, f!I and o/1 typically are subspaces of the Hilbert 
space L 2(Q), where Q is a bounded domain in !RN. This space has the 
standard inner product 

Let us discuss the use of orthogonal complements in (1.1); i.e., setting 

(a) M = (ker L)\ 

(b) N = (range L) -L, 

where for a subspace S c o/1 we define 

S l. = { U E o/1: ( u, V) = 0 for all V E S}. 

(1.2) 

(1.3) 

Usually f!I and ilJI arenot complete with respect to the inner product (1.2). 
For example, f!I might be Ck(Q) and ilJI might be C(Q); i.e., spaces of differ
entiahte and continuous functions, respectively. In general, for an infinite
dimensional subspace S c ilJI, it is not true that o/1 = S EB S J.. Although 
Sn S J. = {0}, the sum need not equal o//; i.e., there may be too few 
elements in S J.. Speaking heuristically, the problern in such cases is that the 
missing elements lie in the dual space ilJ/*, rather than o/1 itself, as required 
by our definition of S J.; this is caused by a mismatch between (1.2) and the 
natural norm on o/1. However, the decomposition o/1 = S EB S J. is valid in 
the following two special cases, whichjustify (1.3): 

Case (a). S is finite dimensional. 

Case (b). S is the range of an elliptic differential operator. 

In Case (a), when dim S < oo, we may derive the decomposition by the 
Gram-Schmidt orthogonalization process. Let us summarize the issues 
concerning Case (b). (Cf. Appendix 4.) The discussion revolves araund the 
Fredholm alternative, 

(range L) J. = ker L*, (1.4) 

where L* is the adjoint of L. Formula (1.4) is generally valid for linear 
operators, provided the orthogonal complement is taken in o//* and the 
adjoint is defined as an operator L*: o/1*-+ f!I*. For the cases we consider, 
o/1* is a space of generalized functions (i.e., distributions). The fundamental 
point in justifying Case (b) is that solutions of elliptic differential equations 
are regular. In particular, for such operators ker L* c ilJI, rather than 
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merely ker L* c !lJJ*; in other words, ker L* consists of functions, rather 
than merely distributions. (Cf. Appendix A4(c).) In consequence, the difficul
ties mentioned above do not arise, and the decomposition 

I1JJ = (range L) EB (range L) .L 

does hold. 

Remarks. (i) Formula (1.4) provides a particular choice for N in (1.3b) 
that is often more convenient in applications. 

(ii) When L is an elliptic differential operator, the codimension of range L 
equals the dimension of the kernel of L*. Thus for such operators we have 
an alternative formula for the index: 

i(L) = dim ker L - dim ker L*. 

(b) Mechanics of the Liapunov-Schmidt Reduction 

Let 
Cl>: f( X jRk + 1 --+ !lJJ, CI>(O, 0) = 0 

be a smooth mapping between Banach spaces. We want to use the 
Liapunov-Schmidt reduction to solve the equation 

Cl>(u, oc) = 0 (1.5) 

for u as a function of oc near (0, 0). Let L be the differential of Cl> at the 
origin; in symbols 

_ 1. Cl>(hu, 0) - CI>(O, 0) 
Lu- tm h . 

h-+0 

We assume that L is Fredholm of index zero. 

Remarks. (i) To simplify the notation we combine the bifurcation parameter 
A. and the k auxiliary parameters ocl> ... , ock into a single vector IX = 

(1X0 , IX1, ••• , cxk), where oc0 = A.. 
(ii) Smooth mappings between Banach spaces are discussed in Appendix 

3. However, given our invariant notation of Chapter I, §3, the changes from 
the finite-dimensional case are minimal. 

Let us recall the five steps summarized in Chapter I, §3(b), adapted to the 
present context. 

Step 1. Decompose ft and !lJJ, 

(a) ft = ker L EB M, 

(b) I1JJ = N EB range L. 
(1.6) 
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Step 2. Split (1.5) into an equivalent pair of equations, 

(a) E<l>(u, oc) = 0, 

(b) (J - E)<l>(u, oc) = 0, 

293 

(1.7) 

where E: OJJ-+ range L is the projection associated to the splitting (1.6b). 

Step 3. Use (1.6a) to write u = v + w, where v E ker L and wEM. Apply 
the implicit function theorem to solve (1.7a) for w as a function of v and oc. 
This leads to a function W: ker L x !Rik+ 1 -+ M such that 

E<l>(v + W(v, oc), oc) = 0. (1.8) 

Step 4. Define cjJ: ker Lx !Rik+ 1 -+ N by 

cjJ(v, oc) = (I - E)<l>(v + W(v, oc), oc). (1.9) 

Step 5. Choose a basis v1, ... , v" for ker L and a basis vf, .. . , v~ for 
( range L) J.. Define g: IRI" x !Rik + 1 -+ IRI" by 

g;(X, oc) = (vt, cjJ(x1v1 + · · · + xnvn, oc)). (1.10) 

We discuss how these five steps apply here. 

Step 1. The hypothesis that L is Fredholm guarantees that the splittings 
(1.6) are possible. Moreover, ker L and N are finite dimensional. 

Step 2. This is primarily notational and requires no comment. 

Step 3. We want to show that the implicit function theorem is applicable. 
Let us mirnie Chapter I, §3. We extract a map F: ker L x M x !Rik + 1 -+ range L 
from (1.7a); i.e., 

F(v, w, oc) = E<l>(v + w, oc). 

The differential of F with respect to w at the origin is 

EL = L. 

Now we argue that 
L: M-+ range L 

(1.11) 

(1.12) 

is invertible. In the finite-dimensional case this follows because L restricted 
to M is one-to-one and onto its range. In the Banach space case, (1.12) is 
still one-to-one and onto, but we need an additional, technical hypothesis to 
conclude that (1.12) is invertible; viz., that range L is closed. However, L is 
assumed Fredholm, so range L is indeed closed; thus (1.12) is invertible. 
Therefore, the implicit function theoreni guarantees that (1.7a) may be 
solved for w = W(v, oc). (Note that the solution obtained from the implicit 
function theorem depends smoothly on the parameters oc0 , ••• , ock .) 

Step 4. This is primarily notational and requires no comment. 
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Step 5. In writing (range L) .L we are using (for the first time) the fact that rJ.Y 

is equipped with the inner product (1.2). Since L is Fredholm with index 
zero, 

dim ker L = dim(range L) .L 

and both dimensions are finite. Thus the bases for ker L and (range L) .L 

contain the same number of vectors. 
Let us summarize the outcome ofthe Liapunov-Schmidt reduction. 

Proposition 1.5. lf the linearization of (1.5) is a Fredholm operator of index 
zero, then solutions of (1.5) are (locally) in one-to-one correspondence with 
solutions of the finite system 

U;(x, oc) = 0, 

where U; is de.fined by (1.10). 

i = 1, ... , n. (1.13) 

Remark 1.6. The use of the Liapunov-Schmidt reduction in different appli
cations is facilitated by the fact that three of the above steps are totally 
independent of specific data in a particular application. More precisely, 
choices are involved in Steps 1 and 5-complementary subspaces in the 

'former, bases in the latter-but Steps 2, 3, 4 adapt to any application 
without modification. Moreover, when ker L is one dimensional, the choice 
in Step 5 only amounts to a trivial scaling of the reduced equation (1.13). 

(c) Relation of the Liapunov-Schmidt Reduction 
with Universal Unfoldings 

Let us relate the Liapunov-Schmidt reduction to the concepts of singularity 
theory. For this we rewrite (1.5) with the bifurcation parameter A. = oc0 

explicitly displayed, 

<l>(u, A., oc) = 0. (1.5a) 

In general (1.13), the reduced equation associated to (1.5a), consists of a 
system of n equations for n unknowns x 1 , •.. , xn, depending on the param
eters oc = (oc0 , oc 1, .•. , oc,J. In this volume we have developed singularity 
theory methods for the case of a single equation; i.e., n = 1. This case 
occurs when dim ker L = 1. For the most part we reserve the theory of 
systems for Volume II, although we will consider some examples on a case
by-case basis in this volume. Therefore, in the present discussion we assume 
that n = 1. We also rewrite (1.13), displaying the bifurcation parameter 
explicitly 

g(x, A., oc) = 0. (1.13a) 

Suppose we wish to study (1.5a) near some distinguished value of the 
parameter oc, say oc = 0. (This could occur, for example, because oc represents 



§I. The Liapunov-Schmidt Reduction Without Symmetry 295 

imperfections in a mathematical idealization of a physical problern or 
because rx = 0 is an organizing center (cf. Case Study 1).) We regard 
g(x, A., rx) as an unfolding of g(x, A., 0). Let us rephrase Proposition 1.5 in this 
language: For rx near zero, the solutions of (1.5a) are locally in one-to-one 
correspondence with zeros of the unfolding g(x, A., rx). Singularity theory 
methods apply as follows. Suppose g(x, A., 0) is equivalent to a normal form 
h(x, A.) and h(x, A.) has a universal unfolding H(x, A., ß); then there is a 
mapping A of parameter spaces such that 

g( ·, ·, rx) ~ H( ·, ·, A(rx)), 

where ~ indicates equivalence. In other words, any perturbed bifurcation 
diagrams associated to (1.5a) can be found in the universal unfolding of h. 
Moreover, we may apply the techniques of Chapter III, §4 to test whether 
the given unfolding g(x, A., rx) of g(x, },, 0) is universal. If so, every perturbed 
bifurcation diagram in H will occur in (1.5a) for some value of the 
parameter rx. If not, the cautions of Chapter IV, §1 may be applicable. 

In realistic applications it is never possible to derive an explicit formula 
for g(x, A., rx). However it is quite possible to compute various derivatives of 
g at the bifurcation point-the next subsection gives formulas for this task. 
Thus the fact that the solution of the recognition problern (for normal forms 
and for universal unfoldings) depends only on a finite nurober ofthe deriva
tives of g at the bifurcation point is of the greatest importance. 

(d) Calculation of the Derivatives of g 

The calculations of derivatives of Chapter I, §3(e) apply to the present 
context, essentially without change. We quote the results and leave the 
details to the reader. 

(1.14) 

where 

V= d3<D(vi, vk> v1) - d2<D(vi, w1k) - d2<D(vk, w1} - d2<D(v1, wk), and 

ws, = L- 1E d2<D(v5 , vr). 

(d) ogi _ < * "" > Orxz - vi '!'"' ' 

(e) ~ 02~i = <v[, (d<D,.,) · vi- d2<D(vi, L - 1E<D,.,). 
uxi urx1 
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§2. The Elastica: An Example in Infinite Dimensions 

In this section we perform the Liapunov-Schmidt reduction for the cele
brated elastica, the model for a beam buckling under compression considered 
by Euler in 1744. (The buckling model of Chapter I, §1 is a simple, finite
element approximation of the elastica.) Euler found explicit solutions of the 
equations globally, using elliptic functions. We do less, in that our analysis 
is local, but our methods are more generally applicable. 

The section is divided into four parts, as follows: 

(a) Description of the problem. 
(b) Analysis of the range 0 < A. < 1. 
(c) Setting up the reduction at A. = 1. 
(d) Calculation of the derivatives of the reduced function. 

(a) Description of the Problem 

The configuration of the beam, assumed planar, is most conveniently 
described by u(~), the angle the beam makes with the horizontal, as a 
function of arc length ~-(See Figure 2.1.) Let us normalize the rod to have 
length n. The displacement (x(e), y(~)) may be calculated from the formulas 

Equilibria of the beam are characterized by the two-point boundary 
problern 

d2u 
- d~2 - A. sin u = 0; u'(O) = u'(n) = 0 (2.1) 

where A. is the compressive force applied to the beam. This equation is just 
the first variation of a minimization problern with constraints; it is derived 
in Reiss [1969] under the following two assumptions. 

(A) The beam is incompressible but capable of bending, the stored energy 
function being proportional to J0 K2(~) d~ where K is the curvature. 

(B) The ends of the rod are hinged, permitting rotation freely, but are 
constrained to lie on a Jine. 

Our goal in this section is to show tbat: (i) the zero solution of (2.1) is 
isolated and nonsingular for 0 < A. < 1; and (ii) at A. = 1, the equation (2.1) 
is singular; elimination of the passive Coordinates in (2.1) via the Liapunov
Schmidt reduction leads to a single scalar equation g(x, A.) = 0 which at the 
bifurcation point x = 0, A. = 1 satisfies 

g = g;x; = g;x;;x; = g). = 0; gxxx > 0, g).;x; < 0. (2.2) 



§2. The Elastica: An Eample in Infinite Dimensions 297 

Figure 2.1. Coordinates on the beam. 

This will show that the zero solution of (2.1) undergoes a supercritical 
pitchfork bifurcation at A. = 1. Part (ii) of this program divides naturally 
into two halves: first, showing that the reduction to one dimension is 
possible, and second, calculating the derivatives in (2.2). (Remark: In carrying 
out this program, at no time will we derive an explicit formula for g(x, A.). As 
we have stated before, it is as difficult to obtain an explicit formula for g(x, A.) 
as to solve the original problem. Rather we compute the derivatives (2.2) 
using (1.14).) 

(b) Analysis of the Range 0 < 2 < 1 

Weshall write (2.1) in an abstractform 

«<>(u, A.) = 0, (2.3) 

where «1>: ff x IR~ qy is a mapping between Banach spaces defined as 
follows. The domain is 

ff = {u E C2(0, n):u'(O) = u'(n) = 0}, 

where C2(0, n) is the space of real-valued, twice continuously differentiable 
functions, and the range is qy = C0(0, n). Of course 

«<>(u, A.) = - u" - A. sin u. (2.4) 

Observe that «1>(0, A.) = 0 for all A.; in other words, the undeformed 
configuration satisfies the equilibrium equations for any Ioad A.. To in
vestigate possible multiplicity of solutions, we introduce the linearization of 
«1>, 

(drn.) . = 1. «<>(u + hv, A.) - «<>(u) 
'V u.J. V Im h . 

h-+0 

The linearization of «<> at (0, A.) is readily computed to be 

(d«<>)0 .;. · v = - v" - A.v. 

(2.5) 

(2.6) 

(Remark: Only the second term in (2.4) is nonlinear; its Iinearization 
amounts to the small angle approximation.) 
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Lemma 2.1. The linearization (d<l>)o,.< is invertible unless A. is one of the 
eigenvalues J.!k = k2 , k = 0, 1, 2, .... 

PROOF. We claim that v E ker(d<l>)o,.< if and only if v satisfies the Sturm
Liouville problern 

v" + A.v = 0; v'(O) = v'(n) = 0. (2.7) 

The differential equation comes from (2.6); the boundary conditions, from 
the fact that v E f'I. It is readily computed from (2.7) that ker(d<l>)o.;. is one 
dimensional when A. equals J.!k for some k and zero dimensional otherwise. 
According to Appendix 4, (2.7) defines a Fredholm operator of index zero. 
Thus by Remark 1.4, (d<l>)0 ,;. is invertible unless A. equals J.!k· 

Therefore, by the implicit function theorem, u = 0 is the only solution of 
(2.3) near zero for 0 < A. < 1. (Remark: It turns out that, even globally, 
u = 0 is the only solution of (2. 7) for 0 < A. < 1.) 

(c) Setting up the Reduction at .A = 1 

We now begin the Liapunov-Schmidt reduction to study the multiplicity of 
solutions of (2.3) near u = 0, A. = 1. For brevity we define L = (d<l>)0 , 1 . Note 
that L has a one-dimensional kernel spanned by cos ~. W e split the domain 
of <I> into active and passive subspaces by writing 

f'I = IR{cos} EB .A, (2.8) 

where .A = {u E f'I: .fo cos(~)u(~) d~ = 0}; in words, .A is the orthogonal 
complement of IR{cos} in f'I with respect to the inner product 

<u, v) = f u(~)v(~) d~. 
Similarly, we split the range space 

qy = N Et> range L, 

where N = (range L) j_. As noted in (1.4) 

(range L) l_ = ker L*. 

However, L is self-adjoint, so 

N = ker L* = ker L = IR{cos}. 

(2.9) 

(2.10) 

(2.11) 

(Remark: The following is an alternative derivation of (2.11). Since 
dim ker L = 1 and L is Fredholm of index zero, (range L) j_ is one dimen
sional. It is easily checked using integration by parts that cos is orthogonal 
to range L. Thus cos spans (range L) l_ .) 
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This completes Step 1 of the reduction. We observed in Remark 1.6 that 
Steps 2, 3, and 4 required no specific data from the problern under study. 
For Step 5 we choose 

v1 = vi = cos. 

All the data needed for the Liapunov-Schmidt reduction of (2.1) are now 
specified. Therefore solutions of (2.1) near u = 0, A. = 1 are in one-to-one 
correspondence with solutions of a single scalar equation g(x, A.) = 0, where 
g is given by (1.10). 

(d) Calculation of the Derivatives of the Reduced Function 

We obtain the derivatives of g from formulas (1.14). Moreover, in the 
present case <I> is odd with respect to u; i.e., 

<I>(- u, A.) = - <l>(u, A.). (2.12) 

Therefore, when u = 0 we have 

in other words, the troublesome terms containing C 1 in (1.14) vanish by 
symmetry. Thus we have at the bifurcation point x = 0, A. = 1 

(a) g = gx = gxx = g;_ = 0, 

(b) gxxx = (cos, d3<1>(cos, cos, cos)), (2.13) 

(c) g;.x = (cos, d<l>;. · cos). 

Now we evaluate the remaining derivatives in (2.13), showing that 
9xxx > 0 and 9;.x < 0. First considering 9xxx• we claim that at u = 0, A. = 1 

d3 <1>{v1, v2, v3) = v1v2v3. 

Indeed, from formula (A3.2) we have 

(d3<1>)o,l(vl, v2, v3) = - a : 3 a [(tl v; + t2v; + t3v;) 
tl t2 t3 

+ sin(t1v1 + t2Vz + t3v3)Jr,=r2 =t3 =o 
= v1 v2 v3 cos(O) 

= VtVzV3 

as claimed. Substituting (2.14) into (2.13b) yields 

9xxx = (cos, COS3) = f cos4 e de = 3; > 0. 

Similarly <l>;.(u) = -sin u, so that (d<1>;.)0 ,1 • v = -v; thus 

g;.x = (cos, -cos) = -n/2 < 0. 

(2.14) 
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We have therefore shown that the Euler strut undergoes a supercritical 
pitchfork bifurcation at u = 0, A. = 1. Note that, as in classical perturbation 
theory, it is possible to evaluate aii numerical parameters which character
ize this bifurcation. 

We do not consider imperfections in the beam. It was shown in 
Golubitsky and Schaeffer [1979a], using a slightly more complicated for
mulation of the problem, that the two imperfections of a center Ioad and a 
small, uniform curvature in the unstressed state provide a universal unfol
ding of this bifurcation problem. The interested reader is referred to that 
paper for further details. 

We conclude §2 by showing that there is an alternative derivation of 
(2.13a) which does not involve any calculation. Of course, 9x = 0 must be 
satisfied at any singularity of g. We claim that the reduced function g(x, A.) 
inherits the symmetry (2.12), so that 

g(-x, A.) = -g(x, A.). (2.15) 

It foilows from (2.15) that g = 9xx = 9;. = 0 whenever x = 0. To prove the 
claim we re-examine Step 3 in the Liapunov-Schmidt reduction. 
Specificaily, we show that w = - W(- v, A.) satisfies (1.8) as weil as the 
original solution w = W(v, A.). Let us substitute w = - W(- v, A.) into (1.8). 
We find 

E<l>(v- W(-v, A.), A.) = E<l>(-[ -v + W(-v, A.)], A.) 

= -E<I>(-v + W(-v, A.), A.) = 0; 

the first equality is a trivial rearrangement of terms, the second comes from 
(2.12), and t!:J.e third is (1.8) with v replaced by -v. Since by the implicit 
function theorem the function Win (1.8) is unique, we have that 

- W(-v, A.) = W(v, A.). (2.16) 

Finally, we may prove the claim (2.15) by combining (2.16) with (1.9) and 
(1.10), making use of (1.12). Equation (2.15) is an example, in miniature, of 
the effect that the existence of a group of symmetries has on the form of the 
reduced equations. We consider this subject in eamest in the next section. 

§3. The Liapunov-Schmidt Reduction with 
Symmetry 

In this section we discuss the Liapunov-Schmidt reduction when the 
operator in equation (1.5) commutes with a compact group of symmetries. 
(Part of our task is to define these terms.) The main conclusion is that the 
reduced equations inherit the symmetry of the full equation, provided the 
choices made in Steps 1 and 5 of the Liapunov-Schmidt reduction respect 
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the symmetry. (The derivation of (2.15) above is a special case of our 
analysis.) 

Let us attempt to summarize, in the simplest terms possible, the practical 
implications of symmetry for applications. Frequently, as a result of sym
metry, certain low-order derivatives of the reduced function g are forced to 
vanish. Thus to determine the qualitative behavior of the bifurcation, 
higher-arder derivatives of g must be calculated. Sometimes this makes the 
Liapunov-Schmidt reduction considerably more difficult. At other times, 
however, symmetry itself provides a simplication, so that the calculations 
are no more difficult than usual. 

We divide this section into three parts. In subsection (a) we both define 
and give examples of group actions and mappings commuting with these 
actions. Subsection (b) is concerned with restrictions on the choices in the 
reduction process, especially the construction of invariant complements. 
The requirement that the group of symmetries be compact enters here. In 
subsection (c), we prove the main result that symmetry is inherited by the 
reduced mapping. 

Our result is an abstract one; as such, we assume that the reader has 
some familiarity with the basics of group theory. However, it is possible to 
understand the issues by considering several elementary examples. For the 
reader whose background in group theory is weak, we have tried to present 
enough examples to explain the concepts; especially, we have concentrated 
on those examples which will appear in later sections. 

(a) BasicDefinitionsand Examples 

Let r be a group of symmetries. We say that r acts on the Banachspace qy 
if for each y E r there is an associated invertible linear map RY: qy -+ qy with 
the property that for all ')', b E r 

(3.1) 

(Remark: It follows from (3.1) that for the identity element 1 in r, we have 
R 1 is the identity on qy_ We argue as follows. By (3.3), Rf = R1 ; i.e., R 1 is a 
projection. But R1 is invertible, which implies that R1 is the identity.) 

The simplest symmetries arising in applications are reflectional sym
metries. We call a linear operator R on qy a reflection if R 2 =I. Each 
reflection may be identified with an action of the two-element group 
Z 2 = {± 1} by setting R 1 = I, R_ 1 = R. Note that the only nontrivial 
relation in (3.1) is 

R_ 1 o R_ 1 = R1, 

which isanother way of writing R2 = I. 
Basically, there are two ways in which such reflectional symmetries act. 

Typically, we are working with a space qy of functions u: Q-+ IR1, where 
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n c IRk is some domain. The symmetry operation R may operate either on 
the domain or the range of functions in Y. The most common symmetry 
operation of the range is 

Ru= -u. (3.2) 

In other words, R = -I. In the other case, R operates on the domain of 
functions in Y. A typical Situation is that n is invariant under a reflection r 
on IR\ say 

and 
Ru= u o r. (3.3) 

Let us also describe an action of the circle group r = S1 on C2", the 
space of continuous, 2n-periodic functions u: IR ~ IRk. We may associate 
angles ()in S1 with numbers in [0, 2n). Thus we define 

(R6 u)(s) = u(s - ()) (3.4) 

for () E Si, u E c2x· In other words, S1 acts on c2x by change ofphase. 
We now consider what it means for a mapping <I> to commute with the 

action of some group. This concept is expressed by the equation 

(3.5) 

but some discussion is required to make sense of(3.5). Suppose <1>: f!f ~ CiJI is 
a mapping between Banach spaces and that r acts on CiJI; this gives meaning 
to the right-hand side of (3.5). To give meaning to the left-hand side, we 
shall always suppose that f!f is a subspace of CiJI (usually with a different 
norm) such that for all y E r 

u E f!f = R1 u E f!f. (3.6) 

(We call a subspace satisfying (3.6) invariant.) To conclude, weshall say that 
a mapping <1>: f!f ~ CiJI commutes with the action of r on CiJI if f!f is an 
invariant subspace of CiJ1 and (3.5) holds for all y E r, u E f!f. (More 
generally, one might want to define a notion of commuting which did not 
require f!f c CiJI. This can easily be done, but it requires defining a distinct 
action of r on f!f. The definition we have given seems to cover the 
applications.) 

Tobetter understand symmetries in bifurcation problems, let us consider 
particular cases. For example, <I> commutes with the reflection (3.2) if and 
only if <I> is odd; i.e., if and only if 

<1>(-u) = -<l>(u). (3.7) 

This symmetry appeared in the elastica above. The elastica also commutes 
with a symmetry of the form (3.3), where r(e) = n - e. Less formally, this 
simply means that 

<l>(u(n - m = <l>(u)(n - e). (3.8) 
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(A reflection of the form (3.3) will play an important role in our discussion 
of the Brusselator in §§5 and 6. Both types of reflections will contribute in 
Case Study 3.) 

Remark 3.1. The symmetry (3.7) figured prominently in the bifurcation 
analysis of the elastica; by contrast, (3.8) did not matter at all. This 
illustrates an important principle: For symmetry to make a difference in a 
bifurcation problem, it must be broken. Let us elaborate. Symmetry is 
important when a trivial solution u which is symmetric (i.e., Ru = u) 
bifurcates into nontrivial solutions which are asymmetric (i.e., Ru =F u). 
However, if the trivial solution and all bifurcating solutions are symmetric, 
then the presence of symmetry is irrelevant. For the elastica, (3.7) is broken 
but (3.8) is not. 

The following example, which involves the action (3.4) of circle group, 
will be fundamental in Chapter VIII. Let rJ.!/ = C2", and Iet fi = q", the set 
of u E C2" which are continuously differentiable. Consider an autonomous 
k x k system of ODE's 

du 
ds + f(u) = 0. 

To such a system we associate the operator 

<I>: c~"--+ c21t 
given by 

du 
<l>(u)(s) = ds (s) - f(u(s)). 

It is easy to check that this operator commutes with the action (3.4) of S1 • 

The important point here is that f does not depend explicitly on s, only 
implicitly through the dependence of u on s. 

For the rest of this book we will simplify the notation of group actions 
by writing 

when y Er, U E rJ.!/. 

(b) On the Construction of Invariant Complements 

In Step 1 of the Liapunov-Schmidt reduction we must choose complements 
to certain subspaces of a Banach space. When symmetry is present, it is 
important to choose these complements so that they are invariant sub
spaces. (This concept is defined by (3.6). There is an abstract theorem, called 
the Peter-Weyl Theorem (Cf. Adams [1969]) which guarantees that invariant 
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complements exist und er rather general circumstances, provided r is compact. 
However, we prefer not to quote this general result. Rather, we use the fact 
that the situation we are dealing with has extra structure. Specifically, we 
have the following data: 

(a) ractsonll!J; 

(b) <1>: f'1'--> I1!J commutes with r; (3.9) 

(c) L = (d<l>)0 is an elliptic differential operator. 

Moreover, we only need to find two invariant complements M and N, as 
follows: 

f'1' = ker LEB M, I1!J = N EB range L. (3.10) 

Because of this extra structure we can construct invariant complements 
with much less sophisticated arguments. To do so is the task of this 
subsection. 

We shall assume that r is compact. In the applications of Volume I the 
only groups we consider are finite groups and the circle S1 ; of course, all 
these are compact. 

In the following Iemma we begin to develop the above structure. (This 
Iemma does not use the ellipticity of L.) 

Lemma 3.2. Let r, <1>, f'l', ll!J, and L be as in (3.9). Then 

(a) L commutes with r; 
(b) ker L is an invariant subspace of f'1'; 

(c) range L is an invariant subspace ofll!J. 

PROOF. We use the chain rule to differentiate the identity <l>(y · u) = y · <l>(u), 
and we evaluate at u = 0 to obtain Ly = yL, thus proving (a). Next, we 
observe that if u E ker L then Ly · u = y ·Lu = y · 0 = 0. Thus y · u E ker L, 
and (b) is proved. Finally, Iet u be in range L; i.e., u =Lw for some w E f'l'. 
Then y · u = y ·Lw = L(y · w). Thus y · u E range L, and (c) holds. 0 

In §l(a) we observe that we can construct the complements (3.10) by 
defining 

M = (ker L)j_, (3.11) 

provided L is an elliptic differential operator in the latter case. Suppose the 
inner product ( ·, ·)Oll I1!J is preserved by r; in symbo]s 

(y·u,y·v) = (u,v). (3.12) 

Then we claim that the orthogonal complements (3.11) are invariant. To 
show this, suppose u E (ker L) j_. Let '}' E r and Iet V E ker L. By Lemma 3 .2, 
ker L is invariant, so y - 1 · v E ker L. Thus < u, y - 1 · v) = 0. However, by 
(3.12), (y · u, v) = 0. Since this holds for all v E ker L, we see that 
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y · u E (ker L) .L; i.e., (ker L) .L is invariant, as claimed. Similarly for 
(range L) .L. 

The assumption (3.12) is not at all restrictive; it is usually satisfied in 
applications. For example, the natural inner product on C2 " given by 

(u, v) = f" u(s)v(s) ds 

is preserved by the action (3.4) of S1 on C2"; 

(() · u, () · v) = f" u(s - O)v(s - ()) ds = f" u(t)v(t) dt 

= (u, v), 

since one is integrating over a full period of u and v. Even if the inner 
product on qy is not preserved by r, we may construct an inner product 
which is preserved, provided r is compact. Specifically, given an inner 
product < ·, ·) on qlj, Iet 

[u, v] = .Yt'~r) Ir (y · u, y · v) d(y), (3.13) 

where .1f is Haar measure. Then [ ·, ·] is preserved by r. (Remark: 
Formula (3.11) requires that r be compact, so that r has finite total 
measure.) In other words, by averaging over the group, if necessary, we may 
always construct an inner product which is preserved by r; then we define 
the necessary invariant complements by (3.11). (This construction of 
averaging over the group is dicussed in more detail in Volume II.) 

(c) ProofThat Symmetry Is Inherited by the 
Reduced Equation 

Let 

<J>; !!1' X ~k+l -+ qlj, <1>(0, 0) = 0, 

be a smooth mapping between Banach spaces. We want to solve the 
equation 

<l>(u, IX) = 0 (3.14) 

for u as a function of IX near (0, 0). Let r be a compact Lie group which acts 
on qy, and suppose <I> commutes with r; in symbols 

<f>(y • U, IX) = ')' · <f>(u, IX). (3.15) 

(We assume that the parameters IX0 , ••• , IXk are not affected by r.) Let 
L = (d<l>)0 .0 ; we suppose that L is an elliptic differential operator that is 
Fredholm of index zero. 
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The following proposition contains the main analysis of this section. In 
this proposition we focus on the reduced mapping 4> obtained in the fourth 
step of the Liapunov-Schmidt reduction. (Cf. (1.9).) This version of the 
reduced mapping is more convenient for theoretical analysis, because it is 
more intrinsic (i.e., not dependent on the choice of coordinates in Step 5). 
After proving Proposition 3.3 we will discuss the fifth step and the 
symmetry properties of g. 

Proposition 3.3. In the Liapunov-Schmidt reduction of (3.14), if M and N in 
(1.6) are invariant subspaces, then the mapping 

4>: ker L x [Rk+l ""'* N 

defined by (1.9) commutes with the action ojr; in symbols 

4>(y · v, cx) = y · 4>(v, cx). (3 .16) 

Remark. In (3.16) it is imperative that N be an invariant subspace; 
otherwise y · 4>(v, cx) might not belong to N, which would certainly invalidate 
(3.16). 

PROOF OF PROPOSITION 3.3. Let E: rJY---* range L be the projection with ker
nel N. We claim that E commutes with r. For suppose that u = v + w 
where v E range L and w E N. By linearity 

y · E(u) = y · v = E(y · v) = E(y · v + y · w) = E(y · u), 

since both rangeLand N areinvariant subspaces. It follows that I - E also 
commutes with r. 

Let W: ker L x [Rk+l ""'* M be the function defined by (1.8). We claim that 

W(y · v, cx) = y · W(v, cx) (3.17) 

for all y Er. Assuming this claim, (3.16) follows by manipulating (1.9), 
using in sequence (3.17), the linearity of y, (3.15), and the fact that y 
commutes with I - E. 

It remains to prove the claim (3.17). Forthis we use the uniqueness of 
solutions in the implicit function theorem. (A special case of this argument 
was already given in deriving (2.16).) Fix y E r and define 

~(v, cx) = y- 1 • W(y · v, cx). 

We compute that 

E<I>(v + ~(v, cx)) = E<l>(y- 1(y · v + W(y · u, cx))) 
= y- 1 . E<l>(y · v + W(y · v, cx)). 

This last term vanishes since (1.8) is valid for all v; in particular, for y · v. 
Thus ~also solves the implicit equation (1.7a), and, of course, ~(0, 0) = 0. 
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By the uniqueness of solutions to the implicit function theorem, we con
clude that 

w;cu, IX) = W(u, IX). D 

Finally, Iet us discuss the choice of bases for ker Land (range L) j_ in Step 
5 of the Liapunov-Schmidt reduction. Let v1, •.. , vn be an arbitrary basis 
for ker L. Since r acts linearly on ker L, for each }' E r there is a n X n 
matrix of scalars, aij(y), suchthat 

n 

}' · vi = I ai;(y)vi. 
j=l 

(3.18) 

In choosing a basis vf, .. . , v: for (range L) \ we want to arrange that, for 
the same matrices aii(y), 

}' · vr = I aji(y)vj. 
j=l 

(3.19) 

We shall speak of a consistent choice of bases if (3.18) and (3.19) hold 
simultaneously. If we make a consistent choice of bases for ker L and 
(range L) j_, then the reduced equation g: IR" x IRk -+ IR" will satisfy 

g(A(y)x, rx) = A(y)g(x, rx), (3.20) 

where A(y) is the n x n matrix defined by (3.18) and (3.19). 
In the applications we consider, making a consistent choice of bases 

presents no problem. A typical situation is as follows. The kerne! of L is 
two dimensional. The first basis element v1 is even under a reflection R, the 
second, odd. To satisfy (3.19) we must choose v! and v! to have the same 
parity under Ras v1 and v2 , respectively. 

The proof in the general case that bases can be chosen consistently, 
requires facts from the representation theory of Lie groups. Let us sketch 
the issues. Any representation of r may be decomposed into a direct sum 
ofirreducible representations. Now, the linear mapping Lis an isomorphism 
between Mandrange L. Since Lcommutes with r, Linduces an isomorphism 
of the representations of r on !!l and OJJ which are left over, namely, the 
representations of r on ker L and (range L)j_, must be isomorphic. This 
statement is not hard to prove when f!( = OJJ and both are finite dimensional, 
but it requires more care in the infinite-dimensional case. Let us define 
"isomorphic representations". Let v1, ••• , vn and v!, ... , v: be bases for 
ker L and (range L)j_, respectively. Then define n x n matrices A(y), by 
(3.18), and B(y), by 

n 

y. vr = I bji(y)vj. 
j=l 
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To say that the representations are isomorphic means that there is an 
invertible matrix S such that for ally 

B(y) = s- 1 A(y)S. 

Therefore, by a change of basis in (range L) 1., we can always satisfy (3.19). 
To conclude, Iet us consider (3.20) in a special case; specifically, Iet us 

suppose that 

(i) r = Z 2 = {I, R}, where R 2 = I. 
(ii) dim ker L = 1. 

In this case the Liapunov-Schmidt reduction Ieads to a scalar function 
g: IR x IR ~ IR which must satisfy 

g(A(R)x, IX) = A(R)g(x, IX). (3.21) 

Since R2 = I, we have A(R) = ± 1. lf A(R) = + 1, then (3.21) is no re
striction whatsoever--cf. Remark 3.1 that a symmetry must be broken to 
make any difference. On the other band, if A(R) = -1, then (3.21) shows 
that g is Z 2-symmetric, as defined in Chapter VI. 

§4. The Liapunov-Schmidt Reduction of Scalar 
Reaction-Diffusion Equations 

(a) Description of the Problem 

Reaction-diffusion equations are a common source of problems exhibiting 
bifurcation. The simplest such problern is 

U1 = Du~~ - f(u) (4.1a) 

for 0 < e < l, t > 0 subject to some boundary conditions at e = 0 and l, 
say for definiteness Dirichlet conditions 

u(O, t) = u(l, t) = 0. (4.1b) 

In this section we suppose u is a scalar function. In applications u might 
represent the concentration of some chemical or a population density. If 
this concentration were spatially uniform (this situation is called well stirred 
in the chemical engineering literature), then u would evolve according to the 
ODE du/dt = - f(u). However, we are interested in situations where spatial 
inhomogenity prevails, in which case diffusion also influences the evolution 
of u. The right-hand side of (4.la) includes both these effects. For simplicity 
we consider diffusion in just one space dimension. 
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Weshall suppose that 

f(O) = 0 and f'(O) < 0. (4.2) 

Thus u = 0 is an isolated equilibrium point of the ODE which, moreover, is 
unstable. With our choice of boundary conditions (4.1b), u = 0 is also a 
solution of the PDE. In the present subsection, we will establish the 
following two points concerning the stability of the zero solution of the 
PDE. 

(i) If diffusion is sufficiently small (resp. large), the zero solution ofthe PDE 
is unstable (resp. stable). 

(ii) Bifurcation of steady-state solutions of the PDE with nontrivial spatial 
structure is associated with this changeover of stability 

In more picturesque language, point (i) may be rephrased as saying that 
diffusion can stabilize an unstable solution of the ODE. For a single scalar 
equation this is about all that can happen. (Cf. §5 for systems of equations.) 
This is the reason we assume the solution of the ODE is unstable~if we 
started with a stable solution of the ODE, diffusion in the PDE would only 
make it "more stable." 

Physically the most natural way to vary the effects of diffusion is to keep 
D constant but vary the length l of the interval on which the PDE is posed. 
In doing this it is convenient to introduce a scaled variable 11 = !;,jl so that 
all problems are posed on the same domain, independent of l. This scaling 
yields the equation 

D 
ut = ru~~ - f(u). 

Thus we may write the equilibrium equation associated to (4.1) as 

(a) - u~~ + A.f(u) = 0, 

(b) u(O) = u(l) = 0, 
(4.3) 

where A. = 12 /D is our bifurcation parameter. (Apart from boundary con
ditions, equation (2.1) for the buckling beam is a special case of (4.3).) 

(b) Stability of the Trivial Solution 

Use the left-hand side of (4.3a) to define a mapping 

<1>: PI X ~--+ C0(0, 1), 

where PI= {u E C2(0, l):u(O) = u(l) = 0}. (We introduced the minus sign in 
(4.3a) so that positive eigenvalues of d<l> correspond to stability.) The 
linearization of (4.3) at the trivial solution u = 0, for a given value of A., is 

Lu = - u" + A.f'(O)u. 
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This differs from -(d/dyt)2 merely by ij'(O) times the identity. Thus the 
spectrum of L consists of the eigenvalues of -(djdyt)2 shifted by A.f'(O), 
namely 

n = 1, 2, .... 

Note that all eigenvalues of L arepositive provided 

(4.4) 

thus u = 0 is a stable solution of (4.3) for such A.'s. The unstable solution of 
The ODE has been stabilized through diffusion. The PDE has been tied to its 
equilibrium value at the boundary, and provided diffusion is large enough 
relative to the length of the interval, this stabilizes u throughout the 
interval. This establishes point (i) above. 

(c) The Liapunov-Schmidt Reduction 

Consider (4.3) when A. is close to A.0 = n2/lf'(O)I. At A.0 , (d<l>)0 ,_,0 is singular; 
it has a one-dimensional kerne! spanned by u0 (yt) = sin nyt. We analyze so
lutions of (4.3) through the Liapunov-Schmidt reduction, as discussed in §1. 
In Step 1 of the reduction we choose orthogonal complements; i.e., 

M = [IR{sin nyt}] \ 

N = [range L] _]_ = ker L* = IR{sin nyt}, 

the last equality because L is self-adjoint. In Step 5, we choose 

v1 = vj = sin nyt. 

This reduction Ieads to a single equation in one variable g(x, A.) = 0 whose 
solutions locally are in one-to-one correspondence with solutions of (4.3). 
(Remark: It is not possible to determine an explicit formula for g(x, A.). 
Rather, we use (1.14) to compute enough of the derivatives of g at the bi
furcation point so as locally to determine the form of the bifurcation.) 

At x = 0, A. = A.0 , we have that 

g = gx = g_, = 0. 

In Exercise 4.1 the reader is asked to show that 

gxx = A.of"(O) { vi dyt, (4.5) 

Let us suppose that f"(O) # 0. Then gxx and gh are both nonzero. 
Moreover, g_,_, = 0. Thus by Proposition II,9.4 the trivial solution of (4.5) 
undergoes a transcritical bifurcation at A. = A.0 . By an appropriate change of 



§4. The Liapunov-Schmidt Reduction of Scalar Reaction-Diffusion Equations 311 

coordinates g(x, ..1.) may be transformed to the normal form 

±x2 - (..1.- ..1.0)x. (4.6) 

For ..1. =F ..1.0 , (4.7) has two zeros; namely, the trivial solution x = 0 and a 
nontrivial solution x = ±(..1.- ..1.0 ). 

To understand the significance of this latter zero, we recall from the 
Liapunov-Schmidt reduction the correspondence between solutions of 
g(x, A.) = 0 and solutions ofthe full equations, <l>(u, ..1.) = 0. Specifically 

g(x, ..1.) = 0 iff <l>(xv 1 + W(xv 1, ..1.), ..1.) = 0, 

where Wis defined implicitly by (1.8). In other words, to a solution (x, A.) of 
g(x, A.) = Oweassociatethesolutionu = xv 1 + W(xv 1, A.)ofthefullproblem. 

We see from this correspondence that the nontrivial zeros of g(x, A.) are 
associated to solutions of ( 4.3) of the form 

(4.7) 

Moreover, Wx(O, A.0 ) = W;.(O, A.0 ) = 0, the first equality by (I,3.15) and the 
second because the fact that u = 0 is a trivial solution implies that 
W(O, A.) = 0. Thus 

(4.8) 

In other words, the nontrivial solutions of (4.3) have the spatial structure of 
v1 near the bifurcation point. 

It may happen, however, thatf"(O) = 0-for example, this occurs ifj(u) is 
an odd function. In this case gxx = 0 and 

gxxx = A.of"'(O) f vi d17. (4.9) 

(Exercise 4.1.) Now the bifurcation is supercritical or subcritical according 
asf'"(O) is positive or negative, with normal form 

±x3 - A.x. 

(See Proposition 11,9.2.) As above, the nontrivial zero of g corresponds to 
nontrivial solutions of (4.3), and the remarks about the spatial structure of 
these solutions continue to apply. 

Continuing this sequence, if 

f"(O) = f"'(O) = .. · = j<k-l)(O) = 0, 

then we get a bifurcation problern with the canonical form 

±x"- A.n = 0. 

We do not pursue this issue here. Likewise, we do not discuss possible 
imperfections here. 

EXERCISE 

4.1. Use formulas (1.14b, c, e) to verify (4.5) and (4.9). 
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§5. The Brusselator 

(a) Description of the Problem 

Rather more interesting phenomena can occur for systems of reaction
diffusion equations than for a single equation. We illustrate some of these 
phenomena with a specific model, often called the Brusselator. The 
Brusselator was designed as the simplest model consistent with chemical 
kinetics that exhibits oscillatory behavior like the Belusov-Zhabotinsky 
reaction. (Prigogine and Lefever [1974].) (lts somewhat whimsical name is 
meant to suggest "the oscillator created in Brussels.") This model is 
described by the two partial differential equations 

ax o2X 2 at = D1 0~ 2 + X Y- (B + 1)X + A, 

(5.1) 

In these equations X, Y, A, and B all represent chemical concentrations; 
X and Y are unknown, while A and B are assumed fixed, independent of ~ 
and t. As is customary, we shall treat B as the bifurcation parameter. D 1 

and D 2 are diffusion constants. We consider (5.1) on the interval 0 ::;; ~ ::;; l 
for t ;;::: 0, subject to the boundary conditions 

X(O, t) = X(l, t) = A, 

Y(O, t) = Y(l, t) = B/A. 
(5.2) 

Note that X= A, Y = B/A is an equilibrium solution of the ODE, the 
unique equilibrium point in fact. With the boundary condition (5.2), X = A, 
Y = B/A is also a solution of the PDE, which we call the trivial solution. 
(Remark: To avoid possible confusion, Iet us define PDE and ODE in this 
context. Bythe PDE wemean(5.1); bythe ODE we mean the equation which 
results from discarding the terms in (5.1) with ~-derivatives (i.e., the diffusion 
terms ). The 0 OE describes the evolution of a spatially homogeneaus system.) 

The Brusselator exhibits a wide variety of bifurcation phenomena, and it 
is therefore useful as a pedagogical example. In our analysis we shall 
establish the following five points. 

(i) Diffusion can destabilize a stable equilibrium solution of the ODE. 
More specifically weshall show the following. For both the ODE and PDE, 
the solution X = A, Y = B/A is stable when Bis sufficiently small. For the 
ODE this solution is stable if and only if 

(5.3) 
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for the PDE this solution is stable if and only if B < B*, where B* depends 
on the various parameters in the problem. lt may weil happen that 

B* < 1 + A2 • (5.4) 

If so, then in the range B* < B < 1 + A 2 diffusion destabilizes a stable rest 
point of the ODE. 

(ii) As in the scalar case, steady-state solutions of the PDE with non
trivial spatial structures bifurcate from the trivial solution at B = B*. Unlike 
the previous case, however, these solutions may have spatial structure based 
on any eigenfunction of (o/oe)2, not just the first. Specifically, provided l is 
fairly large, the spatial structure of the bifurcating solutions has the form 
sin Jl.e, where 

(5.5) 

This is an absolutely fascinating phenomenon. These solutions have their 
own length scale, determined by (5.5), and it is almost completely inde
pendent of l, the length of the interval. In other words, a periodic structure 
with a length scale determined from parameters in the equation spon
taneously develops from an undifferentiated interval as the bifurcation 
parameter is increased. Many people feel that the emergence of periodic 
structures in growing organisms, such as hair, teeth, feathers, gills, etc., 
involves a mechanism of the kind studied here. 

(iii) We study the bifurcating solutions with the Liapunov-Schmidt 
technique. This reduces the problern to a single scalar equation g = 0. 
However, there are several auxiliary parameters in this problem, and for 
certain values of these parameters additionallow-order derivatives of g may 
vanish at the singularity. In this way we may obtain higher-order singu
larities by varying the parameters. 

(iv) The equation (5.1) and boundary conditions (5.2) commute with the 
reflection 

(5.6) 

Thus our problern provides a nice illustration of a reflectional symmetry of 
the form (3.3). Let us elaborate. At the bifurcation point ker L is spanned 
by 

sin(m<e/l), (5.7) 

where K is an integer such that nK/l is approximately equal to (5.5). If K is 
odd, the eigenfunction (5.7) is invariant under (5.6); in the notation of (3.20) 
we have A(R) = + 1. If K is even, A(R) = -1. lt follows from the discussion 
in §3(c) that when K is odd, symmetry plays no role in our problem; when K 

is even, the reduced equation is Z2-symmetric. In particular, when K is even, 
the minimally degenerate bifurcation is a pitchfork, even though the 
nonlinearity in the equation has quadratic terms which by formula (1.14) 
would appear to contribute the second derivative gxx. 
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(v) We also consider the effect of imperfections on the model. This shows 
by example how to include imperfections in calculations with the 
Liapunov-Schmidt reduction. 

We divide the analysis of this model into two parts as follows. In the 
remainder of §5 we study the stability of the trivial solution; i.e., we address 
points (i) and (ii) above. In §6 we perform the Liapunov-Schmidt reduction, 
addressing points (iii), (iv), and (v) in the process. 

(b) Stability of the Trivial Solution 

We are interested in bifurcation from the trivial solution. Thus we introduce 
incremental variables u = X - A, v = Y- B/A into (5.1). This yields 

(5.8) 

where the linear part is given by 

(u) (D 1 0) 82 (u) (B -1 A 2 )(u) 
L v =- 0 D2 8~ 2 v - -B -A 2 V 

(5.9) 

and the nonlinear part by 

(5.10) 

First Iet us investigate the stability of the ODE. Its linearization about 
the rest point is the 2 x 2 matrix appearing in the second term in (5.9); we 
denote this linearization by L 2 • We have 

tr L 2 = 1 + A2 - B. (5.11) 

Since det L 2 # 0, both eigenvalues of L 2 are nonzero. We claim that the 
real parts of these eigenvalues are of the same sign. To see this, first note 
that L 2 has real entries, so that either the eigenvalues are both real or are a 
pair of complex conjugates. In the latter case the eigenvalues have the same 
real part, so the claim is true. In the former case, also, the eigenvalues must 
have the same sign, since their product, det L 2 , is positive. The sum of the 
eigenvalues, of course, equals tr L 2 , so we may determine this common sign 
by inspection of (5.11). In fact, we find that (A, B/A) is a stable rest point of 
the ODE if and only if (5.3) is satisfied. (The change in stability that the 
ODE undergoes at B = 1 + A2 is accompanied by what is called a Hopf 
bifurcation. See Chapter VIII for a discussion of this phenomenon-we do 
not consider it further here.) 
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We now turn to the stability of the PDE, which we investigate through 
its linearization, given by (5.9). We claim that all eigenfunctions of L have 
the form 

sin(nkefl)( ~:), (5.12) 

where k isapositive integer. To see this, first observe that the two parameters, 
c1 and c2 , in (5.12) yield a two-dimensional subspace of functions which is 
invariant for L; moreover, these functions vanish at the boundary. Therefore, 
for each k there exist two, linearly independent eigenfunctions of L of the 
form (5.12). But by Fourier analysis, 

{ sin(nke/l: k a positive integer} 

is a complete set for scalar functions; arguing componentwise, it follows that 
(5.12) provides a complete set for vector functions. This proves the claim. 

Restrietion of L to the two-dimensional subspace (5.12) gives the matrix 

(5.13) 

We Iook at the eigenvalues of (5.13) through the trace and determinant of 
this matrix. We find 

Note that the trace changes sign when 

(5.14) 

i.e., at a ]arger value of B than where tr L2 in (5.11) changes sign. This fact 
is in keeping with the generally stabilizing effects of diffusion. However, here 
the determinant may vanish, unlike in the previous case. Indeed, it vanishes 
when B = Bk where 

D (d)2 A2(1)2 
Bk = 1 + D: A2 + Dl T + D2 nk . (5.15) 

lf B > Bk, the two eigenvalues of L on the subspace (5.12) are both real and 
of opposite sign; in particular, one of the eigenvalues is negative, so 
instability obtains in this mode. 
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The trivial solution of the PDE loses stability if for any k one of these 
eigenvalues acquires a negative real part. It follows from the above analysis 
that the smallest value of B at which this occurs is 

2 

B = min{B*' 1 + A2 + ~2 (D1 + D2)}, 

where 

(5.16) 

We are trying to show that it is possible for B* to be less than 1 + A 2 • It is 
clear from an inspection of the first two terms in (5.15) that we must choose 
D1 < D2 to achieve this, and it appears that if D1 « D2 the third and fourth 
terms will be manageable. To make this quantitative we estimate the 
minimum in (5.16) by calculus. In this direction, consider (5.15) for a 
moment for all positive real values of k, not just integer values. This 
function is graphed in Figure 5.1. Its minimum occurs at 

(5.17) 

and the minimum value is 

(5.18) 

Observe that B < 1 + A 2 if and only if 

(5.19) 

nk 

Figure 5.1. Instability curve for the Brusselator as a function ofwave number. 
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When is (5.4), B* < 1 + A 2 , satisfied? We shall indicate three circum
stances. In all three cases we suppose that (5.19) holds so that 

(5.20) 

As the first circumstance, suppose that the minimum in Figure 5.1 occurs at 
an integer value of k; i.e., suppose that !(; given by (5.17) is an integer. Then 
B* = B, and it follows from (5.20) that B* < 1 + A2• As the second circum
stance, we claim that B* < 1 + A 2 if l is sufficiently large. Note that B* 2':: B, 
since B is the minimum of the function in Figure 5.1 over all real values of 
the argument while B* is the minimum over only integer multiples of n/1. 
However, if l is large, the integer multiples of n/l are closely spaced. Thus by 
taking l sufficiently large, we may make B* - B as small as desired; in 
particular, by (5.20), we may satisfy B* < 1 + A2 . As the third circumstance, 
we claim that if D1 < D2 then for sufficiently large A we have B* < 1 + A 2• 

At first this may seem obvious; however, B* depends on A. The pointisthat 
B* grows as (DdD 2 )A 2 as A-+ oo, so that if D1 < D 2 , we may satisfy 
B* < 1 + A 2 by choosing A large. 

The above calculation also contains a derivation of (5.5). As B is 
increased, instability first occurs in a mode having spatial dependence 
sin(nke/1), where k is approximately given by (5.17). Formula (5.5) follows 
from this observation. 

§6. The Liapunov-Schmidt Reduction of 
the Bifurcation 

Throughout §§5 and 6, we are studying the bifurcation of steady-state 
solutions of (5.8) with spatial structure from the trivial solution u = v = 0. 
In §5 we showed that the linearized operator L is invertible for B < B*, 
where B* is defined by (5.16), but L is singular for B = B •. When B = B*, 
ker L has dimension one, provided the rninimum in (5.15) is achieved at a 
single integer; this is true generically, and we assume it in our analysis 
below. In the present section we analyze the bifurcation using the 
Liapunov-Schmidt reduction. We have organized this material into six 
subsections. 

(a) Results and their interpretation in the generic case without symmetry. 
(b) Calculations in the generic case without symmetry. 
(c) Imperfections in the generic case without symmetry. 
(d) Higher-arder singularities by varying parameters. 
( e) The occurrence of symmetry. 
(f) Limitations of the analysis. 
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(a) Results and their Interpretation in the Generic Case 
Without Symmetry 

Let K be the integer (assumed unique) which realizes the minimum in (5.16). 
In subsections (a)-(d) we shall suppose K is odd so that the reflectional 
symmetry (5.6) only enters trivially into the problem. 

The Liapunov-Schmidt technique reduces the study of steady-state 
solutions of (5.8) to the study of the zeros of a single scalar equation 

g(x, A.) = 0. (6.1) 

Here A. = B - B* and x parametrizes ker L. In subsection (b) we shall set 
up this reduction and compute a few low-order derivatives of g. Here we 
report the result of the calculation and interpret it. 

Our problern has the trivial solution u = v = 0, from which it follows 
that g(O, A.) = 0. Thus at the singularity at the origin we have 

(6.2a) 

In the next item we show that 

g;)O, 0) < 0 (6.2b) 

and 

(6.2c) 

In particular, gxx(O, 0) vanishes iff 

(6.3) 

Assuming (6.3) does not hold, then g is equivalent to the canonical form 

(6.4) 

where (> = ± 1 equals sgn(A2 - D2/D 1). This normal form describes trans
critical bifurcation; in particular (6.4) vanishes when x = (U. Recall from the 
Liapunov-Schmidt reduction that to each solution (x, A.) of the reduced 
equations there corresponds a solution ofthe full equations (5.8) ofthe form 

(:) = x sin(nK~/l)(~:) + O(x2). 

Thus for each nonzero A., there is an equilibrium solution of ( 5.8) with spatial 
structure described by sin(nK~/1). The sign of (>in (6.4) determines the sign 
of x along the nontrivial solution branch; the sign of x in turn determines the 
the phase of the associated solution of (5.8), as sketched in Figure 6.1 for 
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(ii) A2 < D2/D 1 

Figure 6.1. Graphs ofbifurcating solutions when K = 3, B > B •. 

K = 3, A. > 0. (Note that in the figure we have used the original variables 
in (5.1).) 

Remark. In the title of this item, we used the phrase "generic case without 
symmetry ." By "generic case" we mean: 

(a) The minimizing integer Kin (5.14) is unique. 
(b) A 2 =F D2/D 1 • 

By "without symmetry" we invoke the restriction to odd K. 

(b) Calculations in the Generic Case Without Symmetry 

Let us scale the interval (0, l) to (0, n ). This scales the diffusion coefficients 
by a factor (n/02, but we do not incorporate this change explicitly in our 
notation. 
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The integer K which minimizes (5.16) satisfies 

K ~ (Az/DtDz)lf4 (6.5) 

if l is moderately !arge. Below we derive approximate expressions for the 
derivatives of g(x, A.) assuming (6.5) is exact. (These expressions are exact if 
the right-hand side of (6.5) is an integer.) 

We write the equilibrium equation associated to (5.8) abstractly as 

(l>(w, .A.) = 0, (6.6) 

where w = (u, v), A. = B - B*, and (l>(w, .A.) = Lw + N(w). Of course, 
(d(l>)0 ,0 = L. Let us reduce (6.6) near (0, 0) using the Liapunov-Schmidt 
technique. In Step 1 of the reduction we take orthogonal complements in 
(1.6); i.e., 

M = (ker L) .L, N = (range L) J.. 

The one-dimensional kerne! of L is spanned by w1, where 

w1 (~) =sinK~( D2 K
2 

2). 
-1- D!K 

By the Fredholm alternative, in (6.7) we have 

N = (range L) J. = ker L* = IR{w!}, 

where 

wt(<l ~ ~n K( (l + ?') 

(6.7) 

(6.8) 

(6.9) 

In Step 5 of the reduction we choose the functions (6.8) and (6.9) as bases 
for ker Land (range L) 1., respectively. 

Remark. In Theorem I,4.1, we showed that when reducing a finite
dimensional system, stability of a bifurcating solution could be determined 
from the sign of gx, provided (wf, w1 ) > 0. Although we do not prove it 
here, this result can be extended to reaction-diffusion equations. Let us 
show that for the choices (6.8), (6.9), we have < wi, w1 ) > 0. Note that 

(wf, w1 ) = {(D2 - D1)K2 + D~~4 
- 1} { sin2 K~ d~. (6.10) 

We are interested in cases where (5.4) is satisfied, which requires that 

(6.11) 

Now (6.11) implies that the first term in (6.10) is positive, and (6.11) in 
conjunction with (6.5) implies that the second term is also positive, as 
desired. 
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We calculate the derivatives (6.2b, c) using (1.14b, e): 

(a) gx,iO, 0) = (w!, d2<I>(w1, w1)), 

(b) gl;x(O, 0) = ( wt, d(~~) · w1). 

321 

(6.12) 

Herewe have used the fact that 8<I>j8J..(O, 0) = 0 to discard the second term 
in (1.14e). Now 

(6.13) 

where (u0 , v0 ) are the components ofthe eigenfunction (6.8). On substitution 
of (6.8) into (6.13a) we find 

d2<I>(w1, w1) = -2 sin2 K~{~(D2 K2)2 + 2A(D2 K 2)(-1- D1K 2)}( -D· 
Next we use (6.5) to rewrite (5.18) as 

D 
B = 1 + D: A 2 + 2D1K 2 ; 

we substitute this expression for Band simplfy to obtain 

2 · 2 D2 " 2 
2 2 4 2 ( 1) d <I>(w1, w1) = -2 sm K~ -----::1 {(D2 - D1A )K + 2(D1D2K - A )} _ 1 . 

Observe that the second term vanishes when the value (6.5) is used for K; 
the first term can be reduced to 

2 ~ • 2 (D2 2 ) ( 1) d <I>(wt> w1) = -2...; D1D2 sm "~ D
1 

- A _ 1 · (6.14) 

Finally, we substitute into (6.12a) to obtain 

( D2 ( 2 D2 ) i" . 3 gxxO,O)= +2-A A -- I sm K~d~. 
D1 Jo 

(6.15) 

This integral equals 4/3K, assuming " is odd, but its exact value is not 
important for (6.2c}-only the fact that it is positive. A similar calculation, 
left as an exercise, yields 

from which (6.2b) follows. 
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(c) lmperfections in the Generic Case Without Symmetry 

There is a wide variety of imperfections one might consider in this prob lern. 
For example, we might prescribe boundary data in (5.2) close to the 
equilibrium values but not quite equal; this would obliterate the trivial 
solution. Or we might prescribe Robin type boundary conditions, cor
responding to a nonzero resistance to influx of X and Y. Yet another 
perturbation is to replace the parameter A in (5.1) by the function 

coshJe (~ - !:) 
A(~, e) = A0 

2 , e > 0 (6.16) 

coshJe~ 

which is motivated by the following considerations. In the derivation of 
(5.1), A measures a chemical concentration which is fixed by the experi
menter. In practice, concentrations can only be fixed at the boundary of the 
domain; in the interior concentrations must be determined by solving a 
boundary problern 

o2A 
0~2 - eA = 0 on (0, n), 

A(O) = A(n) = A0 , 

which has (6.16) as solution. Here e measures the rate at which Ais depleted 
relative to its diffusivity. This perturbation also eliminates the trivial 
solution. Similarly, we might allow for depletion of Bin the interior of the 
interval. 

Although there are many possible perturbations of the bifurcation 
problem, the universal unfolding of (6.4) only contains one parameter. 
Hence these different perturbations all have the same qualitative effect 
(provided an appropriate derivative is nonzero.) We choose the imperfec
tion (6.16) for analysis. This illustrates how to handle imperfections within 
the Liapunov-Schmidt reduction. lt should be noted, however, that we 
must have e ;;::: 0 for this perturbation to have physical significance. 

We repeat the Liapunov-Schmidt reduction on the one-parameter family 
of bifurcation problems obtained when A in (5.1) is replaced by (6.16). This 
gives an unfolding G(x, A., e) = 0 of the original reduced equation 
g(x, A.) = 0, where G: IR x IR x IR~ IR. According to Table IV,3.2, in order 
to show that Gis a universal unfolding of g it suffices to show that G. =F 0 
at the origin. Wehave from (1.14d) 

G.(O, 0, 0) = \ wf, ~~). (6.17) 
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We differentiate (5.1) to obtain 

o<D = oA (e, o)(l). 
08 08 0 

Expanding (6.16) in powers of 8 gives 

so that 

On substitution in (6.17) we find 

The integral here is positive so that G.(O, 0, 0) < 0. This gives rise to the 
diagrams sketched in Figure 6.2. Note that 8 > 0 in both diagrams. The 
reason there are two cases in Figure 6.2 is because the sign of A 2 - D2 /D 1 

determines the unspecified sign in (6.4), and this sign interacts with the 
perturbation to determine the effect of the perturbation. Thus we have the 
amusing situation that both perturbed diagrams may be obtained from a 
perturbation of a specified sign, albeit with different parameter values. 

(d) Higher-Order Singularities by Varying Parameters 

We now consider briefty what happens if (6.3) is satisfied. Then 
gxx(O, 0) = 0, so we must compute higher derivatives. It turns out that 
gxxxCO, 0) is positive. The resulting pitchfork bifurcation is illustrated m 

Figure 6.2. Perturbed bifurcation diagrams with e > 0. 
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X 

Figure 6.3. Asymmetrie pitchfork in the Brusselator. 

Figure 6.3. We have drawn the pitchfork somewhat asymmetrically to 
emphasize that this pitchfork does not arise from symmetry, but by varying 
parameters. 

Both branches of the pitchfork are, of course, stable. lf we perturb one of 
the parameters in (6.3), for example, A, we getan unfolding of the pitchfork 
as sketched in Figure 6.4. Let us interpret these diagrams. For values of the 
parameters which satisfy (6.3) approximately, but not exactly, we know from 
above that there is a transcritical bifurcation at B = B*. This behavior is 
apparent in Figure 6.4, but there is additional information-the unstable 
branch of bifurcating solutions which exists for B < B* quickly turns 
araund and becomes a stable branch. Experience suggests this behavior 
often persists for values of the parameters far from those satisfying (6.3), 
which is one of the reasons a local theory has proven so useful. In a specific 
example we must resort to numerical calculation to see whether this 
behavior does in fact persist. 

In cases such as this when a degeneracy in g occurs through varying a 
parameter, we have to calculate a higher-order derivative in g than we 
would expect at first-here gxxx(O, 0). Often this calculation can be quite 
difficult; as discussed in Subsection ( e ), terms involving C 1 must be 

X 

-+---7'-- ------- -B 
I 
I 
I 

\_____ 

~ B* 
-~~'~-----------B 

Figure 6.4. Perturbations of asymmetric pitchfork preserving the trivial solution. 
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evaluated. In the present case, however, it tums out that the troublesorne 
terrn vanishes because ( 6.3) holds, and g"""(O, 0) can be evaluated rather easily. 
See Exercise 6.1. 

(e) The Occurrence of Symmetry 

We now turn to the case where the integer K rninirnizing (5.14) is even. As 
we rernarked above, the syrnrnetry of our problern under the reftection 
~ -+ n - ~ plays an irnportant role here because for even K, sin K~ has odd 
parity with respect to this reftection. Thus we expect a pitchfork bifurcation 
at B = B* in this case. 

Suppose we ignored this syrnrnetry and atternpted to calculate g""(O, 0) as 
above. Forrnula (6.15) is equally valid here, with the irnportant difference 
that for K even the integral vanishes, since sin3 K~ is an odd function under 
reftection through n/2. This provides a rnore traditional argurnent that 
g""(O, 0) rnust vanish. 

Thus we are led to cornpute g"":x(O, 0). This is a rather rnore difficult 
calculation. (Unlike the situation of subsection (d), we do not have (6.3) to 
help us.) We shall indicate the diffi.culties but not carry through the 
calculations. There is an irnportant point to be illustrated here: the 
Liapunov-Schrnidt reduction is fairly tractible if the lowest-order terrns 
which can be nonzero are in fact nonzero, but the difficulty escalates rapidly 
if one rnust go beyond this first stage. 

Frorn (1.14c) we have 

gxxx(O, 0) = (w!, d3<1>(w1, w1, w1)- 3d2<1>(w1, C 1Ed2<1>(w1, w1))). 

The first terrn is similar to our earlier calculations; it only requires the 
evaluation of certain integrals. The second terrn, specifically the L-I, is the 
source of the diffi.culties. (Cornpare with Exercise 6.1.) Let us elaborate. If 
(U, V) = L- 1 Ed2<1>(w1> w 1), then (U, V) is obtained by solving an equation 

L(~) = Ed2<1>(w1, w1). (6.18) 

This is a two-point boundary problern for (U, V). For reference we write 
(6.18) out explicitly without the projection E as follows. 

d2U 2 (A2 D2) · 2 (a) -D1 d~2 - (B- 1)U- A V= 2A - D
1 

sm K~, 

(6.19) 

with boundary conditions 

(c) U(O) = U(n) = V(O) = V(n) = 0. 
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The projection E is needed because, in general, (6.19) is not solvable. The 
operator L is not invertible; thus (6.19) is solvable only if the right-hand 
side is in range L; the projection E instructs us to subtract off an appro
priate multiple of w! so that the right-hand side does belang to range L. Also 
the solution of (6.19) is not unique; since we may add any multiple of w1 to 
a solution. The definition of the generalized inverse L -t teils us to choose 
the unique solution which is oithogonal to w1 . 

We may solve (6.19) in either of two ways. The first metbad is an ODE 
method: (6.19) is a system of ODE's with constant coefficients and the right
hand side isalinear combination of exponentials. Thus, we can find an explicit 
particular solution of (6.19) and then subtract off an appropriate solution of 
the homogeneaus equation to satisfy the boundary conditions. The other 
metbad is to expand the right-hand side .in an infinite series of eigenfunc
tions of L and invert in that way. The latter metbad was followed by 
Auchmuty and Nicolis [1975]. It turnsout that the tinfinite series which this 
metbad yields is explicitly summable. We refer to their paper for details. 
Their formula for 9xxx(O, 0) is rather langer than seems appropriate to 
reproduce here, as our interest in the Brusselator is primarily pedagogical. 

It is noteworthy that 9xxx(O, 0) can have either sign or be zero, depending 
on the parameters A, D1, D2 • Thus for certain values of the parameters the 
Brusselator undergoes a bifurcation governed by the canonical form 

±x5 - A.x = 0, (6.20) 

provided that the fifth-order derivative is nonzero. To our knowledge no 
one has calculated this derivative. The canonical form (6.20) has codimen
sion one within the dass of functions which respect the symmetry; see 
Chapter VI, §2 for a discussion. 

We close with a brief mention of imperfections for the case of K even. 
Above we listed quite a few possible imperfections. However, all of them 
respect the Z 2-symmetry. Therefore, by the stability result of Chapter VI, 
these perturbations have no effect on the qualitative structure of the 
bifurcation, at least for small perturbations. This isarather surprising result, 
in that it seems, at first, the perturbations would destroy the trivial solution 
and distort the bifurcation diagrams significantly. If we wish to find 
parameters which provide a universal unfolding of the bifurcation, it is 
essential to break the Z 2-symmetry, for example, by imposing different 
boundary conditions on the two ends. We do not pursue the matter further 
here. 

(f) Limitations of the Analysis: Multiple Eigenvalues 

There is a rieb structure to the complete set of solutions to the Brusselator, 
as the many papers in the Iiterature on this subject will attest. Wehave not 
attempted to give a complete description of even the steady-state solutions 
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to the Brusselator and, indeed, we have hardly scratched the surface. Our 
purpose was merely, however, to give a flavor for the types of equilibrium 
solutions which may be found by perturbations from the trivial, spatially 
homogeneaus state at the first bifurcation. Even for this limited goal, our 
analysis is incomplete, and in this subsection we discuss these limitations. 

Specifically, there are two principal points around which our analysis is 
incomplete, and these are related. 

(A) We have shown above that the first bifurcation from the trivial 
solution in (5.8) occurs when B = B*, but as a glance at Figure 5.1 will 
show, the subsequent bifurcation points are not far behind. This is es
pecially true if l is large so that the multiples of n/l are closely spaced in 
Figure 5.1. Alternatively, we may derive this conclusion analytically from 
(5.14), the formula for the critical values of Bat which bifurcation occurs. 

lt follows that when l is large, it may be technically correct to analyze the 
first eigenvalue as a simple eigenvalue, but to do so is to ignore much of the 
complicated structure of the solution set. Specifically, the fact that other 
bifurcations occur soon after the initial one means that the analysis based on 
the assumption of a simple eigenvalue is only valid in a rather small 
neighborhood. Moreover, the situation depicted in Figure 5.1 is typical of 
many of the more interesting applications of bifurcation theory; namely, 
that there are many modes available for bifurcation, the bifurcation point 
depending on the wave number as in Figure 5.1. (Cf. Case Study 3.) In our 
opinion, to develop techniques for dealing with this class of difficulties is 
one of the most challenging and interesting open problems of the subject. 

(B) Even when l is relatively small, the assumption that the first eigen
vatue is a simple eigenvalue is true generically, but not always. Indeed if 

(6.21) 

for some integer K, then 

B* = B" = Brc+ 1 ; 

i.e., the first eigenvalue is itself double and the analysis above is not valid. 
Moreover, suppose that (6.21) is only approximately valid. Then again, 

although it is correct to assume that the first eigenvalue is simple, the 
subsequent analysis is valid only on a rather small neighborhood. 

The point of view described in this volume suggests that a better way to 
analyze problems, where (6.21) is approximately valid, is to assume that 
(6.21) holds exactly, analyze the resulting double eigenvalue (a kind of 
organizing center) and perturb. (Cf. Keener [1976], Schaeffer and 
Golubitsky [1981].) 

We end our discussion by noting that thesedouble eigenvalue problems 
always have a nontrivial symmetry. Observe that double eigenvalues result 
from competition between modes of wave number K and K + 1. Since one of 
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these wave numbers is even and one is odd, the reftection (5.6) acts as minus 
the identity on one eigenfunction and as the identity on the other. It follows 
from the analysis of §3(c) that the Liapunov-Schmidt reduction for the 
double eigenvalue problern Ieads to a reduced bifurcation mapping 
g: IR2 x IR ~ IR2 which has a trivial solution and which commutes with the 
reftectional symmetry 

(xl, Xz) ~ (- xl, Xz). 

Such bifurcation problemswill be studied in Volume II. 

EXERCISE 

6.1. Assurne (6.3) is valid; namely, A2 = D2/D 1 . For the operator $ defined in (5.8) 
show that 

Hint: Recall from (1.14c) that 

gxxx = (w!, d3<ll(w1, w1, w1)- 3d2<ll(wi> w2)), 

where w! and w1 are defined in (6.9) and (6.8) and w2 = L -l E(d2<ll)(w1, w1). Use 
(6.3) and (6.14) to show that w2 = 0; thus simplifying substantially the 
calculation. 

ßiBLIOGRAPHICAL COMMENTS 

Several references on the Liapunov-Schmidt technique were mentioned in 
the bibliographical comments for Chapter I. Our treatment of the 
Liapunov-Schmidt reduction with symmetry is based on Sattinger [1979]; 
we have included this material in considerable generality because we will 
need it in Volume II. 

Our motivation to apply singularity theory methods to the elastica 
stemmed from the heuristic article by Zeeman [1976]. We discussed the 
Brusselator partly to illustrate reaction-diffusion equations and partly to 
follow the fashions-the Iiterature on this problern has become enormous. 
Turing [1952] was the first to observe that solutions of reaction-diffusion 
equations with their own length scale could bifurcate from a spatially homo
geneous solution. 



APPENDIX 3 

Smooth Mappings Between Banach 
Spaces 

In this appendix we consider differentiable mappings between Banach 
spaces. We must deal with such operators when reducing nonlinear differen
tial equations by the Liapunov-Schmidt technique. We follow the notation 
introduced in Chapter I, §3(e) for such calculations in the finite-dimensional 
case. Indeed, for the most part, the generalization to infinite dimensions 
only requires checking that (at least one version of) the definitions in the 
finite-dimensional case remain meaningful in infinite dimensions. However, 
our presentation here is self-contained, although terse. (See Chow and Haie 
[1982] for a more complete discussion of differentiable mappings between 
Banach spaces.) 

In §l(b), we defined the differential of a mapping cl>: fi-+ ClJJ between 
Banach spaces using difference quotients. Another definition is 

(dcl>)u ·V = dd cl>(u + tv)l . 
t t=O 

The latter definition is more useful for generalization to higher-order 
derivatives. 

The kth-order derivative of such a mapping at the point u E fi, when it 
exists, is defined as the multi-argument mapping 

dk: fi X • • • X fi-+ ClJJ 
'-.,.--.' 

k times 

given by the following formula, 

Wc1>)u(v1, ... , vk) = -:--- ... ~0 cl>(u +I t;v;)l . 
utl utk i=l t=O 

(A3.1) 

(A3.2) 
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In finite dimensions (A3.2) has a simple representation in terms of the 
higher-order partial derivatives of <I> (Cf. Chapter I, §3(e).); but in infinite 
dimensions, the invariant notation of (A3.2) is preferable because it avoids 
the irrelevant convergence questions which the use of components entails. 

In the following discussion of (A3.2) we will assume that for every 
U, V; E :1J: the mapping !Rk--+ I1JJ given by t--+ <l>(u + L~ t;V;) is of dass Ck, SO 

that the derivative in (A3.2) is meaningful. Note that dk<l> is a symmetric 
function of its arguments; i.e., dk<l>(v 1, •• • , vk) is unchanged by permutation 
of the v;'s. In cases of interest dk<l> is bounded and multilinear; these terms are 
defined as follows. Weshall say that dk<l> is multilinear if 

dk<l>(av1 + bv~, v2 , ••• , vk) = adk<l>(v1, v2 , ••• , vk) 

(A3.3) 

where a, b E IR. Since dk<l> is a symmetric function of its arguments, anal
ogous formulas hold for linear combinations of v's in any argument of dk<l>. 
Weshall call dk<l> bounded if there exists a constant C suchthat 

(A3.4) 

Of course, II · II on the right-hand side of (A3.4) refers to the :1:-norm; on the 
left-hand side, to the '??I-norm. 

In this notation Taylor's formula for approximation by polynomials 
assumes the form 

(A3.5) 

as v--+ 0, where by convention (d0 <1>)u = <l>(u). We make (A3.5) the basis of 
the following definition. 

Definition A3.l. A mapping <1>: :1:--+ '??/ is of dass c• if: 
(i) For every k ~ s, (A3.2) defines a bounded, symmetric, k-linear map 

W<I>)u which depends continuously on u (in the norm topologies). 
(ii) For every k ~ s the estimate (A3.5) holds. 

Definition A3.1 reduces to the definition of C1 in Appendix 1, Chapter 1 
when s = 1. 

Consider, for example, a mapping <1>: C(O, n)--+ C(O, n) of the form 
<l>(u) = c/J(u) where c/J is a C00 -function of one argument. (The nonlinear term 
in (1.1) has this form, with c/J the sine function.) We ask the reader to show 
that c/J is of dass coo and that 

(dk<l>>u(v1, ..• , vk) = q,<k>(u)v1, •• . , vk, (A3.6) 

where q,<k> is the kth derivative of c/J. 
The mappings which arise in physical applications typically are differen

tial operators. It is most important to distinguish between the differentia
bility of such an operator and the differentiability of functions_ in its domain. 
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Consider, for example, the linear operator (d/de)2 : C2(0, n) -+ C(O, n). In this 
case dk<P vanishes for k ;;::: 2, and the conditions of Definition A3.1 are 
readily verified. Thus (d/de)2 is infinitely differentiable, even though it 
operates between spaces of finitely differentiable functions. Indeed, any 
bounded linear transformation defines an infinitely differentiable mapping, 
and (d/de)2 is bounded because of our choice of f!l and IJ.Y. 

The following version of the chain rule will be needed below. Let U(t) 
and Wj(t), i = 1, ... , k, be smooth functions from IR-+ f!l. Then 

d k _ k+l (au ) dt (d <P)u(W1 , •• • , ~) - (d <P)u at' W1, .•• , ~ 

~ k ( o»J ) + . .t... (d <P)u Wl, .. ··~· ... , ~ . 
J=l ut 

(A3.7) 

Herewe assume that <P does not depend explicitly on t; otherwise we must 
add a term with dk(o<Pfot) on the right-hand side of (A3.7). We leave it to the 
reader to derive (A3.7). 



APPENDIX 4 

Some Properties of Linear Elliptic 
Differential Operators 

In this appendix we discuss some properties of elliptic boundary problems 
that are relevant for the applications in this book. We expect this material 
will be most useful as a reference for the reader with at least a vague 
exposure to elliptic theory. (Schechter [1977], Chapters 8-10 give a more 
expansive treatment.) Our approach is very myopic-we discuss only what 
is needed for our applications. 

This appendix is divided into three parts. In the first part we develop the 
theme "elliptic boundary problems define Fredholm operators," primarily 
by example. Indeed, the examples we mention give rise to Fredholm 
operators of index zero. In the second part we briefty discuss the adjoint of 
linear elliptic operators; in the third part, elliptic regularity. 

(a) Elliptic Boundary Problems as Fredholm Operators of 
Index Zero 

Let L be a second-order, linear partial differential operator on IRIN, say 

(A4.1) 

where e = (el, ... , eN) E IRIN. We suppose that aij(e) is a Symmetrie matrix; 
i.e., aii<e) = aie). (This involves no loss of generality, since a skew
symmetric matrix would sum to zero in (A4.1).) We shall call L elliptic if for 
every e E IRIN the matrix a;J{e) is positive definite. For example, if N = 1 
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this condition simply means that a11 W > 0. If L has the form 

N OU 
Lu = Au + .L: bie) :1):. + c(e)u, 

J=l U<"J 

(A4.2) 

where 

is the Laplacian, then L is elliptic. We temporarily restriet our attention to 
operators of the form (A4.2). We assume that b;(e), c(e) are smooth 
functions of e. 

In discussing boundary problems for L we follow the modern practice of 
making L a bounded operator by an appropriate choice of domain and 
range. Let us consider one specific example in some detail; viz., the 
Dirichlet problem. Let Q c !RN be a bounded domain with smooth bound
ary. We want to solve 

Lu =f in Q (A4.3a) 

subject to the boundary condition 

u = 0 on an. (A4.3b) 

We formulate this problern in operator terms as follows. For 0 < s < 1, Iet 
c•(Q) denote the space of functions on the closure of Q that are Hölder 
continuous of exponent s, and Iet ck+•(Q) denote the space of functions u 
such that all partial derivatives of u of order k or less belong to CS(Q). These 
spaces are Banach spaces with respect to the norms 

llu: c•11 = supiu(x)l + sup Iu(~) - ul~y)l, 
x x,y X- Y 

(x*y) 

llu:ck+•u = L IID«u:c•u. 
lal:s k 

Choose some number s in (0, 1). We define L as an operator L: PI-+ tJ.IJ, 
where 

(a) PI= {u E c2+•(Q):u = 0 on 80.}, 

(b) tJ.IJ = CS(Q). 
(A4.4) 

Then L is a bounded operator between these spaces. If u E PI, f E ll!J, and 
Lu = f, then u is a solution to the boundary problern (A4.3). 

The following proposition expresses the theme of subsection (a) in a 
special case. 
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Proposition A4.1. The operator (A4.2) between the spaces (A4.4) is Fredholm 
ofindex zero. 

This result is proved in Berger [1977]. 

Remark. Suppose N = 1; i.e., suppose (A4.3) is a two-point boundary 
problern for an ODE. Then we may simplify the above example by taking 
s = 0. More precisely, for an ordinary differential operator, L is Fredholm 
of index zero between the spaces 

f!( = {u E C2(a, b): u(a) = u(b) = 0}, 

qy = C0(a, b). 

However, when N > 1, we must take s > 0 in order to ensure that range L 
be closed. (Another alternative when N > 1 is to work in Sobolev spaces 
rather than Hölder spaces. We do not pursue this here.) 

Proposition A4.1 is only a very special manifestation of the principle 
"elliptic boundary problems define Fredholm operators." Much more gen
eral elliptic boundary problems than (A4.3) define Fredholm operators of 
index zero. In this book we shall need to generalize (A4.3) in the following 
three directions: 

(i) moregenerat boundary conditions; 
(ii) systems of elliptic equations; and 

(iii) operators of order K, K =F 2. 

All of the cases we consider Iead to Fredholm operators of index zero. Let 
us elaborate on these cases in sequence. 

(i) More General Boundary Conditions 
Suppose we replace (A4.3b) by Neumann boundary condition; i.e., 

au 
-=0 onan aN ' 

where a;aN indicates the normal derivatives. In Operator terms, let 

f!C = {uEC2 +•(n): :; = o}. 

OJI = CS(n). Then L: f!(-+ OJI is Fredholm ofindex zero. 
Similarly, we can formulate a mixed boundary problem; i.e., Dirichlet 

boundary conditions on one portion of an, Neumann boundary conditions 
on the rest. This also Ieads to a Fredholm operator of index zero. (In 
Hölder spaces the points on an where the boundary conditions change 
from one type to the other cause some problems. These difficulties can be 
avoided entirely by working in Sobolev spaces rather than Hölder spaces. 
We do not discuss this further here.) 
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(ii) Systems of Elliptic Equations 
The Brusselator (§§5, 6) Ieads to a system of elliptic differential equations; 
specifically, to equations of the form 

N OU 
Lu = Au + .I Bie) !'l):. + qe)u, 

J=l u."J 
(A4.5) 

where u = (u1, •.• , uk) is a vector of unknown functions and A, B1{e), qe) 
are k x k matrices. Suppose we define 

and 

where C'(Q, IR~ indicates a space of vector-valued functions. Then 
L: f!f -+ l{!f is Fredholm of index zero. 

(iii) Operators of Order K, K #- 2 
The above definition of elliptic may be generalized to operators of arbitrary 
order. In Case Study 3 we will encounter the fourth-order elliptic operator 
in IR2 

L = L\2 + .1(0~ 1 y, (A4.6) 

where L\2 is the biharmonic operator. Of course a fourth-order operator 
needs two boundaty conditions. For example, we might define 

f!f = {u E C4 +'(Q):u = UN = Oon 80}, 

l{!f = C'(Q). Then L: f!f-+ l{!f is Fredholm, with index zero. Many other 
choices of boundary conditions also Iead to a Fredholm operator of index 
zero. 

lt turns out that a partial differential operator with real coefficients can 
be elliptic only if it is of even order. For ordinary differential operators, 
however, there is no such restriction. Indeed in Chapter VIII a first-order 
system of ordinary differential equations with periodic boundary conditions 
arises. Specifically, we have 

f!f = {u E C1((0, b), !Rk):u(O) = u(b)}, 

l{!j = {u E C0((0, b), !Rk):u(O) = u(b)}, 

Lu= u' +Au, 

(A4.7) 

where A is a k x k constant matrix. Then L: f!f-+ l{!f is Fredholm of index 
zero. 
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(b) The Adjoint Operator 

Let L: !!I-. IJjj be a linear, elliptic differential operator where, as above, the 
proper number of boundary conditions is incorporated into the definition 
of !!I. We define the adjoint as a map L*: !!I -.IJjj that satisfies 

<w, Lu)= <L*w, u) (A4.8) 

for all u, w e !!I. Here brackets refer to the inner product (1.2). For example, 
the adjoint of (A4.2) is 

n a 
L*w = Aw- i~1 a~i [bi~)w] + c@w. (A4.9) 

This formula holds for all the boundary conditions for L considered above; 
of course, the precise domain of L* in (A4.9) depends on the choice of 
boundary conditions. Formula (A4.9) may be derived by integration by 
parts. 

Similarly, for (A4.5) we have 

n a 
L*w = A' Aw = L - [B~{~)w] + C'(~)w, 

j= 1 a~j 
(A4.10) 

where A1 indicates the matrix transpose. For (A4.6), L * equals L; in other 
words, L is self-adjoint. For (A4.7) 

(c) Elliptic Regularity 

Let L: !!I-. qy be a linear elliptic differential operator where, as above, 
suitable boundary conditions are incorporated into the definition of !!I. We 
use the phrase elliptic regularity to refer to the following property of elliptic 
equations: 

Suppose u E !!I, f E ilJ/, and Lu = f If f E C00(Q), then so is u. In particular, 
if Lu = 0, then u E C00(Q). 

Elliptic regularity was important in our discussion of orthogonal comple
ments in §l(a), especially the Fredholm alternative 

(range L)J. = ker L*. 

Ofcourse 

ker L* = {u e !!I:L*u = 0}. 

Since L* is elliptic, all the elements of ker L* are actually C 00 {unctions. 
Because of this fact, in §l(a), it does not matter whether (range L) l. is 
computed in qy or in ilJI* and it does not matter whether ker L* is regarded 
as a subspace of IJjj or of ilJ/*-both interpretations give the same answer. 



CHAPTER VIII 

The Hopf Bifurcation 

§0. Introduction 

The term H opf bifurcation refers to a phenomenon in which a steady state of 
an evolution equation evolves into a periodic orbit as a bifurcation param
eter is varied. The Hopf bifurcation theorem (Theorem 3.2) provides 
suffi.cient conditions for determining when this behavior occurs. In this 
chapter, we study Hopf bifurcation for systems of ODE using singularity 
theory methods. The principal advantage of these methods is that they 
adapt well todegenerate Hopf bifurcations; i.e., cases where one or more of 
the hypotheses of the traditional theory fail. The power of these methods is 
illustrated by Case Study 2, where we present the analysis by Labouriau 
[1983] of degenerate Hopf bifurcation in the clamped Hodgkin-Huxley 
equations. 

In §1 of this chapter we introduce the phenomena of Hopf bifurcation by 
examples. In §2 we show how periodic orbits may be characterized as the 
zeros of a certain mapping, and we apply the Liapunov-Schmidt reduction 
to this mapping to obtain a simple equation whose solutions enumerate 
periodic orbits. This approach is due to Cesari and Hale (See Hale [1969], 
Chow and Hale [1982]). At first it seems surprising that an essentially 
dynamic phenomenon (viz., periodic orbits) may be analyzed by steady
state techniques (viz., determining the zeros of a mapping). In §§3 and 4 we 
present the standard Hopf theory--existence and uniqueness of periodic 
orbits in §3 and stability of periodic orbits in §4. In §5 we study degenerate 
cases. 

In each section we have tried to put the statements and discussion of all 
results at the beginning of the section and the proofs at the end. It should 
therefore be possible for the casual reader to absorb the main points of the 
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discussion without being buried by the myriad of details needed to obtain 
rigorous proofs. 

Our exposition follows Golubitsky and Langford [1981], in that we 
stress the following symmetry in the equations: We are working with spaces 
of periodic functions on which the circle group S1 acts through the change 
of phase action (VII,3.4). Of course, this symmetry is propagated by the 
Liapunov-Schmidt reduction. Indeed, our reduction is a two-stage 
process-the first stage Ieads to a mapping fjJ: IR2 x IR x IR -+ IR2 which 
commutes with rotations in the plane; the second stage Ieads to a scalar 
function g: IR x IR-+ R Moreover, g is a Zrsymmetric bifurcation problern 
as analyzed in Chapter VI. Indeed, we study degenerate Hopf bifurcation 
by means of the unfolding theory for Z2-symmetric bifurcation problems in 
Chapter VI. 

There have been several books in recent years on the Hopf bifurcation. 
We mention three: Marsden and McCracken [1976], Hassard et al. [1981], 
and Carr [1981]. Also, the paper of Crandall and Rabinowitz [1978] is an 
excellent reference for the traditional theory; we drew from this paper in 
writing this chapter. 

§1. Simple Examples of Hopf Bifurcation 

In this section we introduce the phenomena of Hopf bifurcation by describ
ing several examples. Consider an autonomous system of ODE 

du 
dt + F(u, A.) = 0, (1.1) 

where F: !Rn x IR-+ !Rn is coo and A. is the bifurcation parameter. Suppose 
that 

F(O, il) = 0; 

so u = 0 is a steady-state solution to (1.1) for all il. 
Hopf showed that a one-parameter family of periodic solutions to (1.1) 

emanating from (u, il) = (0, 0) could be found if two hypotheses on F were 
satisfied. Let A(il) = (dF)o,l be the n x n Jacobian matrix of F along the 
steady state solutions. The first Hopf assumption is: 

A(O) has simple eigenvalues ± i; and 

A(O) has no other eigenvalues lying on the imaginary axis. 
(1.2) 

Remarks (i) Note that if we rescale the time t in (1.1) by setting t = ys for y 
fixed and positive, (1.1) changes to 

du 
ds + yF(u, A.) = 0. 
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Under this scaling the linearization A(,l_) is multiplied by y. As a result we 
may interpret (1.2) as stating that A(O) has a pair of nonzero, purely 
imaginary eigenvalues which have been rescaled to equal ± i. 

(ii) There is no difficulty in proving that periodic orbits for (1.1) exist if 
A(O) has other eigenvalues on the imaginary axis, provided none of these is 
an integer multiple of ± i. However, (1.2) is vital for the analysis of stability. 
For simplicity, we make the assumption (1.2) throughout. 

We claim that A(,l_) has simple eigenvalues of the form a(,l_) ± iro(A), 
where a(O) = 0, ro(O) = 1, and a and w are smooth. This follows from the 
fact that A(,l_) has real entries which depend smoothly on A and that the 
eigenvalues ± i of A(O) are simple. The second Hopf assumption is: 

a'(O) t= 0; (1.3) 

that is, the imaginary eigenvalues of A(,l_) cross the imaginary axis with 
nonzero speed as A crosses zero. 

Hopf's first theorem states that there is a one-parameter family of 
periodic solutions to (1.1) if assumptions (1.2) and (1.3) hold. An elementary 
and instructive example of this is the simplest linear example in the plane 
defined by 

F(u, ,l_) = -G -~)u. (1.4) 

We can compute the phase portraits for the system (1.4) as A varies by 
solving the equations explicitly. With initial condition u(O) = (a, 0), the 
solution to (1.1) is given by u(t) = ae.<t(cos t, sin t). The phase portrait for 
this system is given in Figure 1.1. ForA < 0 the steady state u = 0 is stable 
(i.e., orbits spiral into the origin), while for A > 0 the steady state u = 0 is 
unstable (i.e., orbits spiral away from the origin). However, for A = 0, the 
steady state u = 0 is neutrally stable, and each orbit is 2n-periodic. This is 
the one-parameter family of periodic orbits guaranteed by Hopf. We may 
parametrize these orbits by their amplitudes. 

A.=O 

Figure 1.1. Phaseportraits for the linear ·system (1.4). 
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A.>O 

Figure 1.2. Phase portraits for the nonlinear system (1.5). 

In a sense, Hopf's result above states that this family of periodic 
solutions persists even when higher-order terms (in u and .A.) are added to F. 
However, this one-parameter family of periodic solutions need not remain 
in the plane .A. = 0. In fact, the generic situation is that when higher-order 
terms are added to F, for each fixed .A. there is at most one periodic orbit 
remaining near the origin. 

F or example, consider the system defined by 

F(u, .A.) = -G -~)u + lul 2u. (1.5) 

The phase portraits for this system are given in Figure 1.2. The new 
phenomenon in this example is that for each .A. > 0 there is exactly one 
periodic solution of (1.5). Moreover, this periodic solution is stable in the 
sense that all nearby orbits approach this periodic solution. (Such a 
periodic solution is called a stable Iimit cycle.) In other words, there has 
been an exchange of stability from the steady state u = 0 when .A. < 0 to the 
newly created periodic solution when .A. > 0. The second Hopf theorem 
states that this behavior occurs typically. Tobetter understand this phenom
enon, note that the cubic terms in (1.5) push u towards the interior of 
circles Iu I = const.; for lullarge, these dominate, thus forcing orbits towards 
the origin. On the other band, when lul is small the linear terms in (1.5) 
dominate, and if .A. > 0 the linear terms force orbits away from the origin as 
in Figure 1.1. The existence of a periodic solution results from the com
petition of these forces. 

The "bifurcation diagrams" for these two examples are presented in 
Figure 1.3. We have graphed there the amplitudes of the periodic and 

amplitude 

LA. 
0 0 

(a) Linearsystem(l.4) (b) Nonlinear system ( 1.5) 

Figure 1.3. Schematic diagrams of steady state and periodic solutions in examples (1.4) 
and (1.5). 
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steady-state solutions versus the bifurcation parameter A.. The second 
diagram in Figure 1.3 should remind the reader of the symmetric pitch
fork. We will make this association precise below by means of the 
Liapunov-Schmidt reduction. 

§2. Finding Periodic Salutions by a 
Liapunov-Schmidt Reduction 

In analyzing (1.1) it will be convenient to allow the equation to depend on 
auxiliary parameters from the start. Let F: ~· x ~k+l-+ ~·, and consider 
the equation 

du 
dt + F(u, a) = 0, (2.1) 

where a = (a0 , ... , ak) combines the bifurcation parameter A. = a0 with k 
auxiliary parameters. In all of Chapter VIII, we suppose that 

F(O, a) = 0, (2.2) 

and that A(a) satisfies (1.2), where A(a) = (dF)o,a. 
In this section, first we construct from (2.1) an operator <I> which has the 

property that solutions to <I> = 0 correspond to periodic solutions of (2.1) 
with period approximately 2n, then we apply the Liapunov-Schmidt 
reduction to <1>, and finally we process the reduced equation to derive the 
following theorem, which is the main result of this section. 

Theorem 2.1. Assurne that the system (2.1) satisfies the simple eigenvalue 
hypothesis (1.2). Then there exists a smooth germ g(x, a) of the form 

g(x, a) = r(x2 , a)x, r(O, 0) = 0 

such that locally solutions to g(x, a) = 0 with x ::?: 0 are in one-to-one 
correspondence with orbits of small amplitude periodic solutions to the system 
(2.1) with period near 2n. 

Remarks. (i) In proving Theorem 2.1, we shall show that the period of the 
periodic solutions obtained from this result varies smoothly with x2 • 

(ii) The bifurcation diagrams in Figure 1.3 are just pictures of g = 0, 
x ::?: 0 for the two examples. Theorem 2.1 justifies the drawing of those 
figures. 

This section divides into three parts, in which we do the following: 

(a) Define the operator <1>. 
(b) Describe the Liapunov-Schmidt reduction for <I> and use its properties 

to prove Theorem 2.1. 
(c) Derive the properties of the Liapunov-Schmidt reduction. 
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(a) The Definition of the Operator Cl> 

We want to view the system (2.1) as an operator q, on the space of periodic 
functions and to reduce the problern of finding periodic solutions to (2.1) to 
finding solutions to q, = 0. However, there is a technical problern with this 
approach. We need to consider functions with various periods, and the set 
of all periodic functions is not a linear space-the sum of two periodic 
functions with different periods is not, in general, periodic. However, it is 
possible to circumvent this· diffi.culty by introducing an extra parameter -r 
corresponding to a rescaled time. Specifically, let 

s = (1 + -r)t. 

In terms of s, (2.1) may be rewritten 

du 
(1 + -r) ds + F(u, IX) = 0. (2.3) 

We shall Iook for 2n:-periodic solutions of (2.3). In the process we will be 
able to determine -r. For a given value of -r, a 2n:-periodic solution of (2.3) 
corresponds to a periodic solution of (2.1) with period 2n:/(1 + -r). The small 
amplitude periodic solutions of (2.1) have periods close to 2n; thus weshall 
find that -r ~ 0. 

Let C2" be the Banachspace of continuous, 2n:-periodic functions from ~ 
into ~" with the norm 

!Iu II = max iu(s)l; 

let q" be the Banach space of such mappings that are continuously 
differentiable, with the norm 

llullt = llull + 11~:11· 
We define 

(2.4) 

by (2.3); i.e., 

du 
q,(u, IX, -r) = (1 + -r) ds + F(u, IX). (2.5) 

Then the equation q,(u, IX, -r) = 0 characterizes the 2n:-periodic solutions of 
(2.3). Note that for all IX, -r, 

q,(o, IX, -r) = o. (2.6) 
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The following point is of fundamental importance to our analysis. The 
circle group S1 acts on C2" through the change of phase action (VII,3.4). 
We repeat this formula: for () E S1 and u E c2" Iet 

(() · u)(s) = u(s - ()). (2.7) 

The operator <I> commutes with this group action; in symbols 

<I>(()· u, rx, r) = () · <l>(u, rx, r). (2.8) 

The first term in (2.5) commutes with this action because translation and 
differentiation commute. The second term commutes because the differential 
equation is autonomous; i.e., F does not depend explicitly on s. 

(b) Properties of the Liapunov-Schmidt Reduction 

Having characterized periodic solutions of (2.1) as solutions of the equation 

<I>(u, rx, r) = 0, (2.9) 

we now solve (2.9) using the Liapunov-Schmidt reduction. The lineariz
ation of <I> about (u, rx, r) = (0, 0, 0) is given by 

du 
Lu= ds + A0 u, 

where A0 is the n x n matrix (dF)0 ,0 . (In (1.2) we used the notation A(O) for 
A 0 .) The operator L: q"-+ C2" is Fredholm of index zero. (Cf. Appendix 
4.) The main facts needed for setting up the Liapunov-Schmidt reduction 
are summarized in the following proposition. 

Proposition 2.2. Assurne that (2.1) satis.fies the simple eigenvalue hypothesis 
(1.2). Then 

(a) dim ker L = 2. 
(b) There is a basis VI> v2 for ker L with the following property: Jf we identify 

ker L with IR2 via the mapping 

(x, y)-+ xv1 + yv2 , 

then the action of S1 on ker L is given by 

() . (x) = (c~s () 
y sm () 

- sin () )(x) . 
cos () y 

In words, () acts on IR2 by rotation counterclockwise through the angle e. 
(c) There is an invariant splitting ofC2" given by 

(2.10) 

(2.11) 

C2" = range L EB ker L. (2.12a) 
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This splitting induces a splitting of q" 
q" = ker L EB M, 

where M = (range L) n q". 
(2.12b) 

We prove this proposition in subsection (c) below. Let us now use this 
information to set up the Liapunov-Schmidt reduction. For our discussion 
we refer to the five steps outlined in Chapter VII, §1. In Step 1 of the 
reduction we choose M and N according to the splittings (2.12); i.e., 

M = (range L) n q", N = ker L. (2.13) 

Steps 2, 3, and 4 do not require specific information from the particular 
application intended, and we do not carry out Step 5 here. Rather, we stop 
after Step 4 with the coordinate free form of the reduced mapping cjJ given 
by (VII,l.9). For our choice (2.13) of complements. 

cp: ker L x !Rk+l x IR~ ker L; 

i.e., the same space ker L occurs in both the domain and range of cp. 
(Indeed, this is one reason for not using orthogonal complements in (2.13).) 
Moreover, M and N are invariant complements; thus we conclude from 
Proposition VII,3.3 that cjJ commutes with the action of S1 on ker L; in 
symbols, 

cp(() · v, rx, r) = () · cp(v, rx, r), (2.14) 

where the action of S1 is given by (2.11). (Since ker L occurs in both the 
domain and range of c/J, the situation here is simpler than that of Chapter 
VII, §3-specifically, the issue of making a consistent choice of bases for 
ker L and (range L) J. does not arise.) 

Proposition 2.3. In the Coordinates on ker L defined by (2.10), the reduced 
mapping cjJ has the form 

cp(x, y, rx, r) = p(x2 + y2, rx, r)G) + q(x2 + y2 , rx, r)(- ~). (2.15) 

where p and q are smooth germs satis.fying 

(a) p(O, 0, 0) = 0, 

(c) Pt(O, 0, r) = 0, 

(b) q(O, 0, 0) = 0, 

(d) q.(O, 0, r) = -1. 
(2.16) 

We prove Proposition 2.3 in subsection (c) below. We conclude this 
subsection by deriving Theorem 2.1 from Propositions 2.2 and 2.3. 

PROOF OF THEOREM 2.1. Observe from (2.15), the explicit form for cp, that 
cp = 0 if and only if one of the following relations holds: 

(a) x = y = 0, 

(b) p = q = 0. 
(2.17) 
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Solutions to (2.17a) correspond to the trivial, steady state solution u = 0, 
while solutions to (2.17b) correspond to 2n-periodic solutions of the system 
(2.3); the latter are nonconstant if z = x2 + y2 > 0. It is convenient to 
eliminate the redundancy in solutions to (2.17b) associated to the S1 action. 
Thus, we assume that y = 0 and x ;;::: 0, as any vector may be put into this 
form by a suitable rotation of the plane. Equations (2.17) then have the 
form 

(a) x = 0, 

(b) p(x2, A., -r) = q(x2, A., -r) = 0. 

Now we claim that near the origin the equation 

q(x2 , tX, -r) = 0 

(2.18) 

(2.19) 

may be solved for -c = -c(x2 , tX). Indeed, (2.16b, d) provide the input needed 
to derive the claim from the implicit function theorem. Let us define 

r(z, tX) = p(z, tX, -c(z, tX)), 

Then the equation 

g(x, tX) = r(x2, tX)x. 

cp(x, y, t, tX) = 0 

(2.20) 

(2.21) 

has solutions with x 2 + y 2 > 0 only if t = r(x2 + y 2 , tX); moreover, all 
solutions of (2.21) may be obtained from a solution of 

g(x, tX) = 0, 

with x ;;::: 0, by an appropriate rotation. On the other band, solutions of 
(2.21) locally are in one-to-one correspondence with periodic solutions of 
(2.1). D 

(c) Proofs of Propositions 2.2 and 2.3 

PROOF OF PROPOSITION 2.2. We consider points (a), (b), (c) in sequence. 
(a) Consider the linear system of ODE's with coristant coefficients 

Lu= 0, u E c~". 
where L = dfds + A 0 • The general solution of Lu = 0 is a sum of exponen
tials times eigenvectors of A 0 • Only the eigenvalues ± i Iead to 2n-periodic 
solutions. Let c E cn satisfy 

A 0 c = -ic, C·C = 2, (2.22) 

where the row vector c' is formed from the column vector c by taking the 
transpose and replacing every entry by its complex conjugate. Then 

v1(s) = Re(ei•c), v2(s) = Im(ei•c) (2.23) 

form a basis for ker L. In particular, dim ker L = 2. 
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(b) We consider the basis (2.23) for ker L. A simple calculation using 
(2.23) shows that 

0· v1 (s) = v1 (s - 0) = cos(O)v1 (s) + sin(O)v2(s), 

0· v2(s) = v2(s - 0) = - sin(O)v1 (s) + cos(O)vis). 

Formula (2.11) follows on recalling the identification (2.10). 
(c) We choose a computational proof of this point, so as to minimize the 

use of functional analysis. First, Iet us construct a basis for ker L*, where 

dw 
L*w = -- + A~w 

ds 

is the adjoint operator with respect to the inner product 

<u, v) = 2~ S:" v(sYu(s) ds. 

(2.24) 

(2.25) 

(Cf. Appendix 4.) For the moment we consider only real-valued functions, 
so the complex conjugation in (2.25) has no content; below it will be 
convenient to consider complex-valued functions.) Now A0 and A~ have the 
same eigenvalues; in particular, the hypothesis (1.2) holds for A~. Let d be a 
nonzero vector in cn satisfying 

A~d = id, (2.26) 

and Iet 

(2.27) 

Then vf, vi are a basis for ker L*. It is convenient to normalize d in (2.26) 
according to the following Iemma. 

Lemma 2.4. The eigenvector d may be chosen such that 

(a) d1c = 2, (b) d'c = 0. (2.28) 

Remark. This Iemma expresses the biorthogonality of the right and left 
eigenvectors ofthe matrix A 0 . (Cf. Noble [1969], §10.7.) 

PROOF OF LEMMA 2.4. Let a be any eigenvector of A~; say A~a = p,a. Then 

- ia'c = d(A 0 c) = (A~a)'c = p,dc. (2.29) 

Thus dc = 0 if p, =f. -i. In particular, (2.28b) follows. We claim that 
d'c =f. 0. Suppose otherwise. Then c is orthogonal to all the eigenvectors of 
A~-by hypothesis, c is orthogonal to d, which is the eigenvector of A~ 
associated to the eigenvalue - i; by (2.29), c is orthogonal to all the others. 
This implies that c = 0, a contradiction. Thus d'c =f. 0, as claimed, and we 
may scale d so that (2.28a) holds. (Remark: This argument requires more 
attention if A0 has multiple eigenvalues. However, by (1.2), ± i are not 
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multiple eigenvalues, and this is the essential point. If the remammg 
eigenvalues are not simple we can show that c is orthogonal to their 
generalized eigenspaces.) D 

With this normalization for d, we have the following formulas for various 
inner products of vj and vj: for j, k = 1, 2 

(a) (vj, vt) = !d1 d()jk• 

(b) (vj, vk) = (jjk• (2.30) 

(c) <vj, vk) = (jjk. 

We leave it for the reader to verify these formulas by substituting (2.23) and 
(2.27) into (2.25). 

Now Iet us verify the splitting (2.12a). Since L is Fredholm with index 
zero, 

codim range L = dim ker L = 2. 

In other words, ker L has the right dimension to be a complementary 
subspace to range L. To verify (2.12a) it suffices to show that 

(range L) n (ker L) = {0}. 

It follows from the Fredholm alternative (VII,l.4) that 

range L = (ker L*) L. 

(2.31) 

(2.32) 

Suppose v belongs to the intersection (2.31). Since v E ker L, we may write 
v = xv1 + yv2 • Since v E range L, we deduce from (2.32) that (v, vj) = 0; 
on recalling (2.30b) we conclude that x = y = 0. This verifies (2.31) and 
hence (2.12a). 

Regarding (2.12b), we see from (2.32) that 

M = {u E c~lt: (u, vf> = (u, vD = 0}. 

The decomposition (2.12b) now follows from an argument similar to the 
one justifying (2.12a). D 

We now turn to the proof of Proposition 2.3. The fact that the reduced 
equations have the form (2.15) is a general consequence ofsymmetry. Let us 
isolate what is involved in the next Iemma. 

Lemma 2.5. Let qy: ~2 ~ ~2 be a smooth mapping that commutes with (2.11). 
Then there exist smoothfunctions p(z), q(z) of one real variable suchthat 
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PROOF. Let us write cjJ in coordinates as 

c/J(x, y) = ( c/J1 (x, y), c/J2(x, y)). 

Since cjJ commutes with S1, cjJ commutes with rotation through the angle n. 
Now n · (x, y) = ( -x, - y). Thus 

c/J(- x, - y) = (- c/J1 (x, y), - c/J2(x, y)). 

In particular, if x = s and y = 0, then 

c/Ji- s, 0) = - c/Jis, 0), j = 1, 2. 

In other words, each component c/Jis, 0) is an odd function of s. By 
Corollary VI,2.2 

for some smooth functions p and q. 
More generally, given a point (x, y), choose an angle e such that 

e . (s, 0) = (x, y) where s2 = x 2 + y2 • lt follows that 

c/J(x, y) = c/J(O · (s, 0)) = e · c/J(s, 0) 

= e. (p(s2}s, q(s2)s) 

= p(x2 + y2 )[0 · (s, 0)] + q(x2 + y2 )[0 · (0, s)], 

the last equality following from the linearity of the action (2.11). Now 
e. (s, 0) = (x, y) and we claim that e . (0, s) = (-y, x). lt is clear that e . (0, s) 
is perpendicular to e · (s, 0), since (0, s) and (s, 0) are perpendicular and 
rotation preserves angles. Moreover e · (0, s) has length (x2 + y2 ) 1' 2 • Thus 
to verify the claim it suffices to check the sign, and this is easy. D 

PROOF OF PROPOSITION 2.3. We have already discussed (2.15) in the above 
Iemma. Formula (2.15) differs slightly from Lemma 2.5, in that there are 
auxiliary parameters in (2.15). However, there is no difficulty in extending 
the Iemma to allow cjJ to depend on parameters. 

We verify (2.16) using the formulas (VII,l.14} for the derivatives of the 
reduced function. In order to apply these formulas we now carry out Step 5 
ofthe Liapunov-Schmidt reduction. Specifically, for j = 1, 2, let 

Then 

(a) c/J1(x, 0, IX, t) = p(x2 , IX, r)x, 

(b) c/J2(x, 0, IX, r) = q(x2, IX, r)x. 

(2.34) 

(2.35) 
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Thus 

oc/Jl 
p(O, 0, 0) = OX (0, 0, 0, 0), 

oc/Jz 
q(O, 0, 0) = OX (0, 0, 0, 0), 

which vanish by (VII,l.14a). This proves (2.16a, b). Also from (2.35) 

82c/Jl 
p.(O, 0, r) = OX or (0, 0, 0, r), 

By (VII,1.14e) 

But from (2.5) 

ozc/Jz 
q.(O, 0, r) = ox or (0, 0, 0, r). 

du 
ll>.(u, a, r) = ds . 

349 

Thus ~~>r(O, a, r) = 0, so the second term in (2.36) vanishes. For the first we 
have 

We claim that 

(2.37) 

We substitute (2.37) into (2.36) and recall (2.30b) to prove (2.16c, d). 
It remains to prove (2.37). This is a special case of the following 

formulas: 

(a) 
dv1 ds = -Vz, (b) 

dv2 
ds = vl, 

(c) dvt _ * ds- -Vz, (d) 
dv* 

2 * (2.38) ds = vl. 

These may be obtained by differentiating (2.22) and (2.27); we leave this for 
the reader. D 
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§3. Existence and Uniqueness of Salutions 

In this section we apply the reduction of §2 to discuss periodic solutions of a 
system of ordinary differential equations, 

du 
dt + F(u, IX) = 0. (3.1) 

Here, as in (2.1), IX= (1X0, ••• , 1Xk), where IX0 = A. is the bifurcation parameter 
and IX 1, •.. , IXk are auxiliary parameters. Our goal is to prove the first two 
Hopf theorems. The first theorem provides sufficient conditions for a family 
of periodic orbits to (3.1) to exist; the second provides sufficient conditions 
for the orbits to be paramettized by A., the bifurcation parameter. 

This section is divided into three parts. In subsection (a) we formulate 
our results and apply them to the example (1.5) in §1 above. The last two 
parts contain calculations which may be omitted without loss of continuity. 
The calculations of subsection (b) support subsection (a). The calculations 
of subsection (c) will not be needed until §4, but we include them here, as the 
same techniques are used. 

(a) Statement and Discussion of the Result 

In Theorem 2.1 we reduced the study of periodic orbits of (2.1) to solving a 
single scalar equation 

g(x, IX)= 0, (3.2) 

provided the simple eigenvalue hypothesis (1.2) is satisfied. Now g(x, IX) has 
the form r(x2 , 1X)x for some function r; the nontrivial solutions of (3.2) may 
be obtained by solving 

r(x2 , IX) = 0. (3.3) 

The information in the Hopf theorems is readily obtained if the function 
r in (3.3) is available; the difficult point is to derive the information directly 
from the differential equation (3.1). Suppose for the moment that r is 
known. Let us suppose further that 

r ,t(O, 0) # 0, (3.4) 

where A. = 1Xo is the bifurcation parameter. Then by the implicit function 
theorem we may solve (3.3) for A. as a function of x 2 and IX'= (1X1, ..• , IXk); in 
symbols 

(3.5) 

In other words, if (3.4) holds, then (3.1) has a (k + 1)-parameter family of 
periodic solutions which bifurcate from the trivial solution. (If there are no 
auxiliary parameters in (3.1) (i.e., if k = 0), then we find a one-parameter 
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family of periodic solutions.) In Proposition 3.3 below we express r..(O, 0) in 
terms of F in (3.1) as follows. Assuming (1.2) holds, the matrices 
A(ix) = (dF)0 ,,. have simple eigenvalues close to ± i that vary smoothly with 
oc; we let 

:I:(oc) = u(oc) - iro(oc) (3.6) 

be the eigenvalue of A(oc) satisfying u(O) = 0, ro(O) = 1. In Proposition 3.3 
we show that 

r ;.(0, 0) = u ;.(0). (3.7) 

Thus (3.4) holds ifand only if(1.3) holds. Weshall refer to either condition as 
the eigenvalue crossing condition. 

We now formulate the first Hopf theorem. 

Theorem 3.1. Let the system ofODE's (3.1) satisfy: 

(Hl) the simple eigenvalue condition (1.2); and 
(H2) the eigenvalue crossing condition (1.3) (i.e., u ;.(0) :F 0). 

Then there is a (k + 1)-parameter family ofperiodic orbits of(3.l) bifurcating 
from the steady-state solution u = 0 at oc = 0. 

Theorem 3.1 follows from the above discussion, apart from the verifi
cation of (3.7) in Proposition 3.3 below. 

The above discussion yields no information about how these periodic 
solutions depend on the bifurcation parameter A.. To address this issue we 
consider the power series expansion ofthe function J.L(x2, oc') in (3.5): 

J.L(X2, oc') = J.L0 (oc') + J.Lioc')x2 + J.L4(oc')x4 + · · ·, 

where J.L0(0) = 0. If we assume that 

J.1.2(0) :F 0, (3.8) 

then for each .Ä., (3.3) has precisely one or no solutions x close to the origin 
with x ~ 0 according as 

is positive or negative, respectively. (In other words, the bifurcation is 
supercritical or subcritical according as J.L2 is positive or negative, re
spectively.) Now it follows by implicit differentiation of the identity 
r(z, (J.L(z, oc'), oc')) = 0 that 

J.L2(0) = -r.(O, 0)/r;.(O, 0). (3.9) 

Thus conditions (3.4) and (3.9) are equivalent to 

rz<O, 0) :F 0, r..(O, 0) :F 0. 
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When k = 0, these are precisely the conditions needed to prove that g(x, A.) 
is Z 2-equivalent to the pitchfork bifurcation. Moreover, the pitchfork is Z 2 -

persistent, so auxiliary parameters have no qualitative effect. Let us 
formalize this discussion as the second Hopf theorem. 

Theorem 3.2. Let (3 .1) satisfy h ypotheses (H 1) and (H2) of Theorem 3.1 and 

(H3) r z(O, 0) =f. 0. 

Then for each rx' = (rx 1, ... , rxk) the reduced bifurcation equation g is Z 2 

equivalent to the pitchfork sx3 + c5A.x, where s = sgn rz(O, 0) and 
c5 = sgn a ;.(0). 

Proposition 3.3 below gives a formula for rz(O, 0) in terms of F in (3.1). 
(More properly, the conjunction of Theorem 3.2 and this formula for rz(O, 0) 
should be called the second Hopf theorem.) 

The calculations relating derivatives of r to the function F in (3.1) are 
summarized in the following proposition. In the proposition we use the 
notation (3.6) for the relevant eigenvalues of A(rx) and we continue the 
convention z = x2 • Also, c and d are the eigenvectors of A0 and A~ defined 
by (2.22) and by (2.26), (2.28), respectively. 

Proposition 3.3. 

(a) r;.(O, 0) = a;.(O) = t Re d1A;.(O)c, 
(3.10) 

(b) rz(O, 0) = l Re{d1 · [d2F(c, b0) + d2F(c, b2 ) + ld3F(c, c, c)]}, 

where b0 , b2 E C" are defined by 

(a) A 0 b0 = -fd2F(c, c), 

(b) (A 0 + 2il)b 2 = -id2 F(c, c). 
(3 .11) 

We prove this proposition in subsection (b) below. 
In general, fairly difficult calculations are required to apply Theorems 3.1 

and 3.2. However, in certain specific cases the calculations simplify. We 
mention two. 

Remark 3.4. (a) lf (3.1) is a 2 x 2 system then 

a(rx) = t trace A(rx). (3.12) 

Formula (3.12) follows trivially from the fact that the trace of a matrix is the 
sum of its eigenvalues. 

(b) If (d 2 F)o,o = 0 then the computation of rz(O, 0) simplifies substan
tially. Indeed, from (3.12c) 

rzCO, 0) = l6 Re (it · d3F(c, c, c). (3.13) 

This simplication occurs, for example, if F(u, A.) is odd in u. 
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Let us apply the theorems to the example (1.5) of §1. This example 
exhibits both ofthe simplifications listed in Remark 3.4. Recall that in (1.5) 

( A. -1) F(u, A.) = - 1 A. u + lul 2u. (3.14) 

We will show that for this system r;.(O, 0) = -1 < 0 and rz(O, 0) = 1 > 0. It 
then follows that the reduced bifurcation is Z2-equivalent to x3 - A.x, as 
pictured in Figure 1.3(b). In particular, this system has a unique periodic 
solution for each A. > 0 and no periodic solutions when A. < 0. This 
conclusion supports the description of the phase portrait given in Figure 
1.2. 

Let us compute r;.(O, 0) and rz(O, 0). From (3.14) we see that 
A(A.) = - (1 -1). Hence by (3.12), a(A.) = - A.. We conclude from (3.10a) 
that r;.(O, 0) = -1. Concerning rz(O, 0), we compute from (3.14) the multi
derivative needed to evaluate (3.13) as follows: If u, v, w E ~2, then 

Here u1, u2 are the components of u E ~2, etc. Using (2.22), (2.26), and (2.28) 
we find that c = d = ( 1, - i). Substitution into (3 .15) yields d3 F( c, c, c) = 
8(1,- i). Finally, we conclude from (3.13) that rz(O, 0) = 1. 

Remark. Theorems 3.1 and 3.2 do not address stability of the periodic 
orbits. This is the subject of Hopf's third theorem, which we discuss in §4. 

(b) Proof of Proposition 3.3 

The proof of this proposition is a calculation similar to the proof of 
Proposition 2.3 above. Both proofs are based on an analysis of the 
Liapunov-Schmidt reduction of §2. We assume the reader is familiar with 
the reduction. 

We recall from (2.20) that 

r(z, Q() = p(z, Q(, r(z, ()()). 

Differentiating by the chain rule we find 

(a) r;.(O, 0) = p;.(O, 0, 0) + p,(O, 0, O)r;.(O, 0), 

(b) rz<O, 0) = Pz(O, 0, 0) + p,(O, 0, O)rz(O, 0). 
(3.16) 

By (2.16c), p.(O, 0, 0) = 0, so we may drop the second terms in (3.16). To 
evaluate the first terms we recall from (2.35a) that 

(3.17) 
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where c/J1 is the first coordinate of the reduced mapping 
<f>: ker L x !Rk+l x IR-+ ker L; in symbols 

c/J1(x, y, oc, ·t") = <vf, </>(xv1 + yv2 , oc, -r)). 

(Cf. (2.34).) Differentiating (3.17) and combining with (3.16) we have 

iP</>1 
(a) r .. (o, 0) = aA. ax (0, 0, 0, 0), 

a3 <Pt 
(b) rz<O, 0) = ax3 (0, 0, 0, 0). 

Weshall evaluate the derivatives of c/J in (3.18) with (VII,1.14). 
First consider (3.18a). Wehave from (VII,1.14e) that 

(3.18) 

:;~~ = <vT, d(<l>.<) · v1 - d2<1>(v1, C 1E<I> .. )). (3.19) 

The operator <I> is defined by (2.5); differentiating (2.5) we see that 

aF 
<l>..(u, oc, -r) = aA. (u, oc). 

In particular 

<~> .. (o, oc, -r) = o, 

Thus (3.19) becomes 

:;~~ = <vT, A-<(0) · v1). 

Now from (2.23) and (2.27) 

(a) v1 = Re(ei•c) = i(ei•c + e-i•c), 

(b) vT = Re(ei•d) = !(ei•d + e-isJ). 

We substitute these into (3.20) and find 

(3.20) 

(3.21) 

r..(O, 0) = :;~~ (0, 0, 0, 0) = t Re JrA..(O)c. (3.22) 

This verifies the firsthalf offormula (3.10a) in Proposition 3.3. 

Remark 3.5. Let us isolate a point in the derivation of (3.22) that will be 
needed below. When we substitute (3.21) into (3.20) and expand using the 
bilinearity of the inner product, we get Jour terms. However, two of them 
vanish, because 

(3.23) 
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To verify the other half of (3.10a) we evaluate the inner product on the 
right-hand side of (3.20). Let L(e<) = cr(e<) - iw(cx) be the eigenvalue (3.6) of 
A(cx), and Iet c(cx) be the associated eigenvector suchthat c(O) = c; thus 

(3.24) 

We multiply (3.24) by d1, differentiate with respect to A., and evaluate at 
cx = 0; this yields 

d1 A;.(O)c + d1A0 c). = L).(O)d1c + L(O)d1c. 

We claim that second terms on the right and left cancel; indeed, L(O) = -i, 
while 

a1A0 c). = (A 0 d)'c). = (td)'c). = -ia 1c).. 

Canceling these terms we have 

d1A).(O)c = L;.{O)d1c. (3.25) 

On recalling that d1c = 2 and taking real parts, we complete the proof of 
(3.10a). 

We now turn to (3.18b). Wehave from (VII,l.14c) that 

0;~1 = <xf, d3ll>(v1, v1, v1) + 3d2ll>(v1, W11)), (3.26) 

where 

(3.27) 

Regarding the first term in (3.26), we substitute formulas (3.21) for v1 and vf 
into (3.26) and use the multilinearity to expand into 16 terms, many of 
which vanish as in Remark 3.5; we find 

(3.28) 

To evaluate the second term in (3.26) we must solve the differential equation 

d 2 
ds Wu + A 0 W1 = - Ed F(v1, v1 ). (3.29) 

We recall (3.21a) and use the bilearity of d2F to show 

d2 F(vl, vl) = i{e2 i'd2 F(c, c) + 2d2 F(c, c) + e-Zisd2 F(c, c)}. (3.30) 

Note that d2 F(v1, v1) E range L, since by (3.23) 

<vj, d2F(v1, v1)) = 0, j = 1, 2. 

Thus the projection Ein (3.29) acts as the identity on d2 F(v1, v1). Now (3.29) 
is an inhomogeneous ODE with constant coefficients. Thus there exists a 
particular solution of (3.29) of the form 

(3.31) 



356 VIII. The Hopf Bifurcation 

indeed, (3.31) satisfies (3.29) if and only if b0 and b2 are given by (3.11). 
Moreover, (3.31) is orthogonal to vj, so it belongs to range L. Thus W11 = 
L -l Ed2<1>(v1, v1) is given by (3.31). We substitute (3.31) into (3.26) and 
simplify as in Remark 3.5 to obtain 

(vf, d2<1>(v1, W11)) = t Re{d1 • [d2F(c, b0 ) + d2F(c, b2)]}. (3.32) 

We derive (3.10b) by combining (3.18b), (3.26), (3.28), and (3.32). D 

(c) Another Calculation 

In §4 it will be useful to have a formula for r.u(O, 0). This derivative may be 
calculated by the same techniques as above; it seems natural to include the 
calculation here. 

Proposition 3.6. 

ru(O, 0) = uu(O) = t Re d'[A;.;.(O)c + 2A;.(O)b1], (3.33) 

where b1 E Cn is de.fined by 

(A 0 + il)b1 = -[A;.(O)- ~ .. (O)]c, 

PROOF. First we differentiate the formula 

r(z, ot) = p(z, ot, 1:(z, ot)) 

twice with respect to A.. Recalling that p(O, 0, 1:) = 0, we find 

(3.34) 

r.u(O, 0) = Pu(O, 0, 0) + 2p;.,(O, 0, 0)1:;.(0, 0). (3.35) 

We see from differentiation of (3.17) that 

a3cpl a3cpl 
ru(O, 0) = a;.2 ax (0, 0, 0, 0) + 21:;.(0, 0) a1: a;. ax (0, 0, 0, 0). (3.36) 

There is a slight problern here, in that the derivatives in (3.36) are not 
included on the list (VII,l.14). However, using the fact that <1>(0, ot, 1:) = 0 to 
simplify the calculations, we find that for any two parameters a1 and am 

aot,a;:: ax = <vf, d(<I> .. , ..... ). vl + d(<I> .. )W.:am + d(<I> .. ...)W" .. ,). (3.37) 

where 

W.:aj = -C1Ed(<I> .. )v1 • (3.38) 

(We ask the reader to verify this in Exercise 3.1.) 
Let us use (3.37) to evaluate the two derivatives of cp1 in (3.36). First, we 

show that the dx-derivative vanishes. By direct calculation 

<1>.;. = 0, 
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so the first term in (3.37) vanishes in this case. Next, 

-1 dv1 
W",=L Eds. 

357 

From (2.38a), dvtfds = - v2 • But Ev2 = 0. Thus (3.37) collapses to a single 
term, 

83</J 
o< oA. ox = <vf, d(<D,)W""). 

However d(ll\) · v = dvjds, and 

I * ~ ) _ _ I avr ) _ * _ \V1, ds W""' - \ ds, W""' - <vz, W""')- 0. 

The last equality follows because the derivative W""' belongs to range L and 
is therefore orthogonal to vt. Thus the 'LAx-derivative in (3.36) vanishes. 

For the JA-x-derivative in (3.36), we compute 

0~:</J;x = <xf, Au(O)v1 + 2A_.(O)Wx_.), (3.39) 

where 

d 
ds W"_. + A0 W"_. = - EA_.(O)v1 • (3.40) 

We claim that the solution of the ODE (3.40) is 

w"_. = Re(ei•b1 ), (3.41) 

where b1 E cn is defined by (3.34). On combining (3.41), (3.39), and (3.36) we 
obtain 

(3.42) 

This proves half of (3.33), modulo the claim (3.41). 
To prove (3.41), we write the right-hand side of (3.40) in complex 

notation as 

-EA"'(O)v1 = }EA"'(O){ei•c +e-ise}. (3.43) 

We substitutein sequence these two terms into (3.40). Substituting the first 
yields 

d 1 . 
ds w + A0 w = -IE(A_.(O)e"c). (3.44) 

The projection Eis needed to guarantee that (3.44) has a solution. since the 
operator djds + A0 annihilates one function with the spatial dependence ei•; 
viz., ei•c. E projects onto the range of d/ds + A0 by subtracting off an 
appropriate multiple of ei•c; in symbols, 
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for some constants k. Since range L = ~{vf, v!} .L, the constant k is de
termined by 

d'(A._(O) - kl)c = 0. 

We evaluate k with the following trick. We observe from (3.25) that 

d'[A..(O) - l:..(O)]c = 0; 

thus k = l:._(O) = u._(O)- iro._(O). It now follows that if b1 is defined by 
(3.44), then e;8b1 solves (3.44). Moreover, the condition d'b1 = 0 guarantees 
that e;8b1 E range L. Taking real parts, we obtain the claim (3.40). 

Finally, we complete the proof of (3.33) by operating on the eigenvalue 
relationship (3.24). Specifically, we claim that 

(a) l:u(O)d'c = d1A._;.(O)c + 2d'[A._(O) - l:._(O)]c..(O), 

(b) c._(O) = b1, 
(3.45) 

where b1 is defined by (3.34). Equation (3.45a) follows by differentiating 
(3.24) twice, multiplying by d', and regrouping terms. To derive (3.45b) we 
differentiate (3.24) once and regroup terms to find that 

(A0 - l:(O))c._(O) = -(A._(O) - l:..(O))c. (3.46) 

Since l:(O) = -i, (3.46) is the same equation as (3.34). Thus b1 is a solution 
of (3.46). Of course, for any constant k, b1 + kc is also a solution of (3.46). 
This Iack of uniqueness comes from the fact that any multiple of c(cx), say 
k(cx)c(cx), would also satisfy (3.24). However, if we require that 

c(A.) = c + c(A.) where c(A.) E range(A0 + il), 
then (3.45b) holds. 

We substitute (3.45b) into (3.45a), take real parts, and use the fact that 
d'c = 2; this yields 

u u(O) = t Re d1[AH(O) + 2[A..(O) - l:..(O)]b1]. (3.47) 

But l:._(O) is a scalar and d1b1 = 0. Thus (3.47) provides the missing part of 
(3.33). D 

EXERCISE 

3.1. Making use of the fact that <1>(0, IX, t) = 0 verify the formula for o3c{Jl/01Xl OIXm OX 
given in (3.37) and (3.38). 

§4. Exchange of Stability 

There are three major themes in Hopf bifurcation: existence, uniqueness, 
and stability of small amplitude periodic solutions. In §3 we discussed 
existence and uniqueness; here we discuss stability. The main theorem, 
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Theorem 4.1, states that the stability of the bifurcating periodic solutions 
can be determined from the reduced function g(x, oc) which is defined in 
Theorem 2.1 above. The result is similar to Theorem I,4.1 concerning the 
stability of equilibrium solutions of an ODE-similar both as to content and 
the techniques used in the proof. 

We divide this section into four parts. In subsection (a), we formulate 
Theorem 4.1, our main result, and discuss the principle of exchange of 
stability. In subsection (b), we summarize the essentials of Floquet theory, 
which we use to prove Theorem 4.1. We set the context for proving 
Theorem 4.1 in subsection (c), and we carry out the proof in subsection (d); 
the former section contains the new ideas not present in Chapter I. 

(a) Formulation of the Main Result 

Let u0(t) be a periodic solution of a n x n autonomous system of ODE, 

du 
dt + F(u) = 0. (4.1) 

Roughly speaking, u0 is asymptotically stable if any solution of (4.1) with 
initial data close to (the orbit of) u0 actually tends to (the orbit of) u0 as 
t oooooot oo. More formally, define (9uo c !Rn, the orbit of u0 , by 

f9uo = {u0(t):t E IR}. 

We say that u0 is asymptotically stable if there is an 8 > 0 and {) > 0 such 
that for any solution u(t) of (4.1), 

dist(u(O), f9u0 ) < 8 => dist(u(t), f9u0 ) < {), t > 0 

and 
lim dist(u(t), f9u 0 ) = 0. 
t-+ 00 

Otherwise we will call u0 unstable. 
Consider a (k + 1)-parameter family of ODE of the form (4.1), 

du 
dt + F(u, oc) = 0. (4.2) 

As above, oc = (oc0, ... , ock), where oc0 = A. is the bifurcation parameter. 
Suppose that for all oc, u = 0 is an equilibrium solution of (4.2). In this 
section we strengthen the simple eigenvalue hypothesis (1.2) as follows: If 
( 1, ••• , (n are the eigenvalues of A(O) = (dF)0 ,0 , then we suppose that 

j = 3, .. . ,n. (4.3) 
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By Theorem 2.1, the small amplitude periodic solutions of (4.2) with period 
close to 2n are parametrized by solutions of the scalar equation 

g(x, a) = 0, (4.4) 

where g: IR x IRk+l-+ IR has the form g(x, a) = r(x2 , a)x. In particular, 
nontrivial solutions of (4.4) satisfy the equation 

r(x2 , a) = 0. (4.5) 

The following theorem is the main result of §4. 

Theorem 4.1. Let the linearization of (4.2) at u = 0, a = 0 satisfy (4.3). Then 
the periodic solution of(4.2) corresponding to a solution (x, a) of g(x, a) = 0 is 
asymptotically stable if gx(x, a) > 0 and unstable if gx(x, a) < 0. 

Let us illustrate the theorem in the nondegenerate case described in 
Theorem 3.2; i.e., when 

(a) rz(O, 0) ::/= 0 

(b) r;.(O, 0) ::/= 0 

(J-t2 ::/= 0), 

(a'(O) ::/= 0). 
(4.6) 

For simplicity we suppose k = 0, so that there are no auxiliary parameters 
and we write a = A.. Also for definiteness we shall assume that the equilib
rium solution 

u = 0 is asymptotically stable if A. < 0. 

First Iet us show that (4.7) implies that 

r;.(O, 0) < 0. 

(4.7) 

(4.8) 

By Theorem 1,4.1, u = 0 is unstable if one of the eigenvalues of 
A(.A.) = (dF)0 ,;, has a negative real part. We see from (4.3) that for small .A., 
only the eigenvalues ~(.A.) = a(.A.) ± iw(A.) defined by (3.6) could possibly 
have a negative real part. Since u = 0 is asymptotically stable for A. < 0, no 
eigenvalue has a negative real part; thus we have 

(J ;.(0) :;:; 0. (4.9) 

By Proposition 3 .3, 

a ;.(0) = r .,(0, 0) ::/= 0. (4.10) 

Thus (4.7) follows from (4.9) and (4.10). 
Consider the periodic solutions of (4.2) associated to nontrivial solutions 

of (4.4); i.e., to solutions of (4.5). lt follows from Theorem 3.2 that these 
solutions exist for A. > 0 if rz(O, 0) > 0 (supercritical) and for A. < 0 if 
r,..(O, 0) < 0 (subcritical). We apply Theorem 4.1 to ascertain the stability of 
these solutions. Now 
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___ ___. __________ _ 
supercritical subcritical 

Figure 4.1. Exchange of stability in Hopf bifurcation. 

By (4.5) the second term here vanishes. In a sufficiently small neighborhood 
of the origin, rix2 , A.) does not change sign. Thus by Theorem 4.1 these 
solutions are asymptotically stable if supercritical, unstable if subcritical. 
These two cases are illustrated in Figure 4.1. The phrase "exchange of 
stability" is often used to describe the fact that nontrivial solutions on one 
side of the bifurcation point have the same stability as the trivial solution 
on the other side of the bifurcation point. 

Remarks (4.2). (i) The discussion above completes the justification of the 
phase portrait for (1.5) shown in Figure 1.2. 

(ii) The proof that supercritical solutions are stable and subcritical 
solutions unstable can be extended to the case where rz(O, 0) = 0 but some 
higher-order z-derivative of r is nonzero. (We still need r;.(O, 0) < 0.) See 
Exercise 4.1. 

(b) Floquet Theory 

Floquet theory provides a sufficient condition for a periodic solution of an 
ODE to be asymptotically stable. This condition involves the eigenvalues of 
a certain matrix obtained from the solution. It is similar in spirit to the 
condition of linear stability defined in Chapter I, §4, which provides a 
sufficient condition for an equilibrium solution of an ODE to be asymptot
ically stable. In this subsection we present the essential results of Floquet 
theory, in preparation for the proof of Theorem 4.1. 

In our discussion of Floquet theory we temporarily supress all param
eters in the equation. Let u(t) be a 2n-periodic solution of (4.1). Consider 
the linear system 

dz 
dt (t) + B(t)z(t) = 0, (4.11) 

where B(t) = (dF)u<t> is the linearization of F along the periodic solution u. 
Choose n linearly independent solutions to (4.11), zit), suchthat z1{0) = ei, 
where ei is the unit vector in the jth direction. Let 

(4.12) 
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be the n x n matrix whose columns are zpn), j = 1, ... , n. It follows by 
linearity that if z(t) is a solution to (4.11) with initial condition z(O), then 

z(2n) = M"z(O). (4.13) 

Definition 4.3. The eigenvalues y1, •• • , Yn of the matrix M" defined by (4.12) 
are called the Floquet multipliers of the periodic solution u(t). 

Let us show that there always is one Floquet multiplier equal to + 1. (By 
convention we will take y1 = 1.) Note from (4.13) that + 1 is an eigenvalue of 
M" if and only if there is a 2n-periodic solution of (4.11). We claim that 
dufdt is such a 2n-periodic solution of (4.11). To see this, differentiate the 
relation 

du 
dt (t) + F(u(t)) = 0 

with respect to t; this yields 

d2u du 
dt2 + B(t) dt = 0. 

Thus (4.11) always admits at least one 2n-periodic solution, so one Floquet 
multiplier equals + 1. 

The basic result concerning Floquet multipliers is the following. 

Proposition 4.4. Let y1 = 1, y2, ... , Yn be the Floquet multipliers associated to 
a 2n-periodic solution of{4.1). 

(a) IfiY21, •.• , IYnl < 1, then u(t) is asymptotically stable. 
{b) IfiYil > 1for somej, then u(t) is unstable. 

Remark. If ly2 l, ... , IYnl:::;:; 1 with IYil = 1 for somej, we will call u(t) neutrally 
stable. In this case it cannot be determined from Floquet theory whether 
u(t) is asymptotically stable or unstable. 

A proof of Proposition 4.4 is given in Chapter 14 of Coddington and 
Levinson [1955]. Let us discuss the idea behind the proof, as this is 
relatively simple to explain. Consider a solution v(t) to (4.1) with initial 
condition v(O) near &", the orbit of u. For simplicity, we assume that v(O) is 
close to u(O). Let the solution v(t) ftow for time 2n to v(2n). The main point 
to prove is that v(2n) is approximately equal to u(2n) + z(2n), where z is the 
solution to the linear system (4.11) with initial condition z(O) = v(O) - u(O). 
Moreover, 

u(2n) - v(2n) ~ z(2n) = M"z(O) = M"[v(O) - u(O)]. 

Based on this approximation, it can be shown that the solution v(t) decays 
to the periodic solution u(t) if M., is a contraction in the directions 
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transverse to (!)". Of course, M" is such a contraction if ly2 1, ... , IYni < 1. 
Conversely, if iYii > 1 for some j, then there is a direction in which Mu is an 
expanding; the same approximation shows that there is a solution which 
escapes from any small neighborhood of (!)". 

(c) Preliminaries to the Proof of Theorem 4.1 

In proving Theorem 4.1, we will want to determine the Floquet multipliers 
of a periodic solution of (4.2) that is obtained from the Liapunov-Schmidt 
reduction as in §2. To see what is involved Iet us consider a small amplitude 
periodic solution of (4.2), assuming a. :::::: 0. Since iu(t)i is small for all t, we 
have in (4.11) 

B(t} = (dF}u(t),a :::::: Ao, (4.14) 

where A0 = (dF}0 ,0 • Let ( 1, ... , '" be the eigenvalues of A0 • We now argue 
heuristically that in this situation the following approximate relationship 
exists between these eigenvalues of A0 and the Floquet multipliers of u(t): 

j = 1, ... , n. (4.15) 

To show this, we use (4.14) to approximate (4.11) by the linear system 
with constant coefficients, 

dz 
dt (t) + A 0 z(t) = 0. (4.16) 

Let zit) be linearly independent solutions of (4.16) such that ziO) = ei. 
Form a matrix M 0 with zpn) as its jth column, as in (4.12). Then for any 
solution z(t) of (4.16), 

z(2n) = M0 z(O). (4.17) 

Now for each eigenvalue (i of A0 , (4.16) has a solution of the form 
z(t) = e-l;,;tv, where v is the associated eigenvector. Substituting this z(t) into 
(4.17) we find 

Thus for each j, e- 2"~i is an eigenvalue of M0 • However, by (4.14), 
M0 :::::: M", so the eigenvalues of M 0 will be close to the eigenvalues of M". 
Thisjustifies (4.15), at least heuristically. 

Let us examine (4.15) for eigenvalues which satisfy (4.3). From (4.3) we 
have 

ie- 2 "~ii < 1 for j = 3, ... , n. 
Thus according to (4.15) 

Yt = 1, iYii < 1 for j = 3, ... , n. 
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(We have inserted. explicitly the fact that y1 = 1, although this does not 
follow from ( 4.15).) In other words, a small amplitude periodic solution 
u(t) of ( 4.2) is asymptotically stable if I y2 1 < 1, unstable if I y2 1 > 1. 

In the next subsection we shall give a proof of Theorem 4.1 based on 
these ideas. In the rest of this subsection we develop the mathematics 
needed to make these ideas rigorous. The next proposition begins this 
program. In this proposition we exhibit a relationship between the Floquet 
multipliers of u(t) and the eigenvalues of a linear operator related to u(t); in 
cantrast to (4.15), this relationship is exact. Specifically, we recall from §2 
the Operator Cl>: C}lt X ~k+l X ~--+ c2lt from which periodic solutions to 
(4.2) are constructed; viz. 

du 
<D(u, a, -r) = (1 + -r) ds + F(u, a). (4.18) 

Let u(s) be a (2n-periodic) solution of 

<D(u, a, -r) = 0. (4.19) 

The proposition relates the spectrum of d<D at u(s) to the Floquet multipliers 
of u(s). 

Proposition 4.5. Let u(s) be a 2n-periodic solution of (4.19), and Iet 
')11 = 1, ')12 , •.• , Yn be the Floquet multipliers of u. Then the spectrum of 
( d<D )u,cx, < is 

U .Ü {(1 + -r)[--2
1 log 'Yi + u]}. 

lelLJ=l 1t 
(4.20) 

In words, the spectrum consists of all possible determinations of log ')Ii 
multiplied by -(1 + -r)/2n. 

PROOF. A nurober ( e Cis an eigenvalue of (d<D)u,cx,< if there exists a nonzero 
function v(s) suchthat 

(d<D)u,cx.< · v = (v, v(2n) = v(O). (4.21) 

On the other hand, we may rephrase the definition of Floquet multipliers as 
follows: y e C is a Floquet multiplier of u(s) if there is a nonzero function 
v(s) such that 

(d<D)U,Ot,t. V = 0, v(2n) = yv(O). 

For the reader's convenience, we write out the formula for d<D: 

dv 
(d<l>)u,cx,t ·V = (1 + 't') ds + (dF)u,cx ·V. 

(4.22) 

(4.23) 

The proposition follows from the fact that solutions of (4.21) and (4.22) 
may be related, as follows. If v(s) is a solution of (4.21), then 

v(s) = e -(~/(l +t))•v(s) 
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is a solution of (4.22) with Floquet multiplier 

(4.24) 

Conversely, if v(s) satisfies (4.22), then for any determination of log y 

i3(s) = e-Uou/2"l•v(s) 

satisfies (4.21) with eigenvalue 

1 + 'C 
C = -~logy. 

If the Floquet multipliers Yv ... , Yn are all distinct, then (4.20) follows 
immediately from the above correspondence between solutions of (4.21) and 
of (4.22). If some Floquet multipliers are repeated, then some additional 
analysis is required to show that multiplicities match in (4.20). We leave this 
task for the reader. D 

Since d<l> isalinear operator on an infinite-dimensional space, we expect d<l> 
to have infinitely many eigenvalues. Formula (4.20) shows that this is the 
case. Nonetheless, the spectrum of d<l> is still rather uncomplicated. In 
particular, the spectrum is contained in the union of n lines in the complex 
plane, 

n { 1+'t" } .U CE C:Re C = --2-loglyil . 
J=l n 

(4.25) 

Proposition 4.5 includes the hypothesis that <l>(u, a, •) = 0, but this is not 
necessary to show that the spectrum of d<l> is contained in the union of n 
such lines. Indeed, consider an arbitrary linear n x n ordinary differential 
operator 2 with 2n-periodic coefficients, say 

du 
.Pu = ds + B(s)u. (4.26) 

We claim that the spectrum of 2 is contained in the union of n lines; in 
symbols 

n 

a(.P) c U {CE C:Re C = p). 
j=l 

(4.27) 

If 2 has no multiple eigenvalues, we may prove (4.27) by exhibiting a 
complete set of eigenfunctions of 2 of the form 

I E ll.., j = 1, ... , n. (4.28) 

If 2 has repeated eigenvalues, we must modify (4.28) accordingly. In either 
case, we leave the details of the justification of (4.27) to the reader. 
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Let us argue that the lines (4.27) depend continuously on the matrix B(s) 
in (4.26); i.e., the numbers {,u) depend continuously on B(s). The essential 
point here is the following. lf 

d 
2; = ds + B;, i = 1,2, 

then 2 1 - 2 2 = B1 - B2 , which is a bounded operator. In other words, 2 2 

is a bounded perturbation of IR1 • Thus we may relate the spectrum of 2 2 to 
that of 2 1 with relatively elementary methods. (Cf. Chapter 4, §3 of Kato 
[1976].) Let us formalize this continuity property in the case where it will 
be ofuse in proving Theorem 4.1; viz., the spectrum of d<I>. 

Proposition 4.6. For any (u, IX, T) E c~ .. X [Rk+ 1 X IR, the spectrum of (d<I>)u,a,t 
is contained in the union of n lines, (4.27). Moreover, these lines depend 
continuously on (u, IX, T). 

Remark 4.7. Although {,uJ depend continuously on u, IX, T, this dependence 
on u, IX, T is definitely not dijferentiable. The problern is associated with 
multiple eigenvalues. lndeed, the numbers ,ui are better behaved than the 
individual eigenvalues-near a multiple eigenvalue, branch point phenom
ena may make it impossible to define the eigenvalues as continuous 
functions of u, IX, T. However, this difficulty can be avoided for the ,ui; 
because they are real quantities, one may, for example, order them 

.U1 ::::;; .U2 ::::;; • • ' ::::;; .Un' 

thereby avoiding difficulties concerning their being multiple-valued. 

In connection with Proposition 4.6, let us record the following fact for 
reference below. lf hypothesis (4.3) is satisfied, then for u = 0, IX = 0, T = 0, 
the spectrum of (d<I>)o,o,o is contained in the set (4.27), where 

,u1 = ,u2 = 0; ,ui =Re 'i > 0, j = 3, ... , n. (4.29) 

Above we suggested that in proving Theorem 4.1 we could test for the 
stability of a small amplitude periodic solution of (4.2) by inspection of the 
single Floquet multiplier y2 • We now establish this rigorously. Let u(s) be a 
solution of (4.19) with llull, IX, and T all small. Now the spectrum of (d<I>)"·"'·' 
is contained in 

n { 1+T } .U ':Re ' = - - 2-loglyil . 
1=1 n 

(4.30) 

Of course y1 = 1. According to Proposition 4.6, by making llull, IX, and T 

sufficiently small, we can arrange that the lines (4.30) are close to the lines in 
(4.29); in particular, we can arrange that 

loglyil < 0 for j = 3, ... , n. 
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Thus IY) < 1 for j = 3, ... , n. Therefore, u(s) is asymptotically stable if 
IY2 1 < 1, unstable if IY2 1 > 1. 

In the next subsection we use these ideas to prove Theorem 4.1. 
Specifically, we will show for the periodic solution of (4.2) associated to a 
solution (x, cx) of the reduced equation g(x, cx) = 0 that 

(4.31) 

Let us consider a difficulty which arises in this proof. It is natural to 
attempt to prove (4.31) by mimicing the proof of the corresponding result of 
Chapter I, Theorem 4.1; viz., to define logly2 1 as a smooth function of x and 
cx to show that the quotient 

defines a C"', nonvanishing function near the origin. However, this program 
runs into trouble right at the start because of the fact that (d<l>)o,o,o has a 
double eigenvalue at zero. As discussed in Remark 4.7, this makes the 
eigenvalues of d<l> nondifferentiable functions. The resolution of this diffi
culty comes from the fact that at solutions of <l>(u, cx, r) = 0, zero is always an 
eigenvalue of d<l>, with dujds as the associated eigenfunction. Therefore, we 
consider the eigenvalue problern for d<l> on the quotient space 

this makes the double eigenvalue at zero simple. In this way we are able to 
define a smooth function fl(X, cx) which equals logly2 1 when g(x, cx) = 0. In 
the rest of this subsection we discuss the construction of 11 more fully; in 
subsection (d) we prove Theorem 4.1 by applying the techniques of Chapter 
I to the quotient fll9x. 

lt is helpful for this discussion to recall the notation used in §2 to solve 
the equation 

<l>(u, cx, r) = 0 (4.32) 

with the Liapunov-Schmidt reduction. In Proposition 2.2(c), we decom
posed the domain and range of <1>, 

(a) C2" = range L EB ker L, 

(b) q" = ker L EB M, 
(4.33) 

where M = (range L) n q". We invoked the implicit function theorem to 
determine a mapping W: ker L x ~k+l x IR-+ M suchthat 

E<l>(v + W(v, cx, r), cx, r) = 0, (4.34) 
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where E is projection onto range L. Let v1, v2 and vf, v! be the bases for 
ker L and (range L) .L given by (2.23) and (2.27), respectively. Then we 
defined 1:(x2 , oc) by solving the equation 

(v!, <l>(xv1 + W(xv1, oc, 1:), oc, 1:)) = 0, (4.35) 

and we Iet 

g(x, oc) = (vf, <l>(xv1 + W(xv1, oc, 1:(x2 , oc)), oc, 1:(x2 , oc))). (4.36) 

This construction led to the following conclusion: lf g(x, oc) = 0, then 

u = xv1 + W(xv1, oc, 1:(x2, oc)) (4.37) 

satisfies (4.32); conversely, up to changes of phase, every small amplitude 
periodic solution of (4.32) arises through this construction. Let us define a 
mapping Q: IR x !Rk+l-+ q" by the right-hand side of(4.37); viz., 

(4.38) 

Below we shall indicate derivatives with respect to s by a dot; thus 
Q = dQjds. By (2.38a) 

n = -xv2 + w. 
Moreover W E M, since M = (ker L*) .L and by (2.38c, d), 

I * dW) _ I dvj ) _ 0 \vi'ds --\ds'w -. 

(4.39) 

In words, we define J-L(X, oc) as the continuously varying eigenvalue of d<l> 
at the point (Q(x, oc), oc, 1:(x2 , oc)) on the quotient space C2,./IR{Ö}, such that 
JJ-(0, 0) = 0. Let us write an equation for J-L: 

(d<l>)n(x,"'>·"'·'(x2,"') · (v 1 + w) + 17Ö = J-L(V 1 + w). (4.40) 

Here wEM and 17 E IR. Equation (4.40) states that v1 + w is an eigenfunc
tion of d<l> with eigenvalue J-L, modulo an error that is proportional to n. 
Note that the projection of the eigenfuncuon onto ker L is v1 . By com
parison, we see from (4.39) that the projection of the error term Q onto 
ker L is (a multiple of) v2 • 

Unfortunately, the error term Q in (4.40) vanishes in the Iimit x-+ 0. 
Specifically we claim that 

0(0, oc) = 0, lim Q(x, O) = v2 • 

x-+0 X 

The basis for this claim is the fact that 

W(O, oc) = W"(O, 0) = 0. (4.41) 
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(Cf. (1,3.15).) Indeed, the claim follows on substituting (4.41) into (4.39). We 
must replace Q by 0/x in (4.40) to avoid difficulties as X-+ 0; i.e., J1. is 
defined by 

(d<D)n(x,«),<X,t(x>,,.J · (vl + w) + 1'/(Ö/x) = JL(V1 + w). (4.42) 

The following two lemmas contain the properties of the function JL(X, oc) 
needed for the proof of Theorem 4.1. 

Lemma 4.8. Equation (4.42) de.fines a C00 1unction JL(X, oc). 

Lemma 4.9. lf g(x, oc) = 0, then 

where y2 is the second Floquet multiplier of the periodic solution u = Q(x, oc) 
of(4.32). 

PRooF OF LEMMA 4.8. Equation (4.42) contains two scalar unknowns, J1. and 
J'f, and one vector unknown, w. Weshall write (4.42) as an equation 

'P(JL, J'f, w; x, oc) = 0 (4.43) 

and solve (4.43) for Jl., J'f, and w by the implicit function theorem. 
Specifically, let 

(4.44) 

be defined by 

'P(JL, J'f, w; x, oc) = (d<l))n(x,«),IX,t(x>,,.J · (v1 + w) + J'fÖ.(x, oc)/x - JL(V1 + w). 

Let us compute the derivatives of 'P at the origin. For the two scalar 
unknowns we have 

for w, since (d<l))o,o,o = L, we have 

range(dw 'P) = range(L IM) = range L. 

Now by (4.33a), 

C2,. = IR{v1} EB IR{v2 } EB range L. 

Thus the differential d'P at the origin maps the first three factors in (4.44) 
isomorphically onto C2,.. Therefore, by the implicit function theorem, we 
may solve (4.43) near the origin for Jl., J'f, and w as smooth functions of x 
and oc. 0 
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PRooF OF LEMMA 4.9. First we show that J.J.(x, cx) is an eigenvalue of d«l> at 
the point (Q(x, cx), cx, -r(x2 , cx)) on the whole space C2". This is in addition to 
the eigenvalue zero associated to the eigenvector Q(x, cx). Let V = v1 + w be 
the eigenvector of d«l> on C2"/IR{Q}, as defined by (4.40). Thus we have two 
equations 

(a) d«l> · Q = 0, 

(b) d<l> · V= J.J.V- rtÖ.. 
(4.45) 

If J.J.(X, cx) =F 0, then 

i.e., J.l is an eigenvalue of d«l> associated to the eigenfunction V- (rt/J.J.)Ö.. If 
J.l = 0, then 

i.e., zeroisadouble eigenvalue of d<l>, with Vas a generalized eigenfunction. 
Now the spectrum of d«l> is contained in the union of n lines, each 

associated to loglyil for some j, as in (4.30); J.J.(X, cx) must lie on one of these n 
lines. For j = 3, ... , n, logly) is bounded away from zero, so J.J.(X, cx) cannot 
lie on one of these. Also logly11 = 0, and this line is already accounted for by 
the eigenfunction n. Thus J.l must lie on the line associated to logly2 1, and 
the lemma follows. D 

(d) Proof of Theorem 4.1 

From this point on, our proof of Theorem 4.1 follows the proof of Theorem 
4.1 in Chapter I. Specifically, let g(x, cx) be defined by (4.4). As discussed 
above, it suffices to prove that J.J.(X, cx) and g"(x, cx) have the same sign in some 
neighborhood of the origin. We do this using Proposition 1,4.2 to show that 
the quotient J.J./g" defines a positive, C00-function. 

Before starting this, let us record several formulas which occur in the 
Liapunov-Schmidt reduction; these formulas will be needed for the proof. 
First, for any function u E C2", 

u = 0 iff (vf, u) = 0, (v~, u) = 0 and Eu = 0. (4.46) 

Next, if Q(x, cx) is defined by (4.38), then 

(a) E<l>(Q(x, cx), cx, -r(x2, cx)) = 0, 

(b) (v~, Cl>(Q(x, cx), cx, -r(x2, cx))) = 0, (4.47) 

(c) g(x, cx) = (vf, <l>(Q(x, cx), cx, -r(x2 , cx))). 
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These equations repeat (4.34), (4.35), and (4.36) in our present notation. 
Finally, we compute from (4.18) that 

(4.48) 

We now show that 

Ox(x, IX) = 0 implies J.-t(X, IX) = 0; 

i.e., we verify condition (a) in Proposition I,4.2. Suppose that gx(x, IX) = 0. 
From an inspection of (4.40), we see that to show that J.-t(x, IX) = 0 we must 
prove 

(d<ll) · V+ 110. = 0 (4.49) 

for some '1 E IR and some function V of the form V= v1 + w, where w E M. 
We will verify (4.49) with 

V= nx(x, IX), '1 = 2xrz(x2, (), (4.50) 

where z = x 2 • Specifically, differentiate (4.47c) with respect to x and use 
(4.48) to show that 

Ox = <vf,d<ll·Ox + 2xrz0); 

since Ox = 0, we conclude that the left-hand side of (4.49) is orthogonal to v'J' 
for the choices (4.50). Similarly, we show that the left-hand side of (4.49) is 
orthogonal to v~ by differentiating (4.47b). Finally, we deduce that E applied 
to the left-hand side of (4.49) vanishes by differentiating (4.47a). Applying 
(4.46), we see that the left-hand side of (4.49) itself vanishes; in other words, 
J.-t(X, IX) = 0. 

We turn to condition (b) in Proposition I,4.2. As in Chapter I, we can 
only verify this condition by inserting another parameter into the differen
tial equation. Thus we define 

F(u, IX, ß) = F(u, IX) + ßu. (4.51) 

Similarly, Iet 

- du -
<ll(u, IX, ß, r) = (1 + r) ds + F(u, IX, ß). (4.52) 

In general, we write ji(x, IX, ß), g(x, IX, ß), etc. for the various functions with 
this extra parameter inserted. We now show that 

(a) J.-tp(O, 0, 0) > 0, (b) Oxp(O, 0, 0) > 0; (4.53) 

i.e., we verify condition (b) of Proposition I,4.2. This will complete the proof 
of Theorem 4.1. 

We prove (4.53a) by deducing from (4.42) that 

ji(O, 0, ß) = ß. (4.54) 

First observe that 

n(o, o, ß) = o, (4.55) 
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as this satisfies (4.47a). We see from (4.52) that 

(d<l>)o,o,p,r · V= (d<l>)o,o,o,o · V+ T V + ßV. (4.56) 

Setting V= v1, -r = i(O, 0, ß), and recalling that v1 E ker L, we find that 

(d<l>)o,o,p,r(o,o,p) · V1 - i(O, O,ß)v1 = ßvl. (4.57) 

We deduce (4.54) by matehing terms in (4.57) with (4.42). 
Next consider (4.53b). Let 

0'( ()(, ß) ± iW( ()(, ß) 
be the eigenvalue of A(oc, ß) = (dF)o,a,ß that equals ± i at the origin. It 
follows from Proposition 3.3(a) that 

gxp(O, 0, 0) = 0' p(O, 0) (4.58) 

(Although Proposition 3.3 is only stated for the derivative with respect to ..1, 
the proof shows that the same formula holds for a derivative with respect to 
any parameter.) It is readily seen from (4.51) that 

0'(0, ß) = ß. 
Thus (4.53b) follows from (4.58). 0 

EXERCISE 

4.1. Let the reduced bifurcation equation 

g(x, A.) = r(x2, A.)x 

satisfy the eigenvalue crossing condition r.<(O, 0) "I= 0. Assurne g has finite 
Z 2-codimension and show that exchange of stability holds. Hint: Show that 
finite codimension implies that there exists k such that 

r = :z r = · · · = (:zy-\ = 0 

at (0, 0) and (8/8z)kr(O, 0) "I= 0. Use Proposition IV,2.14 to conclude that g is Z 2 -

equivalent to h = ex2k+l + bh. Now apply Theorem 4.1 to h. 

§5. Degenerate Hopf Bifurcation 

In our study of Hopf bifurcation above, we have introduced various 
hypotheses on the equation; viz., 

(Hl) The simple eigenvalue condition (1.2). 
(H2) The eigenvalue crossing condition (1.3). 
(H3) The condition rz(O, 0) # 0 (cf. Theorem 3.2). 
(H4) The stability condition (4.3). 
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(Note that (H4) implies (H1).) By degenerate Hopf bifurcation we mean a 
Hopf bifurcation where one or more of the above assumptions fails. In this 
section we study cases where (H2) and/or (H3) fail. (The breakdown of (H1) 
has been much studied in the dynamical systems Iiterature; see for example 
§7.5 ofGuckenheimer and Holmes [1983]. We do not consider this case here.) 

We divide this section into two parts. In subsection (a) we discuss the 
simplest kinds of degenerate Hopf bifurcation on a theoretical Ievel. Our 
analysis is based on the Z 2-symmetric techniques developed in Chapter VI. 
In subsection (b) we study a simple model in which a degenerate Hopf 
bifurcation occurs. (In Case Study 2 we apply our methods to a much more 
interesting set of equations, the clamped Hodgkin-Huxley equations.) 

(a) Theoretical Discussion 

Consider a (k + 1)-parameter family of n x n systems of ODE 

du - + F(u,A.,IX) = 0, 
dt 

F(O, A., IX) = 0. (5.1) 

Here we return to writing the bifurcation parameter A. explicitly; thus 
IX = (1X1, .•• , 1Xk). Suppose A 0 = (dF)o,o,o satisfies hypothesis (H4), and 
hence, also (H1). By Theorem 2.1, the small amplitude periodic solutions of 
(5.1) with period near 2n: are in one-to-one correspondence with solutions of 
a scalar equation 

g(x, A., IX) = 0, X 2:::0, (5.2) 

where g has the form 

g(x, A., IX) = r(x2 , A., IX)x. (5.3) 

According to (5.3), g is a family of Z 2-symmetric bifurcation problems as 
defined in Chapter VI. We study degenerate Hopf bifurcation by means of 
the techniques of Chapter VI. Let us elaborate. Suppose that for IX = 0, (5.2) 
exhibits adegenerate singularity of some kind; specifically, suppose that for 
IX = 0 (5.2) is Z2-equivalent to anormal form h(x, A.). We regard g(x, A., IX) as 
an unfolding of g(x, A., 0). Let H(x, A., ß), where ß = (ß1, •.. , ß1) be a uni
versal unfolding of h (in the Z 2-symmetric category). Then there is a 
mapping A of parameter spaces such that 

g(·, ·,IX),..., H(·, ·,A(1X)), (5.4) 

where ,..., indicates Zrequivalence. Consequently, the small amplitude 
periodic solutions of (5.1) are enumerated by bifurcation diagrams in the 
universal unfolding of h. (Cf. Chapter VII, §l(c).) 

We extend the above discussion to include stability, as follows. Recall 
from Theorem 4.1 that the stability of a small amplitude periodic solution 
of (5.1) is determined by the sign of g"(x, A., IX). Now in (5.4), we claim that at 
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solutions of (5.2), 9x and Hx have the same sign-indeed, this is precisely the 
content of Lemma 5.1. Thus in the situation described above, the stability 
of small amplitude periodic solutions of (5.1) may be determined from the 
universal unfolding H. 

Lemma 5.1. Suppose g and h are Z 2-equivalent bifurcation problems; i.e., 
suppose 

g(x, A) = S(x2, A)h(X(x, A), A(A)), (5.5) 

where S(O, 0) > 0, A'(O, 0) > 0, X(x, A) = a(x2 , A)x, and a(O, 0) > 0. If 
g(x0 , A0 ) = 0 for some (x0 , A0 ), then 

sgn 9x(x0 , A0) = sgn hx(X(x0 , A0 ), A(A0 )). 

PROOF. Let (x1, A1) = (X(x0 , A0 ), A(A0 )). Since g(x0 , A0 ) = 0 it follows that 
h(x1, A1) = 0. Now we differentiate (5.5) with respect to x and evaluate at 
(x0 , A0 ), obtaining 

gAxo, Ao) = S(x~, Ao)hx(xl, Al)Xx(Xo, Ao). 

The Iemma follows on observing S(O, 0) > 0 and X x(O, 0) > 0. D 

With the above discussion in mind, Iet us recall the simplest degenerate 
Z 2-symmetric bifurcation problems from Chapter VI; i.e., those of Z 2 -

codimension one. We reduce the number of cases to consider by supposing 
that the steady-state solution is stable subcritically. This implies that in 
(5.3), r(O, A) > 0 for A < 0. Given this restriction, there are four Z 2-

bifurcation problems with Z 2-codimension one. Their normal forms are: 

(a) x3 + A2x, 

(b) -x3 + A2x, 
(5.6) 

(c) x 5 - AX, 
(d) -x5 - AX. 

The corresponding bifurcation diagrams are given in Figure 5.1. Unstable 
solutions are indicated by dashed lines. 

(5.6c) x 5 - J.x = 0 

~--------
(5.6d) -x5 - h = 0 

Figure 5.1. Z 2-bifurcation problems with codimension one. 
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Normal forms (5.6a, b) represent the simplest degenerate Hopf bifur
cations where hypothesis (H2) fails; in other words, the eigenvalues do not 
cross the imaginary axis with nonzero speed (i.e., a;.(O) = 0). We see from 
(5.6a) in Figure 5.1 that there need not exist a family of periodic solutions in 
degenerate Hopf bifurcations. This example shows the necessity of hy
pothesis (H2) in Theorem 2.1. Normal form (5.6b) gives an example where 
supercritical periodic solutions are unstable. This example shows the impor
tance of hypothesis (H2) for exchange of stability (cf. §4(a)). Normal forms 
(5.6c, d) represent the simplest degenerate Hopf bifurcations when hy
pothesis (H3) fails. These examples exhibit interesting behavior only when 
they are perturbed, as in their universal unfoldings. 

Universal unfoldings for the normal forms (5.6) are as follows: 

(a) x3 + .l.2x + cxx, 

(b) -x3 + .l.2x + cxx, 
(5.7) 

(c) x5 - .l.x + cxx3, 

(d) -x5 - AX + cxx 3 . 

The perturbed bifurcation diagrams are shown in Figure 5.2. 
In any of the diagrams of Figure 5.2, for cx # 0 only nondegenerate Hopf 

bifurcations occur from the steady-state solution. However, the unfolding of a 
degenerate Hopf bifurcation predicts some interesting global behavior. To 
elaborate on this, let's focus on two examples, (5.7a, c). 

As shown in Figure 5.2, when cx < 0, (5.7a) exhibits two nondegenerate 
Hopf bifurcations, the first supercritical and the second subcritical. The 
interesting feature in this diagram is that the two branches of periodic 
solutions bifurcating from the trivial solution in fact coincide. lt is difficult 
to derive this behavior with classical techniques. (The example of subsection 
(b) has this behavior.) 

As shown in Figure 5.2, for (5.7c) a branch of periodic solutions starts off 
subcritically at a nondegenerate Hopf bifurcation and regains stability at a 
limitpointbifurcation. Forarangeof). values (between .l.0 and .l.1 in Figure 5.2) 

rx<Ü 
__Q_ 

(b) -x 3 + A.2 x + rxx = 0 

~-------

rx>O 

~ 

~-----
Figure 5.2. Perturbations of Z2-codimension one bifurcation problems. 
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Figure 5.3. Possible phase portrait associated with x 5 - A.x + 1XX3 = 0, oc < 0. 

there are two periodic solutions, one unstable and one stable. In Figure 5.3 
we show a possible phase portrait ( of a 2 x 2 system) for A. fixed between 
A.0 and A.1• In this case, the bifurcation behavior for quasistatic variation of 
the parameter A. is interesting. As A. increases the steady state solution loses 
stability at A. 1, and there is a jump to a finite amplitude periodic solution. If 
A. is then decreased the periodic solution persists to A.0 , where there is a 
jump to the steady-state solution. Note that at A. = A.0 the two periodic 
solutions merge, and they disappear for A. < A.0 • 

We solved the recognition problern for these singularities in Chapter VI, 
§3. We recall the answers here. Let g(x, A.) = r(x2 , A.)x and Iet z = x2• 

(a) Suppose r = r;. = 0 and e = sgn r. =1 0, b = sgn(r;.;.) =I 0. Then g is Z2 -

equivalent to ex3 + JA.2x. 
(b) Suppose r = r. = 0 and e = sgn Tzz =I 0, b = sgn(r;.) =I 0. Then g is Zr 

equivalent to ex5 + JA.x. 

Thus, in order to find the normal forms (5.6a, b) we must compute r;.;.. 

Proposition 3.6 gives a formula for this coefficient. Our example of de
generate Hopf bifurcation in subsection (b) will Iead to the normal form 
x3 + A.2 x, (5.6a). 

In order to find the normal forms (5.6c, d) we must compute r ••. The 
computation of this coefficient is rather lengthy. The calculation of r zz was 
first given in Hassard and Wan [1978] using center manifold theory. An 
alternative calculation using the Liapunov-Schmidt reduction is given in 
Golubitsky and Langford [1981]. The formula for r •• resulting from this 
calculation is sufficiently complicated so as to make computing r zz by band 
virtually impossible, except in the simplest cases. 

From a theoretical point of view, the most interesting degenerate bifur
cation is the simplest singularity where both hypotheses (H2) and (H3) fail; 
that is, where r. = r;. = 0. Here we find a singularity with Z 2-codimension 
three, one modal parameter, and topological Z 2-codimension two. This 
singularity was analyzed in detail in Chapter VI, §5. Moreover, this 
singularity serves as an organizing center for the analysis by Labouriau 
[1983] of the clamped Hodgkin-Huxley equations. (Cf. Case Study 2.) 
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(b) A Model System from the Study of Glycolysis 

The following system of ODE's has been suggested as a simple model to 
explain certain oscillations observed in experimental studies of glycolysis. 
(See Tyson and Kautiman [1975] or Ashkenazi and Othmer [1978].) We 
analyze this system, looking for degenerate Hopf bifurcations. This system 
models a product activated reaction. In scaled concentration variables X 
and Yitreads 

dX 
- - A. + KX + XY2 = 0 
ds ' 

dY 
-- KX + y- XY 2 = 0 
ds ' 

(5.8) 

where A. > 0 is the bifurcation parameter representing the feed rate and K is 
a low-reaction rate (0 < K < 1). This equation has the unique steady state 

Yo = A.. 

Defining new variables u 1 = X- X 0 , u2 = Y- Y0 and rescaling time by 
t = (A.2 + K)112s yield the system 

du ( 1) dt + A(A., K)u + f(u) _ 1 = 0, (5.9) 

where 

1 ( .A_2 + K 
A(A., K) = --=== 
~ -(.A_2 + K) 

(5.10) 

and 

We calculate 

det A(A., K) = 1, 

tr A(A., K) = (A.2 + K)- 312[.A_4 + (2K + 1)A.2 + K2 + K]. 
(5.12) 

Therefore, the linearization A(A., K) has eigenvalues ± i when tr A(A., K) = 0; 
i.e., when 

.A_4 + (2K - 1).A_2 + K(K + 1) = 0. (5.13) 
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When K < k. equation (5.13) has two positive real roots, denoted by A.+ and 
L, which satisfy 

A~ = t[l - 2K ± ~]. (5.14) 

These correspond to Hopf bifurcations of (5.9). When K > k, (5.13) has no 
real solutions. We assume for now that K < !. 

Note that (5.9) is a 2 x 2 system. According to Remark 3.4(a), the speed 
at which its eigenvalues cross the imaginary axis is given by 

<T.<(A±, K) = t :A tr A(A., K)l;.~;.. = 2A.±(A~ + K)- 3 12 [2A.~ + 2K- 1]. 

We compute from (5.14) that 

(a) sgn <T;.(A.+, K) = sgn(~) > 0, 

(b) sgn u;JL, K) = sgn(-~) < 0. 
( 5.15) 

Thus the steady-state solution goes from stable to unstable via a Hopf 
bifurcation at L, and then it regains stability via a second Hopf bifurcation 
at A.+. Calculations by Ashkenazi and Othmer [1978] show that rz > 0 for 
both of these Hopf bifurcations. 

By the second Hopf theorem (Theorem 3.2), the periodic solutions which 
bifurcate at A._ are supercritical; according to Theorem 4.1, these solutions 
are stable. Similarly, the periodic solutions which bifurcate at A.+ are 
subcritical and also stable. This Ieads to the (incomplete) bifurcation 
diagram Figure 5.4. This figure immediately suggests the question: Do the 
two branches of periodic solutions in Figure 5.4 meet one another? Besides 
the figure, there is another piece of related evidence. As K--+ k from below, 
<T;.(A.±, K)--+ 0. This affects the argument above in which we used the 
nondegenerate Hopf theory to obtain Figure 5.4. Specifically, the nonde
generate theory predicts that the bifurcating periodic solutions exist in a 
domain which shrinks to a point as K --+ k. 

We shall prove that the two branches in Figure 5.4 do in fact meet one 
another, at least for K close to k· We do this as follows. Let 

g(x, A., K) = 0 (5.16) 

be the reduced bifurcation equation obtained from (5.9). In Lemma 5.2 
below we will prove that for K = k, (5.16) has a singularity which is Z 2 -

equivalent to the normal form (5.6a). Now (5.16) is a one-parameter 
unfolding of g(x, A., !). As such it may be factored through the universal 
unfolding (5.7a). This shows that for K close to k we may obtain bifurcation 
diagrams for (5.16) from Figure 5.2(a). In particular, comparing Figures 5.4 

Figure 5.4. Periodic solution structure for (5.9) with K < t. 
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and 5.2(a), we see that the two branches in Figure 5.4 must meet one 
another. 

Speaking philosophically, we are able to derive this conclusion with 
singularity theory methods because these methods yield results that are 
valid on an open neighborhood in x, A, K-space of the bifurcation point. By 
contrast, the Straightforward application of the nondegenerate Hopf theory 
yields results that are only valid on disjoint neighborhoods in x, A-space of 
(0, L) and (0, A+); these neighborhoods shrink to a point as K-+ i. 

Remark. The universal unfolding (5.7a) has two bifurcation points if IX < 0 
and none if IX> 0. Equation (5.16) has two if K < i and none if K > t. Thus 
when (5.16) is factored through the universal unfolding (5.7a), K < i cor
responds to IX < 0, and K > i to IX > 0. 1t is not difficult to show that d~XjdK is 
nonzero, and hence positive. This is related to the recognition problern for 
universal unfoldings in the Z 2-symmetric context-specifically, (5.16) pro
vides a universal unfolding of g(x, A, !). However, we did not address this 
problern in Chapter VI, and we do not pursue it here. 

Lemma 5.2. If K = Kc = !, then (5.16) has a singularity at x = 0, 

A = Ac = A which is Z 2-equivalent to (5.6a). 

PROOF. The recognition problern for (5.6a) is solved in (5.8a). To prove the 
Iemma, we must show that for K = Kc 

r" = 0, 

where r(x, A, K) is defined by g(x, A, K) = r(x2 , Ä, K)x. We already know that 
r" = 0; we will show that 

3 
(a) ru = J8' 

3 
(b) rz = 16 -/i. 

Calculation ofru(O, A0 KJ: We recall from Proposition 3.6 that 

rvJO, AC' Kc) = CT ;.;.(AC' Kc). 

Since A(A, K) is a 2 x 2 matrix, 

u(A, K) = ! tr A(A, K). 

(5.17) 

We differentiate (5.12) and substitute Ac = A. Kc = i to show 

ru(O, A0 Kc} = 3fJ8. 
Calculation of rz(O, Ac, Kc): Following Proposition 3.3, we calculate rz in 

four steps: 

(i) we compute c and d; 
(ii) we find the multi-derivatives d2 F and d3 F; 
(iii) we solve (3.11); and 
(iv) we combine the various pieces. 
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(i) Wehave from (5.12) 

1 ( 1 A0(2c, Kc) = Ji _ 1 

Using the normalizations (2.22) and (2.28) we find 

1 
c = Ji(1- Jii, -1), d = -i(1, 1- Jii). 

(ii) Evaluating (5.11) at A0 Kc yields 

f(u) = j3(u1u2 + u~) + Jiu1u~. 
Hence 

d2F(~, 17) = j3(~117z + ~2111 + 2~z17z)( _ ~). 

d3F(~, 17, () = 2Ji(~117zCz + ~2111(2 + ~2112C1{ _ ~) · 
(iii) We now compute that 

d2 F(c, c) = 0, 

d3F(c, c, c) = (3- Jii)( _ ~). 
It follows from the equations (3.11) that 

b0 = 0, b2 = ~( -1 + fli, 1). 
(iv) We evaluate the terms in (3.10) 

3Ji d2 F(c, b2 ) = --4- i(1, -1). 

Now Jr · (1, -1) = Ji. Substituting into (3.10) we obtain 

3 
rz(O, A.c) = 16 Ji. 

ßiBLIOGRAPHICAL COMMENTS 

D 

The Iiterature on Hopf bifurcation is extensive; in the introduction to this 
chapter we mentioned several recent texts. 

Broadly speaking, the occurrence Hopf bifurcation may be established 
either by a Liapunov-Schmidt reduction or by a center manifold reduction. 
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The latter approach generalizes to the study of more degenerate local phase 
portraits. This approach is developed in Arnold [1983], Guckenheimer and 
Holmes [1983], Carr [1981], and Chow and Hale [1982]. As we indicated 
in §5, the former approach generalizes to the study of degenerate Hopf 
bifurcation and multiple periodic orbits. Studies of degenerate Hopf bi
furcation using the Liapunov-Schmidt approach may be found in Chafee 
[1968, 1978], Flocherzi [1979] and Vanderbauwhede [1982], among others. 
Combining Z 2-equivariant singularity theory with the Liapunov-Schmidt 
metbad first occurs in Golubitsky and Langford [1981]. See also Labouriau 
[1983]. 

Hopf bifurcation may be generalized to PDE using infinite dimensional 
techniques. Cf. Marsden and McCracken [1976], Kielhafer [1979], and 
Henry [1981]. 

Finally, a further generalization concerns bifurcation of periodic orbits of 
a system of ODE or PDE which possesses additional symmetry. This topic 
will be covered in detail in Valurne Il. Cf. Ruelle [1973], Sattinger [1983], 
and Golubitsky and Stewart [1984]. 



CASE STUDY 2 

The Clamped Hodgkin-Huxley 
Equations 

The clamped Hodgkin-Huxley equations are a 4 x 4 system of nonlinear 
ODE that model electrical activity in the giant axon of a squid under certain 
controlled experimental conditions. These equations have periodic solutions 
which bifurcate from an equilibrium solution as a parameter is varied. The 
equations also contain several auxiliary parameters, and the dependence of 
the periodic solutions on the various parameters is rather involved. In this 
Case Study we discuss these bifurcation phenomena with an eye towards 
illustrating how singularity theory can contribute to understanding such 
problems. In cantrast to the other two Case Studies, additional work is 
required to complete the analysis of the problern considered in this Case 
Study. Torephrase this more positively, the present Case Study may be more 
stimulating than the other two in that it suggests new questions for research, 
including some important theoretical issues. 

This Case Study is divided into four subsections. In subsection (a) we 
discuss the derivation of the clamped Hodgkin-Huxley equations and in 
subsection (b) we present the basic information concerning Hopfbifurcations 
in these equations. We apply singularity theory methods in the last two 
subsections-to the basic bifurcation phenomena in subsection (c) and to a 
degnerate Hopf bifurcation in subsection (d). 

(a) Origins of the Equations 

In this initial subsection we briefly discuss the physical origins ofthe clamped 
Hodgkin-Huxley equations (equations (C2.7) below). Although the rest of 
the Case Study does not depend explicitly on this discussion, we suspect that 
the subsequent analysis will be more meaningful if the reader is familiar with 
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Figure C2.1. Schematic of the giant axon. 

the origins of the equation. We refer to Rinzel [1978], Cronin [1981], or 
Labouriau [1983] for more detailed information on the derivation of the 
equations. 

As we stated above, the clamped Hodgkin-Huxley equations model 
electrical activity in the giant axon of a squid under certain controlled 
experimental conditions. We have sketched such an axon in Figure C2.1. 
The axon is typically a couple of centimeters in length and 0.5 millimeters in 
diameter. The electrical properties of the axon are primarily determined by 
the cell membrane, which is a thin membrane (10- 6 cm) separating the 
interior ofthe cell from the exterior. The reason the membrane is so important 
is the following. The interior and exterior of the cell have relatively low 
electrical resistance because they contain many charged ions; by contrast 
the membrane has a very high resistance. Thus the electrical potential is 
approximately constant throughout the interior of the cell and throughout 
the exterior ofthe cell. However, a significant potential difference may develop 
across the membrane. (Remark: In reality the resistance of the interior of the 
cell is not completely negligible-although the conductivity per unit volume 
of the material there is large, the long, thin geometry of this region leads to 
a significant resistance over the length of the axon. However, the clamped 
Hodgkin-Huxley equations describe a situation where the resistance inside 
the cell is made negligible by inserting a thin metal wire along the axis of the 
axon. Without this wire the potential difference across the membrane varies 
significantly along the length of the axon. This variation in the potential is 
related to the main function of the axon; i.e., the propagation of an electrical 
signal along its length. Specifically, a PDE is needed to describe the situation 
where the potential varies, and the traveling wave solutions ofthis PDE model 
signal propagation. In this Case Study, however, we consider only the 
clamped case; i.e., we assume that the electrical potential inside the axon is 
constant, so that the potential difference across the membrane does not vary 
along the length of the axon.) 

Considered as a circuit element, the cell membrane acts both as a capacitor 
and as a resistor. It acts as a capacitor in that charged ions may accumulate 
on its surface and cause a potential difference, exactly as in a parallel plate 
capacitor. It acts as a resistor in that a small number of ions may pass through 
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Figure C2.2. Schematic circuit diagram for the cell membrane. 

the membrane, the number depending on the potential difference. These two 
functions are indicated schematically in Figure C2.2. As indicated by the 
figure, the total external current may be decomposed into a capacitative 
current and an ionic current; in symbols, 

(C2.1) 

In its function as a capacitor, the membrane acts as a linear circuit element; 
i.e., the capacitative current may be represented 

dV 
Jcap = cdt, (C2.2) 

where V is the potential difference across the membrane and C is the 
(constant) capacitance of the membrane. (C is the total capacitance, 
not the capacitance per unit area; this choice is more natural for the clamped 
case that we are dealing with here.) By contrast, in its function as a resistor, 
the behavior of the membrane is exceedingly nonlinear. 

Let us discuss the function of the membrane as a resistor more fully. This 
behavior is extremely complex; indeed, characterizing this behavior was 
perhaps the most important contribution of Hodgkin-Huxley [1952], and 
they received the Nobel prize for this work. Primarily the ionic current is due 
to sodium and potassium ions passing through the membrane. Hodgkin and 
Huxley decomposed the ionic current into three terms 

(C2.3) 

where JL (L for leakage) measures the (small) current due to all other species. 
Each current on the right in (C2.3) depends linearly on the potential difference 
Vacross the membrane; in symbols 

(a) /Na = gNa(V- VNa), 

(b) JK = gK(V- V0, (C2.4) 
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where VNa• VK, and VL define the voltage Ievels at which no current will flow 
in the indicated species and gNa• gK, {iL are the conductances ofthe indicated 
species. In (C2.4) the quantities VNa• VK, VL, and iiL are constants; by contrast, 
gNa and gK are time dependent, within the Iimits 

(a) 0 ::::;; gNa ::::;; iiNa• 

(b) 0 ::::;; gK ::::;; gK, 
(C2.5) 

where iiNa and iiK are constants. Hodgkin and Huxley described the evolution 
in time of gNa and gK as follows. They introduced three auxiliary variables 
M, N, and H such that 

(a) gNa = iiNaM3H, 

(b) gK = gKN4 • 

(C2.6) 

The variables M, N, and H are dimensionless and lie in the interval [0, 1], so 
that (C2.5) follows trivially from (C2.6). The evolution in time of each 
variableM, N, and His governed by an empirical differential equation (of 
first order), and the evolution of gNa and gK may in turn be obtained from 
that of M, N, and H through (C2.6). (Remark: There is an intuitive model 
which may make the introduction of M, N, and H seem less arbitrary. In this 
model one supposes that the sodium and potassium ionspass through certain 
holes or ports in the membrane, which may be open or closed. The maximum 
conductivities iiNa and iiK in (C2.5) occur if all these hypothetical ports are 
open. By virtue of(C2.6), the variables M, N, and H characterize the fraction 
ofhypothetical ports that are open.lt should be noted, however, that there is 
little direct experimental evidence supporting this model.) 

Let us now synthesize the above information by presenting the clamped 
Hodkin-Huxley equations. There are four unknowns, the potential difference 
Vacross the membrane and the three variables M, N, and H; the temperature 
T (measured in degrees Celsius) appears as an auxiliary parameter via the 
function <I>(T) = 3<T- 6 ·3>i 10• The equations are fourfold: 

dV 1 _ 3 - 4 -
(a) dt = C {gNaM H(V- VNa) + gKN (V- VK) + gL(V- VL)- Jext} 

(b) dM = - <I>(T) (M - M (V)) 
dt -r~V) oo ' 

(C2.7) 

(c) dN = - <I>(T) (N - N (V)) 
~ -r~n 00 , 

(d) dH = - <I>(T) (H - H (V)). 
dt -r8 (V) 00 

The first equation here expresses the equality (C2.1), where we have used the 
representations (C2.2) for Icap and (C2.3) for Jion• combining with (C2.4) and 
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(C2.6) in the latter case. The last three equations are the empirical relations 
deduced by Hodgkin-Huxley. These three equations all have the form 

dY 1 
- =- -(Y- y ). 
dt 't' Cl() 

(C2.8) 

If • and Y"" are constants, solutions of (C2.8) decay exponentially to the 
equilibrium value Yoo at the characteristic rate .- 1• In the Hodgkin-Huxley 
system, however, equations (C2.7b, c, d) are coupled to (C2.7a) in that the 
equilibrium values and characteristic rates depend on the potential difference 
V. (The rate constants also depend on temperature through the scaling factor 
<D(T).) For our purposes it does not matter exactly how the equilibrium 
values and the characteristic rates depend on V; rather than list this informa
tion here, we refer the reader to Rinzel [1978] or Labouriau [1983]. Similarly, 
with one exception, we do not give the specific values of the empirical 
constants C, iiNa• iiK, iiL, VNa• VK, and VL. The one exception concems iiNa; 
for future reference we mention now that 

(C2.9) 

(Dividing by C in (C2.9) makes the units more convenient.) 
We also remark that the voltage Ievels VNa• VK, and VL are determined by 

the ion concentrations inside and outside the cell. In analyzing equations 
(C2.7), one usually takes the values for these voltage levels that occur in vivo. 
However an experimenter can readily vary the ion concentrations outside 
the cell; thus all values of the parameters VNa• VK, and VL have physical 
validity. (Indeed, Hodgkin and Huxley separated the different contri
butions to Iion in (C2.3) precisely by varying the voltage levels in this manner.) 

(b) Hopf Bifurcations in the Clamped Hodgkin-Huxley 
Equations 

In the clamped Hodgkin-Huxley equations (C2.7), the only variables that 
are directly observable in the laboratory are the potential difference V and the 
current I ext. Experimentally it is possible to fix either V or I ext to a prescribed 
level and to measure the other. In the original experiments from which (C2.7) 
was derived, Hodgkin and Huxley fixed V and measured I.xt· Below weshall 
consider fixing Iext and measuring V. In other words, weshall regard (C2.7) 
as defining a bifurcation problern with I.xt as the bifurcations parameter. 
Observe that this bifurcation problern depends on several auxiliary param
eters; most notable among these is the temperature T, since for the time 
being we assume that the other parameters take the values which occur 
in vivo. 
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In this Case Study, our interest in the clamped Hodgkin-Huxley equations 
derives from the fact that for a large range of values of Jext• these equations 
possess stable periodic solutions (provided the temperature is not too high). 
These solutions were first discovered numerically; more recently bifurcation 
theory was used to establish their existence analytically. (See Rinzel [1978] 
for references to earlier papers and Hassard [1978], Rinzel and Miller [1980], 
and Labouriau [1983] for more recent work.) This mathematical fact, the 
existence of periodic solutions, has an approximate experimental counterpart 
in that when I ext is fixed, the axon emits several pulses in sequence before 
settling into a new equilibrium. However, in the laboratory only finitely many 
pulses occur, perhaps as few as four; by contrast (C2.7) predicts an infinite 
sequence of pulses. This discrepancy of course represents an inadequacy of 
(C2.7) as a model; specifically, (C2.7) ignores the fact that the axon saturates 
or "adapts" under continuous stimulation. Although there are more accurate 
models which incorporate adaption, we shall only work with (C2.7)-our 
goal is to illustrate the use of singularity theory in exploring the properties 
of a mathematical model, not to understand the physiology. 

The periodic solutions of the clamped Hodgkin-Huxley equations 
bifurcate from a trivial solution as Iext is varied; in other words, (C2.7) 
exhibits Hopf bifurcation. The salient points concerning this bifurcation are 
the following: 

(i) For every value of Iext there is a unique, steady-state solution of (C2.7). 
(Cf. Hassard [1978].) 

(ii) Except for very high temperatures (T > 28°C), there are two distinct 
Hopf bifurcations as I ext is varied, both subcritical. (Cf. Hassard [1978] 
and Labourian [1983].) 

(iii) The solutions ernerging from the two bifurcations are connected to one 
another globally as sketched in Figure C2.3. (Several bifurcation 
diagrams corresponding to different temperatures are shown in the 
figure. A dotted line indicates an unstable solution. For a given tem
perature, the trivial solution is unstable between the two bifurcation 
points and stable elsewhere.) (Cf. Rinzel and Miller [1980].) 

Figure C2.3 suggests that the loops of periodic solutions of (C2.7) shrinks 
to zero as the temperature is increased, and this is in fact the case. In her 
thesis, Labouriau [1983] investigated this behavior quantitatively. As one 
might expect, the loop of periodic solutions disappears when the two 
bifurcation points meet one another and move off into the complex plane. 
However, it turnsout that before this happens, the first bifurcation (i.e., the 
one on the left in Figure C2.3) changes from subcritical to supercritical. 
Specifically Labouriau's results are the following: 

(i) ForT< T2 = 28.859°C there are two Hopfbifurcations from the trivial 
solution and for T > T2 , none. 

(ii) For T < T1 = 28.853°C both bifurcations are subcritical, while for 
T1 < T < T2 the first bifurcation is supercritical, the second, subcritical. 
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Figure C2.3. Periodic solutions ofthe clamped Hodgkin-Huxley equations. (Cf. Rinzel 
and Miller [1980].) 

Bifurcationdiagramsforthethreecases T < T1, T1 < T < T2 ,and T > T2 

are shown in Figure C2.4. 

Remark C2.1. Rinzel and Miller [1980] found that there is an extra "knee" 
in the bifurcation diagram of Figure C2.3 when T = 6.3°C. In other words, 
there is a small range ofvolume of I ext for which the clamped Hodgkin-Huxley 
equations have Jour periodic solutions. However, only the periodic solution 
with the largest amplitude is asymptotically stable. 

(c) Discussion of the High-Temperature Behavior Using 
Singularity Theory 

Our purpose in this Case Study is to illustrate how singularity theory can 
help in synthesizing a coherent understanding of the behavior of a mathe
matical model. Tothis end, in this subsection we discuss the disappearance of 
periodic solutions of the clamped Hodgkin-Huxley equations at high tem
peratures, taking the point of view of singularity theory. In subsection (b), 
the temperature T was the only auxiliary parameter. Thus from a generic 
point of view, one would expect only singularities of codimension one to be 

(a) T< 7J (c)T2 < T 

Figure C2.4. Bifurcations at high temperature. 
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involved in this disappearance of periodic solutions. In this subsection we 
discuss what insight may be gained by looking at singularities of codimension 
one. (In subsection (d) we consider varying other parameters besides T and 
look at singularities of higher codimension which might arise.) 

As we stated above, Labouriau [1983] found that when the temperature 
is increased, one of the two Hopf bifurcations of (C2.7) changes from sub
critical to supercritical before the two bifurcation points meet one another 
and disappear. (Cf. Figure C2.4.) Let us now argue that from the singularity 
theory point of view this behavior was inevitable. Tothis end, we recall the 
identification established in Chapter VIII between periodic solutions of a 
system of ODE near a bifurcation point and solutions of a single scalar 
equation that has Z 2-symmetry. Let g(x, ..1.) = 0 be the reduced bifurcation 
problern o btained in this way from ( C2. 7) when T = T2 ; i.e., at the temperature 
where the two bifurcation points meet one another. Generically we expect 
g to be a singularity of codimension one or less, since T is the only auxiliary 
parameter in the prob lern. Moreover g cannot be of codimension zero, since g 
is not persistent; specifically, an arbitrary small change in temperature splits 
the bifurcation point into two bifurcation points or eliminates all bifurcation 
points according as the change is negative or positive, respectively. Thus g 
must be of codimension one. We see from Table VI,5.1 that there are two 
classes of Zrsymmetric bifurcation problems of codimension one, namely, 

(a) sx3 + bA.zx, 
(C2.10) 

(b) SX 5 + bAx, 

where s and b are ± 1. The singularity g must be equivalent to one of these 
normal forms. Indeed, varying the temperature in (C2.7) leads to a one
parameter unfolding G(x, ..1., T) of g(x, ..1.), where G(x, ..1., Tz) = g(x, ..1.); by 
the universal unfolding theorem, the unfolding G can be factared through the 
universal unfolding of the relevant normal form in (C2.10). To summarize 
the argument so far, up to equivalence, the bifurcation diagrams of (C2.7) 
for T near Tz must be one of those illustrated in Figures VI,3.1, 3.2, and 
3.3, the figures in which universal unfoldings of (C2.10) are graphed. 

The crucial point in our argument is the following: In Figures VI,3.1, 3.2, 
and 3.3, whenever a bifurcation diagram contains two bifurcation points, one 
bifurcation is subcritical and the other is supercritical. Therefore, for the two 
Hopf bifurcation points of (C2.7) to meet one another at a codimension-one 
singularity as the temperature is increased, necessarily one of the bifurcations 
must first become supercritical. 

Only one ofthe normal forms in (C2.10) is consistent with the information 
given in subsection (b) above; viz., x 3 + A.zx. We see from Figures VI,3.1, 
3.2, and 3.3 that (C2.10a) is the normal form associated with two bifurcation 
points meeting one another as a parameter is varied. If sb = + 1 in (C2.10), 
the two bifurcating solution branches connect to one another to form a loop 
(cf. Figure VI,3.3); if sb = -1, the branches do not form such a loop (cf. 
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Figure VI, 3.2). It is clear from Figure C2.4(b) that eb = + 1 is the right 
choice for the problern at band. Finally, we observe that since the trivial 
solution is stable below the bifurcation point, we must take b = + 1. This 
completes the argument that x3 + .A?x is the appropriate normal form when 
the two bifurcation points meet one another. 

Conversely, these ideas may be reversed to obtain an analytical proofthat, 
at least for Tnear Tz, the solution branches ernerging from the two bifurca
tion points join up to form a loop as in Figure C2.4(b ). The argument would 
run as follows. As above, let g(x, A.) be the reduced bifurcation problern 
obtained from (C2.7) via Liapunov-Schmidt reduction when T = Tz, and 
let G(x, A., T) be the one-parameter unfolding that results from varying the 
temperature. Suppose we show that at the bifurcation point 

gxxx > 0, and g;.;.x > 0; 

then it would follow from Theorem VI,5.1 that g is equivalent to x3 + A. zx. 
(Cf. also Table VI,5.3 for the solution ofthe recognition problem.) Moreover 
G may be factored through the universal unfolding of x3 + A_Zx; indeed if 
G xT =f. 0, then G provides a universal unfolding of g, and we may deduce that 
for T near Tz the bifurcation diagrams of G have a loop connecting the two 
bifurcation points, simply from an inspection of Figure VI,3.3. (Remark: 
Labouriau [1983] performed calculations of this type for a related, more 
complicated problem; see subsection (d) below.) 

The above argument is rigorously applicable only for T near Tz. However, 
as is so often the case, the structure of the bifurcation diagram which is 
established near the degenerate bifurcation point persists far away from this 
point; to rephrase this in the present context, the loop of periodic solutions 
connecting the two bifurcation points continues to exist at moderate and low 
temperatures. (Its structure does change slightly at low temperatures-cf. 
Remark C2.1.) 

Incidentally, (C2.10b) is the normal form of the reduced equations for 
(C2. 7) when T = T1 ; i.e., at the temperature where the subcritical bifurcation 
changes to supercritical. By an argument similar to the above, it can be shown 
that +x5 - A.x is the only choice of signs consistent with the data of sub
section (b ). 

( d) Singularities of Higher Codimension 

Above we saw that singularities of codimension one occur in the clamped 
Hodgkin-Huxley equations at the temperatures T1 = 28.853°C and T2 = 
28.859°C. These two temperatures are exceedingly close to one another-the 
relative separation is only 0.02 %. The fact that they are so close suggests that 
it may be possible to make them merge and form a more degenerate singularity 
by a small variation in an additional parameter. This degenerate singularity 
would provide an organizing center for the problem. By examining the 



Case Study 2. The Clamped Hodgkin-Huxley Equations 391 

universal unfolding of this degenerate singularity, one could deduce that at 
slightly modified values of the parameters the clamped Hodgkin-Huxley 
equations exhibit more complicated behavior than what has been seen up to 
now. 

Labouriau [1983] carried out this program for analyzing the 
Hodgkin-Huxley equations, including the necessary numerical calculations. 
We summarize her work in part (ii) ofthis subsection, after presenting some 
conjectures of our own in part (i). In part (ii) we also discuss certain un
resolved differences in our points of view which suggest further research. 
Regarding these differences, Iet us state clearly that Labouriau's work came 
first. This means not only that it was her idea first to apply singularity theory 
to this problem, but also that we had the benefit of her work in forming our 
conjectures. 

(i) Conjectures on the Application of Singularity Theory 
When T = T1 the clamped Hodgkin-Huxley equations exhibit a singularity 
equivalent to the normal form (C2.10b); when T = T2 , (C2.10a). The co
dimension-one singularities (C2.10) arise from the failure of one of the 
nondegeneracy conditions in the Hopf theorem. Specifically, the eigenvalue 
crossing condition fails in (C2.10a) and the coefficient of the cubic terms 
vanishes in (C2.10b). The simplest singularity in which both these conditions 
fail simultaneously is 

(C2.11) 

where e and {J equal ± 1 and m, a modal parameter, can assume any real 
value. Apart from the exceptional values m = 0, ± ß, ± oo, this singularity 
has (C 00 ) codimension three and topological codimension two. 

It is natural to conjecture that if the codimension-one singularities of the 
clamped Hodgkin-Huxley equations can be made to merge through varying 
a parameter, then (C2.11), for some choice of e, b, and m, is the normal form 
which describes the resulting degenerate singularity. Let us argue that in 
(C2.11) only e = {J = + 1 is consistent with the information in subsection (b). 
For the trivial solutiontobe stable below the bifurcation point we must have 
{J = + 1. If (C2.11) is perturbed by restoring all physical parameters to their 
values in vivo, we want the bifurcating solutions to form a closed loop, as in 
Figure C2.3; on inspecting Figures VI, 7.3 and 7.4, we see that such a loop 
is formed only if e = + 1. 

By contrast, the available data do not select an exact value for the modal 
parameter m. Let us discuss the possibilities. We anticipate that m should be 
positive since there are small perturbations of (C2.11) with two subcritical 
bifurcations only if m > 0. (Cf. Figure VI,7.4.) However, even assuming 
m > 0, the available data do not choose decisively between the two ranges of 
topological triviality, 0 < m < 1 and m > 1. There is a significant difference 
in the behavior associated with the two ranges which at first seem to offer a 
basis for choosing between them. Let us elaborate. Consider the (presumably 
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small) perturbation of (C2.11) associated to restoring the parameters in the 
clamped Hodgkin-Huxley equations to their original values. This per
turbation should Iead to diagrams as shown in Figure C2.3. Refering to 
Figure VI,7.4, we see that Case 5 form > 1 and Case 1' for 0 < m < 1 both 
have this behavior, with the difference that in Case 5 for m > 1 there is a 
branch of solutions completely disconnected from the trivial solution or 
branches which bifurcate from it. The fact that no such solutions have been 
reported in the Iiterature would seem to argue for the other case. However, 
when the clamped Hodgkin-Huxley equations have been solved numerically, 
there does not seem to have been a serious effort to search for isolated 
branches of solutions. Thus in our opinion this difference does not offer a 
reliable guide for which range the parameter m in (C2.11) should lie in. 

In the absence of a clear-cut choice between 0 < m < 1 and m > 1, we 
present a plausibility argument that 0 < m < 1 is the more likely occurrence. 
The starting point for this argument is the extreme proximity of T1 and T2 • 

It seems that the clamped Hodgkin-Huxley equations (with parameters set 
at their values in vivo) just miss having an aceidentat degeneracy; i.e., a 
singularity of codimension higher than the number of parameters being 
varied. Our argument will be that the degree of aceidentat degeneracy is less 
ifO < m < 1 thanifm > 1. 

First we establish some notation. We have supposed that one of the 
parameters in the clamped Hodgkin-Huxley equations has been varied from 
its value in vivo until the two codimension-one singularities merge. Let us 
call this parameter a. We write a* for its value in vivo, a0 for the value at 
which the degenerate singularity occurs. (Similarly let T0 be the temperature 
at which the degenerate singularity occurs.) We shall assume throughout 
this argument that a0 - a* is small. This is simply a reformulation of our 
observation that the separation between the two singularities of codimension 
one is small, so that a small change in an auxiliary parameter should suffice 
to cause them to merge. 

For Tnear T0 and a near a0 , Iet G(x, A., T, a) be the Z 2-symmetric bifurca
tion problern obtain by the Liapunov-Schmidt reduction of the clamped 
Hodgkin-Huxley equations, the parameter a having been changed from its 
value in vivo as indicated. Then G(x, A., T0 , a0 ) is equivalent to (C2.11), and 
G(x, A., T, a) is a two-parameter unfolding of G(x, A., T0 , a0 ). According to the 
universal unfolding theorem, G(x, A., T, a) may be factored through the 
universal unfolding of (C2.11); viz; 

(C2.12) 

(We have set e = b = + 1.) The theorem guarantees only that this factoriza
tion is possible in some neighborhood of T0 , a0 ; however, in keeping with the 
idea that a0 - a* is small, we assume that the domain of validity of this 
representation is large enough to allow a to be restored to its value in vivo. 
It follows from this assumption that periodic solutions of the clamped 
Hodgkin-Huxley equations with in vivo parameters may be associated with 
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solutions of the equation G(x, A., T, a,..) = 0. Moreover for each T, G(x, A., T, a*) 
is equivalent to (C2.12) for some choice of a, ß, and m; specifically Iet us define 
a(T), ß(T), m(T) so that 

G(x, A., T, a*) "' x 5 + 2m(T)A.x3 + A.2x + a(T)x + ß(T)x3• (C2.13) 

Since the unfolding (C2.12) is topologically trivial in the ranges 0 < m < 1 
and m > 1, weshall ignore the coefficient m(T) in our discussion below. 

The functions a(T), ß(T) define a curve in the a,ß-plane. Let us see how 
this curve is placed relative to the transition variety of the universal unfolding 
(C2.12). In Figure C2.5 we have reproduced slices at constant m of the 
transition varieties in case 0 < m < 1 and m > 1; these come from Figure 
VI,7.4. Of course, the curve a(T), ß(T) is subject to the restriction that as T 
varies it must produce the sequence of bifurcation diagrams of the original 
equations; i.e., those shown in Figure C2.4. In both Figures C2.5(a) and (b) 
we have drawn a curve which has this property; in fact, only curves crossing 
the indicated regions in the same sequence will have this property. 

To conclude our argument, we claim that if m > 1 the curve a(T), ß(T) 
must be positioned very carefully in order to have the properties required of 
it, while if 0 < m < 1 there is much more freedom in the placement of this 
curve. Let us elaborate. Since we have assumed that a0 - a* is small, we 
expect the curves in Figure C2.5 to lie rather close to the origin. Consider the 
possibility m > 1. Since T1 and T2 are so close to one another, the curve in 
Figure C2.5(a) must cross region 4 very quickly, although it dwells in region 
3 and 5 rather longer. lt is clear from the figure that the position, slope, and 
curvature of the curve must all lie within narrow Iimits to achieve this. By 
contrast, if 0 < m < 1 it is a very minimal restriction on a curve to quickly 
cross region 5 ofFigure C2.5(b) and to dwell in regions 1 and 4. In this sense, 
the degree of coincidence required by consistency with the data is lower if 
0 < m < 1. Forthis reason we consider 0 < m < 1 the more likely possibility. 

(a) m > 1 (b) 0 < m < 1 

Figure C2.5. Transition varieties for (C2.12). 
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(ii) 1he Work of Labouriau 
Labouriau [1983] chose gNa• the sodium conductivity, as the parameter to 
vary in the clamped Hodgkin-Huxley equations. Her calculations show that 
a 9% decrease of this parameter Ieads to a singularity equivalent to (C2.11) 
with e = (J = + 1 and m:::::: 12.69. We shall first summarize her work and 
then discuss the fact that her results are at variance with our conjecture above. 

To begin, let us recall from Table VI,5.3 the solution to the recognition 
problern for the normal form (C2.11). Fora Z 2-symmetric germ g(x, A.) to 
be equivalent to (C2.11), g must satisfy defining conditions 

(C2.14) 

and certain nondegeneracy conditions. In stating the latter, we use Corollary 
VI,2.2 to express g in the form g(x, A.) = r(x2 , A.)x for some germ r(u, A.); as in 
Chapter VI we write u = x2 • The nondegeneracy conditions for equivalence 
with (C2.11) are 

ru =I= 0, 

Assuming (C2.15), the parameters in (C2.11) are given by 

e = sgn ruu• 
r;.u m------o==== 

- Jiruurul. 

(C2.15) 

(C2.16) 

Equations (C2.14) determine the values ofthe parameters in the clamped 
Hodgkin-Huxley equations for which the degenerate singularity occurs. 
Labouriau solves equations (C2.14) as follows. Let G(x, /ext> T, a) be the 
reduced function obtained from the Liapunov-Schmidt reduction of the 
clamped Hodgkin-Huxley equations when gNa is replaced by a free param
eter a. First, for each value of a, Labouriau solves (numerically) the two 
equations 

(C2.17) 

for /ext and T. (Warning: Equations (C2.17) must be solved with x = 0; x is 
not to be determined from the equations. To see this, recall from the 
Liapunov-Schmidt reduction of Chapter VIII, §2 that x parametrizes the 
amplitude of a possible periodic solution. We are studying bifurcation from 
a steady-state solution, which means that x = 0.) Then for the values of /ext 

and Tdetermined from (C2.17), Labouriau evaluates Gxxx• the third function 
which must vanish in (C2.14). The result is plotted in Figure C2.6. Note that 
Gxxx vanishes when a/C:::::: 1.1 x 105 sec- 1• (Regarding the comparison 
with in vivo parameters, we see from (C2.9) that a.;c :::::: 1.2 x 105 sec - 1.) 

Finally, for the distinguished values of I ext, T, and a selected by this procedure, 
Labouriau computes the higher-orderderivatives of G, thereby verifying the 
nondegeneracy conditions (C2.15). In this way she proves that the clamped 
Hodgkin-Huxley equations exhibit a singularity equivalent to (C2.11) with 
e = 1J = + 1 and m :::::: 12.69 when gNa is reduced by approximately 9 %. 
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Figure C2.6. Gxxx as a function of a. (Cf. Labouriau [1983], p. 90.) 

No doubt the reader has noticed that Labouriau's results differ from what 
we conjectured above. Specifically, she found a modal parameter in the range 
m > 1, not 0 < m < 1 as we conjectured. Her results are based on actual 
computations while our conjectures are based on a loose plausibility 
argument. The reader may weil wonder why we chose to present unsub
stantiated conjectures. The reason is twofold: Partially we suspect that the 
story on this application of singularity theory is not yet complete, and 
partially the unresolved issues point to questions for further research. 

The fact that Labouriau found a degenerate singularity where m > 1 with 
a parameter change of 9% does not rule out the possibility that there is 
another degenerate singularity, much closer to the physical values that 
could only be found by varying a different parameter. Indeed, consider 
varying all three conductivities UNa• gK, and ÜL and all three voltage Ievels 
VNa• VK, and VL in (C.2) and searching for degenerate singularities in this 
six-dimensional parameter space. (For simplicity let us not consider changes 
in <I>(T), -rM(V), M 00(V), etc.) Since (C2.11) has topological codimension two, 
generically we would expect there to be a Cour-dimensional subvariety in IR6 

of parameter values for which the equations exhibit a singularity equivalent 
to (C2.11). How can one find the singularity which has the greatest influence 
on the physical problern with in vivo parameters? Might there be even more 
degenerate singularities which play a significant role? We hope that the 
general theory will be able to provide insight concerning these questions, 
but more work is needed. 

Incidentally, we note from Figure C2.6 that Labouriau actually found two 
choices ofparameter values which yield a singularity equivalent to (C2.11)
the second such singularity occurs when afC ~ 0.9 x 105 sec- 1, a change of 
25 % from the in vivo parameter values. At this singularity e = b = + 1 but 
m ~ - 6.93. Presumably this singularity has little influence on the physical 
domain, since it is so far removed. 

Let us discuss the primary degenerate singularity that Labouriau found, 
where m = 12.69. We recall from part (i) that when adegenerate singularity 
with m > 1 is perturbed, the resulting bifurcation diagrams contain an 
isolated branch of solutions. In other words, it follows from the work of 
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Labouriau that there are periodic solutions ofthe clamped Hodgkin-Huxley 
equations with iiNa reduced about 9% which are not connected to the trivial 
solution in any way. Further investigation is needed to ascertain whether 
this branch of solutions persists as iiNa is restored to its value in vivo. 

In this connection it is unfortunate that Labouriau varied iiNa rather than 
VNa· As we noted in subsection (a), VNa may be adjusted experimentally by 
changing the concentration of sodium ions outside the axon; there is no 
such way to alter iiNa experimentally. Had she chosen VNa' the behavior of 
the equations near the degenerate singularity would be of direct experi
mental significance. With iiNa, the link with experiment is less direct. 



CHAPTERIX 

Two Degrees of Freedom Without 
Symmetry 

§0. Introduction 

The main focus of the present volume has been bifurcation problems in one 
state variable. In this chapter and the next we anticipate Volume II by 
discussing certain Iimited aspects of the singularity theory of bifurcation 
problems with several state variables. For the most part, such problems 
have rather high codimensions, at least in the absence of symmetry. For 
example, 8 is the lowest possible codimension for a bifurcation problern in 
three or more state variables. In two state variables, 3 is the minimum 
codimension. In this chapter we study bifurcation problems in two state 
variables with codimension 3. 

The number 3 is significant, since this was the cutoff codimension in our 
classification theorem in Chapter IV. Thus the work of the present chapter 
is necessary to complete the classification theorem. Recall that in Chapter 
IV, §1 we motivated the classification theorem by identifying codimension 
as a rough measure of the likelihood of finding a singularity in applications. 
However, the number of state variables did not affect this Iikelihood. Thus 
it is important to Iist all bifurcation problems of codimension 3 or Iess, not 
just those with one state variable. 

This chapter is divided into three sections. In §1 we give the basic 
definitions for bifurcation problems in n state variables and estimate their 
codimensions. In §§2 and 3 we study bifurcation problems in two state 
variables of codimension three. (Following Thompson and Hunt [1979], we 
call these hilitop bifurcation.) In §2 we solve the recognition problem, and in 
§3 we enumerate perturbed bifurcation diagrams. 

As we stated above, in the absence of symmetry, bifurcation problems 
with many state variables have high codimension. This means that such 
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problerns do not occur in applications very often. However, codirnensions 
are changed drastically by symmetry; in particular, bifurcation problerns 
with rnany state variables occur frequently in applications when there is a 
syrnrnetry group acting. We shall explore one instance of this in the next 
chapter. In Valurne II, the consequences of symrnetry will be a rnajor focus. 

§1. Bifurcation with n State Variables 

In this section, first we define the notion of bifurcation problerns in n state 
variables, then we define equivalence for such problerns, next we estirnate 
the codirnension of such problerns, and finally we discuss the relation of 
equivalence and linearized stability in n dirnensions. 

Definition 1.1. Let g: ~n x ~ ~ ~n be the gerrn of a srnooth rnap. Then we 
call g(z, A.) a bifurcation problern in n state variables if 

g(O, 0) = 0, (dg)(O,O) = 0, (1.1) 

where dg is the n x n Jacobian rnatrix obtained by differentiation of g in the 
z directions. 

Remarks. (i) We require that (dg)0 .0 = 0 in (1.1). Should the rank 
(dg)0 ,0 equal k > 0, then we could apply the Liapunov-Schrnidt reduction to 
obtain a reduced bifurcation problern in n - k state variables. 

(ii) U sually bifurcation problerns in n state variables result frorn a 
Liapunov-Schrnidt reduction of sorne larger problern where the kernel of 
the linearized operator has dirnension n. 

(iii) Definition 1.1 irnplies that a bifurcation problern g in one state 
variable satisfies g = g" = 0; that is, g is required to have a singularity at 
the origin. 

Definition 1.2. Let g, h: ~n x ~ ~ ~n be bifurcation problerns with n state 
variables with n > 1. Then g and h are equivalent if 

g(z, A.) = S(z, A.)h(Z(z, A.), A(A.)), (1.2) 

where S is a n x n invertible rnatrix depending srnoothly on z and A. and the 
rnapping <J)(z, A.) = (Z(z, A.), A(A.)) is an invertible change of coordinates 
preserving the orientation in A.. In particular, Z(O, 0) = 0, A(O) = 0, 
det(dZ)<o.oJ =I= 0, and X(O) > 0. 

Remarks. (i) Since S in (1.2) is invertible we see that 

Cl>({(z, A.): g(z, A.) = 0}) = {(z, A.): h(z, A.) = 0}. 
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Thus equivalences preserve bifurcation diagrams. It also preserves the 
orientation of the parameter A.. 

(ii) Note that in Definition 1.2 we do not assume that Z or S is 
orientation preserving. As a result, this definition of equivalence for one 
state variable bifurcation problems does not agree with the notion of 
equivalence given earlier. The reason for this change involves linearized 
stability, which we will discuss below. 

Let us now discuss codimension for bifurcation problems in n state 
variables. The following proposition shows that the codimension of such 
problems is very high indeed if n is at alllarge. (Remark: The proposition 
assumes that no symmetry is present.) 

Proposition 1.3. lf g is a bifurcation problern with n state variables, then 

codim g ~ n2 - 1. (1.3) 

We shall not set up the machinery needed to give a formal definition of 
codimension. (We will do this in Volume II.) Hence we cannot give a 
precise proof of the proposition. Rather, we will give an argument for (1.3) 
based on analogy with Corollary Ill,2.6. In that corollary we showed that 
in one state variable the codimension of g is equal to the number of defining 
conditions for g less two. The correction term two came from the fact that g 
was defined on two variables x and A.. A corresponding result is true for 
bifurcation problems with n state variables; viz., the codimension of g 
equals the number of defining conditions for g less n + 1. Here the 
correction term n + 1 comes from the fact that g depends on n + 1 
variables, z 1 , ••. , zn, and A.. This is the basis for our heuristic proof of 
Proposition 1.3. 

A bifurcation problern g in n state variables must satisfy the n + n2 

conditions given in (1.1); i.e., there are n2 + n defining conditions. 
Subtracting the correction term n + 1 we arrive at our lower bound of 
n2 - 1 for the codimension of g. 

It follows from (1.3) that bifurcation problems in n state variables where 
n ~ 3 have codimension at least eight. According to the thesis of Chapter 
IV, §1, we should expect such singularities only in a bifurcation problern 
with at least eight auxiliary parameters (after nondimensionalization). In 
this sense bifurcation problems with many state variables are unlikely in 
applications. (Furthermore, these problems are so complex as to defeat the 
purpose of singularity theory methods; i.e., to provide a mathematical 
structure which facilitates the understanding of bifurcation phenomena.) 

However, in two state variables there are bifurcation problems with 
codimension three. Moreover, three is the number we (somewhat arbi
trarily) chose as our Iimit for the classification theorem of Chapter IV. In 
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the remammg two sections of this chapter, we study those bifurcation 
problems in two state variables which have codimension three. 

We end this section with a brief discussion of linearized stability, 
especially the incompatibility of equivalence with linearized stability. 

Let h be a bifurcation problern with n state variables, and suppose 
h(z0 , A.0 ) = 0. We say that (z0 , A.0 ) is linearly stable if every eigenvalue of 
(dh)zo,lo has a positive real part. (Here we are thinking of (z0 , A.0 ) as a 
steady-state solution to the system of ODE's z + h(z, A.) = 0.) We call this 
solution linearly unstable if some eigenvalue has a negative real part. 

We ask the question: Are the signs of the real parts of the eigenvalues of 
dh invariants of equivalence? The answer is clearly no; Iet S = -I. When 
n = 1 we restricted the notion of equivalence by requiring S(O, 0) > 0 and 
Xx(O, 0) > 0. Consequently, in this case stability or instability is an in
variant of equivalence. (Cf. Theorem 1,4.1.) In this regard, one might be 
tempted to require in Definition 1.1 that det S and det dZ be positive. 
However, this restriction is not sufficient to obtain the invariance of 
stability assignments under equivalence. For example, if n is even, then the 
determinant of -I is + 1; thus, as in the above example, we may change all 
the signs of the eigenvalues of dh. Forthis reason when n :::=:: 2, we have not 
imposed any positivity conditions on S or X in Definition 1.2. 

We end our discussion of stability assignments with an observation: 
Although the question of invariance of stability assignments under (an 
appropriate form of) equivalence is a complicated issue, symmetry often 
makes the problern easier. We shall explore one instance of this in the next 
Chapter X, §3 and many more in Volume II. 

§2. Hilitop Bifurcation 

We now complete the classification theorem for bifurcation problems in 
codimension three or less. (Cf. Theorem IV, 2.1.) 

Theorem 2.1. Let g: !Rn x IR--> !Rn be a bifurcation problern with codim g :::;; 3. 
(As in Definition 1.2, we assume g(O, 0) and (dg)0 , 0 vanish.) Then either n = 1 
or n = 2. lfn = 1, then g is equivalent to one ofthe eleven normalforms listed 
in Table IV,2.1. Jfn = 2 then g is equivalent to one ofthe normalforms 

where a, b = ± 1. 

(12) (x2 - y 2 + A., 2xy), or 

(13) (x2 + aA., y2 + JA.), 

Remarks. (i) The numbers (12) and (13) are intended to continue the Iist of 
Table IV,2.1. 
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(ii) The two cases in normal form (13) in which sJ = -1 are equivalent. 
Otherwise, allnormal forms in (12) and (13) are inequivalent. 

Although we have many of the pieces at our disposal, weshall not give a 
complete proof of Theorem 2.1. Specifically we postpone for Volume II: 

(i) The proof of Proposition 1.3 which shows that n :::;; 2; 
(ii) The characterization of higher-order terms for the normal forms (12) 

and (13). 

Let us discuss the second point. Let A be the maximal ideal in lffx.y.;.: i.e., 
A is the set of germs of real valued functions on IR2 x IR which vanish at the 
origin. In Volume II, we will show that all terms which lie in 

(2.1) 

are higher-order terms for the normal forms (12) and (13). This means that 
the normal form plus a perturbation lying in (2.1) is equivalent to the 
original normal form. (Remark: Note that the terms in (12) and (13) belong 
to A 2 + (Ä.).) 

In this section we concentrate on one important aspect of the proof of 
Theorem 2.1; viz., the analysis of intermediate-arder terms. Specifically, we 
shall introduce a notion of nondegenerate bifurcation problems in two state 
variables. A bifurcation problern is nondegenerate provided it satisfies 
several inequalities as in (H1) and (H2) below. (Remark: These inequalities 
are invariants of equivalence.) Subject to the limitations of the preceding 
paragraph, we will prove that any nondegenerate bifurcation problern in 
two state variables is equivalent to (12) or (13). (Cf. Theorems 2.2 and 2.3.) 
This fact relates to Theorem 2.1 as follows. If g is a degenerate bifurcation 
problem, then one of the inequalities must fail; in other words, an inequality 
becomes an equality. This equality represents an extra defining condition 
on g, in addition to (1.1). Thus codim g ;;:::: 4. Alternatively put, nonde
generate bifurcation problems are precisely those bifurcation problems 
associated with the defining conditions (1.1); such problems have codimen
sion three. 

We now introduce notational conventions that we will use for the 
remainder of this section. Let g be a bifurcation problern with two state 
variables. lt follows from (1.1) that g(O, 0) = 0 and (dg)0 , 0 = 0. Thus we 
may write 

g(x, y, Ä.) = f(x, y) +Ar+ .. ·, 

where · · · indicates terms lying in (2.1) and 

(a) f(x, y) = (p(x, y), q(x, y)) 

= (p1X2 + PzXY + p3yl, qtX2 + qzxy + q3Y2), (2.2) 

(b) r = (r1, r2) = g._(O, 0). 
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Often weshall abbreviate (x, y) to z and write 

h(z, A.) = f(z) + A.r 

for the intermediate-erder terms in g. 

(2.3) 

Tobegin our discussion, we show that iftwo germs g and gare equivalent, 
then the corresponding intermediate-erder terms h and h are equivalent via 
a linear equivalence. Suppose that 

g(z, A.) = S(z, A.)g(Z(z, A.), A(A.)). 

Matehing terms in (2.4) modulo the ideal (2.1), we see that 

h(z, A.) = Bh(Az, O"A), 

where B = S(O, 0), A = (dZ)(o,Ol• and O" = A'(O). 
Our first nondegeneracy condition is 

(Hl) 

Note that (Hl) is an invariant of equivalence. 
Our second nondegeneracy condition is less obvious. Let 

Q(z) = det(df)z. 

(2.4) 

(2.5) 

Observe that Q(z) is a homogeneous, quadratic polynomial in x and y, say 

Q(z) = ax2 + bxy + cy2. 

Thus the zero set of {z: Q(z) = 0} consists of either two crossed lines, one 
line with multiplicity two, or just the origin. More briefly, in these cases we 
shall say that Q has two distinct real roots, two equal roots, or complex 
roots, respectively. Now the structure of the zero set of Q(z) is determined 
by the sign of the discriminant 

Specifically, 

D = b2 - 4ac. 

(a) D > 0 <o> Q has distinct real roots, 
(b) D = 0 <o> Q has two equal roots, 

(c) D < 0 <o> Q has complex roots. 

Let us compute D explicitly for the case at band. We find 

(2.6) 

Q(z) = 2(plq2- P2ql)X2 + 4(plq3- p3q1)xy + 2(p2q3- P3q2)Y2, (2.7) 

so that 

Our second nondegeneracy condition is 

(H2) D # 0. 
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Let us show that (H2) is an invariant of equivalence. Indeed, the sign of 
D is such an invariant. We give a geometric argument. If g and g are 
equivalent, then we apply the chain rule to (2.5) to deduce that 

Q(z) = cQ(Az), (2.9) 

where c = det S(O, 0) det A. In words, (2.9) states that Q is a nonzero 
multiple of Q evaluated in the new coordinates Az. Then the zero sets of Q 
and Q have the same structure. By (2.6), D and D have the same sign. 

Condition (H2) divides nondegenerate bifurcation problems into two 
cases, D positive and D negative. We now state the appropriate normal 
form if Dis negative. (We defer the proofuntil the end ofthe section.) 

Theorem 2.2. Let g be a bifurcation problern in two state variables satisfying 

(H1) U;.(O, 0) =F 0 

and 

D <0. 

Then g is equivalent to 

(x2 - y2 + A., 2xy). (2.10) 

If D > 0, we need an additional nondegeneracy condition in order to 
derive normal forms. Since D > 0, there are precisely two lines along which 
Q(z) = det(df)z vanishes. Choose nonzero vectors z1 and z2 , one on each 
line, and let W; = f(z;), i = 1, 2. Our last nondegeneracy condition is that 
g;.(O, 0) not be parallel to either w1 or w2 • In terms of the cross product in 
two dimensions we may reformulate this condition as 

(H3) g;.(O, 0) X W; '# 0, i = 1, 2. 

Let us interpret the vectors w; in condition (H3) geometrically. We claim 
that the image of the mapping f: lffi2 -+ lffi2 is the wedge spanned by the two 
vectors w1 and w2 , as illustrated in Figure 2.1. The most elegant proof of 

Figure 2.1. The image off. 
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this claim is to change coordinates in the domain of f so that z1 and z2 

become e1 and e2 (i.e., unit vectors in the coordinate directions), and to 
change coordinates in the range of f so that w1 and w2 also become e1 and 
e2 • In these coordinates f takes the explicit form 

f(z) = (x2, y2) (2.11) 

which occurs in (13). Indeed, this is precisely the construction we will use in 
obtaining the normal form (13). We refer to the proof of Theorem 2.3 for 
the details of this construction. For the mapping (2.11), the claim may be 
verified by a trivial, explicit calculation. 

Next we argue that (H3) is an invariant of equivalence. It suffices to 
consider linear equivalences as in (2.5). Coordinate transformations on the 
domain do not change either w; or g_.(O, 0)-for g_., this is clear; for w;, this 
follows from the above geometric interpretation. As regards coordinate 
transformations on the range, we observe that for two vectors u, v E IR2, 

(Bu) x (Bv) = (det B)(u x v). (2.12) 

Thus (H3) is not changed by coordinate transformations on the range. 
We use condition (H3) to divide nondegenerate bifurcation problems 

with D > 0 into three cases. Referring to Figure 2.1, we identify four 
quadrants in the plane associated with the image of f In words, Imfis the 
first quadrant, and the quadrants are numbered counterclockwise. The 
three cases are as follows: 

(i) g_.(O, 0) E quadrant 1, 

(ii) g_.(O, 0) E quadrant 3, (2.13) 

(iii) g_.(O, 0) E quadrant 2 or 4. 

These three cases are invariant under equivalence. (Remark: It might seem 
morenatural to divide Case (iii) into two subcases, g_.(O, 0) in quadrant 2 or 
4. However, these two subcases are not invariants of equivalence. 
Specifically, multiplication of g by a matrix B with det B < 0 interchanges 
them.) 

We now state the normal form theorem for nondegenerate bifurcation 
problems with D > 0. 

Theorem 2.3. Let g be a bifurcation problern in two state variables sati~fying 

(H2t 

(H3) 

Then g is equivalent to 

D > 0, and 

g;.(O, 0) X W; "# 0, i = 1, 2. 

(i) (x2 + A., y2 + A.), 

(ii) (x2 - A., y2 - A.), or 

(iii) (x2 + A., y2 - A.), 

according as Case (i), (ii), or (iii) occurs in (2.13). 

(2.14) 
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(Remark: Hypothesis (H3) implies (Hl).) 
In proving Theorems 2.2 and 2.3, we shall assume that g(z, A.) has the 

form 

g(z, A.) = f(z) + A.r, 

with fand r as in (2.2). This is based on our (unproved) assertion that terms 
in (2.1) are higher-order terms for normal forms (12) and (13) and may be 
transformed away by an appropriate choice of equivalence. 

PROOF OF THEOREM 2.3. Choose z1, z2 , w1, w2 as above. Define 2 X 2 mat
rices A and B such that 

Then 

has the form 

AG)= z1, 

Bw 1 = G} 
A(~) = z2 , 

Bw2 = G). 

g(z, A.) = Bg(Az, A.) 

g(z, A.) = (x2 + aA., y2 + bA.). (2.15) 

With this normalization, quadrants in Figure 2.1 coincide with the usual 
quadrants in the xy-plane. In (2.15), if (a, b) belongs to the first, third, or 
second quadrants, we perform the equivalence 

Bg(A, A.), (2.16) 

where 

- = (1al 112 0 ) - = (Iai- 1 

A 0 IW/2 'B 0 

this reduces (2.15) to (2.14i), (2.14ii), or (2.14iii), respectively. If(a, b) belongs 
to the fourth quadrant, we perform a preliminary equivalence (2.16) with 

- - (0 1) A=B= 1 0 . 

This interchanges a and b in (2.15), so that (a, b) belongs to the second 
quadrant. We then proceed as before. D 

PROOF OF THEOREM 2.2. To begin, we prove a preliminary result; viz., if q(z) 
is a homogeneaus quadratic polynomial in x and y which vanishes only at 
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the origin, then there is a matrix A such that q(Az) = ±(x2 + y2). First 
recall that there is a rotation matrix 

A = (cos () -sin ()) 
sin () cos () 

such that q(Az) = ax2 + by2 • By rescaling x and y we may put q into the 
form ±x2 ± y2 • Since q vanishes only at the origin, only the cases 
±(x2 + y 2 ) can occur. 

Now form the mapping f(z) = (p(z), q(z)) from the quadratic terms of the 
mapping g in Theorem 2.2. We claim that q, the second coordinate of J, 
vanishes along two distinct lines in the plane. Suppose otherwise; then either 

(i) q vanishes only at the origin, or 
(ii) q vanishes (to order 2) along some line. 

In the first case, we may assume that q = x 2 + y2 ; this combines the above 
result with a possible multiplication of g by -1. Moreover, there is a 
rotation A suchthat p(Az) = PtX2 + p3y2 • This rotation does not affect q, 
since q is rotationally invariant. We now compute from (2.8) that 
D = 16(pt - p3) 2 ~ 0, which contradicts hypothesis (H2)- ofTheorem 2.2. 
This rules out possibility (i) above. Similarly, regarding possibility (ii), after 
a preliminary change of coordinates, we may assume that q = x 2 • Sub
stituting in (2.8) we find D = 16p~ ~ 0, which is again a contradiction. 

Therefore {q = 0} consists of two distinct lines through the origin. 
Perform a linear transformation A so that {q = 0} consists of the lines 
{x = 0} and {y = 0}. Thus 

We compute from (2.8) that D = 16ptp3 q~. Hence Pt and p3 have opposite 
signs. We rescale x and y and we multiply p and q by constants to obtain 
Pt = 1, p3 = -1, and q2 = 2; this corresponds to an equivalence transfor
mation Bg(Az, A.) with A and B diagonal. Finally, we multiply g by an upper 
triangular matrix 

to eliminate the cross term p2xy. In this way we arrange that 

f(z) = (x2 - y2 , 2xy). 

We normalize the term A.r = A.g;.(O, 0) as follows. Observe that for any 
rotation matrix A, 

Af(A -tt2z) = f(z). 

Choose a rotation A such that Ar = a(1, 0). We rescale A. to obtain the 
desired normal form (12). D 
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In this section we study the perturbed bifurcation diagrams associated to 
the normal forms 

(a) (x2 - y2 + .A., 2xy), 

(b) (x2 - .A., y2 - .A.), 

(c) (x2 + .A., y2 - .A.). 

(3.1) 

Formula (3.1a) is the normal form (12) of Theorem 2.1. Formulas (3.1b, c) 
Iist two of the three inequivalent cases in normal form (13); pictures for the 
remaining case (x2 + .A., y2 + .A.) can be obtained from our pictures for (3.1b) 
below by mapping .A. to -.A.. For reference, the unperturbed bifurcation 
diagrams associated to all three normal forms (3.1) are shown in Figure 3.1. 
(Remarks: The bifurcation diagrams for (3.1) are curves in IR 3 • In Figure 3.1 
wehavealso drawn the x, .A. and y, .A. coordinate planes as an aid in visualizing 
the bifurcation diagrams. Portions of the bifurcation diagram are shown as 
dotted to indicate that they are "hidden" by the coordinate planes. In 
particular, dotted curves do not indicate an unstable branch; no stability 
assignments are indicated in Figure 3.1.) 

We obtain perturbed bifurcation diagrams for (3.1) with the same 
methods that we developed in Chapter III for bifurcation problems in one 
state variable. Specifically, 

(i) we find a universal unfolding for the normal form; 
(ii) we partition the parameter space (IR3 in this case, since (3.1) has 

codimension three) into several regions with the transition variety 1:; 
(iii) we obtain an enumeration of the perturbed bifurcation diagrams from 

the regions of IR 3 ~ 1:. 

In Volume II, we will present the theory which justifies this method of 
analysis. Herewe concentrate on the calculations for perturbations of (3.1). 

Although this section is fairly short, we have divided it into four 
subsections, as follows: 

(a) Universal unfoldings. 
(b) Theoretical characterization of the transition variety. 
(c) Formulas and pictures for the transition variety. 
(d) The perturbed bifurcation diagrams. 

In subsections (a), (c), and (d) we carry out steps (i), (ii), and (iii) above. In 
subsection (b) we discuss how to obtain equations for 1:. Although with 
several state variables the same three phenomena (viz., bifurcation, hys
teresis, and double Iimit points) contribute to 1: as with one state variable, 
the equations characterizing each variety appear slightly different. We hope 
that the explanation of subsection (b) will enable the reader to reproduce 
our subsequent calculations. 
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(i) 2 = y2 - x2, 

xy = 0 

/ 
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/! 
/ -

(iii) 2 = y2, 

xz+yz=O 
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/ 
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Figure 3.1. Unperturbed hilitop bifurcation, as in (3.1). 
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(a) Universal Unfoldings 

The following are universal unfoldings of the normal form (3.1); note that 
they depend on three auxiliary parameters, IX, ß, and y. 

(a) (x2 - y2 + A. + 21Xx - 2ßy, 2xy + y), 

(b) (x2 - A. + 21Xy- y, y2 - A. + 2ßx + y), 

(c) (x2 + A. + 21Xy + y, y2 - A. + 2ßx + y). 

(3.2) 

We do not prove this in the present volume. Indeed we have not even 
defined universal unfoldings for problems with n state variables. However, 
intuitively the situation is clear-the universal unfoldings (3.2) enumerate 
all small perturbations of (3.1), up to equivalence (as defined in Definition 
1.2). 

For reference, we present the following proposition which solves the 
recognition problern for universal unfoldings of hilitop bifurcation. We 
defer its prooffor Volume Il. 

Theorem 3.1. Let G(z, A., IX, ß, y) = (P(z, A., IX, ß, y), Q(z, A., a, ß, y)) be a three
parameter unfolding of a bifurcation problern g(z, A.) in two state variables 
where g satisfies the nondegeneracy conditions H1, H2, and H3 (if D > 0) of 
§2. Then G is a universal unfolding of g if and only if 

0 pxx 2Pxy 0 Qxx 2Qxy 
0 2Pxy PYY 0 2Qxy Qyy 

det 
P;. px). py). Q;. Qx). Qy). ,= 0, 
Pa Pax Pay Qa Qax Qay 
Pp Ppx Ppy Qp Qpx Qpy 
py pyx PYY Qy Qyx Qyy 

when evaluated at (z, A., IX, ß, y) = (0, 0, 0, 0, 0). 

(b) Theoretical Characterization of the Transition Variety 

Let G: !Rn x IR x !Rk ~ !Rn be a k-parameter unfolding of a bifurcation 
problern g with n state variables. The main result concerning the transition 
variety I: c !Rk is the following: For any two choices of parameters, 1X 1 and 
IX2 , in a given connected component of !Rk"' 1:, G( ·, ·, 1X 1) and G( ·, ·, 1X2) are 
equivalent. As in one state variable, I: is a union of three subvarieties, 

I: = f!4 u :Yf u ~. 

where fll, ~ and ~ are associated with bifurcation, hysteresis, and double 
Iimit points, respectively. In this subsection we derive equations for f!l, ~ 
and ~. For simplicity, we consider only the case of two state variables, 
although the differences with the general case are minimal. 



410 IX. Two Degrees of Freedom Without Symmetry 

Let G(z, A., IX) be a k-parameter unfolding of a bifurcation problern in two 
state variables; thus z = (x, y) E IR2, A. E IR, and IX E IRk. We write G in 
components, G = (P, Q). Let DG be the 2 x 3 Jacobian matrix 

This is in cantrast to dG, which denotes the 2 x 2 Jacobian matrix of 
derivatives of G with respect to x and y only. 

The bifurcation variety flA consists of those IX E IRk for which the curve 

{(z, .A) E IR2 x IR: G(z, A., IX) = 0} (3.3) 

contains a singular point. It follows from the implicit function theorem that 
(z, .A) can be a singular point of (3.3) only if (DG)z,.l.,a fails to be surjective; 
otherwise, we could solve G = 0 for two of the variables as functions of the 
third. Therefore, we define 

(JA = {IX E IRk: 3(z, .A) suchthat G(z, A., IX) = 0 
and rank (DG)z,.l.,a ::;; 1}. (3.4) 

The hysteresis variety :Yf consists of those IX E IRk for which the curve (3.3) 
makes at least quadratic contact with the vertical planes {A = const}. Let 
us define quadratic contact. Suppose that we parametrize a portion of the 
curve (3.3), say 

cf>(t) = (x(t), y(t), .A(t)); (3.5) 

we say that cf> makes quadratic contact with the plane {.A = const} at t = 0 if 
the third component in (3.5) satisfies 

(a) A'(O) = 0, (b) .A"(O) = 0. (3.6) 

(To avoid trivialities, we insist that cf>'(O) i= 0.) We derive necessary con
ditions for quadratic contact as follows. Differentiating the identity 
G(cf>(t), IX) = 0 with respect tot and evaluating at t = 0, we find 

(a) (DG<P<OJ,a · cf>'(O) = 0, 

(b) (D2 G)q,<Ol,a(cf>'(O), cf>'(O)) + (DG)q,(o),a · cf>"(O) = 0. 
(3.7) 

Equation (3.7a) is shorthand for a sum involving three terms; we group the 
terms as 

(dG)q,(o).a · v0 + (G.._)<P<Ol,a · A'(O) = 0, 

where v0 = (x'(O), y'(O)). If (3.6a) holds, the second term here vanishes. In 
other words, if (3.6a) holds, there is a nonzero vector v0 suchthat 

(dG)q,(O),a · v0 = 0. 
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(In particular, det(dG)q,(o),a = 0.) Similarly, if (3.6b) holds, we deduce from 
(3.7b) that there is a vector w0 suchthat 

(dG)q,(O),a · W0 = (d2 G).p(O),a(Vo, Vo); 

viz., w 0 = -(x"(O), y"(O)). Thus we define 

Jlf ={IX E !Rk: 3(z, A, v)such that G(z, A, IX)= 0, v # 0, 
(dG)z,?.,a. V = 0, and 
(d2 G)z,;.)v, v) E range (dG)z,?.,a}. (3.8) 

We extract an equation for the double Iimit point variety f0 from the 
above analysis as follows. Limitpoints satisfy (3.6a). Above we showed that 
if (3.6a) holds, then det(dG)q,(o).a = 0. Thus we define 

f0 ={IX E !Rk: 3(z 1, z2, -1) suchthat z1 # z2, G(z;, A, IX)= 0, and 
det(dG)z,,?.,a = 0, i = 1, 2}. (3.9) 

(c) Formulas and Pictures for the Transition Variety 

In Table 3.1 we Iist the equations of the three varieties f!J, Yf, and f0 for the 
three universal unfoldings (3.2). We leave it to the reader to check these 
formulas. The computations for f!J are easy, while those for Jlf and f0 are 
somewhat lengthy. 

Even though we have listed explicit formulas for I:, it is still a com
plicated task to enumerate the connected components of IR 3 ~ I:. We 
simplify this enumeration by making a singular change of coordinates in the 
unfolding parameters IX, ß, y. This transformation changes the order of 
contact of the varieties f!J, Jlf and !:0, but it leaves the number of com
ponents of IR3 ~ I: and their relative positions unchanged. To illustrate this, 
Iet us consider (3.2a). We define p, e, and (j by the equations 

IX = P cos e, (3.10) 

Thus (p, e, <>) are a singular modification of cylindrical Coordinates in IXßy
space. In these coordinates f!J and Jlf have the equations 

f!J: {<> = 0}, 

Jlf: {4{>3 - 3() = -sin 20}. 
(3.11) 

Table 3.1. Equations for the Transition Variety in Hilltop Bifurcation. 

(a) Y = 0 (2y + rxW = 1ijl{rx2 + ß2)2y 0 
(b) y = -!(rx2 _ pz) y = -irx2i3p2i3(rx2/3 _ p2i3) {rx = 0, y ~ 0} u {ß = 0, y ~ 0} 
(c) y = -!(rx2 + pz) y = -irx2i3p2i3(rx2/3 + p2i3) {rx = 0, y ~ 0} u {ß = 0, y ~ 0} 
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In other words, p drops out of the equations. Thus we may describe !!8 and 
Jt' by two-dimensional graphs in e, <5-space. We have graphed (3.11) in 
Figure 3.2(a). We view this figure as the intersection of L with the cylinder 
{p = 1} in (o:, ß, y)-space. The full three-dimensional graph of L may be 
obtained from Figure 3.2(a) by considering all values of p and scaling 
according to (3.10). In this way, we conclude from Figure 3.2(a) that 
lR 3 ,...., L contains ten connected components. 

Similarly, we can find the connected components of the complement of L 
for the examples (3.2b) and (3.2c) with the singular scalings: 

(X = p3 cos3 e, ß = p3 sin3 e, y = p6<5. 

In these coordinates, f!#, Yf, and !:0 have equations as follows: 

for (3.2b) 

and for (3.2c) 

!!8: {<5 = cos(20)(4- sin2(20))/8}, 

Jt': {<5 = -3 cos(20) sin2(20)/8}, 

E&: { e = ~, 3;; <5 ::::; o} u { e = o, rc; <5 ;;:: o}. 

fJ6: { <5 = (4 - 3 sin2(20))/8}, 

Jt': {<5 = -3 sin2(20)/8}, 

Wehave drawn these graphs in Figure 3.2(b), (c); in the figures wehavealso 
enumerated the components of lR 3 ,...., L. 

Finally, for the normal form (3.2c) we have sketched the full three
dimensional graph of L in o:ßy-space in Figure 3.3. 

(d) The Perturbed Bifurcation Diagrams 

Now we discuss the perturbed bifurcation diagrams associated to the 
various regions in Figure 3.2. We consider (3.2a) in some detail, and we 
merely present the results for (3.2b, c). Our analysis relies heavily on the fact 
that for certain values of the parameters o:, ß, y, a pitchfork bifurcation 
occurs in the unfoldings (3.2). (Cf. the analysis ofthe winged cusp in Chapter 
III, §8.) 

Consider the bifurcation problern obtained by setting ß = y = 0 in the 
unfolding (3.2a); viz., 

(a) x 2 - y2 + A + 2o:x = 0, 
(b) 2xy = 0, 

(3.12) 



Jf (1) Jf 

~~ ~~ 

Jf (2) Jf 

(a) Transition variety for (x2 - y2 + A., 2xy). 

(4) (3) (4) 

(b) Transition variety for (x2 - A., y2 - ..1.). 

(3) (4) (5) (6) 

(c) Transition variety for (x2 + A., y2 - ..1.). 

Figure 3.2. Transition varieties for hilitop bifurcation. 

Figure 3.3. Three-dimensional sketch of the transitions variety for (x2 + A., y2 - A.). 
See Fig. 3.2(c). 
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where a =f 0. The solution set of (3.12) consists of two parabolas, 

(a) x = 0, - y2 + A. = 0, 

(b) y = 0, x2 + 2cxx + A. = 0. 
(3.13) 

These parabolas intersect at x = y = .l. = 0, as illustrated in Figure 3.4. At 
first glance, Figure 3.4 may seem rather similar to the unperturbed bifur
cation diagram of Figure 3.l(a); the difference is that in Figure 3.1(a) the 
intersection occurs at the vertex of both parabolas, while in Figure 3.4 it 
occurs off center of the parabola (3.13b). The intersection point is actually a 
pitchfork bifurcation. This means that at the intersection point, the 
Jacobian of (3•.12) has rank 1 and the Liapunov-Schmidt reduction of (3.12) 
leads to a bifurcation problern in one variable that is equivalent to the 
pitchfork. We ask the reader to verify this in Exercise 3.1. (Remark: Note 
that both (3.1a) and the perturbed problern (3.12) commute with the 
refiection (x, y) --+ (x, - y). It is no accident that the pitchfork survives the 
perturbation.) 

Let us locate the perturbation (3.12) in Figure 3.2(a). We see from (3.10) 
that for the perturbation (3.12), <5 = 0 and e = 0 or n according as a > 0 or 
a < 0, respectively. Now we know from the one variable theory that at a 
pitchfork bifurcation point, the bifurcation variety fJB and the hysteresis 
variety :tf intersect one another and have cubic contact. In Figure 3.2(a), fJB 

and :tf do indeed intersect one another at 0 = 0 and e = 0, n, but the 
intersection appears to be transverse. However, this is misleading-because 
of the scaling (3.10), in aßy-space, fJB and :tf have cubic contact. 

For definiteness let us take a < 0 in (3.12). This corresponds to <5 = 0, 
e = n in Figure 3.2(a). Four separate regions of IR3 "' :r. abut the point 
o = 0, e = n in Figure 3.2(a); viz., 3, 6, 8, and 9. This is tobe expected from 
the one variable theory, as the parameters ß and y provide a universal 
unfolding of (3.12). (See Exercise 3.1.) The bifurcation diagrams associated to 
these regions may be obtained from Figure 3.4 by splitting apart the 

y 

J-, 
X 

Figure 3.4 Bifurcation diagram of (3.12). 
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pitchfork in various ways. The resulting bifurcation diagrams have either 
two or four Iimit points, as illustrated in Figure 3.5(a). We associate the 
diagrams containing four Iimit points with regions 7 and 8, because after the 
scaling (3.10) these are the "thin" regions in the universal unfolding of the 
pitchfork provided by ß and y. 

There are four pitchfork points in Figure 3.2(a), at e = 0, n/2, n, and 
3n/2. Two of these are associated with (3.12), and two with a similar 
perturbation where rx = y = 0. By perturbing these four pitchfork points we 
may account for the bifurcation diagrams of regions 3 through 10 in Figure 
3.2(a). The remaining two regions, 1 and 2, are associated with bifurcation 
diagrams that have no Iimit points, as shown in Figure 3.5(a). 

The analysis of (3.2b) is similar. There are four points in Figure 3.2(b) 
where f!J and :1t intersect, and these yield pitchfork bifurcations. Every 
region in Figure 3.2(b) abuts a pitchfork point. Thus every perturbed 
diagram can be obtained from one of the pitchforks. The possible diagrams 
are shown in Figure 3.5(b); they contain either two or four Iimit points. 

X 
(1), (2) (3)-(6) (7)-(10) 

(a) Persistentperturbations of (x2 - y2 + A., 2xy). 

(!)-( 4) (5)-(12) 

(b) Persistent perturbations of (x 2 - A., y2 - A.). 

No solutions 

(1) (2) (3)-(6) 

(c) Persistentperturbations of (x2 + A., y2 - A.). 

Figure 3.5. Persistent perturbations in hilitop bifurcation. Nurobers refer to regions 
of Fig. 3.2. 
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The last example, (3.2c), is a two-dimensional version of an isola center. 
Again, the number of limit points determines the perturbed diagrams; zero, 
two, or four are possible. Theseare shown in Figure 3.5(c). 

Note that double limit points occur for (3.2b) and (3.2c). Indeed, there 
are points where ~ intersects Je. The singularity which occurs at such 
intersections is the quartic fold x4 - A.. We ask the reader to prove this in 
Exercise 3.2. 

EXERCISES 

3.1. (a) Show that when a =f:. 0 the bifurcation problern (3.12) has a pitchfork bifurcation 
e(y3 - A.y) near (x0 , y0 , ..1.0 ) = (0, 0, 0) where e = sgn(cx). Hint: Use the implicit 
function theorem to solve (3.12a) for x = x(y, ..1.), x(O, 0) = 0. Next show that 
x.(O, 0) = -1/2cx, xy(O, O) = 0 and xyy(O, 0) = 1/cx. 

(b) Verify that (3.2a) is a universal unfolding of (3.12a) using Proposition 
III,4.4. 

3.2. (a) Show that (3.2b, c) have quartic folds (ex4 + <'iA.) at parameter values in 
Yf 11 9. (See Table 3.1. Yf 11 !0 consists of the two lines cx = y = 0, ß =f:. 0 
and ß = y = 0, a =f:. 0.) 

(b) Show that (3.2b, c) is a universal unfolding of the quartic folds using Table 
IV,3.2(7). 

ßiBLIOGRAPHICAL COMMENTS 

The primary sources for this chapter are Golubitsky and Schaeffer [1979a] 
and Thompson and Hunt [1973]. 



CHAPTER X 

Two Degrees of Freedom with 
(Z2 EB Z2)-Symmetry 

§0. Introduction 

In this chapter we explore the role of symmetry in the study of bifurcation 
problems. Specifically, we analyze a family of bifurcation problems in two 
state variables that commute with the group Z2 EB Z2 . Although even in 
this special case our discussion is necessarily incomplete, it indicates the 
directions of the general theory. 

There are several specific benefits to be derived from understanding this 
material. Most pragmatically, we will use the results of this chapter in Case 
Study 3. Pedagogically, the examples of this chapter provide a wonderful 
illustration of the importance of moduli in the general theory-the simplest 
bifurcation problems in the (Z2 EB Z2)-symmetric context have codimen
sion three, and two of the three urifolding parameters are moduli. Finally, this 
chapter may help to overcome a somewhat pessimistic impression left from 
Chapter IX about the intractibility of bifurcation problems in several state 
variables. When symmetry is present, group theory offers powerful tech
niques for organizing complicated information, and these techniques have 
not yet been pushed even close to their Iimits. On the contrary, it seems 
quite plausible to us that further research in this area may Iead to striking 
new results. 

There are four sections in this chapter. In §1 we describe the general 
setting for (Z2 EB Z2)-symmetry. In §2, we present the basic singularity 
theory results for the least degenerate (Z2 EB Z 2)-symmetric bifurcation 
problems. In §3, we discuss the invariance of stability under (Z2 EB Z2 )

equivalence. (We saw in Chapter IX, §1 that in general equivalence transfor
mations in many state variables do not respect the stability of solutions; 
somewhat surprisingly, symmetry alters this situation.) Finally, in §4 we 
draw the bifurcation diagrams. 
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§1. Bifurcation Problems with (Z2 Ef) Z 2)-Symmetry 

In this section we discuss three points, as follows: 

(a) The action of the group Z 2 EB Z 2 on IR2. 
(b) Restrietions on bifurcation problems g commuting with this action of 

Z2 EB z2· 
(c) Solutiontypes of the equation of g = 0. 

There is an intimate connection between points (a) and (c). Specifically, we 
shall see that solutions of the equation g = 0 are naturally classified into 
several different types which correspond exactly to the group action. 

(a) The Action of Z2 ffi Z 2 on ~2 • 

The group Z2 EB Z2 has four elements (e, <5) where e = ± 1 and <5 = ± 1. 
The group element (e, <5) acts on the point (x, y) E IR 2 by 

(e, <5) • (x, y) = (ex, by). (1.1) 

We may, of course, think of the action of (e, <5) on IR2 as a linear mapping; 
the matrix associated to the action of (e, <5) is the diagonal matrix 

(1.2) 

The behavior of the action of Z 2 EB Z 2 on IR2 is different at different 
points in IR2 • Moreover, these differences are the root cause of much of the 
structure we find in bifurcation problems with symmetry. We describe these 
differences in two ways: through orbits and through isotropy subgroups. 

The orbit of a point (x, y) under the action of Z2 EB Z 2 is the set of 
points 

{(e, <5). (x, y): (e, <5) E z2 EB Z2}. 

It is easy to see that there are four orbit types: 

(a) The origin, (0, 0), 

(b) Points on the x-axis, (±x, 0) with x =F 0, 

(c) Points on the y-axis, (0, ±y) with y =F 0, 

(d) Points offthe axes, (±x, ±y) with x =F 0, y =F 0. 

(1.3) 

From (1.3) we see that orbits have either 1, 2, or 4 points; the origin is 
distinguished, being the unique one point orbit. 

Isotropy subgroups provide another way of describing the differences 
between different points in IR2 under this action. The isotropy subgroup of a 
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point (x, y) is the set of symmetries preserving that point. In symbols, the 
isotropy subgroup of the point (x, y) is 

{(e, b) E Z2 E!J Z2: (e, b) ·(X, y) = (x, y)}. 

Again, it is easy to see that there are four isotropy subgroups: 

(a) Z 2 E9 Z 2 corresponding to the origin, 

(b) Z 2 = {(1, <5)} corresponding to (x, 0) with x =I 0, 

(c) Z 2 = {(e, 1)} corresponding to (0, y) with y =1 0, 

(d) 1 = {(1, 1)} corresponding to (x, y) with x =1 0, y =1 0. 

(1.4) 

Note that orbit types in (1.3a, b, c, d) have isotropy subgroups (1.4a, b, c, d), 
respectively. 

The ideas of orbit type and isotropy subgroup extend to a generat group 
action. As we will see in Volume II, these ideas play an important role in 
determining the structure of bifurcation problems with symmetry. In this 
chapter, however, we will restriet the discussion to bifurcation problems 
with (Z2 E9 Z 2}-symmetry. 

(b) The Form of (Z2 Et> Z 2)-Symmetric Bifurcation Problems 

Let g: IR2 x IR--+ IR2 be a bifurcation problern with two state variables; that 
is, Iet g be coo and satisfy 

g(O, 0) = 0, (dg)o,o = 0. (1.5) 

(Cf. Definition IX,l.l.) We say that the bifurcation problern g commutes 
with the group Z 2 E9 Z 2 if 

g((e, o). (x, y), A.) = (e, o) . g(x, y, A.). (1.6) 

(Cf. Chapter VII, §3(a).) In the next Iemma we describe explicitly the form 
that (1.6) imposes on g. (Cf. Lemma VI,2.1 and Corollary VI,2.2 for the 
analogous properties when g has only one state variable and commutes 
with the group z2 .) 

Lemma 1.1. Let g: IR2 x IR --+ IR2 be a bifurcation problern in two state 
variables commuting with the action of Z 2 E9 Z 2 in (1.1). Then there exist 
smoothfunctions p(u, v, A.), q(u, v, A.) such that 

g(x, y, A.) = (p(x2, y2 , A.)x, q(x2 , y2, A.)y), (1.7a) 

where 
p(O, 0, 0) = 0, q(O, 0, 0) = 0. (1.7b) 

PRooF. We write g in Coordinates 

g(x, y, A.) = (a(x, y, A.), b(x, y, A.)). 
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The commutativity relation (1.6) implies that 

a(ex, by, A.) = ea(x, y, A.), 

b(ex, by, A.) = bb(x, y, A.). 
(1.8) 

When e = -1 and b = + 1, equation (1.8) shows that a is odd in x and bis 
even in x. When B = + 1 and b = -1, equation (1.8) shows that a is even in 
y and bis odd in y. It follows from Taylor's theorem that we may factor 
these functions, 

a(x, y, A.) = a(x, y, A.)x, 

b(x, y, A.) = b(x, y, A.)y, 
(1.9) 

where a and bare even in both x and y. Applying Lemma Vl,2.1, first to x 
and then to y, we conclude that g has the desired form (1.7a). 

Regarding (1.7b), we recall from (1.5) that the linear terms in g vanish. 
The only linear terms compatible with the symmetry are 

(p(O, 0, O)x, q(O, 0, O)y); 

thus p(O, 0, 0) = q(O, 0, 0) = 0. 

(c) Solution Types for g 

Consider solving the equation g = 0 when g has the form (1.7a). There are 
four solution types of such an equation, which occur according as the first 
or second factor in p(x2, y2 , A.)x vanishes and the first or second factor in 
q(x2 , y2 , A.)y vanishes. Specifically, we have solution types 

(a) x = y = 0, 

(b) p(x2 , 0, A.) = 0, y = 0, x 1= 0, 

(c) x = 0, q(O, y2 , A.) = 0, y #- 0, 

(d) p(x2 , y2 , A.) = 0, q(x2 , y2 , A.) = 0, x 1= 0, y 1= 0. 

(1.10) 

Moreover, these solution types correspond exactly to the orbit types listed 
in (1.3) of the action of Z 2 EB Z 2 on ~2 • 

We use the following terminology for these four types of solutions: 

(a) trivial solution, 

(b) x-mode solutions, (1.11) 
(c) y-mode solutions, 

(d) mixed mode solutions. 

We see from (1.3) that each solution type has its own characteristic 
multiplicity. Specifically, x-mode and y-mode solutions always come in 
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pairs, (±x, 0) and (0, ±y); and mixed mode solutions always come four at a 
time, (±x, ±y). 

lt is instructive to compare the present two state variables, (Z2 Ei) Z2)~ 
context with the one state variable, Z2-context of Chapter VI. In the latter 
context, there are two solution types; the trivial solution (x = 0) and 
nontrivial solutions (x f= 0). Moreover, nontrivial solutions always come in 
pairs, ±x. Thus the present context exhibits similar, but richer, structure. 
Group theoretic methods are the natural tool for exploring this structure 
systematically. 

The buckling problems described in Chapter I, §1; Chapter VI, §1; and 
Chapter VII, §1 alllead to one state variable bifurcation problems with Z 2-

symmetry. In these models it is simple to relate the group theory concepts 
to the physical situation. For example, the trivial solution corresponds to 
the unbuckled state; nontrivial solutions occur in pairs, because for each 
"buckled-up" state, there is a symmetric "buckled-down" state. Similarly, in 
Case Study 3 we study a bifurcation problern with (Z2 Ei) Z2)-symmetry; 
the group theory concepts will be clarified by seeing them in this physical 
situation. In particular, the terminology in (1.11) derives from this situation. 

§2. Singularity Theory Results 

We divide this section into three subsections, as follows: 

(a) Equivalence in the (Z2 $ Z2)-symmetric context. 
(b) The recognition problern for the simplest bifurcation problems with 

(Z2 $ Z2)-symmetry. 
(c) Universal unfoldings for these simplest singularities. 

Thus, subsections (a) and (b) discuss how to generalize the ideas of Chapter 
II to the present context; subsection (c), how to generalize the first half of 
Chapter 111. (In §4, we will consider the generalization of the second half of 
Chapter 111; i.e., the perturbed bifurcation diagrams.) 

The singularities we describe here have codimension three and modality 
two. This emphasizes the need to study moduli when symmetry groups are 
present. 

(a) (Z2 EB Z 2)-Equivalence 

Let g, h: ~2 x ~--+ ~2 be bifurcation problems with two state variables 
commuting with the action of Z2 $ Z2 • We say that g and h are 
(Z2 $ Z 2)-equivalent if g and h are equivalent (in the sense of Definition 
IX,1.2) and, in addition, the equivalence preserves the symmetry. Let us 
elaborate. Recall that g and h are equivalent if there exists a 2 x 2 invertible 
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matrix S(x, y, A.) depending smoothly on x, y, and A. and a diffeomorphism 
<l>(x, y, A.) = (Z(x, y, A.), A(A.)) satisfying 

g(x, y, A.) = S(x, y, A.)h(Z(x, y, A.), A(A.)), (2.1) 

suchthat 

<1.>(0, 0, 0) = (0, 0, 0) and A'(O) > 0. 

We say that the equivalence S, <I> preserves the symmetry if 

(a) Z(ex, ay, A.) = (e, <5) • Z(x, y, A.), 

(b) S(ex, by, A.>( ~ ~) = ( ~ ~)s(x, y, A.). 

(2.2) 

(2.3) 

The restriction (2.3a) states that Z commutes with the group Z 2 $ Z 2 • The 
restriction (2.3b) is precisely the condition on S needed to guarantee that 
our equivalence transformations have the following property: If h is a 
bifurcation problern commuting with the group Z2 $ Z 2 and if g is 
(Z2 $ Z 2)-equivalent to h, then g commutes with Z 2 $ Z2 • 

Condition (2.3) restricts the form of Z and S in the following ways. Since 
Z commutes with Z2 $ Z2 , (2.3a), we may apply Lemma 1.1 to show that 

(2.4) 

Thus 

( a(O, 0, 0) 0 ) 
(dZ)o,o,o = 0 b(O, 0, 0) ; 

in words, (dZ)o,o,o is diagonal. Turning now toS, we write out the entries 
of S as 

A short calculation using (2.3b) shows that S1 and S4 are even in both x 
and y, and that S2 and S3 are odd in both x and y. Thus, Lemma VI,2.1 
coupled with Taylor's theorem implies that 

S( A.) = ( cl(x2, y2, A.) 
X, y, ( 2 2 l) c3 x , y , 11. xy 

(2.5) 

In particular 

S(O O O) = (c1(0, 0, 0) 0 ) . 
' ' 0 c4(0, 0, 0) ' 

(2.6) 

Thus S(O, 0, 0) is also diagonal. 
Weshall require that (Z2 $ Z 2)-equivalences satisfy 

a(O, 0, 0) > 0, b(O, 0, 0) > 0, c1(0, 0, 0) > 0, c4(0, 0, 0) > 0. (2.7) 
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Restrietion (2.7) stems from a desire to have (Z2 9 Z 2)-equivalences pre
serve linearized stability. This issue will be discussed in detail in §3. 

To summarize we have: 

Definition 2.1. Two bifurcation problems g and h, both commuting with the 
group Z 2 9 Z 2 , are (Z2 9 Z 2 )-equivalent if there exists S and <I> = (Z, A) 
as above satisfying (2.1), (2.2), (2.4), (2.5), and (2.7). 

(b) The Recognition Problem for the Simplest Examples 

Let g be a bifurcation problern with two state variables commuting with the 
group Z2 9 Z2 • Thus g has the form (1.7). Let us split off the lowest-order 
terms in (1.7), say 

g(x, y, A.) = k(x, y, A.) + bot, (2.8a) 

where 

k(x, y, A.) = (Ax3 + Bxy2 + aA.x, Cx2 y + Dy3 + ßA.y). (2.8b) 

The higher-order terms in (2.8a) include all monomials x'y"A.t satisfying at 
least one of the following conditions: 

(a) r + s 2:: 5, 

(b) t = 1, r + s 2:: 3, 

(c) t 2:: 2. 

The simplest bifurcation problems of the form (2.8) are those which 
satisfy the following Iist of nondegeneracy conditions. It is these singular
ities that we study for the remainder of this chapter. 

Definition 2.2. The bifurcation problern g in (2.8) is nondegenerate if all the 
following conditions are satisfied: 

(a) A #0, D # 0, 

(b) IX# 0, ß # 0, 

(c) Aß- Ca# 0, Bß- Da# 0, 
(2.9) 

(d) AD- BC # 0. 

In the following proposition we solve the recognition problern for 
nondegenerate bifurcation problems commuting with z2 9 z2. 
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Proposition 2.3. Let g: IR2 x IR -+ IR2 be a bifurcation problern in two state 
variables commuting with the group Z 2 E9 Z 2 and satisfying the nonde
generacy conditions (2.9). Then g is (Z2 E9 Z 2 )-equivalent to 

h(x, y, A.) = (81X3 + mxy2 + 8 2 A.x, nx2y + 8 3 y3 + 84 A.y), (2.10) 

where 

MoreotJer 

(a) 8 1 = sgn(A), 

(b) 82 = sgn(oc), 

(c) m = ltociB, 

83 = sgn(D), 

84 = sgn(ß), 

n = J;ßJc. 
(2.11) 

(2.12) 

Remarks. (i) The normal form h in (2.10) depends on two parameters m and 
n satisfying the nondegeneracy conditions (2.12). These are the two modal 
parameters promised above. 

(ii) The proof of this proposition divides into two parts. In the first part, 
one uses linear (Z2 E9 Z2)-equivalences (i.e., scalings) to transform k to the 
normal form h. In the second part, one shows that the higher-order terms 
may be transformed away by a nonlinear (Z2 E9 Z 2)-equivalence. The 
second part will be presented in Volume II; here, we give only the scaling 
argument. 

PRooF. The most generallinear (Z2 E9 Z 2)-equivalence is given by 

Z(x, y, A.) = (ax, by), 

A(A.) = cr.A., 

S(x, y, A.) = ( ~ ~). 
where a, b, er, c, and d are positive constants. Letting this equivalence act on 
k(x, y, A.), which is given by (2.8b), we find 

( ~ ~)k(ax, by, crA.) = (ca3 Ax3 + cab2 Bxy2 + cacrocA.x, 

da2bCx2 y + db 3Dy3 + dbcrA.y). (2.13) 

To obtain the normal form (2.10), we need 

(a) ca3JAI = 1, 

(b) cacrlocl = 1, 

(c) db3 IDI = 1, 

(d) dbcrlßl = 1. 
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We solve these equations by setting 

(a) 
1 

C=--
a3 IAI' 

(b) d=-1-
b3 IDI' 

(c) u = a2~~~' (2.14) 

(d) ~=~-
Substitution of (2.14) into the right-hand side of (2.13) yields the normal 
form (2.10) with m and n given by (2.11c). The restrictions (2.12) follow from 
the nondegeneracy conditions (2.9c, d). 0 

(c) Universal Unfoldings for Nondegenerate 
(Z2 EB Z2)-Bifurcation Problems 

Universal unfoldings in the (Z2 EEl Z2)-symmetric context are defined in the 
natural way using (Z2 EEl Z2)-equivalence. (Cf. Definitions III,2.1 and 
VI,2.5.) We defer giving precise definitions until Valurne II. Also in Volume 
II we shall derive the following universal unfolding for the normal form 
(2.10). 

Theorem 2.4. Let h(x, y, A.) be the normal form (2.10) satisfying the nonde
generacy conditions (2.12). Then 

H(x, y, A., m, ii, u) = (B 1x3 + mxy2 + 8 2 Ax, nx2y + 8 3 y3 + 84(A.- u)y) 

(2.15) 

is a (Z2 EEl Z 2 )-universal urifolding of h. Here (m, n, u) varies on a neigh
borhood of (m, n, 0). 

One consequence of Theorem 2.4 is that the nondegenerate normal 
forms h have (Z2 EB Z2)-codimension three and modality two. Moreover, 
the universal unfolding (2.15) is topologically trivial provided m and n are 
nonzero and (2.12) holds. Thus according to our definition in Chapter V, §6, 
the (Z2 EB Z 2)-topological codimension of h is one. In other words, up to 
topological equivalence, small (Z2 EB Z 2)-symmetric perturbations of h are 
characterized by the one-parameter u in (2.15). 

In Case Study 3 it will be necessary to have more complete information 
about this parameter u as given in the following proposition. Let G(x, y, A., I)() 
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be a one-parameter unfolding of a germ g which is (Z2 Ef> Z 2)-equivalent to 
(2.10). Then G may be factored through the universal unfolding (2.15); in 
symbols, 

G( ·, ·, ·, 1X) "' H( ·, ·, ·, m(1X), ii(1X), u(1X)). (2.16) 

In the Proposition we specify the sign of du/diX(O). (Remark: The magnitude 
of du/d1X(O) is not an invariant of equivalence.) 
Proposition 2.5. If G(x, y, il., IX) = (p(x2 , y2 , il., 1X)x, q(x2 , y2, il., 1X)y), then in 
(2.16). 

du {p..(O) q.,(O)} 
sgn diX (0) = sgn p,~.(O) - q,~.(O) . (2.17) 

Weshall use (2.17) in Case Study 3 to relate the sign of a tothat of IX. We 
leave the proof of (2.17) for the reader. (See Schaeffer and Golubitsky 
[1979], §9.) 

EXERCISE 

2.1. Let g(x, y, A.) be a bifurcation problern with (Z2 Ei:) Z 2)-symmetry, and Iet h(x, A.) be 
(Z2 Ei:) Z 2)-equivalent to g. 
(a) Show that h has (Z2 Ei:) Z2)-symmetry. 
(b) Show that if g is nondegenerate, so is h. 

§3. Linearized Stability and (Z2 EB Z 2)-Symmetry 

Let g: ~2 x ~-+ ~2 be a bifurcation problern commuting with the group 
z2 Ef> z2. We shall call a Solution (x, y, il.) of the equation g(x, y, il.) = 0 
linearly stable if both the eigenvalues of dg at (x, y, il) have a positive real 
part; unstable if at least one of them has a negative real part. In this section 
we show that in most cases linear stability or instability is an invariant of 
(Z2 Ef> Z 2)-equivalence. This is in marked contrast to the situation when 
there is no symmetry-as we saw in Chapter IX, §1, without symmetry 
linear stability is definitely not an invariant of equivalence. Of course, the 
reader may protest that in the present chapter we have imposed several 
restrictions in our definition of equivalence that were not a part of our 
definition in Chapter IX. The point is that when symmetry is present, often 
there is a natural set of conditions that may be imposed on equivalences 
which make linear stability an invariant of equivalence; while when sym
metry is absent, there is no such set of conditions. (Remark: The relation 
between symmetry and stability is an exciting topic for current research.) 

We begin the analysis with a preliminary discussion of how to exploit 
symmetry in computing the eigenvalues of dg. Since g commutes with 
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(Z2 EB Z 2)-symmetry, g has the form (1.7) which we recall here: 

g(x, y, A.) = (p(u, v, A.)x, q(u, v, A.)y), (3.1) 

where u = x2 , v = y2 , and p(O, 0, 0) = q(O, 0, 0) = 0. The Jacobian matrix is 
then 

dg = (p + 2upu . 2pvXY )· 
2quXY q + 2vqv 

(3.2) 

We ask the reader to verify the following consequences of (3.2). 

Lemma 3.1. Let (x, y, A.) be a solution to g = 0. 

(a) lf(x, y, A.) is a trivial or a pure mode solution (i.e., x = 0 or y = 0) then dg 
is diagonal and its eigenvalues (which are rea[) have the signs listed as 
follows,for the three cases: 

(i) Trivial solution: sgn p(O, 0, A.), sgn q(O, 0, A.). 
(ii) x-mode solution: sgn Pu (x, 0, A.), sgn q(x, 0, A.). 

(iii) y-mode solution: sgn p(O, y, A.), sgn q,.(O, y, A.). 

(b) lf(x, y, A.) is a mixed mode solution (i.e., x i= 0 and y i= 0) then 

(a) sgn det(dg) = sgn(p.qv - Pvqu) at (x, y, A.), 

(b) sgn tr(dg) = sgn(up. + vqv) at (x, y, ),). 
(3.3) 

Remarks. (i) Here we have shown by direct computation that at a pure 
mode solution to g = 0 the matrix dg is diagonal. We could have shown 
this abstractly by using the chain rule and the fact that at a pure mode 
solution there is a nontrivial element in the isotropy subgroup. 

(ii) Recall that for a 2 x 2 matrix the signs of the real parts of the 
eigenvalues may be determined from the signs of the trace and determinant. 
In particular, if sgn det dg < 0, then the solution must be unstable, as the 
eigenvalues are real and of opposite signs. If sgn det dg > 0 then the 
solution is stable if sgn tr dg > 0 and unstable if sgn tr dg < 0. However, 
even with the formula (3.3), the computation of the signs of the eigenvalues 
of dg often requires some care. 

We now turn to the main question: Is linearized stability an invariant of 
equivalence? We begin by defining what this means. Let g be a bifurcation 
problern in two state variables commuting with the group Z2 EB Z2 , and let 
(z, A.) be a solution of the equation g = 0, where z is a shorthand for (x, y). 
We say that the stability of (z, A.) is invariant under equivalence if for every h 
that is (Z2 EB Z 2)-equivalent to g, the real parts of the eigenvalues of dh at 
the corresponding solution of h = 0 have the same signs as for dg. If the 
equivalence is given explicitly by 

g = Sh(Z, A), (3.4) 

then the eigenvalues of dh are to be computed at (Z(z, A.), A(A.)). 
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The following proposition lists the cases in which stability of a solution 
to g = 0 is invariant under equivalences. 

Proposition 3.2. Let g be a bifurcation problern in two state variables cornrnut
ing with the group z2 EB z2, and let (z, A.) be a Solution to g = 0. Then the 
stability of(z, A.) is invariant under equivalence if any ofthefollowing hold: 

(a) (z, A.) isatrivial or pure mode solution; 
(b) (z, A.) is a rnixed rnode solution and det(dg)z,.l. < 0; 
(c) (z, A.) is a rnixed rnode solution, det(dg)z,.l. > 0 and Pu· qv > 0 at the origin. 

Remarks. (i) In case (c), the proposition only applies to solutions which are 
close to the origin. 

(ii) For the normal form (2.10), we have Puqv = e1e3 ; in particular, if 
e1 = e3 , then Puqv > 0. lt follows from the proposition that if e1 = e3 , then 
the stability of any solution of the equation is an invariant of equivalence. 

Weshall prove Proposition 3.2 using the following Iemma. 

Lemma 3.3. Let g be a bifurcation problern in two state variables cornrnuting 
with Z2 EB Z2 , and Iet (z, A.) be a solution to g = 0. Then the stability of(z, A.) 
is invariant under equivalence if for every matrix function S satisfying (2.3b) 
and (2. 7), the signs of the real parts of the eigenvalues of S · dg at (z, A.) are the 
same as those of dg at (z, A.). 

Remark. Lemma 3.3, appropriately restated, is valid for any nurober of state 
variables and any symmetry group. 

We prove Lemma 3.3 below, after proving Proposition 3.2. 

PROOF OF PROPOSITION 3.2. We consider the three cases, in turn, using 
Lemma 3.3. 

(a) From (2.5) and (2.7) we see that along a trivial or pure mode solution 
S is a diagonal matrix with positive entries on the diagonal. Since dg is also 
diagonal (cf. Lemma 3.l(a)) the signs of the eigenvalues of S · dg and dg are 
the same. 

(b) Since det S > 0, we see that 

sgn(det dg) = sgn(det(S · dg)), (3.5) 

Both determinants are negative, and therefore both dg and S · dg have real 
eigenvalues of opposite signs. 

(c) Equation (3.5) is still valid, in this case, only now both determinants 
are positive. Thus we must compare tr(S · dg) with tr dg, and in general, we 
cannot hope that the two traces have the same sign. However, under the 
hypothesis Puqv > 0, we can prove this near the origin. 
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According to (1.10), at a mixed mode solution we have p = q = 0; thus 
we may compute from (3.2) that 

tr(dg) = 2(upu + vq.). 

(Cf. (3.3b).) Similarly, if S has the form (2.5), then 

(3.6) 

tr(S · dg) = 2{u(c1pu + c2 vqu) + v(c4 qv + c3up.)}, (3.7) 

where ci = ci(u, v, A.). Now the term c2 vqu in (3.7) vanishes at the origin and 
c1 is positive, so near the origin 

sgn(c1pu + c2 vqu) = sgn(c1pu) = sgn(pu); 

similarly sgn(c4 q. + c3 up.) = sgn qv. Thus corresponding terms in (3.6) and 
(3.7) have the same sign. Moreover, if Puqv > 0, the terms in (3.6) and (3.7) add, 
rather than cancel; thus if Puqv > 0, 

sgn tr(dg) = sgn tr(S · dg) 

near the origin. D 

We end this section with: 

PRoOFOF LEMMA 3.3. The general (Z2 Ef> Z 2)-equivalence may be obtained 
by composing the three elementary forms of equivalence: 

(a) g(z, A.) = h(z, A(A.)), 

(b) g(z, A.) = h(Z(z, A.), A.), 

(c) g(z, A.) = S(z, A.)h(z, A.). 

(3.8) 

Trivially an equivalence of type (3.8a) does not change the stability of a 
solution-it does not even change the Jacobian dg. Moreover, in formulat
ing the Iemma we have hypothesized that equivalences of type (3.8c) leave 
the signs of the real parts of the eigenvalues of dg unchanged. Thus we need 
only consider type (3.8b). 

We rewrite (3.8b) as 

g(z, A.) = (dZ)z,;.k(z, A.), (3.9) 

where 

k(z, A.) = (dZ);:l h(Z(z, A.), A.). (3.10) 

We claim that (dZ)z,A satisfies the same symmetry constraints (2.3b) and 
(2.7) as S(z, A.); to see this, differentiate the identity (2.3a) using the chain 
rule. Thus we conclude from (3.9) and the invariance of stability under 
equivalences of the form (3.8c) that the signs of the real parts of the eigen
values of dg are the same as those of dk. We finish the proofby showing that 
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the eigenvalues of (dk)z,A are the same as those of (dh)zcz.AJ,A· Indeed, 
differentiating (3.10) and using the fact that h(Z(z0 , A.0), A.0) = 0, we obtain 

(dk)z0 ,A0 = (dZ);;,~;.0(dh)zcz0,Ao),Ao(dZ)zo,Ao; 

thus dk and dh are similar matrices and have the same eigenvalues. 0 

EXERCISE 

3.1. Prove Lemma 3.1. 

§4. The Bifurcation Diagrams for 
N ondegenerate Problems 

Our goal in this section is to draw bifurcation diagrams, both unperturbed 
and perturbed, for the normal form (2.10). For easy reference we recall the 
normal form here: 

where 

(a) p(x2, y2, A.) = 81x2 + my2 + 82A., 

(b) q(x2, y2, A.) = nx2 + 83 y2 + 84A.. 

The modal parameters m and n satisfy the nondegeneracy condition 

(4.1) 

(4.2) 

(4.3) 

Unfortunately, there are sixteen possible choices of sign 81, 82 , 83, 84 in (4.2). 
To reduce the effort to manageable proportions, we draw the diagrams only 
for the two cases 

and 

(B) 8 1 = 1, 

The reasons for choosing these two are as follows. 
Generally, in applications the trivial solution is stable subcritically; that 

is, for A. < 0. It follows from Lemma 3.1(a)(i) that the trivial solution is stable 
subcritically precisely when 

(4.4) 

Note that (4.4) holds for both cases (A) and (B) above. 
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Frequently, in applications the pure mode solutions bifurcate supercriti
cally. This happens when 

(4.5a) 

Of course (4.4) and (4.5a) define case (A). In particular, the bifurcation 
problernthat we study in Case Study 3 satisfies (4.4) and (4.5a). 

For more theoretical reasons we also consider the case 

lll = +1, (4.5b) 

We study (4.5b) to illustrate two points. First we will show that for certain 
perturbations in this case, a Hopf bifurcation must occur along a mixed 
mode branch. Second, we will clarify why invariance of stability does not 
hold, in general, along mixed mode branches. 

Weshall present the explanatory calculations for case (A) in some detail. 
The calculations for case (B) are similar, and we leave much for the reader 
to verify. 

The universal unfolding of h is 

H(x, y, A.) = (x3 + mxy2 - A.x, nx2y + y3 - (A. - u)y). (4.6) 

The nondegeneracy conditions (4.3) are, in this case, 

mn -:1: 1, m -:1: 1, (4.7) 

These nondegeneracy conditions divide the modal parameter plane into 
seven regions as indicated by the solid Iines in Figure 4.1. 

The first fact to note towards our goal of drawing bifurcation diagrams 
is that the unperturbed (i.e., u = 0) bifurcation diagrams for (4.6) are 
topologically equivalent for all values of m and n within each region. In 
addition, the universal unfolding H of (4.6) is topologically trivial in each 
region except in region 4. Region 4 divides into four sub-regions, indicated 
by the dashed lines, in which the universal . unfoldings are topologically 
trivial. Weshall draw the diagrams for regions 1, 2, 3, 4a,b,c, and 5. 

Remarks. (i) Interchanging x and y has the effect of interchanging m and n 
and reversing the sign of u in (4.6). (Cf. (2.17).) Thus diagrams in regions 2', 
3' and 4b' can be obtained rather easily from those in regions 2, 3 and 4b, 
respectively. Note that the interchanging of x and y is an equivalence, but it 
is not a (Z2 EB Z 2)-equivalence since it does not commute with Z 2 EB Z2 • 

(ii) We will not deal with the distinguished values (4.7) of the modal 
parameters where h has infinite (Z2 EB Z 2)-codimension. (As in Chapters V 
and VI, appropriate higher-order terms reduce the codimension to three.) 
Likewise, we will not deal with infinite values for the modal parameter. (As 
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m=l 

(3') (1) 

---------------.,----~~------------n=l 

n = 0 (4b') l 
---------------------r--------

(2) 
-----mn=l 

(4b) (3) 

mn=lm=O 

Figure 4.1. Degeneracies in the modal plane for ( 4, 6). 

in Chapters V and VI, our scaling makes this case appear more singular 
than it really is.) 

When drawing our bifurcation diagrams we take advantage of the 
(Z2 $ Z2)-symmetry to simplify their presentation. Specifically, we saw in 
§1 that pure mode solutions come in pairs and mixed mode solutions come 
four at a time. Drawing this multiplicity of solutions tends to be more 
confusing than helpful. Even though the bifurcation diagrams in IR3 are 
quite pretty we refrain from attempting to draw them. Rather we draw 
schematic bifurcation diagrams, in which the lines refer to orbits of so
lutions as described in (1.3). We have already used such a convention in the 
Z 2-symmetric context in Chapter VI. 

The unperturbed (i.e., u = 0) bifurcation diagrams for the various re
gions are given in Figure 4.2, and the perturbed bifurcation diagrams 
(u < 0 and u > 0) are given in Figure 4.3. In these figures we have indicated 
the stability assignments along each branch by + +, + -, - +, or - -. 
For example, + + indicates that both eigenvalues of dg have positive real 
parts; such a solution branch is stable. Similarly, + - or - + indicates that 
the two eigenvalues of dg have opposite signs, and - - indicates that both 
eigenvalues have negative real parts; in all these latter cases the solution is 
unstable. Wehave also drawn the stable solutions in a heavy black line for 
easy reference. Observe that condition Puqv > 0 in (c) of Proposition 3.2 is 
satisfied for H in this case. Thus the stability assignments along all the 
branches are invariants of (Z2 $ Z 2)-equivalence. 
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Figure 4.2. Unperturbed schematic bifurcation diagrams. Numbers in parentheses refer 
to Figure 4.1 

We now discuss briefly the information needed to obtain these drawings. 
Using (1.10) we solve H = 0 explicitly as in (4.8). 

(a) X= y = 0, trivial solutions, 

(b) A. = xz; y = 0, x-mode solutions, 
(4.8) 

(c) X= 0; A. - (J = y2. y-mode solutions, 

(d) (1 - n)x2 + (m - l)y2 = a, mixed mode solutions. 
A. = x2 + myl. 



a<O a>O 
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Figure 4.3. Persistentperturbations of (4.6). Nurobers refer to regions in Fig. 4.1. 
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Next we use Lemma 3.1 to compute the signs of the eigenvalues of dH 
along H = 0. This information is recorded in (4.9). 

(a) sgn(-.A.), sgn(a- .A.), trivial solutions, 

(b) +, sgn((n - 1).A. + a), x-mode solutions, 

(c) sgn((m - 1).A. - ma), +, y-mode solutions, 
(4.9) 

(d) sgn(det dH) = sgn(l - mn), mixed mode solutions. 
sgn tr(dH) = +. 

From the information in (4.8) and (4.9) it is an easy task to draw the 
unperturbed bifurcation diagrams (a = 0). We note only that mixed mode 
solutions occur in the unperturbed bifurcation diagrams precisely when 

sgn(m - 1) = sgn(n - 1). (4.10) 

(Cf. (4.8d).) 
The bifurcation diagrams are more complicated when a =f. 0. Here 

secondary bifurcation occurs in a persistent way; this is a consequence of 
the (Z2 EB Z2)-symmetry. If we considered perturbations which break the 
symmetry, then the persistent perturbations would not have any bifurcation 
points in the bifurcation diagrams. (Cf. Theorem III,6.1 and Chapter IX, 
§3). 

Let us discuss these diagrams. The most striking feature is the differences 
in the perturbed bifurcation diagrams for a > 0 in the three regions 1, 2, 
and 3. The diagram for region 1 shows a primary bifurcation to a stable x
mode solution which remains stable for large .A. and a subsequent bifur
cation from the trivial solution to a y-mode solution which gains stability 
through a secondary bifurcation. In a controlled experiment where .A. is the 
only parameter varied and .A. is varied quasistatically, there is little like
lihood that the y-mode solution will be observed. Contrasted with this, in 
the perturbations of regions 2 and 3, the x-mode solution looses stability at 
a secondary bifurcation and a transition to the y-mode takes place. In 
region 3 this transition takes place smoothly along a stable mixed mode 
solution branch; while in region 2 this transition occurs with a jump to the 
stable y-mode solution. These considerations will play a fundamental role 
in our discussion of mode jumping in a reetangular plate described in Case 
Study 3. 

Let us record some facts which should help the reader in verifying the above 
statements. Secondary bifurcation of mixed mode solutions occur somewhere 
along an x-mode solution branch if sgn(a) = sgn(l - n). These secondary 
bifurcations occur somewhere along a y-mode branch sgn(a) = sgn(m- 1). 
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These bifurcations occur at A. values Ax and A.y, respectively, where 

(1 

(a) A.x = -1 -, -n 

mu 
(b) A.Y = --1, 

m-
(4.11) 

We now discuss another item ofinterest concerning Figure 4.3. In region 
4 when u > 0, the second bifurcation along the trivial branch is to a y-mode 
solution branch and occurs at A. = u. According to (4.1la), the secondary 
bifurcation to the mixed mode solution from the x-mode branch occurs at 
A.x = u/(1 - n). In this region n < 1, and 

(a) A.x > u if n > 0, 

(b) A.x < CI if n < 0. 
(4.12) 

Since the order in which bifurcations occur is an invariant under equival
ence, topological triviality fails along n = 0. A similar situation occurs 
along m = 0 in region 4. 

One might suspect that a similar division of region 5 occurs. However, in 
region 5 both m and n are negative; hence the secondary bifurcation always 
occurs at a A. value less than that of the second primary bifurcation. 

Let us show that the stability assignments in Figure 4.3 are in fact largely 
determined by the bifurcation diagram itseif. When u =F 0 bifurcations occur 
only along trivial and pure mode solutions, and at these bifurcation points, 
rank dH = 1; that is, only one eigenvalue of dH is zero. Near such points 
we could perform a Liapunov-Schmidt reduction to obtain a reduced 
bifurcation equation in one state variable which describes the branching. 
All of these bifurcations are pitchfork bifurcations; this is to be expected, 
since along pure mode solutions or the trivial solution there is at least one 
nontrivial reftectional symmetry in the isotropy group and the bifurcation 
breaks this symmetry. At a pitchfork bifurcation we have the principle of 
exchange of stability. However for lA. I » 0, the stability assignments in 
Figure 4.3 must be the same as in the unperturbed diagrams of Figure 4.2. 
Thus by working in ''from infinity," using exchange of stability at bifur
cation points, the stabilities may be verified. 

The nondegeneracy conditions in this case are: 

mn =F -1, m =F -1, n=Fl. (4.13) 
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m=-1 mn=-1 

n = 1 

mn = -1 
(3)' 

Figure 4.4. Degeneracies in the modal plane for (4, 2) e2 = e4 = -1, e, e3 = -1. 

The seven regions of modal parameter space are now located as shown in 
Figure 4.4. We shall consider only region 4 and restriet to positive rr. The 
perturbed bifurcation diagram for m and n in region 4 and rr > 0 is shown 
in Figure 4.5. 

Let us focus on the mixed mode solution in this figure. As in case (A) 
above, the stability assignments in the figure can be checked using exchange 
of stability; in particular, the mixed mode solution must be stable for values 
of A. near A.x and unstable for A. near A.Y. However, the eigenvalues of dH 
vary continuously along the mixed mode branch, and they are always 
nonzero. The only way that the stability assignment + + can change to - - is 
for the eigenvalues to cross the imaginary axis somewhere away from 0. 
These considerations suggest that a Hopf bifurcation occurs along the 

y-mode,, 
................... -+ 

' ',, + _ ~------~~-~~~~ x-mode 
\-:.--~-----

, ...... " { 
-:(+ \ 

-~:-~ 
mode, 

\ 
1--
1 
I 
I 

-------4--- --+--- +- -1.--------- trivial 
+ + +- Ax Ay 

0-0-<>-0 branch of periodic solutions 

Figure 4.5 The existence of Hopf bifurcation. 



438 X. Two Degrees of Freedom with (Z2 $ Z 2)-Symmetry 

mixed mode solution branch. Indeed this is basically true, but there are 
certain complications we must explore before making a definite statement. 

In deriving the normal form H, we have performed a (Z2 E9 Z2)

equivalence to transform away all terms of higher order than three in x and 
y. However, equivalences of the form we use may change the dynamics of a 
system of ODE's. Let us elaborate. Consider a system of ODE 

i + g(z, A.) = 0. 

Only equivalences of the form g ~ Sh(Z, A.) where 

S=(dZ)- 1 
Z,A 

(4.14) 

(4.15) 

will preserve the dynamics of (4.14). Of course, the set of coordinate 
transformations which satisfy (4.15) isaproper subset of all equivalances. In 
particular, there exist mappings g: IR2 x IR~ IR2 which are (Z2 E9 Z2)

equivalent to the normal form h but which contain fifth- (and higher-) order 
terms that cannot be transformed away by an equivalence satisfying (4.15). 
These fifth-order terms play an important role in the Hopf bifurcation 
discussed above. 

The full analysis of Hopf bifurcation along the mixed mode solution 
branch in Figure 4.5 is beyond the scope of this volume, but we summarize 
the main issues. lt tums out that there exists a nondegeneracy condition on 
the fifth-order termingwhich guarantees that the eigenvalues of dg along the 
mixed mode branch cross the imaginary axis exactly once and with nonzero 
speed. lf this condition is satisfied, then by Theorem VIII,3.1 a Hopf 
bifurcation occurs along the mixed mode branch. Moreover, there is a 
second nondegeneracy condition associated with the condition J-t 2 =F 0 of 
Theorems VIII,4.1 and VIII,3.2. Depending on the sign of this term, the 
Hopf bifurcation may be supercritical and therefore stable. 

We end our discussion by noting that the exact A. value where the Hopf 
bifurcation occurs is not an invariant of (Z2 E9 Z 2)-equivalence, even for 
equivalences suchthat A(A.) = A.. This shows why the stability of mixed mode 
solutions is, in general, not an invariant of (Z2 E9 Z 2)-equivalence. 

ßiBLIOGRAPHICAL COMMENTS 

The material in this chapter is taken from §4 of Golubitsky and Schaeffer 
[1979b]. However, Iet us mention that we were led to this presentation 
through trying to understand the important paper ofBauer et al. [1975] from 
the singularity theory point of view. A Hopf bifurcation similar to that of 
Figure 4.5 was studied by Iooss and Langford [1980]. 



CASE STUDY 3 

Mode Jumping in the Buckling of a 
Reetangular Plate 

(a) Synopsis 

The buckling of a lang reetangular plate involves rather more complex 
behavior than the buckling of a rod, which we studied in Chapter VII, §2. 
Consider the situation sketched in Figure C3.1 of a plate subject to a 
compressive Ioad A., uniformly distributed over the end faces. When A. is 
sufficiently large the plate begins to buckle into a pattern involving several 
small, localized buckles, rather than a single large arch as for a rod. {The 
reason for this different behavior is that we assume the plate is supported 
along all four sides, and this makes the displacement vanish at the boun
dary.) More precisely, Iet us scale the coordinates so that the undeformed 
plate is parametrized by 

0 = {(~,17):0 < ~ < ln,O < 17 < n}, 

where l is the aspect ratio of the plate; we assume 1 > 1. We will show 
below that just after buckling the lateral displacement function w(e, 17) is 
proportional to 

. k~ . 
sm 1 sm17, (C3.1) 

where k is a positive integer. We shall call k the wave number. (To be 
precise, (C3.1) only holds for what are called simply supported boundary 
conditions; this will be discussed in detail below.) We will also show that 
the buckles try to be square, i.e., that the value of k in (C3.1) after the 
bifurcation is nearly equal to l. 

As A. is increased beyond the buckling Ioad, nonlinear effects begin to 
influence the form of the displacement (C3.1), but (C3.1) still continues to 
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side 

end A. A. end 

side 

Figure C3.1. Plate subject to compressive Ioad. 

describe the displacement approximately-up to a point. In certain experi
ments, when the Ioad is increased sufficiently far beyond the buckling Ioad 
the plate jumps to a new configuration approximately described by (C3.1) 
but with k increased by unity. This phenomenon, called mode jumping, is the 
focus oftbis Case Study. 

For the reader's convenience, Iet us give a few specifics concerning Stein's 
[1959] experiment. His plate had an aspect ratio l = 5.38. The initial 
buckle pattern had five buckles (i.e., was described by (C3.1) with k = 5) 
and persisted up to approximately 1.7 times the buckling Ioad. At this point 
the plate jumped "suddenly and violently" to the mode with six buckles. 
Further increases in A. led to jumps to seven buckles, eight buckles, and 
finally to eventual collapse of the plate. Weshall only discuss the first mode 
jump because, among other reasons, the plate was judged to enter the 
plastic regime between the jump from k = 6 to k = 7. 

In this Case Study we analyze mode jumping as follows. First, we will 
show that for certain distinguished values of the aspect ratio l the math
ematical idealization of this experiment Ieads to a problern involving 
bifurcation from a double eigenvalue with (Z2 EB Z 2)-symmetry as studied 
in Chapter X. Consider one such distinguished aspect ratio, say I = I*; thus 
for I = l* the reduced equations are (Z2 EB Z 2)-equivalent to the normal 
form (X,2.10). This normal form will be the organizing center in our 
analysis of the problem. As our second step we will perform the Liapunov
Schmidt reduction of the problern when l = l*, thereby determining the 
modal parameters m and n in the canonical form (X,2.10). Third, we will 
relate l - l* to the unfolding parameter a in (X,4.6). With this information 
we may read off the bifurcation diagram of the physical problern when 
I ~ I* from the appropriate part of Figure X,4.3. In particular, this analysis 
predicts mode jumping if and only if region 2 with a > 0 of Figure X,4.1 is 
selected by this process. Our conclusion will be that mode jumping occurs 
for the boundary conditions considered most realistic for the experiment 
(clamped) and does not occur for the commonly analyzed boundary con
ditions (simply supported). 

It should be pointed out that we do not include imperfections in this 
analysis. We expect that imperfections will be unimportant, even though the 
full, symmetry breaking unfolding of (X,2.10) is quite complicated and a 
complete rigorous analysis seems remote. Let us elaborate. Consider Figure 
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X,4.3, region 2 with u > 0; more precisely imagine increasing il quasi
statically from zero in the bifurcation diagram of this figure. Mode jumping 
occurs when the x-mode becomes unstable; this happens through a pitch
fork bifurcation as sketched in Figure C3.2(a). A typical perturbation of 
Figure C3.2(a) is shown in Figure C3.2(b). Both diagrams share the 
essential feature that the solution follows one smooth branch until that 
branch becomes unstable. The only qualitatively significant effect of the 
imperfection is to introduce a preferred direction for the jump. 

There is a helpful intuitive explanation of how the double eigenvalue 
arises, related to the fact that the buckles try to be approximately square. 
The buckles given by (C3.1) have width n and length n(ljk). Since l need 
not be an integer, the buckles cannot in general be exactly square. Roughly 
speakit!g, the first mode to become unstable is the one for which 1/k is 
closest to unity. Thus as l increases, the preferred wave number k increases 
along with it. However, there are certain values of l between two adjacent 
integers, say k and k + 1, suchthat the modes (C3.1) with wave number k 
and k + 1 become unstable at exactly the same Ioad; hence, these dis
tinguished values of l Iead to a double eigenvalue. (Warning: The above 
intuition is correct in spirit but not in detail. In particular, the double 
eigenvalue does not occur for l equal exactly to a half integer.) 

Let us give a preliminary discussion of how the symmetry group 
Zz Ee z2 arises in this problem, as the Situation here is typical of many 
applications. The mathematical description of the plate problern that we 
study below is a system of PDE which commutes with the following two 
reflections: 

R 1w = -w (C3.2) 

(i.e., reflection through the plane of the undeformed plate) and 

R 2 w = w oll, (C3.3) 

where 

n(e, 1'/) = (ln - e, 1'/) 

(i.e., reflection about the minor axis of Q). Note that R1 and R 2 commute 
with one another and generate a four element group {J, R1, R2 , R1R2 } that 
is abstractly isomorphic to Z 2 Ee Z2 . To make the correspondence with 

---~.-----------

_,~ 
~~ 

/ 
.-" ,, 

(a) symmetric (b) perturbed 

Figure C3.2. Typical symmetry breaking of pitchfork bifurcations in (X,2.10). 
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Chapter X complete, let us consider the Liapunov-Schmidt reduction of the 
PDE for a value of l such that the first bifurcation is from a double 
eigenvalue, say with associated eigenvectors 

(;; ) . (k + 1)~ . 
W2 <", 17 = Sill [ Slll17. 

This reduction leads to a reduced bifurcation equation 

g: [R12 X IR-+ IR12; 

here IR1 2 ~ {xw1 + yw2} parametrizes the kernel of the linearized operator. 
According to Chapter VII, §3(c), g also commutes with the reflections R;. 
Now 

i = 1, 2, 

and 

We obtain the representation (X,l.l) for these reflections by identifying 

/~(1,1), R 1 ~ ( -1, -1), 

R 2 ~ ((-1)k+l, (-1)k), R 1R 2 ~ ((-lt, ( -l)k+ 1). 

Thus the reduced problern g commutes with the action of Z 2 $ Z 2 studied 
in Chapter X. (Remark: The full set of PDE also commutes with reflection 
about the major axis of Q; i.e., fi( ~' 17) = ( ~' n - 17 ). However, this symmetry 
has no effect on the problem, since it leaves the eigenfunctions w1 and w2 

invariant. (Cf. Remark VII,3.1 that a symmetry must be broken to be 
important.)) 

The remainder of the Case Study is divided into three parts as follows. In 
part (b) we give a mathematical formulation of the plate problem. This 
includes a discussion of simply supported and clamped boundary con
ditions. The bifurcation analysis of simply supported boundary conditions 
is given in part (c); clamped boundary conditions, in part (d). 

(b) Formulation of a Specific Mathematical Model 

The von Karmim equations for a plate involve two unknown functions, the 
lateral displacement w(~,17) and the Airy stress function qy(~, 17). The equa
tions are posed in the domain Q parametrizing the undeformed plate; they 
read as follows. 

112w = [qy, w] - A.w~~· 

L12 qy = -t[w, w]. 

(C3.4a) 

(C3.4b) 
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Here A. is the externalload, ~2 is the biharmonic operator in ~ and 1'/, and 
the bracket operation is defined by 

[u, v] = u~~v~"- 2u~"v~" + u""v~~· (C3.4c) 

Let us say a few words about interpretation. Continuum mechanics 
models the effect of internal forces in a continuous medium by a stress 
tensor aii• which is characterized by the following property. Suppose that 
one isolates (conceptually) a region (() c n of the plate; then the ith 
component of the force exerted on (() by the material outside (() is 

Fi = I I aiiNi dS, 
i=l Jae; 

i = 1, 2, 

where Ni is the unit exterior normal. For equilibrium the net force on every 
subregion must vanish, which by the divergence theorem implies that 

I iJaii = 0; 
i=l iJxi 

i = 1, 2. 

Recall that for a divergence free vector field V in two dimensions (on a 
simply connected domain) there exists a stream function t/1 such that 
V= (t/1~, - t/1~). Using this fact twice and the fact that aii is a symmetric 
tensor we may deduce that there is a function <P such that 

this <P is the Airy stress function. Now (C3.4b) says that if certain second
order derivatives of w are nonzero, this creates stresses in the plate. 
Likewise, (C3.4a) describes the equilibrium displacement: ~2w, a com
bination of fourth-order derivatives, is nonzero only in response to stresses, 
either internal stresses transmitted through <P or the external stress A.. 

Of course (C3.4) must be supplemented by boundary conditions. For <P 
we will require that 

iJ<jJ (} 
iJN = iJN ~</J = 0 on iJQ; (C3.5) 

where iJjiJN indicates the normal derivative. These conditions are derived in 
Schaeffer and Golubitsky [1979]. Other boundary conditions on <P are 
derived in Holder and Schaeffer [1984]. 

For w, the most convenient boundary conditions from a mathematical 
point of view are what are called simply supported boundary conditions, 
namely 

w = 0, 
iJZw 
iJNz = 0. (C3.6) 

In loose terms, (C3.6) describes a hinged boundary: the edge of the plate is 
free to rotate, although it cannot translate up or down. If iJ 2wfiJN2 # 0 (i.e., 
if the end of the plate is curved), the plate will rotate to eliminate the torque 
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caused by nonzero curvature. (Remark: Physically, it is virtually impossible 
to maintain a boundary condition like this on all four sides after the plate 
begins to buckle. Indeed, Stein bad to exercise considerable ingenuity in 
devising an experiment where (C3.6) was appropriate on two of the four 
sides.) We claim that simply supported boundary conditions may be written 

w = L\w = 0 on an. (C3.7) 

The term L\w equals a2wjaN2 + a2wjaT2 , and by the first boundary 
condition we have a2wjaT2 = 0 along a straight side; thus (C3.7) is 
equivalent to (C3.6), as claimed. 

The other canonical choice of boundary conditions for w is 

w =0, aw = 0 
aN ' 

(C3.8) 

normally called clamped boundary conditions. (C3.8) is easier to interpret
the plate cannot rotate or translate. Whatever stresses this sets up at the 
edge of the plate are absorbed by the boundary. Stein [1959] considered 
clamped boundary conditions the better approximation along the end faces 
in bis experiment. We quote: "The plate was subject ... to 'flat end' loading 
which results in almost complete clamping of the loaded edges." 

Thus the most accurate mathematical description of Stein's experiment 
imposes clamped boundary conditions on the ends, simply supported on the 
sides. However, in the next subsection we analyze the problern with simply 
supported boundary conditions on all four sides; this is because we believe 
the fastest entrance into the subject is first to understand the theory in the 
simply supported case. After that anlysis we retum to the case of clamped 
end faces. 

Note that zero is an eigenvalue of L\2 on n with boundary conditions 
(C3.5), with any constant function as eigenfunction. Thus it is not im
mediately obvious that (C3.4b) is solvable at all. However, it follows from 
Lemma C3.1 below with u = 1, v = w that for any smooth function w 
which vanishes at an 

L[w,w]dA=O. 

Therefore (C3.4b) is in fact solvable and the solution is unique up to an 
additive constant which has no physical significance. We denote this 
solution by rjJ = -tl\ - 2[w, w] and substitute it into (C3.4a) to obtain an 
integro-differential equation · 

L\2w + A.w~~ = C(w), 

where the cubic term C(w) is given by 

C(w) = -t[L\ - 2 [w, w], w]. 

(C3.9) 

(C3.10) 



Case Study 3. Mode Jumping in the Duckling of a Reetangular Plate 445 

Lemma C3.l. lf u, v, w are smooth functions on n and if v and w vanish on 
an then 

L u[v, w] dA= L [u, v]w dA. 

PROOF. Ignoring the possible boundary terms in an integration by parts we 
find that 

f. f. a2 a2 a2 
0 u[v, w] dA = 0 aq2 (uv~~) - 2 ae aq (uv~~) + ae2 (uv~~)w dA 

= L [u, v]w dA, 

the latter equality because terms cancel. lt remains to show the boundary 
terms vanish. In the first integration by parts the boundary term is 
J.~", u( V, N) dS, where the two component vector V is given by 

V= (v~~ w~ - v~~ w~, - v~q w~ + v~~ wq). 

On a portion of the boundary where N = (0, ± 1), both terms in the second 
component of Vvanish, since w~ and v~~ aretangential derivatives and both 
V and w vanish along an; thus (V, N) = 0. Similarly where N = (± 1, 0). In 
the second integration by parts the boundary integrand contains a factor of 
w and therefore vanishes. D 

(c) Simply Supported Boundary Conditions 

In this part of the Case Study we perform a bifurcation analysis on (C3.9) 
subject to boundary conditions (C3.7). The subsection divides naturally into 
two parts: 

(i) An analysis of the linearized problem, including a derivation of the 
aspect ratios for which a double eigenvalue occurs. 

(ii) Calculation of the Liapunov-Schmidt reduction. The subsection Ieads 
to the prediction that mode jumping does not occur with boundary 
conditions (C3.7). 

Observe that w = 0 is a solution of (C3.9) for any value of A.. Since C(w) 
is homogeneous of degree three, the linearization of (C3.9) at w = 0 is 

(C3.11) 

Now for any integers k and m 

{ . ke . } sm 1 sm mq (C3.12) 
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is an eigenfunction of (C3.11) which satisfies the boundary conditions 
(C3.7). Moreover, the functions (C3.12) are precisely the eigenfunctions of 
the Laplace operator on Q with Dirichlet boundary conditions, and there
fore these functions form a complete orthogonal set in L2(Q). Thus, to 
determine for what values of A. (C3.11) has a nonzero solution, it suffices to 
substitute (C3.12) into (C3.11) and solve for A.. This yields 

( k [)2 
A. = I+ m2 k (C3.13) 

Equation (C3.13) gives the Ioad at which the undeformed solution of 
(C3.9) becomes unstable with respect to the mode (C3.12). Which mode 
becomes unstable first? It is clear that (C3.13) is an increasing function of m. 
Therefore the first mode to become unstable has m = 1. Let 

( k [)2 

Ak = I+ k ' 

the right-hand side of (C3.13) when m = 1. Figure C3.3 shows a plot of A.k 
versus k, regarding k as a continuous variable. Note that this function 
achieves its minimum at k = l. Of course, only integer values of k in Figure 
C3.3 represent possible bifurcation points. Thus, the first bifurcation from 
w = 0 in (C3.9) occurs at 

A. = min{A.k: k = 1, 2, ... }. (C3.14) 

If the minimization in (C3.14) is unique, the generic situation, then the 
first eigenvalue will be simple. However, mode jumping involves a com
petition between two modes. To treat two separate modes with local 
methods we adjust the aspect ratio to get bifurcation from a double 
eigenvalue, thereby obtaining an organizing center for this problem. For 

Figure C3.3. Graph of instability curve A.k = (k/l + l/k)2 • 
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what values of l does the first bifurcation point involve two distinct modes, 
say k and k + 1? In other words, when is 

A.k = A.k+1? (C3.15) 

Substituting (C3.13) into (C3.15) gives 

l = jk(k + 1) (C3.16) 

as the condition for the first eigenvalue to be double. Note that if l is given 
by (C3.16) then for !arge k we have 

l = k + t + O(k- 1) (C3.17) 

and the first bifurcation point occurs at 

(C3.18) 

We now turn to the Liapunov-Schmidt reduction of (C3.9), which we 
write abstractly as 

~(w, il) = 0. (C3.19) 

Let l be given by (C3.16) so that the first bifurcation of (C3.18) from w = 0 
is at a double eigenvalue, say l = l*. Then the Liapunov-Schmidt reduction 
of (C3 .19) near w = 0, il = il * Ieads to a pair of equations 

U;(X, y, il) = 0, i = 1, 2. (C3.20) 

We claim that the first equation in (C3.20) is odd in x and even in y; the 
second, even in x and odd in y. (In short, we are claiming that g commutes 
with Z 2 E9 Z 2 • We proved this above, but we reprove it here, giving more 
complete references.) To prove the claim, first observe that (C3.9) is 
equivariant with respect to the two reflections R 1 and R 2 defined by (C3.2) 
and (C3.3); i.e. 

~(R;w, il) = R;~(w, il). (C3.21) 

We showed in Chapter VII, §7(a) that symmetry in the full problern may be 
carried over to the reduced equation. To elaborate on this point, Iet us 
regard g in coordinate free way as a map 

g: ker L x IR --. (range L) .L, 

where L = (d~)o,;.•. Now the kerne! of L is spanned by the two functions 

vl(~, '1) = sinen sin l'f, vi~, '1) = sin((k ~ l) ~) sin '1· (C3.22) 

Observe that 
(a) R1v1 = -v1, 

(b) R 2v1 = ( -l)k+ 1v1, 

R1v2 = -v2, 

R2v2 = (-l)kv2. 
(C3.23) 



448 Case Study 3. Mode Jumping in the Buckling of a Reetangular Plate 

Note that one of the signs in (C3.23b) is minus, one plus. Thus the four 
element group {/, R 1, R 2 , R 1R 2 } is isomorphic to Z2 EB Z2 and its action 
on the two-dimensional space ker L is isomorphic to (X,l.l). Moreover, the 
linearized operator d<I> is self-adjoint, so that (range L) .L = ker L, and the 
group action on the range of g is identical. It was shown in Chapter X, §l(b) 
that under these condition~ the reduced equations have the form (X,1.7a), 
which is precisely the claim'above. 

Chapter X, §2 gives the basic singularity theory results for bifurcation 
problems with (Z2 EB Z2)-symmetry. In particular, Proposition X,2.3 gives 
the normal form for the reduced equations (C3.20) and Theorem X,2.4 gives 
the universal unfolding. Note that these theorems cover a variety of possible 
cases, only one of which occurs here, namely, 

(C3.24) 

(See Chapter X, §4 for an intuitive discussion of why this case is most 
relevant for applications.) The normal form (X,4.6), which is obtained from 
Theorem X,2.4 when (C3.24) is assumed, provides a convenient formula for 
reference. 

To apply the results of Chapter X we must compute various derivatives 
of g. We do not present all the details of the calculation here, even though 
this problern is one of those tractible problems where all the calculations 
can be done entirely by hand. Rather, our goal is to describe the calculation 
sufficiently well, including the tricks, so that the interested reader can carry 
out the calculations himself. We refer the reader to Schaeffer and 
Golubitsky [1979] for a more complete treatment. 

Because of symmetry, the third-order derivatives of g with respect to x 
and y will be the first nonvanishing derivatives. In general, evaluation of 
third-order derivatives according to (VII,l.14c) requires inverting the lin
earized operator L. However, equation (C3.9) is odd in w (this is the 
symmetry (C3.2)), and this implies that (d2<I>)0 ,;. = 0; therefore, this com
plication does not arise here. (Cf. Chapter VII, §2(d).) 

Let us discuss the calculation of derivatives in a typical case. We have 
from (VII,1.14c) 

(C3.25) 

where v1, v2 are the eigenfunctions (C3.21). Now from (C3.9) d3<I> = -d3C; 
indeed, since C is homogeneaus cubic, d"<<> = 0 for k ;;;::: 4, but this is no 
help. From formula (A3.2) we have 

d3C(v1, v2 , v3) = [~ - 2[v1, v2], v3] + [~ - 2 [v 2 , v3], v1] 

+ [A- 2 [v3 , v1], v2]. 

(C3.26) 
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We substitute this into (C3.25) and find 

0~3:> = 2<v1, [Ll- 2 [v1, v2 ], v2]) + <v1, [Ll- 2 [v2 , v2 ], v1]). 

By Lemma C3.1 we may integrate by parts in both terms to obtain 

o3g 
ox 0~2 = 2<[v1, V2], Ll- 2[V1, v2]) + <[v1, v1], Ll-2[v2, v2]), (C3.27) 

Now v1 and v2 are given by (C3.22), and these formulas may be substituted 
into (C3.4c) to get formulas for [v;, vi]. It tums out that [v;, vi] is a finite 
linear combination (two terms if i = j, four terms if not) of products 

"1~ cos -~- cos "2 ~. (C3.28) 

where K 1 and K 2 are nonnegative integers. Most fortunately, (C3.28) is an 
eigenfunction of Ll2 with boundary conditions (C3.5). Thus Ll- 2[w;, wi] is 
again a finite linear combination of eigenfunctions (C3.28); i.e., a finite 
Fourier cosine series. By Fourier analysis one may evaluate the inner 
products in (C3.27) as a finite sum of products of corresponding Fourier 
coefficients. 

In §7 of Schaeffer and Golubitsky [1979] all the third-order derivatives 
o3g;/oxi oxk ox1 and the mixed derivatives o2g;/oA. oxi are evaluated in this 
way. The values are then scaled as in Chapter X, §2 to determine the modal 
parameters m and n in the normal form (X,2.10). The result is 

(k + 1)2 { 1 } 
m = k2 + (k + 1)2 6 + [2(2k + 1)2 + 1]2 ' 

n = k2 + ~ + 1)2 { 6 + [2(2k + ~)2 + 1]2}. (C3.29) 

The modal parameters (C3.29) certainly satisfy 

m > 1, n>1 (C3.30) 

for all values of k; indeed m > 3 and n tends to 3 as k tends to infinity. 
The above calculations assumed l was given by (C3.16). For values of l 

near Jk(k + 1) we may analyze the problern as a one-parameter unfolding 
of the ideal case where (C3.16) is satisfied. Such an unfolding may be 
factared through the universal unfolding (X,4.6). The bifurcation diagrams 
of the perturbed problern may be read off from Figure X,4.3. Because of 
(C3.30) the relevant diagrams are those of region (1), for which there is no 
mode jumping. Rather the first mode to bifurcate remains stable as )., 
increases. 

It was not necessary to relate l to the unfolding parameter u of (X,4.6) to 
carry out the preceding analysis. This can nonetheless be done, and in fact 
weshall have to do so in studying clamped boundary conditions below. 
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(d) Clamped Boundary Conditions 

Finally, we turn to the boundary conditions which seem to provide the 
most accurate description of Stein's [1959] experiment. We now consider 
(C3.9) subject to the following boundary conditions. 

ow 
(a) w = oN = 0 on ends (c; = 0 or ln), 

(C3.31) 

(b) w = L\w = 0 on sides ('1 = 0 or n). 

(We retain the boundary conditions (C3.5) for lj>; hence C(w) is unchanged.) 
The calculations for this case have much in common with the simply 
supported case considered above, and we couch our discussion in terms of 
what is different. 

In general, it is impossible to find explicitly the values of A. for which 
(C3.11) has a nonzero solution with these boundary conditions. However, 
we are interested in those special values of l for which the first eigenvalue is 
double, and remarkably, this is an easier problern than trying to find the 
general eigenfunction of (C3.11). We may still separate variables in (C3.11) 
by looking for solutions of the form 

(C3.32) 

As above we take m = 1 since we are looking for the lowest eigenvalue. 
Substitution of (C3.32) with m = 1 into (C3.11) yields the two point 
boundary problern 

(a) J<iv) + (A. - 2)f" + f = 0, 

(b) /(0) = f'(O) = f(ln) = f'(ln) = 0. 
(C3.33) 

For any A., (C3.33a) has four linearly independent solutions, which have 
exponential form el'~ for some p e C. If A. ~ 4 the exponentials arereal (i.e., 
nonoscillatory), and it is impossible to satisfy the boundary conditions. 
Thus we assume that A. > 4. For such A. the general solution of (C3.33a) has 
theform 

(C3.34) 

where 

M=~ . a=JL-M, b=JL+M, 
.Ä. 

L=--1 
2 ' 

(C3.35) 

The two boundary conditions at c; = 0 eliminate two of the four constants 
in (C3.34). Thus f may be written as a linear combination of the two 
functions 
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We want to choose l so that the eigenvalue is double, so both these must be 
eigenfunctions. Thus we must have 

c/J(ln) = if!(ln) = if!'(ln) = 0. (C3.36) 

(Remark: Since c/J' = abif!, the fourth condition c/J'(In) = 0 is redundant.) lt 
follows from (C3.36) that 

k 
a = l' 

b=k+2n 
l 

for some positive integers. From (C3.35) we obtain 

Elimination of A. from these equations yields 

ab= 1. 

(C3.37) 

Thus (C3.37) implies that I = jk(k + 2n). Since we are interested in the 
lowest eigenvalue we take n = 1: 

l = jk(k + 2). (C3.38) 

Note the close resemblence of (C3.38) with (C3.16), the condition for a 
double eigenvalue with simply supported boundary conditions. 

Thus if l satisfies (C3.38), the first bifurcation is from a double eigen
value. The associated eigenfunctions are 

{ k + 2 . ke . (k + 2)e} . 
(a) v1(e, 17) = -k- sm T- sm 1 sm 1'f, 

{ ke (k + 2)e} . 
(b) v2(e, 1'/) = cos T- cos l SlD 1'f· 

(C3.39) 

The remainder of the Liapunov-Schmidt reduction is exactly parallel to 
that for the previous case. In particular, the action of the two reflection 
operators Ri on the eigenfunctions (C3.39) is identical to the action (C3.23). 
Thus the reduced equations here have the same (Z2 EB Z2)-symmetry. 

The eigenfunctions (C3.39a) are more complex than the eigenfunctions 
(C3.22), and this has one sticky consequence for the Liapunov-Schmidt 
reduction. In the previous case [vi, vi] was a finite linear combination of 
eigenfunctions of .1- 2 , and this greatly simplified the evaluation of (C3.27). 
In the present case [vi, vi] is again such a finite linear combination of 
eigenfunctions if i = j, but not if i # j. Although this difficulty requires a 
slight change in approach, it is still possible to do all calculations by band. 
See §8 of Schaeffer and Golubitsky [1979]. 

The modal parameters in the canonical form (X,2.10) of the reduced 
equations are calculated for all values of k in Schaeffer and Golubitsky 
[1979]. Here we consider only k = 5 for the following reason. In the 
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experiment Stein [1959] observed mode jumping from a mode with five 
buckles to one with six. If we take k = 5, the two eigenfunctions v1 and v2 

in (C3.39) describe buckled configurations with five and six buckles, re
spectively. This may not be immediately apparent, but it may be seen by 
graphing these functions. (There is further supporting evidence for this 
statement in that v1 is even under the reftection (C3.3), v2 odd.) When k = 5 
the value of the aspect ratio given by (C3.38) is 

1* = 5.92, (C3.40) 

and the calculations of Schaeffer and Golubitsky [1979] show that the modal 
parameters in (X,2.10) have the values 

m = 1.0875, n = 0.9715. (C3.41) 

Note that mn = 1.0565 > 1; i.e., these values of m and n lie in region 2 of 
Figure X,4.1. The associated bifurcation diagram may be read off from 
Figure X,4.2. In particular, the only bifurcating solutions are pure modes; 
one is stable, the other unstable. The values (C3.41) mean that the six 
buckle mode associated with v2 is stable, the five buckle mode unstable. 

The above analysis applies to the aspect ratio (C3.40), while in Stein's 
experiment 

1 = 5.38. (C3.42) 

We consider the one-parameter family of bifurcation problems obtained by 
letting l vary as an unfolding of the idealized case (C3.40). Such an 
unfolding can be factored through the universal unfolding (X,4.6), at least 
for 1 near l*; we assume that (C3.42) is close enough to 1* for this 
factorization tobe possible. We want to read off the bifurcation diagram of 
the perturbed problern (C3.42) from Figure X,4.3. In order to do this, it is 
essential to relate l - l* to the unfolding parameter u in (X,4.6). This is 
done in a rigorous way in §9 of Schaeffer and Golubitsky [1979]; here we 
content ourselves with the following heuristic analysis. 

The role of u in (X,4.6) is to split the double eigenvalues of the ideal 
problern into two simple eigenvalues; one mode or the other is favored, 
according to the sign of u. It may be seen from Figure X,4.3 that mode 
jumping occurs when the mode which is unstable in the ideal problern is the 
first to bifurcate in the perturbed problem. Now for the plate problem, 
recall that the buckles try to be roughly square. Indeed, the double 
eigenvalue for l = l* arises because neither the five buckle mode nor the six 
buckle mode fits very well into the alloted length but both fit equally 
poorly. If 1 < l* the five buckle mode will experience a better fit and will be 
the first to bifurcate. But the five buckle mode is unstable in the ideal 
problem. Therefore, this analysis predicts mode jumping for the aspect ratio 
(C3.42), in agreement with the experimental result. 

It is possible, based on the above ideas, to make a quantative prediction 
of the Ioad at which the mode jump occurs. However, this analysis seems to 
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yield a rather poor estimate of this Ioad. There are several possible 
explanations of this discrepancy. One is the fact that the modal parameters 
(C3.41) lie rather close to the boundary of region 2 of Figure X,4.1 and 
different qualitative behavior obtains for parameter values across the 
boundary. Another is the fact that there are other modes which bifurcate 
shortly after the two modes studied here, and there may be some com
plicated interactions. It would be worthwhile to pursue these ideas further, 
but we cannot do so here. 
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