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Periodic bursting in fast-slow systems can be viewed as closed paths
through the unfolding parameters of degenerate singularities. Using this
approach we show that bursting in coupled systems can have interest-
ing behavior. We focus on two identical cell systems and use the Z2

symmetry present in such systems to illustrate interesting bursting phe-
nomena. In particular, we show that Hopf/Hopf mode interactions can
lead to bursting between in phase and out of phase periodic solutions and
symmetry-breaking Takens-Bogdanov singularities can lead to bursting
that randomly chooses between two (symmetrically related) limit cycles.

8.1. Introduction

Many processes in nature are characterized by transitions between different

modes of activity, such as periodic, quasiperiodic, chaotic and quiescent

states. An example of an autonomous differential equation whose behavior

alternates between near steady-states and trains of approximate spike-like

oscillations was analyzed by Rinzel [13, 16], and such behavior has since

been referred to as bursting. From a mathematical point of view, it is also

natural to consider transitions between other attracting states in a similar
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vein, and this is the viewpoint we will adopt in this chapter.

The large number of possible states and transitions between them neces-

sitates a coherent method of classifying different types of bursting systems.

Early classifications using roman numerals assigned to the different bursters

in the order of their description in the literature, or based on qualitative

properties of the timeseries proved impractical. Systematic methods were

soon introduced (see [2, 11], for example).

In [6, 11] a method was introduced for classifying the types of bursting

that occur in models in which variables evolve on two different timescales,

i.e., fast-slow systems. The classification is based on the observation that

the bifurcations of the fast system that lead to bursting can be collapsed

to a single local bifurcation, generally of higher codimension. The burst-

ing is recovered as the slow variables periodically trace a closed path in

the universal unfolding of this singularity. The codimension of a periodic

bursting type is then defined to be the codimension of the singularity in

whose unfolding it first appears. Using this definition, all of the known uni-

versal unfoldings of codimension one and two bifurcations were analyzed to

classify the codimension one and two bursters.

This local approach has several advantages over global analytic and

geometric methods that are also used to classify bursters. Many bifurcations

that are first observed globally can be studied more easily by using the

unfolding theory of degenerate singularities, since the local theory provides

methods by which global phenomena can be found locally using calculus and

numerical techniques. Moreover, the local theory provides a rational method

of classification by codimension that indicates how complex a system needs

to be in order for it to support bursters of given types.

The goal of this chapter is to illustrate how the ideas described in [6] can

be extended to networks of bursting systems. To avoid technicalities, and

give an accessible introduction to these ideas, we only consider networks of

two coupled identical cells. The assumption that the cells are identical leads

to Z2 symmetry in the equations of motions. The unfoldings of singularities

in the presence of such symmetries can be very different from the general

case and lead to new and surprising phenomena.

The chapter is organized as follows. In section 8.2, we review the theory

introduced in [6], and in section 8.3 we adapt the discussion to two-cell sys-

tems. In section 8.4 we review the codimension one and two bifurcations in

Z2-equivariant systems. Bursters associated to steady-state pitchfork bifur-

cations are discussed in section 8.5. Those associated with Hopf/Hopf mode

interactions and Takens-Bogdanov bifurcations are discussed in sections 8.6
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and 8.7. Hopf/Hopf mode interactions can lead to bursting between in

phase and out of phase periodic solutions and symmetry-breaking Takens-

Bogdanov bifurcations can lead to a form of chaotic dynamics where the

bursting randomly chooses between two symmetrically related limit cycles

and steady-states. A similar phenomenon can occur in pitchfork bifurca-

tions, but only when noise is added to the system.

8.2. Unfolding Theory and Bursting in Fast-Slow Systems

We consider bursting that occurs in models consisting of variables that

evolve on a fast and a slow timescale, and can therefore be described by

equations of the form

x′ = f(x, y)

y′ = εg(x, y),

where ε > 0 is small, x ∈ Rn, y ∈ Rk, f : Rn × Rk → Rn, and g :

Rn × Rk → Rk.

In periodic bursters, the slow variables y oscillate periodically, and thus

provide a time-periodic forcing in the fast x′ equation. In turn, the solution

of the fast equation visits various invariant sets in order. The slow variables

either provide this forcing effectively without feedback from the fast system,

or with feedback from the fast system. In the former case, the system may

be modeled as:

x′ = f(x, y)

y′ = εg(y),
(2)

with the slow component only depending on the slow variable y. A reduction

to (2) can also be made in the latter case, under certain assumptions.

Assuming that the slow system varies periodically, we rewrite (2) as

x′ = f(x, y(εt)). (3)

If ε is sufficiently small, the solution of (3) visits the stable invariant states

of the frozen system

x′ = f(x, y∗)

where y∗ = y(εt∗) for some t∗, i.e., the time-periodic evolution of y(εt)

forces the solution trajectory x(t) to transition between these invariant

sets. The transition from one invariant state to another occurs at values of

y∗ at which the state that is currently shadowed by the orbit of the fast

system, loses stability in some type of bifurcation. As y(εt) passes such a
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value, the orbit of (3) leaves the vicinity of such a state and is attracted

to another state which is stable for the current value of the “parameter”

y. We note that for analytic systems the orbit may remain in the vicinity

of an unstable state long after y(εt) passes through a bifurcation value

for the frozen system. This delayed loss of stability is discussed in more

detail in [10, 14], and references therein. Although this phenomenon does

not typically persist for noisy systems, it can be observed in numerical

simulations, as is demonstrated below.

A periodic burster type is determined by the set of stable attractors

(equilibria, periodic orbits, etc.) that the system visits, as well as the bi-

furcations in which these states lose their stability. For a precise definition

see [6].

To illustrate the local birth of periodic bursters, we assume that the

frozen system

x′ = f(x, 0)

has a singularity of codimension k at x = 0 and that the y variables are

universal unfolding parameters for this singularity. In this context, we as-

sume that the unfolding theorem is valid and y(εt) is a small amplitude

periodic path in Rk. Of course, our discussion only refers to an unspecified

neighborhood of the origin in Rk, so that the convention of writing the

parameter space of k parameters as Rk is a slight abuse of notation.

Locally, near the origin, the universal unfolding defines a codimension

one transition variety V ⊂ Rk. This variety consists of parameter values at

which singularities of codimension at least one occur. These singularities

include, but are not limited to, saddle-node bifurcations, Hopf bifurcations,

and homoclinic trajectories.

For different values on the periodic orbit y(εt), different states may be

stable, and may lose their stability as the path crosses V . Therefore travers-

ing a path in the unfolding of this singularity can lead to transitions between

various stable states, and hence periodic bursting. Note that many different

paths can lead to the same type of transitions, and can be considered path

equivalent (for a precise definition see [6]). In fact, typically a small change

in the path will preserve the bursting type observed in the fast system.

Among all of those singularities whose unfoldings contain a given burst-

ing type, the one with smallest codimension gives an intrinsic measure of

the complexity of that burster. The codimension of a periodic bursting type

is the minimum codimension of a bifurcation point in the fast system in

whose unfoldings that type of bursting occurs.
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In [6] codimension one bursters (from a nondegenerate Hopf bifurcation

in the fast subsystem), codimension two bursters (from the cusp singular-

ity, degenerate Hopf bifurcation, Takens-Bogdanov bifurcation, Hopf-steady

state mode interaction, and Hopf-Hopf mode interaction), and certain codi-

mension three bursters are described from this viewpoint. Somewhat sur-

prisingly, the systems traditionally labeled as Type III (or elliptic) bursters

have codimension two, whereas the other most commonly studied bursters

— those labeled as Types Ia (square-wave), Ib, II (parabolic) and IV —

first occur in the unfoldings of a codimension three bifurcation [2].

The path in the unfolding of the degenerate Hopf bifurcation that leads

to Type III bursting, and a typical resulting timeseries is shown in Fig. 8.1.

The path through the unfolding of this codimension two bifurcation is de-

picted on the lower left. Suppose we start at the leftmost point on the path.

For this value of the slow parameter the fast system approaches a stable

fixed point at the origin. As the slow system traverses the path, this fixed

point loses stability in a subcritical Hopf bifurcation, and, after a delay,

the orbit of the fast system approaches the unique periodic orbit that ex-

ists in this region of parameter space. As the slow system follows the path

through the unfolding from right to left, this periodic orbit loses stability

in a collision with an unstable periodic orbit (the same orbit that arose in

the subcritical Hopf bifurcation discussed earlier). After this bifurcation,

the fast system again approaches the stable fixed point at the origin, and

the process repeats.

8.3. Bursting in Two Coupled Cells

In many applications one studies the dynamics of two identical coupled

cells. We further assume that each cell is a fast-slow system, and that the

cells are coupled symmetrically, so that the evolution of the network is

described by

x′
1 = f(x1, y1, x2, y2) x′

2 = f(x2, y2, x1, y1)

y′
1 = εg(x1, y1, x2, y2) y′

2 = εg(x2, y2, x1, y1).

It is frequently observed in practice that the slow variables of such a sys-

tem can be (approximately) synchronous, even when the fast variables are

desynchronized. Suppose that each cell bursts, and that the active state

is oscillatory. Moreover, assume that the average of the fast, oscillating

variables x1 and x2 is equal, although the two are not necessarily synchro-

nized. In this case, after averaging the fast variables over each cycle in their
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periodic orbits Hopf
saddle node of

0 periodic
orbits

1 periodic
orbit

orbits
2 periodic

saddle
node

Hopf
0 500 1000 1500

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Degenerate Hopf Bifurcation;  A =0.15B = 0.05 C =0.6  =0.01

t

x 1

Fig. 8.1. A schematic representation of Type III elliptic bursting. The stable and un-
stable periodic orbits collide in a saddle-node of periodic orbits, causing the system to
return to the quiescent state. The slow passage effect is manifested at the beginning of
each active phase.

oscillations, we obtain the following equations for the slow variables

y′

1 = εg(x̄, y1, x̄, y2) y′

2 = εg(x̄, y2, x̄, y1).

The manifold Σy = {(y1, y2) : y1 = y2} is invariant for this reduced system.

Therefore, under these conditions, the slow variables can be expected to

behave synchronously, even when the fast variables do not.

Alternatively, consider a coupled system depending on an ambient pa-

rameter which slowly changes (for instance an extracellular concentration

of calcium which changes slowly compared to the internal dynamics of the

two cells). Let us assume that the network consists of two identical, sym-

metrically coupled cells which depend in the same way on the ambient

parameter.

In both of these cases it is reasonable to look at the following model

x′

1 = f(x1, x2, p(εt)) x′

2 = f(x2, x1, p(εt)). (8)

In the first example, p(εt) corresponds to the synchronous slow variables. In

the second it represents the slowly varying parameter. In many situations

p(εt) is periodic in time. This occurs for many systems modeling bursting

behavior. This is the type of model we will analyze.
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Note that the diagonal Σx = {(x1, x2) : x1 = x2} =Fix(Z2) is an invari-

ant submanifold for system (8) and contains the synchronous solutions of

the system. We will concentrate on bifurcations from synchronous solutions,

that is from different orbits contained in Σx.

We take the approach outlined in the previous section and developed

in [6], and consider periodic paths through the unfolding of low codimen-

sion bifurcations. Since (8) is Z2-equivariant, this will be reflected in the

unfoldings that we consider.

8.4. Z2-Equivariant Bifurcations

In this section we review the codmension one and codimension two Z2-

equivariant local bifurcations from a Z2-invariant equilibrium x0 of a system

of differential equations ẋ = h(x) where x ∈ Rn.

There are four types of codimension one Z2-equivariant bifurcations: two

steady-state and two Hopf bifurcations. These bifurcations are summarized

in Table 8.1. Let γ be the nonidentity symmetry in Z2. Let J = (dh)x0
be

the Jacobian matrix of the ODE system at x0. It follows from the chain

rule that Jγ = γJ , and hence that

Rn = Σ ⊕ Σ⊥

where Σ and Σ⊥ are J-invariant, γ acts trivially on Σ and as −I on Σ⊥.

More explicitly,

Σ = {(x1, x1) : x1 ∈ Rk} and Σ⊥ = {(x1,−x1) : x1 ∈ Rk}

Table 1: Codimension one Z2-equivariant bifurcations

Bifurcation Type Solution Type

steady-state Σ saddle-node of Z2-invariant states

steady-state Σ⊥ pitchfork to symmetry related pairs

Hopf Σ Z2-invariant periodic solutions

Hopf Σ⊥ half-period out of phase periodic solutions

Generically, the eigenspaces of J are contained either in Σ or Σ⊥. The

two steady-state bifurcations correspond to a simple zero eigenvalue with

eigenvector in Σ or in Σ⊥. Generically, the first case leads to a saddle node

bifurcation of γ-invariant equilibria (that is, the steady states lie inside

Fix(γ) = Σ). Generically, the second case leads to a pitchfork bifurcation
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(that is, to pairs of γ related equilibria bifurcating from a branch of γ-

invariant equilibria).

The two Hopf bifurcations correspond to simple purely imaginary eigen-

values with two-dimensional critical subspace W in Σ or in Σ⊥. Each of

these bifurcations leads generically to a unique branch of periodic solu-

tions from a branch of γ-invariant equilibria. In the first case the periodic

solutions themselves are γ-invariant (that is, lie inside Fix(γ)). In the sec-

ond case, the periodic solutions x(t) are half-period out of phase periodic

solutions (that is, γx(t) = x(t + T/2) where T is the period of x(t)).

Codimension two bifurcations appear in two types: mode interactions

and nonlinear degeneracies. In this paper we consider three types of mode

interaction: steady-state/steady-state, steady-state/Hopf, and Hopf/Hopf.

Each of these three types appear in three different ways: Σ-Σ, Σ-Σ⊥, and

Σ⊥-Σ⊥ mode interactions. So there are nine different mode interactions

that can be considered. Note that generically the steady-state/steady-state

mode interactions Σ-Σ and Σ⊥-Σ⊥ occur as Takens-Bogdanov codimen-

sion two bifurcations. We will not present detailed results from all nine of

these different mode interactions. For the most part, the analyses of these

codimension two bifurcations may be found in the literature or are simple

adaptations of what is in the literature. See [8].

We end this section by commenting on what is needed for these various

bifurcations to occur in a coupled cell system

ẋ1 = f(x1, x2) = αx1 + βx2 + · · ·
ẋ2 = f(x2, x1) = αx2 + βx1 + · · ·

where x1, x2 ∈ Rk, α and β are k×k matrices, and the assumed equilibrium

is at x0 = (0, 0). Here α is the linearized internal dynamics and β is the

linearized coupling. Moreover

J |Σ = α + β and J |Σ⊥ = α − β

Thus, a steady-state Σ bifurcation occurs when α+β has a zero eigenvalue,

etc. In general, we will only consider bifurcations and mode interactions

when the dimension k of each cell is minimum. For example, we take k = 1

for steady-state bifurcations and k = 2 for Hopf bifurcations. Note that we

can assume k = 2 for Σ-Σ and Σ⊥-Σ⊥ Takens-Bogdanov singularities but

we can take k = 1 for Σ-Σ⊥ steady-state/steady-state mode interactions.
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8.5. Pitchfork Bifurcation

Consider a system of the form (8) in which the two cells have one-

dimensional internal dynamics. As discusses in section 8.3, if the system

has a fixed point in Σ, two types of steady-state bifurcations will be typ-

ical, a bifurcation inside the synchrony subspace Σ which will generically

be a saddle-node bifurcation, and a bifurcation in the direction normal to

Σ which will typically be a pitchfork bifurcation.

The truncated normal form of the pitchfork bifurcation is given by

ξ′ = ξ(p ± ξ2). (13)

This bifurcation will occur in a direction tangent to the space Σ⊥, and

therefore we can think of ξ as a coordinate along the center manifold in

which this bifurcation occurs. To examine the bifurcations it is therefore

natural to write the normal form in the coordinates

ξ =
x1 − x2

2
η =

x1 + x2

2
(14)

Note that η is the coordinate along the linear submanifold Σ correspond-

ing to the synchronized state. The subspace Σ⊥ must be stable for the

bifurcation to be observable; therefore we assume that equation for η is

η′ = −λη λ > 0. (15)

We can use (14) to rewrite the pitchfork bifurcation in the original

network coordinates asa

x′
1 = (x1 − x2)

(
p − (x1−x2

2 )2
) − λ(x1 + x2)

x′
2 = −(x1 − x2)

(
p − (x1−x2

2 )2
) − λ(x1 + x2).

(16)

As discussed in the introduction, we can observe bursting behavior if we

let the bifurcation parameter vary slowly, and move through the bifurcation

point p = 0. In particular, let

p = p(εt) = C sin(εt) + A. (17)

The state x1 = x2 becomes unstable as p becomes positive. Due to

delayed passage [12], the system does not follow the branch of equilibria that

would be obtained in the quasi-steady-state approximation. See Fig. 8.2.

Note that the manifold Σ is invariant for the system (16)-(17). Since this

is a codimension one manifold in the phase space of the system, either x1

aIn writing equations (16), as well as equations (20), and (25), we omit certain constants
that multiply the right hand side. This change corresponds to a reparametrization of
time, and does not affect the solutions in any other way.



June 30, 2005 10:12 Master File for Review Volume - 9in x 6in TheBook

210 M. Golubitsky, K. Josić and L.J. Shiau
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Fig. 8.2. The time series for x1 (top) and x2 (bottom) are half period out of phase
in(16) with p(εt) = 0.4 sin(εt) − 0.1 and ε = 0.001.

will increase, and x2 will decrease during the burst, if the initial conditions

satisfy x1(0)−x2(0) > 0 (this is the situation in Fig. 8.2). If x2(0)−x1(0) >

0, the orbit is attracted to the symmetrical attractor, and x1 and x2 switch

places.

If we look at the orbit in the (ξ, η, p) coordinates, then ξ is contracted

exponentially to ξ = 0 when p < 0, that is before the onset of the pitchfork

bifurcation. Since p evolves on a much longer timescale than ξ an exponen-

tially small amount of noise can kick ξ across the manifold {ξ = 0}, which

corresponds to the manifold Σ in the (x1, x2, p) coordinates.

Therefore in the cell coordinates, a small amount of noise will allow

the trajectory to cross the synchronized state Σ. If the noise is small, the

deterministic dynamics will eventually force the system into a burst. If the

noise intensity is equal in both cells, the system will be equally likely to

burst in the positive or negative ξ direction. As a result, the system will

be equally likely to burst in either of the two modes. This is illustrated

in Fig. 8.3. To create the figure we have added a small perturbation of

the form δ sin(t), with δ � 1 to equation (13). Since the frequency of

this perturbation is much higher than the frequency of p in (17), this term
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effectively acts like noise. For details on the slow passage through a pitchfork

bifurcation in the presence of noise, we refer the reader to [1, 4].
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Fig. 8.3. The time series for x1 (top) and x2 (bottom) are half period out of phase, and
randomly switch branches as noise (0.01 sin(πt)) is added to the pitchfork bifurcation
(16); p(εt) = 0.4 sin(εt) − 0.1 and ε = 0.001.

8.6. Hopf / Hopf Mode Interactions

In this section we consider different phenomena that are possible when the

network undergoes Hopf bifurcations. Harkin et al. [9] show that two bub-

bles in a fluid that descend under gravity can transition between in phase

and out of phase oscillation. This observation motivates our discussion of

bursting arising from Hopf / Hopf mode interactions. We suppose that two

Hopf modes, one preserving Z2-symmetry and one breaking that symme-

try, bifurcate simultaneously from a Z2-invariant equilibrium and show that

bursting between in phase and out of phase oscillation can occur robustly

in the unfoldings of this mode interaction.

We assume that the frequencies of the two modes are irrationally related.

It follows that the Poincaré-Birkhoff normal form of the center manifold

vector fields decouple into phase-amplitude equations [8] and that the
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amplitude equations have Z2 ⊕Z2-symmetry. We use the results in chapter

X of [7] to describe the unfoldings of this mode interaction. The universal

unfolding in the vicinity of a Hopf bifurcation of this mode interaction is

given by

ξ′ = −iξ − (|ξ|2 + m|η|2 − p)ξ

η′ = −√
2 iη − (n|ξ|2 + |η|2 − (p − σ))η

(18)

where ξ, η ∈ C, and p is the bifurcation parameter. The frequency of oscil-

lation in the second equation is multiplied by
√

2 to avoid resonances. The

equations are given in complex coordinates, and we can use ξ = ξr + iξi

and η = ηr + iηi to transform the equations to the real coordinates

(ξr, ξi, ηr, ηi) ∈ R4. The values of m and n determine several possible bifur-

cation scenarios. The parameter σ determines the location of a secondary

Hopf bifurcation (see Fig. 8.4 and [7]).

To obtain the normal form of the Z2 equivariant Hopf bifurcations in

the network coordinates we again think of ξ as a coordinate transversal to

the synchronization manifold, and η as a coordinate along to the synchro-

nization manifold. Therefore

ξ =
z1 − z2

2
η =

z1 + z2

2
(19)

can be used to transform equation (18) into the network coordinates. In

the new coordinates we have

z′1 = −z1

[
(2 + m + n)ρ + (m − n)τ − 4(2p − σ) + 4(

√
2 + 1)i

]

−z2

[
(n − m)ρ + (2 − m − n)τ + 4σ + 4(

√
2 − 1)i

]
,

z′2 = −z1

[
(n − m)ρ + (2 − m − n)τ + 4σ + 4(

√
2 − 1)i

]

−z2

[
(2 + m + n)ρ + (m − n)τ − 4(2p − σ) + 4(

√
2 + 1)i

]
.

(20)

where ρ = |z1|2 + |z2|2 and τ = z1z̄2 + z̄1z2.

In the following we let m = 4, n = 1/2, and σ = 1/4, which corresponds

to case 2 on p. 434 of [7]. When p < 0 the origin is a globally attracting

fixed point. The origin loses stability at p = 0 in a Hopf bifurcation which

gives rise to a stable state in which the two systems are half period out of

phase. This state remains stable in some interval p > 0, and loses stability

in a subcritical Neimark-Sacker bifurcation at p = p2
NS.

Note that there is a Hopf bifurcation at the origin when p = σ giving

rise to an initially unstable periodic solution which lies inside

Σ = {(z1, z2) ∈ C2 : z1 = z2} = {(ξ, η) ∈ C2 : ξ = 0}}
and therefore corresponds to the synchronous state. The unstable torus

that is born at the Neimark-Sacker bifurcation at p2
NS collides with this
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Fig. 8.4. Bifurcation diagram corresponding to equation (18). The solid and dashed
lines represent stable and unstable states. The ξ state is synchronous and the η state is
asynchronous.

synchronous state in a reverse Neimark-Sacker bifurcation at p1
NSin which

the synchronous state becomes stable.

We again assume that the bifurcation parameter p varies slowly in time.

For the parameter values given above we let p(εt) = 0.3 sin(εt) + 0.4 and

ε = 0.005 which corresponds to the path shown in Fig. 8.4.

As the parameter sweeps the diagram from left to right, the state in

which the oscillators are half period out of phase loses stability at p = p2
NS,

and the system is attracted to the synchronous state. As the parameter

evolves in the opposite direction, the synchronous state in turn loses sta-

bility at p = p1
NS, and the system jumps back to the out of phase state.

Therefore the system is observed to burst between an in-phase and an out-

of-phase state (see Fig. 8.5).

Note that during the time η �= 0, the variable ξ decays to 0 exponen-

tially. Since the manifold Σ is invariant, orbits that come within numerical

accuracy of the manifold will never leave it in a numerical simulation. To

avoid such problems, as well as reduce the slow passage effects, we added a

small sinusoidal term with frequency O(1) to the equations (20). The exact

form of the term is not of importance.

8.7. Takens-Bogdanov Bifurcation with Z2 Symmetry

Consider the two-coupled cell system

x′
1 = f(x1, x2, p1, p2)

x′
2 = f(x2, x1, p1, p2)

in which the two cells both have two-dimensional internal dynamics. We

again consider systems which have equilibria on the diagonal Σ which are
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Fig. 8.5. Bursting corresponding to the path shown in Fig. 8.4. The timeseries of Re z1

(solid line) and Re z2 (dashed line) are shown in both figures. A portion of the top figure
is enlarged in the bottom figure to illustrate the transition between the synchronous and
the half period out of phase state.

close to a bifurcation. Without loss of generality, we assume the equilibrium

is at the origin.

As in the case of the pitchfork bifurcation, we restrict our attention to

bifurcations that break Z2-symmetry, that is, occur tangent to the space

Σ⊥. Again, we consider coordinates η = x1 + x2 and ξ = x1 − x2, where

ξ = (ξ1, ξ2). The normal form of the bifurcation will therefore be sym-

metric under the interchange of the two cells, which is equivalent to the

transformation ξ �→ −ξ.

We consider the codimension two Takens-Bogdanov bifurcation that

breaks the Z2-symmetry. The normal form of this bifurcation commutes

with the symmetry ξ �→ −ξ, or equivalently, with rotation of phase space

through π. The particular normal form that we discuss is

ξ′1 = ξ2

ξ′2 = p1ξ1 + p2ξ2 + aξ3
1 + ξ2

1ξ2,
(23)
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where p1 and p2 are the unfolding parameters. This particular normal form

includes the coalescence of limit cycles (see [15] and section 7.3 of [8]). The

two-parameter unfolding of this bifurcation is presented in Fig. 8.6.

1

2

2

2

1

2

=

4/5=

= c

p

p p2

p p

p p

p

1

1

1

Fig. 8.6. The unfolding of the the Z2 symmetric Takens-Bogdanov bifurcation. Path 1
through the unfolding gives the bursting pattern shown in Fig. 8.7. After reversing the
flow, path 2 results in the bursting pattern presented in Fig. 8.9. Stable limit cycles are
shown by solid lines, while unstable ones are shown by dashed lines.

We assume that the center manifold in which the Takens-Bogdanov

bifurcation occurs is stable. Let η = x1 + x2 = (η1, η2) be the coordinate

transverse to the center manifold. For simplicity, we assume that

η′
1 = −λ1η1

η′
2 = −λ2η2

(24)

for λ1, λ2 > 0. By rewriting (23)-(24) in the x1, x2 coordinates we obtain a

representative coupled cell system undergoing this type of bifurcation.

x′
11 = (−λ1x11 + x12 − λ1x21 − x22)

x′
12 = (p1x11 + (p2 − λ2)x12 − p1x21 − (p2 + λ2)x22

−(x11 − x21)
3 − (x11 − x21)

2(x12 − x22))

x′
21 = (−λ1x11 − x12 − λ1x21 + x22)

x′
22 = (−p1x11 − (p2 + λ2)x12 + p1x21 + (p2 − λ2)x22

+(x11 − x21)
3 + (x11 − x21)

2(x12 − x22))

(25)
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Fig. 8.7. Following path 1 in Fig. 8.6, the time series x11 (top) and x21 (bottom) are
half period out of phase and attracted to the opposite limit cycles and equilibria.
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Fig. 8.8. An enlarged view of x11(t) and x21(t) together from Figure 8.7 shows the
transition from antisychronous limit cycles to antisychronous equilibria.
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Choosing different paths through the unfolding of this bifurcation leads

to different types of bursting. Here we consider two choices leading to in-

teresting behavior. Other paths through the unfolding can be analyzed

similarly.

The first path, shown schematically as path 1 in Fig. 8.6, is given by

(p1(εt), p2(εt)) = 0.2(cos(εt), sin(εt)). If we follow this path starting in the

third quadrant, the oscillators are initially attracted to the equilibrium at

the origin. This equilibrium undergoes a Hopf bifurcation at p2 = 0, p1 < 0.

Since the resulting limit cycle bifurcates in the direction tangent to Σ⊥,

that is in the direction of ξ = x1 − x2, it leads to half period out of phase

oscillations in the two cells x1 and x2.

This burst terminates near the line p2 = cp1 in which the stable outer

limit cycle and the unstable inner limit cycle disappear in a saddle-node

bifurcation. There are two stable equilibria, (ξ±, 0) with ξ+ = −ξ− �=
0, that the system can tend to after this bifurcation. The point (ξ+, 0)

corresponds to x11 > x21 and x12 = x22 = 0, whereas the point (ξ−, 0)

corresponds to x11 < x21 and x12 = x22 = 0. Which point is chosen depends

on whether the system is in the basin of attraction of the left hand or the

right hand point after the attracting limit cycle disappears. Both choices are

equally likely due to symmetry, and since the two basins are intertwined,

one can expect different outcomes after each traversal of the path. Random

switching between the two states can be seen in Figs. 8.7 and 8.8. Finally,

the two points (ξ±, 0) coalesce in a subcritical pitchfork bifurcation as the

slow variable re-enters the third quadrant at at p2 = 0, p1 < 0, and the

entire process repeats.

In this example we observe random switching between the steady states

(ξ±, 0) from one traversal of the path through the unfolding to the next.

Consider the same system with time reversed (simply reverse all the arrows

in Fig. 8.6). We need to compensate for the reversal of time by letting

λ1 < 0 and λ2 < 0 in (24). In this system it is possible to observe random

switching between limit cycles from burst to burst.

To illustrate this behavior we consider path 2 in Fig. 8.6, which is given

by (p1, p2) = 0.2(cos(π
4 + δ sin(εt)), sin(π

4 + δ sin(εt))) with δ = 0.1256. The

bursting resulting from this path is shown in Fig. 8.9. Note that the stable

limit cycles are now denoted by dashed lines. Following the path starting in

the region adjacent to the p2 axis and proceeding clockwise, we start at one

of the two stable fixed points. As in the previous examples, the two fixed

points are given by (ξ±, 0). Both of these fixed points undergo a supercritical

Hopf bifurcation at p1 = p2, which results in oscillations. Due to delayed
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passage, these oscillations are not very prominent in Fig. 8.9, but can be

observed. Approximately at p2 = 4/5p1, the two limit cycles that arose in

the Hopf bifurcation coalesce in a Z2 symmetric homoclinic bifurcation, and

give rise to a limit cycle that encompasses the origin. Again, this limit cycle

corresponds to half period out of phase oscillations. The detailed analysis

of the slow passage through a homoclinic bifurcation is quite involved, and

we refer the reader to [5], and references therein.
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Fig. 8.9. Following path 2 (with reversal in time) in Fig. 8.6, x11(t) and x21(t), top
and bottom respectively, are half period out of phase and attracted to the opposite limit
cycles and equilibria.

After this bifurcation the path is traversed in the opposite direction.

We first encounter the Z2 symmetric homoclinic bifurcation again. This

bifurcation results in two limit cycles, one in the region ξ1 < 0, and one in

the region ξ1 > 0. Which limit cycle is chosen depends on the state of the

system prior to bifurcation. It is therefore expected that both limit cycles

are equally likely and that it is possible to approach either. As shown in

Fig. 8.9, this is indeed the case, and both types of oscillations are observed.

The chosen limit cycle now disappears at a subcritical Hopf bifurcation,

and the orbit settles at one of the fixed points (ξ−, 0) or (ξ+, 0) depending
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Fig. 8.10. A close view of x11(t) and x21(t) together from Fig. 8.9 shows the transition
from an antisychronous limit cycle encompassing both the origin and the symmetric
equilibria, to two disjoint, antisychronous limit cycles, each encompassing one of the
symmetric equilibria.

on whether the system followed the left or the right limit cycle. The entire

process repeats, and since, at each traversal of the path, both limit cycles

arising in the Z2 symmetric homoclinic bifurcation are equally likely, we

observe random switching between these two states from burst to burst.

8.8. Conclusion

In this chapter we have extended the ideas developed in [6] to the case of

two coupled identical fast-slow systems. While these extensions are natural,

the fact that we used an abstract, model independent approach may leave

the reader wondering whether the phenomena we discussed can be observed

in models that are used in practice.

It is natural to relate the likelihood of encountering a burster to the

codimension of the bifurcation in whose unfolding it first appears. As was

shown in [2, 6], the different single cell bursters most frequently encoun-

tered in applications, are, in fact, among the most likely bursters to be

encountered from this viewpoint. In the present work, we have presented

an overview of the phenomena that occur near low codimension bifurcations

in a system of two coupled cells. In analogy to the single cell case, we can

expect that these are the phenomena that are most likely to be encountered

when such networks are modeled in practice.

As noted in section 8.4, a comprehensive catalog of bursting types that
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can occur in the vicinity of all Z2 symmetric bifurcations of codimension

one and two would be rather lengthy. However, an overview of the literature

on these bifurcations suggests that most phenomena that can be expected

have been captured in the present chapter and in [6].

Similar classifications of bursting phenomena can be made in coupled

systems with symmetry and our discussion here indicates how such a classi-

fication might be pursued. However, one needs to consider low codimension

equivariant bifurcations on a case by case basis. For example, in rings of

cells with Dn symmetry, Buono et al. [3] show that structurally stable,

asymptotically stable heteroclinic cycles can appear in Hopf / steady-state

mode interactions when n ≥ 5. Bursting phenomena when one of the sta-

ble states in the fast equations is itself a heteroclinic cycle might be quite

interesting.
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