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Abstract
Homeostasis occurs in a systemwhere an output variable is approximately constant on
an interval on variation of an input variable I. Homeostasis plays an important role in
the regulation of biological systems, cf. Ferrell (Cell Syst 2:62–67, 2016), Tang and
McMillen (J Theor Biol 408:274–289, 2016), Nijhout et al. (BMC Biol 13:79, 2015),
and Nijhout et al. (Wiley Interdiscip Rev Syst Biol Med 11:e1440, 2018). A method
for finding homeostasis inmathematical models is given in the control theory literature
as points where the derivative of the output variable with respect to I is identically
zero. Such points are called perfect homeostasis or perfect adaptation. Alternatively,
Golubitsky and Stewart (J Math Biol 74:387–407, 2017) use an infinitesimal notion
of homeostasis (namely, the derivative of the input–output function is zero at an iso-
lated point) to introduce singularity theory into the study of homeostasis. Reed et al.
(Bull Math Biol 79(9):1–24, 2017) give two examples of infinitesimal homeostasis in
three-node chemical reaction systems: feedforward excitation and substrate inhibition.
In this paper we show that there are 13 different three-node networks leading to 78
three-node input–output network configurations, under the assumption that there is
one input node, one output node, and they are distinct. The different configurations
are based on which node is the input node and which node is the output node.We show
nonetheless that there are only three basic mechanisms for three-node input–output
networks that lead to infinitesimal homeostasis and we call them structural home-
ostasis, Haldane homeostasis, and null-degradation homeostasis. Substantial parts of
this classification are given in Ma et al. (Cell 138:760–773, 2009) and Ferrell (2016)
among others. Our contributions include giving a complete classification using general
admissible systems (Golubitsky and Stewart in Bull AmMath Soc 43:305–364, 2006)
rather than specific biochemical models, relating the types of infinitesimal homeosta-
sis to the graph theoretic existence of simple paths, and providing the basis to use
singularity theory to study higher codimension homeostasis singularities such as the
chair singularities introduced in Nijhout and Reed (Integr Comp Biol 54(2):264–275,
2014. https://doi.org/10.1093/icb/icu010) and Nijhout et al. (Math Biosci 257:104–
110, 2014). See Golubitsky and Stewart (2017). The first two of these mechanisms
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are illustrated by feedforward excitation and substrate inhibition. Structural home-
ostasis occurs only when the network has a feedforward loop as a subnetwork; that
is, when there are two distinct simple paths connecting the input node to the output
node. Moreover, when the network is just the feedforward loop motif itself, one of
the paths must be excitatory and one inhibitory to support infinitesimal homeostasis.
Haldane homeostasis occurs when there is a single simple path from the input node to
the output node and then only when one of the couplings along this path has strength 0.
Null-degradation homeostasis is illustrated by a biochemical example from Ma et al.
(2009); this kind of homeostasis can occur only when the degradation constant of the
third node is 0. The paper ends with an analysis of Haldane homeostasis infinitesimal
chair singularities.

Keywords Homeostasis · Networks · Singularity theory · Biochemistry

Mathematics Subject Classification 34C99 · 92C42 · 92C40

1 Introduction and results

Homeostasis refers to a phenomenon whereby the output xo of a system is approxi-
mately constant on variation of an input I. The terms perfect homeostasis and robust
homeostasis are also used in the literature. According to Tang and McMillen (2016)
perfect homeostasis means that the output is identically constant on a neighborhood
of an input value I0 and robust homeostasis means that the system maintains homeo-
static behavior when its parameter values are slightly altered. These authors note that
the terms adaptation and perfect adaptation are used in the literature when referring
to homeostasis in sensory systems. See also Ang and McMillen (2013), Aoki et al.
(2019), and Qian and Del Vecchio (2018).

Many researchers have observed that homeostasis can be defined locally near an
input value I0; in particular, this follows when the input–output function xo(I) is
approximately constant near I0. Golubitsky and Stewart (2017) and Reed et al. (2017)
call this a homeostasis point. We follow these authors by observing that homeostasis
points occur when the derivative of xo with respect to I is zero at I0. More precisely:

Definition 1 Infinitesimal homeostasis occurs at an isolated point I0 if

x ′
o(I0) = 0

where ′ indicates differentiation with respect to I.
It follows from Taylor’s theorem that infinitesimal homeostasis implies local home-
ostasis, though the converse need not be valid. SeeReed et al. (2017) and the discussion
of product inhibition in Sect. 2. Observe that perfect homeostasis is a much stronger
condition since it requires that the output xo be identically constant—not just that the
derivative of xo is zero at a point.

Homeostasis and infinitesimal homeostasis occur naturally in biochemical network
models. We point to Nijhout et al. (2004), Ma et al. (2009), Nijhout and Reed (2014),
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Ferrell (2016), Tang and McMillen (2016), Del Vecchio et al. (2018), Reed et al.
(2017), Antoneli et al. (2018) and references therein.

In the remainder of this section, we define input–output functions for networks,
coupling types, state the main results, and outline the paper. Our results are motivated
by the mathematics of singularity theory and the strength of these results depend
on using a mathematically precise definition of homeostasis (namely, infinitesimal
homeostasis) that was introduced in Golubitsky and Stewart (2017).

1.1 The input–output function in three-node input–output networks

This paper focusses on infinitesimal homeostasis in three-node input–output networks.
We assume that one node ι is the input node, a second node o is the output node, and the
third node ρ is the regulatory node. The network coordinates are X = (xι, xρ, xo). We
assume that the network system has the form F = ( fι, fρ, fo) where each coordinate
function f� depends on the internal state variable x� and the state variables of the
nodes coupled to node � in the network graph.

We make three assumptions about the vector field F throughout:

(a) The phase space of each node as well as the input variable is one-dimensional;
that is, (xι, xρ, xo) ∈ R3 and I ∈ R.

(b) Only the input node coordinate function fι depends on the external input variable
I and the partial derivative of fι with respect to I is nowhere 0.

(c) F has a stable equilibrium at (X0, I0).
The definition of an input–output function begins with assumption (c) that

Ẋ = F(X , I) (1.1)

has a stable equilibrium X0 at I0. Stability and the implicit function theorem together
imply that there exists an implicitly defined mapping X(I) such that

F(X(I), I) ≡ 0 (1.2)

where X(I0) = X0. In coordinates X(I) = (xι(I), xρ(I), xo(I)), where xo(I) is the
input–output function. In general, we can write the equilibrium equations of (1.1) as

fι(xι, xρ, xo, I) = 0
fρ(xι, xρ, xo) = 0
fo(xι, xρ, xo) = 0

(1.3)

Given a three-node network, the associated class of differential equations will
always be a subclass of (1.3). For example, the feedforward motif illustrated in Fig. 1
has the corresponding systems of equations in (1.4).

ẋι = fι(xι, I)

ẋρ = fρ(xι, xρ)

ẋo = fo(xι, xρ, xo)
(1.4)
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Fig. 1 The feedforward motif

FollowingGolubitsky andStewart (2006)we call such equations admissible systems
for the given network. Substantial parts of this classification are given in Ma et al.
(2009) and Ferrell (2016) and other references. Our study of infinitesimal homeostasis
differs from those studies of homeostasis in three ways. First, we classify infinitesimal
homeostasis using general admissible systems rather than analyzing specific model
systems, though our results could be used to analyze such systems. Second, we relate
infinitesimal homeostasis to combinatorial facets of the network. Third, we take a
singularity theory point of view (see Golubitsky and Stewart 2017), which provides a
way to study higher codimension infinitesimal homeostasis singularities (see Sect. 4).
The codimension of a homeostasis singularity is the minimal number of parameters
that determine it, assuming suitable nondegeneracy conditions. These conditions lead
to robust infinitesimal homeostasis.

Linearized coupling types

We use the notation f�,y to denote the partial derivative of the coordinate function f�
with respect to y. Specifically, f�,x�

denotes the linearized internal dynamics of node
�.

Definition 2 Suppose, in a given network, one node m connects to another node �.
Then the coupling is excitatory at the equilibrium X0 if f�,xm (X0) > 0, inhibitory if
f�,xm (X0) < 0, and neutral if f�,xm (X0) = 0. Node � degrades at the equilibrium X0
if f�,x�

(X0) < 0.

Remark 3 Neutral coupling between two nodes does not mean that the nodes are
uncoupled–rather it means that the coupling exists and is at a transition state between
excitation and inhibition. Therefore, neutral coupling between two nodes is possible
only when coupling between those two nodes is assumed possible. In many biochemi-
cal networks, but not all, degradation in each node is expected. In some networks, such
as the feedforward motif (see (1.4)), stability of the equilibrium forces degradation.

1.2 Results on infinitesimal homeostasis

We ask the following question: Given a three-node network with designated input
and output nodes, what conditions on the linearized couplings lead to the possible
existence of infinitesimal homeostasis? The answer depends on the network structure–
specifically the number of simple paths from the input node to the output node. We
prove that even though there are 78 different input–output networks (see Appendix 6)
there are precisely three different kinds of infinitesimal homeostasis (see Theorem 10
and Theorem 12). By a kind of infinitesimal homeostasis we mean that the vanishing
of one specific combination of partial derivatives of fι, fρ, fo, (a defining condition),
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leads to infinitesimal homeostasis given that the nondegeneracy condition x ′′
o (I0) �= 0

holds. Moreover, we show that these three different types depend only on the graph
theoretic simple path structure of the network.

Definition 4 A path between nodes is simple if the path visits each node on the path
at most once.1

A three-node input–output network has three possible configurations of simple
paths from input node to output node: ι → o or ι → ρ → o or both. We show that a
network containing both simple paths can lead to a kind of homeostasis that we call
structural. A network containing the one simple path ι → ρ → o can lead to a kind
of homeostasis that we call Haldane. Finally, a network containing the one simple
path ι → o can lead to Haldane homeostasis or to a kind of homeostasis that we call
null-degradation homeostasis. More precisely, we prove the following.

(1) Suppose the network has one simple path ι → o. It follows that either ι �→ ρ or
ρ �→ o. In this case, Theorem 10(a) shows that infinitesimal homeostasis occurs
at I = I0 if and only if either

(a) (Haldane homeostasis) the linearized coupling along the path is neutral at
I = I0; that is,

fo,xι (X0) = 0 (1.5)

or
(b) (null-degradation homeostasis) the linearized internal dynamics of the regula-

tory node ρ is zero at I = I0; that is,

fρ,xρ (X0) = 0. (1.6)

(2) Suppose the network has one simple path ι → ρ → o. It follows that ι �→ o. In
this caseTheorem10(b) shows that infinitesimal homeostasis (specificallyHaldane
homeostasis) occurs if and only if either the linearized coupling ι → ρ is neutral
or the linearized coupling ρ → o is neutral. That is, either

(a) fρ,xι (X0) = 0 or (b) fo,xρ (X0) = 0. (1.7)

at I = I0.
(3) The network has two simple paths from the input node ι to the output node o;

namely, ι → o and ι → ρ → o. Theorem 12 shows that infinitesimal homeostasis
can occur only when the coupling along the two paths from ι to o balance. That
is, the system satisfies the defining condition (structural homeostasis)

fo,xρ (X0) fρ,xι (X0) − fo,xι (X0) fρ,xρ (X0) = 0 (1.8)

at I = I0.
1 See http://www.people.vcu.edu/~gasmerom/MAT131/graphs.html.
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Fig. 2 Excitatory/inhibitory
coupling in input–output
feedforward loop motif

In the feedforward loop motif, stability of the equilibrium X0 implies fρ,xρ (X0) < 0
and the existence of the structural homeostasis is only possible if

fo,xι ( fo,xρ fρ,xι ) < 0 (1.9)

at X0; that is, one simple path is excitatory and the other inhibitory. Figure 2 illustrates
(1.9). In general, in biochemical network modeling, the assumption that the ρ node
degrades is reasonable and (1.9) is still valid.

Definition 5 (a) We call homeostasis of types (1a) and (2)Haldane homeostasis, since
these types arise from neutral coupling and, in biochemical networks, require
homeostasis be built into the kinetics function. Cf. Haldane (1930).

(b) We call homeostasis of type (1b) null-degradation homeostasis, since this type
arises when the degradation constant (i.e., the linearized internal dynamics) of the
regulatory node is zero.

(c) We call homeostasis of type (3) structural homeostasis,2 since this type typically
arises from non-neutral couplings and requires a balance of coupling strengths
between two simple paths in the network.

Examples of Haldane homeostasis satisfying the definining condition (1.5), (1.7)a
or (1.7)b are product inhibition (Sect. 2.3) and substrate inhibition (Sect. 2.2). A bio-
chemical example of null-degradation homeostasis that satisfies the defining condition
(1.6) is the negative feedback loop given by (Ma et al. 2009, Fig. 7). See Sect. 2.4. A
biochemical example of the feedforward loop for structural homeostasis can be found
in (Ferrell 2016, Fig. 3). Another example of structural homeostasis is feedforward
excitation. See Sect. 2.1. Specifically, structural homeostasis satisfies the defining
condition (1.8).

The three possible simple path configurations lead to equations for infinitesimal
homeostasis that the one parameter I must satisfy at some point I0, that is, the
infinitesimal homeostasis defining conditions. Consequently, infinitesimal homeosta-
sis is a generic phenomenon in each input–output network; which form of infinitesimal
homeostasis can occur depends onwhich simple paths are present in the network. From
a singularity theory point of view infinitesimal homeostasis is generically (under the
nondegeneracy condition x ′′

o (I0) �= 0) of codimension 0. There is one obstacle. There
are networks that cannot satisfy the infinitesimal homeostasis defining conditions at a
stable equilibrium.

Remark 6 It follows from the classificationof three-nodenetworks (see theAppendix6)
that there are eight three-node input–output networks that support two simple paths

2 We thank Mike Reed for suggesting the term structural homeostasis.
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Fig. 3 Graphs of the input–output function are given as the universal unfolding parameter a varies in the
chair singularity near a0, see Golubitsky and Stewart (2017). From left to right: a < a0, a = a0 and a > a0

from the input node to the output node. These networks include Fig. 10b, the feedfor-
ward loop motif, as a subnetwork, and they are pictured in Fig. 8. Theorem 12 shows
that structural homeostasis (homeostasis with non-neutral coupling) can only occur in
eight of the 78 possible three-node input–output networks.

1.3 Chairs in Haldane homeostasis

A consequence of the theorems discussed previously is that infinitesimal homeostasis
occurs when x ′

o(I0) = 0. Moreover, typical infinitesimal homeostasis occurs when
in addition x ′′

o (I0) �= 0. Elementary singularity theory then implies that xo(I) is
shaped like a parabola on a neighborhood of the infinitesimal homeostasis point I0.
See Golubitsky and Stewart (2017).

Nijhout and Reed (2014) and Nijhout et al. (2014) introduce homeostasis and its
applications through chairs and the notion of escape from homeostasis. The basic
observation is that as the input I varies the output xo(I) goes through three regions:
increase, approximately constant, increase (see Fig. 3, middle panel) or decrease,
approximately constant, decrease. Golubitsky and Stewart (2017) discuss an infinites-
imal version of chairs that brings singularity theory into the study of homeostasis. An
infinitesimal chair occurs at a point I0 if x ′

o(I0) = x ′′
o (I0) = 0 and x ′′′

o (I0) �= 0; that
is, up to a change of coordinates the input–output function is a homogeneous cubic
on a neighborhood of I0.

From a singularity theory point of view, a chair is a codimension one singularity.
Near a chair singularity, the graph of xo changes on variation of a single additional
system parameter a, as illustrated in Fig. 3. Reed et al. (2017) showed that nonlinear
degeneracies in substrate inhibition and feedforward excitation lead to infinitesimal
chairs. We describe the precise equations describing chair existence in Haldane home-
ostasis in Sect. 4.

1.4 Organization of paper

Section 2 uses the theory stated in Sect. 1.2 to reproduce results in Reed et al. (2017)
and Ma et al. (2009) that show that infinitesimal homeostasis can occur in three-node
input–output networks with either non-neutral coupling (specifically in feedforward
excitation) or with neutral coupling (specifically in substrate inhibition). For a detailed

123



M. Golubitsky, Y. Wang

discussion of substrate inhibition see Reed et al. (2010). We also discuss the relation-
ship between homeostasis and infinitesimal homeostasis in product inhibition.

The results stated in Sect. 1.2 are proved in Sect. 3. Haldane homeostasis chairs are
discussed in Sect. 4 with proofs given in an Appendix 7. The classification of three-
node networks is given in an Appendix 6. Section 5 is a short conclusions section.

2 Biochemical networks

We provide context for our results by relating them to those in Reed et al. (2017) and
Ma et al. (2009). Since model systems form a proper subset of admissible systems, we
emphasize the following: If infinitesimal homeostasis can only occur in a restricted
form of an admissible system, then infinitesimal homeostasis can only occur in model
systems with that same restricted form.

Common homeostatic mechanisms in cell metabolism include feedforward exci-
tation Fig. 4a, substrate inhibition Fig. 5a, and product inhibition Fig. 6a. Another
prevalent network topology that performs biochemical homeostasis is the negative
feedback loop Fig. 7a. The first three motifs are taken from Reed et al. (2017). In
these motifs nodes X,Y,Z are the names of chemical substrates and each straight
arrow represents a flux coming into or going away from a substrate. Each substrate in
these motifs degrades. Whereas, in the negative feedback motif fromMa et al. (2009),
nodes denote enzymes that can have active and inactive forms. Unlike arrows in the
first three motifs, here a positive arrow (e.g., Z → Y) indicates the active state of
enzyme Z can convert enzyme Y from its inactive to its active state. A negative arrow

(a) (b)

Fig. 4 Feedforward excitation: a Motif from Reed et al. (2017); b Input–output network with two simple
paths from ι to o corresponding to the motif in (a). Arrows with plus signs are excitatory, whereas arrows
with minus signs are inhibitory

(a) (b)

Fig. 5 Substrate inhibition: a Motif from Reed et al. (2017); b Input–output network with one simple path
from ι to o corresponding to the motif in (a). The coupling ι → ρ is excitatory, whereas the strength of the
coupling ρ → o is given by g′

2
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(a) (b)

Fig. 6 Product inhibition: a Motif from Reed et al. (2017); b Input–output network with one simple path
from ι to o corresponding to the motif in (a). Based on assumptions made in Reed et al. (2017), the coupling
ρ → o is excitatory and the coupling ι → ρ cannot be neutral

(a) (b)

Fig. 7 Negative feedback loop: aMotif adapted fromMa et al. (2009); Unlike the arrows in Figs. 4, 5 and 6
that represent mass transition between substrates, these arrows represent activation and inactivation of one
enzyme by another. b Input–output network with one simple path from ι to o corresponding to the motif in
(a)

(e.g., Y � Z) denotes the conversion of Z from its active to its inactive state by the
enzyme Y.

The righthand pictures in these figures are the corresponding mathematical input–
output diagrams. The biochemical notation relates to the mathematical notation as
follows: the X substrate or enzyme is the ι node, the Y substrate or enzyme is the ρ

node, and the Z substrate or enzyme is the o node. The biochemical concentrations
(x, y, z) correspond to network variables (xι, xρ, xo).

2.1 Feedforward excitation

The input–output network corresponding to the feedforward excitationmotif in Fig. 4a
is the network in Fig. 4b, which has two simple paths from the input node to the output
node. In our discussion of two simple path networks, we observe that infinitesimal
homeostasis is possible in such networks if (1.9) is satisfied; that is, the two simple
paths from X to Z have opposite signs. In this motif, one simple path consists of two
excitatory couplings from X to Y and from Y to Z, and hence has a positive sign.
The other simple path is an excitatory coupling fromX to the synthesis or degradation
of Z and hence is an inhibitory simple path from X to Z having a negative sign. By
Theorem12, infinitesimal homeostasis is possible in feedforward excitation admissible
systems (2.1, right), and can be computed by solving (1.8).

ẋ = I − g1(x) − g4(x)
ẏ = g1(x) − g2(y) − g5(y)
ż = g2(y) − f (x)g3(z)

ẋι = fι(xι, I)

ẋρ = fρ(xι, xρ)

ẋo = fo(xι, xρ, xo)
(2.1)
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Reed et al. (2017) showed that the model systems (2.1, left) for the feedforward
excitation motif do indeed lead to infinitesimal homeostasis. Using (1.8) we reproduce
their result by showing that infinitesimal homeostasis exists in themodel systemswhen

f ′(x0) = g′
1(x0)g

′
2(y0)

(g′
2(y0) + g′

5(y0))g3(z0)
(2.2)

where X0 = (x0, y0, z0). Specifically, first compute

fo,xρ = g′
2(y) fρ,xι = g′

1(x) fo,xι = − f ′(x)g3(z) fρ,xρ = −g′
2(y) − g′

5(y)

Equation (2.2) then follows directly from (1.8).

2.2 Substrate inhibition

Since the input–output network in Fig. 5b corresponding to the substrate inhibition
motif in Fig. 5a contains only one simple path from ι to o, our results show that
infinitesimal homeostasis is possible in an admissible system only through neutral
coupling. Also, note that the coupling fromX toY is assumed to be excitatory (g1 > 0)
in the model system (2.3, left) for the substrate inhibition motif; that is, fρ,xι > 0 in
the admissible network system (2.3, right). It follows that neutral coupling is possible
only in the ρ → o coupling; that is, fo,xρ = 0.

ẋ = I − g1(x) − g4(x)
ẏ = g1(x) − g5(y) − g2(y)
ż = g2(y) − g3(z)

ẋι = fι(xι, I)

ẋρ = fρ(xι, xρ)

ẋo = fo(xρ, xo)
(2.3)

Hence, by Theorem 10 infinitesimal homeostasis can occur in this motif if and only if
the coupling is neutral (that is, if fo,xρ = g′

2 = 0 at the equilibrium point). This obser-
vation agrees with the observation in Reed et al. (2017) thatZ can exhibit infinitesimal
homeostasis in the substrate inhibition motif if the infinitesimal homeostasis is built
into the kinetics term g2 between Y and Z.

Reed et al. (2017) note that neutral coupling can arise from substrate inhibition
of enzymes, enzymes that are inhibited by their own substrates. See the discussion
in Reed et al. (2010). This inhibition leads to reaction velocity curves that rise to a
maximum (the coupling is excitatory) and then descend (the coupling is inhibitory) as
the substrate concentration increases. Infinitesimal homeostasis with neutral couplings
arising from substrate inhibition often has important biological functions and has been
estimated to occur in about 20% of enzymes Reed et al. (2010).

2.3 Product inhibition

Since the input–output network in Fig. 6b corresponding to the product inhibition
motif in Fig. 6a contains only one simple path from ι to o, our results show that
infinitesimal homeostasis is possible in an admissible system (2.4, right) only through
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neutral coupling. Also, the coupling from Y to Z is assumed to be excitatory in the
model system (2.4, left) based on the biochemical network in Fig. 6a and used in Reed
et al. (2017); that is, fo,xρ > 0 in the admissible network system (2.4, right). It follows
that neutral coupling is possible only in the ι → ρ coupling; that is, fρ,xι = 0.

ẋ = I − g4(x) − f (z)g1(x)
ẏ = f (z)g1(x) − g2(y) − g5(y)
ż = g2(y) − g3(z)

ẋι = fι(xι, xo, I)

ẋρ = fρ(xι, xρ, xo)
ẋo = fo(xρ, xo)

(2.4)

So, infinitesimal homeostasis is possible only if fρ,xι = g′
1 f = 0. However, in

the Reed et al. (2017) model, g1 f is assumed to satisfy g′
1 f > 0, which precludes

infinitesimal homeostasis. It is shown in Reed et al. (2017) that homeostasis is possible
in such systems if one chooses an g1(x) f (z) for which g′

1 f is close to zero. Moreover,
such a choice is consistent with the biochemistry of product inhibition.

2.4 Negative feedback loop

Note that the input–output network in Fig. 7b corresponding to the negative feedback
loop motif in Fig. 7a has only one simple path ι → o. It follows from our results
that infinitesimal homeostasis is possible in the negative feedback loop if and only
if the coupling ι → o is neutral (Haldane) or the linearized internal dynamics of the
regulatory node ρ is zero (null-degradation).

ẋ = IkIx 1−x
(1−x)+KIx

− Fxk′
Fx

x
x+K ′

Fx

ẏ = zkzy − Fyk′
Fy

ż = xkxz
1−z

(1−z)+Kxz
− yk′

yz
z

z+K ′
yz

ẋι = fι(xι, I)

ẋρ = fρ(xρ, xo)
ẋo = fo(xι, xρ, xo)

(2.5)

where kIx , KIx , Fx , k′
Fx

, K ′
Fx

, kzy, Fy, k′
Fy

, kxz, Kxz, k′
yz, K

′
yz are 12 constants.

Each enzymeX,Y,Z in the feedback loopmotif (Fig. 7) canhave active and inactive
forms. In the kinetic equations in the model the ẏ equation does not depend on y and
homeostasis can only be perfect homeostasis. However, this model is a simplification
based on saturation in y Ma et al. (2009). In the original system ẏ does depend on y
and we expect standard null-degradation homeostasis to be possible in that system.

We note that stability of the equilibrium in this motif implies negative feedback.
The Jacobian of (2.5, right) is

J =
⎡
⎣

fι,xι 0 0
0 fρ,xρ fρ,xo
fo,xι fo,xρ fo,xo

⎤
⎦ .

At null-degradation homeostasis ( fρ,xρ = 0) it follows from linear stability that

fι,xι < 0, fo,xo < 0, fρ,xo fo,xρ < 0. (2.6)
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Conditions (2.6) imply that both the input node and the output node need to degrade
and the couplings ρ → o and o → ρ must have opposite signs. This observation
agrees with Ma et al. (2009) that homeostasis is possible in the network motif Fig. 7a
if there is a negative loop betweenY and Z and when the linearized internal dynamics
of Y is zero.

Another biochemical example of null-degradation homeostasis can be found in
(Ferrell 2016, Fig 2).

3 Infinitesimal homeostasis

We begin this section by showing that the output node must be downstream from the
input node in any input–output network that admits infinitesimal homeostasis. We
then use Cramer’s rule to determine explicitly the derivative x ′

o of the input–output
function in three-node input–output networks.

Definition 7 Node q is downstream from node p if there exists a path from p to q.

Lemma 8 In an n-node network, the existence of generic infinitesimal homeostasis
implies that the output node o is downstream from the input node ι.

Proof Let U(o) be the set of nodes upstream from o and assume that ι /∈ U(o). Note
that the phase space associated with U(o) is a flow invariant subspace of phase space.
Let U̇ = G(U ) be the restriction of the admissible vector field Ẋ = F(X , I) to
phase space of U(o). The fact that input node ι is not upstream from o implies that
G is independent of the input term I. Let U (I) equal the coordinates of X(I) on
U(o). ThenU (I) is a stable equilibrium of the vector fieldG andU (I) is independent
of I. In addition, the input–output function is independent of I. So, only in a very
degenerate way can infinitesimal homeostasis occur. For instance, simple homeostasis
and chairs are not possible. �	

Next we compute x ′
o. Begin by observing that the Jacobian of (1.3) is

J =
⎡
⎣

fι,xι fι,xρ fι,xo
fρ,xι fρ,xρ fρ,xo
fo,xι fo,xρ fo,xo

⎤
⎦ (3.1)

Note that J is invertible at (X0, I0) since the equilibrium X0 at I0 is assumed stable.
Hence det(J ) �= 0.

Lemma 9 The input–output function xo(I) satisfies

x ′
o = 1

det(J )
det

⎡
⎣

fι,xι fι,xρ − fι,I
fρ,xι fρ,xρ 0
fo,xι fo,xρ 0

⎤
⎦ (3.2)

Assume

fι,I �= 0. (3.3)
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Then the input–output function xo has a point of infinitesimal homeostasis if and only
if

H ≡ det

[
fρ,xι fρ,xρ

fo,xι fo,xρ

]
= fo,xρ fρ,xι − fo,xι fρ,xρ = 0. (3.4)

Proof Implicit differentiation of (1.3) with respect to I yields the matrix system

J

⎡
⎣
x ′
i

x ′
ρ

x ′
o

⎤
⎦ = −

⎡
⎣

fι,I
0
0

⎤
⎦ (3.5)

Apply Cramer’s rule to (3.5) to solve for the third coordinate x ′
o yielding (3.2). By

assumption, fι,I �= 0. Hence, I0 is a point of infinitesimal homeostasis (that is,
x ′
o(I0) = 0) if and only ifH(I0) = 0, That is, (3.4) is valid. �	

3.1 Infinitesimal homeostasis with neutral coupling and zero internal dynamics

Theorem 10 Given an input–output three-node network. Suppose there is only one
simple path from the input node to the output node. Then infinitesimal homeostasis
implies neutral coupling or zero internal dynamics. Specifically,

(a) ι → o: infinitesimal homeostasis occurs if and only if fo,xι = 0 or fρ,xρ = 0.
(b) ι → ρ → o: infinitesimal homeostasis occurs if and only if fo,xρ = 0 or fρ,xι = 0.

Proof The proof proceeds in two parts.

(a) ι → o and ρ �→ o or ι �→ ρ. If there is one simple path from ι to o and that path is
the direct one ι → o, then the other simple path ι → ρ → o must not be present.
Hence, at least one of the connections ρ → o or ι → ρ must not be present. So,
either fo,xρ ≡ 0 or fρ,xι ≡ 0. It follows from (3.4) that infinitesimal homeostasis
occurs if and only if fo,xι fρ,xρ = 0, as desired.

(b) ι → ρ → o and ι �→ o. If there is one simple path from ι to o and that path is the
indirect one ι → ρ → o, then the direct path ι → o must not be present. Hence
fo,xι ≡ 0. It follows from (3.4) that infinitesimal homeostasis occurs if and only
if fρ,xι fo,xρ = 0.

To summarize: infinitesimal homeostasis plus (a) implies neutral coupling in ι → o
or zero linearlized internal dynamics in node ρ and infinitesimal homeostasis plus (b)
implies neutral coupling in either ι → ρ or ρ → o. �	

An interpretation of Theorem 10 is that a three-node network with one simple path
from input to output can have infinitesimal homeostasis only if that homeostasis is
Haldane or null-degradation. The biological significance of this observation is dis-
cussed briefly in the subsection on substrate inhibition in Sect. 2 and expanded on in
Reed et al. (2017).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 8 Input–output networks with two simple paths. Each network contains a feedforward loop (Fig. 10b)
as a subnetwork

3.2 Infinitesimal homeostasis with non-neutral coupling

Proposition 11 Given a three-node input–output system with simple paths ι → o
and ι → ρ → o. Homeostasis x ′

o(I0) = 0 is equivalent to (3.4) at I0. Moreover,
generically the couplings ι → o, ι → ρ, ρ → o are either excitatory or inhibitory
and the internal dynamics of node ρ is nonzero.

Proof The validity of (3.4) follows directly from Lemma 9. Moreover since the cou-
plings ι → o, ι → ρ, and ρ → o are in the network, these couplings as well as the
internal dynamics fρ,xρ can be perturbed arbitrarily in admissible systems and are
generically nonzero. �	
Theorem 12 Up to node relabeling there are eight input–output three-node networks
that can support infinitesimal homeostasis with couplings that are either excitatory or
inhibitory and these networks have a feedforward loop as a subnetwork. See Fig. 8.
Moreover, infinitesimal homeostasis implies that the couplings are restricted by

sgn( fρ,xι fo,xρ )sgn( fo,xι ) = sgn( fρ,xρ ). (3.6)

Proof As shown in Theorem 10 infinitesimal homeostasis in any network with a single
simple path from the input node ι to the output node o leads to neutral coupling or zero
internal dynamics. So we can assume that the network has two simple paths from the
input node to the output node. In particular all arrows ι → ρ, ι → o, ρ → o are in the
network. Hence the feedforward loop is a subnetwork. Generically, these couplings
are excitatory or inhibitory and the internal dynamics fρ,xρ �= 0.

It follows from Proposition 11 that

fo,xρ fρ,xι = fo,xι fρ,xρ .

Since the four entries are generically nonzero, the identity (3.6) is valid. �	
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4 Chair homeostasis

Codimension one homeostasis occurs when on variation of a parameter, such as a rate
constant, a double degeneracy is found. In the context of infinitesimal homeostasis the
only such example is the chair point. Nijhout and Reed (2014) andNijhout et al. (2014)
argue that in fact the most important way that homeostasis appears in applications (in
particular in biochemical networks) is through a chair. The proofs of results in this
section require complicated calculations and are given in the Appendix 7.

The singularity theory notion of an infinitesimal chair has normal form I3. Using
elementary catastrophe theory, Golubitsky and Stewart (2017) observe that infinitesi-
mal chairs satisfy the defining conditions

x ′
o(I0) = x ′′

o (I0) = 0 (4.1)

and the nondegeneracy condition

x ′′′
o (I0) �= 0 (4.2)

where ′ denotes differentiation with respect to I.
Recall from (3.4) in Lemma 9 that infinitesimal homeostasis is given by solving

H(I) = 0 where

H ≡ fo,xρ fρ,xι − fo,xι fρ,xρ .

In Proposition 13 we present the defining and nondegeneracy conditions for an
infinitesimal chair in terms of derivatives of H.

Proposition 13 The input–output function xo(I) associated to (1.3) satisfies the defin-
ing and nondegeneracy conditions of an infinitesimal chair at I0 if and only if

H = H′ = 0 (4.3)

and

H′′ �= 0. (4.4)

Remark 14 No simplification of the calculations needed to find an infinitesimal chair,
in the structural homeostasis case, beyond that given in Proposition 13 seems possible.
Explicit calculation of infinitesimal chairs for the model equations of feedforward
excitation reproduced in (2.1, left) are given in Reed et al. (2017). These calculations
can be reproduced using Proposition 13.

In Theorems 15 and 16 we explicitly compute the defining and nondegeneracy
conditions for an infinitesimal chair in terms of derivatives of fι, fρ, fo when the
network has only one simple path from ι to o. We recall that chair points for structural
homeostasis were found in Reed et al. (2017) by explicitly evaluatingH andH′. The
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corresponding general result for structural homeostasis is quite complicated and will
not be pursued here.

Theorem 15 Given a three-node input–output network with only one simple path from
input node to output node and that path is ι → o.

Suppose this path has a neutral coupling at an infinitesimal homeostasis point.
Then the defining conditions for a chair (4.1) are equivalent to

fo,xι = fo,xιxι = 0

and the chair nondegeneracy condition (4.2) is valid if and only if

fo,xιxιxι �= 0.

Theorem 16 Given a three-node input–output network with only one simple path from
input node to output node and that path is ι → ρ → o.

Suppose this path has neutral coupling in ι → ρ. Then the defining conditions for
a chair (4.1) are

fρ,xι = fρ,xιxι = 0

and the nondegeneracy condition for a chair (4.2) is

fρ,xιxιxι �= 0.

Suppose this path has neutral coupling in ρ → o. Then the defining conditions for
a chair (4.1) are

fo,xρ = fo,xρ xρ = 0

and the nondegeneracy condition for a chair (4.2) is

fo,xρ xρ xρ �= 0.

Remark 17 It follows from Theorems 15 and 16 that having a chair in Haldane home-
ostasis implies that the kinetic term itself has a chair at that infinitesimal homeostasis
point.

5 Conclusions and future developments

In this paper we showed how infinitesimal homeostasis can arise in three-node net-
works.We assume there is an input node ι and an output node o. If the network contains
two simple paths from ι to o, then infinitesimal homeostasis is given by feedforward
excitation. If the network contains only one simple path from ι to o, then infinitesimal
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(a) (b) (c)

Fig. 9 Inhomogeneous three-cell networks with two arrows

1 2 3

(a)

1 2 3

(b)

1 2 3

(c)

1 2 3

(d)

Fig. 10 Inhomogeneous three-cell networks with three arrows

homeostasis is given by neutral coupling (as shown in substrate and product inhibition)
or zero internal dynamics (as shown in negative feedback loop).

There are two natural questions:

(a) Can this classification of one input parameter infinitesimal homeostasis be
extended to networks with n ≥ 4 nodes?

(b) Golubitsky and Stewart (2018) discuss how singularity theory can be used to
classifymulti-input/one output infinitesimal homeostasis. Is there a network theory
for multiple inputs?

There are 199 four-node networks and 9364 five-node networks.3 These numbers
indicate some of the complexity of question (a). Preliminary work indicates that the
answer to (a) is yes. Attempts to answer question (b) should begin with analyses of
three and four-node networks.

6 Appendix: Classification of three-node networks

Theorem 18 Up to node relabeling there are 13 three-node networks that are pictured
in Figs. 9, 10, 11 and 12.

It follows fromTheorem18 that there are 78 = 6×13 possible choices of three-node
input–output networks.

Proof There are either 1, 2, or 3 transitive components in a three-node network.
If there are three transitive components, then there are four possible networks and

they are given in networks a–c in Fig. 9 and network b in Fig. 10.
If there are two transitive components, then one of the components has two nodes

each connected to the other. The third node connects to one node in the two-node
component in either direction (networks c and d in Fig. 10) or to both nodes in the
two-node component in either direction (networks c and d in Fig. 11).

The remaining networks have one transitive component. There are two possibilities:
the network has a unidirectional cycle 1 → 2 → 3 or two cycles 1 ↔ 2 and 2 ↔ 3.
There is one possibility in the last case and that is network a in Fig. 11. The possible
networks with a three-cycle are network a in Fig. 10, network b in Fig. 11 and networks

3 See the Online Encyclopedia of Integer Sequences at http://oeis.org/A003085.
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1 2 3

(a)

1 2 3

(b)

1 2 3

(c)

1 2 3

(d)

Fig. 11 Inhomogeneous three-cell networks with four arrows

Fig. 12 Inhomogeneous
three-cell networks with five and
six arrows

1 2 3

(a)

1 2 3

(b)

a and b in Fig. 12. These four are distinguished by how many additional arrows each
has. �	

Remark 19 Tyson and Novak (2010) classify three-node networks with two types
of coupling: excitatory and inhibitory. In this paper we will also allow neutral cou-
pling, which complicates the classification, but we only consider networks that support
infinitesimal homeostasis, which simplifies the classification.

7 Appendix: Proofs of results in Sect. 4

Lemma 20 Suppose x ′
o(I) = ϕ(I)y′

o(I) where ϕ(I0) �= 0. Then for all m ≥ 1

x ′
o(I0) = · · · = x [m]

o (I0) = 0 if and only if y′
o(I0) = · · · = y[m]

o (I0) = 0.

Proof The proof is straightforward by induction. �	
Proof of Proposition 13 Recall from (3.2) that

x ′
o = 1

det(J )
det

⎡
⎣

fι,xι fι,xρ − fι,I
fρ,xι fρ,xρ 0
fo,xι fo,xρ 0

⎤
⎦ = − fι,I

det(J )
H (7.1)

where the Jacobian J is given by (3.1) and det(J ) �= 0. It follows from Lemma 20 that
the first few derivatives of x ′

o vanish at I0 if and only if the same number of derivatives
of H vanish at I0. Therefore, I0 satisfies the defining conditions of an infinitesimal
chair if and only if x ′

o = x ′′
o = 0 if and only if (4.3) is satisfied; that is, H = H′ = 0.

Therefore, I0 satisfies the nondegeneracy condition of an infinitesimal chair if and
only if x ′′′

o �= 0 if and only if (4.4) is satisfied; that is,H′′ �= 0. �	
Proofs of Theorems 15 and 16 will use the following lemma. Recall that a is a

backward arrow if either the head of a is ι or the tail of a is o.

Lemma 21 Given a three-node input–output network G where each node has nonzero
internal dynamics. Computation of the infinitesimal homeostasis point in G is not
affected by deletion of backward arrows from G.
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Proof Let G̃ be the reduced network obtained by removing all backward arrows from
the original network G. It follows that the Jacobian matrix J̃ for the reduced network
is lower triangular with eigenvalues f�,x�

�=0 at the infinitesimal homeostasis point I0,
where � = ι, ρ, o. Hence det( J̃ ) �= 0 at I0.

Next we show the two networks have the same condition for computating infinites-
imal homeostasis. It follows from Lemma 9 that the linearized couplings fι,xρ , fι,xo ,
and fρ,xo associated to backward arrows do not appear in H given by (3.4). The for-
mula (7.1) is therefore valid for both networks with the only difference being between
det(J ) and det( J̃ ), both of which are nonzero at the infinitesimal homeostasis point
I0. It follows that

x ′
o(I) = ϕ(I)x̃ ′

o(I)

where xo, x̃o are the input–output functions of the original network and the associated
reduced network with no backward arrows, and ϕ(I) = det( J̃ )/ det(J ) with ϕ(I0) �=
0. Thus, Lemma 20 implies that removing backward arrows has no effect on computing
the infinitesimal homeostasis point. �	
Proof of Theorem 15 By Proposition 13, an infinitesimal chair point occurs at I0 if
and only if H(I0) = H′(I0) = 0 and H′′(I0) �= 0. The proof therefore proceeds by
showing that

H = H′ = 0; H′′ �= 0 if and only if fo,xι = fo,xιxι = 0; fo,xιxιxι �= 0. (7.2)

Since by assumption there is a neutral coupling, generically linearlized internal
dynamics of nodes in G are nonzero. By Lemma 21, we can assume there is no
backward arrow in the admissible system:

fι(xι, I) = 0
fρ(xι, xρ) = 0
fo(xι, xρ, xo) = 0

(7.3)

Thus

⎡
⎣

fι,xι 0 0
fρ,xι fρ,xρ 0
fo,xι fo,xρ fo,xo

⎤
⎦

⎡
⎣

x ′
ι

x ′
ρ

x ′
o

⎤
⎦ =

⎡
⎣

− fι,I
0
0

⎤
⎦

It follows that x ′
ι = − fι,I/ fι,xι �= 0 and

x ′
ρ = − fρ,xιx

′
ι/ fρ,xρ (7.4)

Since there is only one simple path from ι to o given by ι → o, the other simple
path ι → ρ → o must not be present. It follows that

fo,xρ fρ,xι ≡ 0. (7.5)
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Therefore the definition of H in (3.4) reduces to

H ≡ − fo,xι fρ,xρ .

Since generically fρ,xρ �= 0, by Lemma 20

H = H′ = 0; H′′ �= 0 if and only if fo,xι = f ′
o,xι

= 0; f ′′
o,xι

�= 0.

We therefore verify (7.2) by showing

f ′
o,xι

= 0 if and only if fo,xιxι = 0 (7.6)

and

f ′′
o,xι

�= 0 if and only if fo,xιxιxι �= 0. (7.7)

Direct computation shows that

f ′
o,xι

≡ fo,xιxιx
′
ι + fo,xιxρ x

′
ρ + fo,xιxo x

′
o

≡ fo,xιxιx
′
ι + fo,xιxo x

′
o

= fo,xιxιx
′
ι

(7.8)

where the second identity in (7.8) holds because

fo,xιxρ x
′
ρ = − fo,xιxρ fρ,xι (x

′
ι/ fρ,xρ ) ≡ 0

by (7.4) and (7.5). Since x ′
ι �= 0, (7.6) holds. Differentiating f ′

o,xi in (7.8) with respect
to I leads to

f ′′
o,xι

≡ ( fo,xιxιx
′
ι + fo,xιxo x

′
o)

′
= fo,xιxιxιx

′2
ι

(7.9)

because x ′
o(I0) = x ′′

o (I0) = 0 and fo,xιxιxρ x
′
ρ ≡ 0 ≡ fo,xιxoxρ x

′
ρ by (7.4) and (7.5).

It follows that (7.7) is true. �	
Proof of Theorem 16 This theorem has two cases; we only prove the first as the argu-
ments for the second case are identical.

By Proposition 13, an infinitesimal chair point occurs at I0 if and only ifH(I0) =
H′(I0) = 0 and H′′(I0) �= 0. The proof therefore proceeds by showing that

H = H′ = 0; H′′ �= 0 if and only if fo,xρ = fo,xρ xρ = 0; fo,xρ xρ xρ �= 0.(7.10)

Since the couplings ι → ρ → o exist the coupling ι �→ o does not; that is, fo,xι ≡
0. We also note that generically linearized internal dynamics fι,xι , fρ,xρ , fo,xo are
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nonzero. By Lemma 21, we can assume there is no backward arrow in the admissible
system:

fι(xι, I) = 0
fρ(xι, xρ) = 0
fo(xρ, xo) = 0

(7.11)

Thus
⎡
⎣

fι,xι 0 0
fρ,xι fρ,xρ 0
0 fo,xρ fo,xo

⎤
⎦

⎡
⎣

x ′
ι

x ′
ρ

x ′
o

⎤
⎦ =

⎡
⎣

− fι,I
0
0

⎤
⎦

It follows that x ′
ι = − fι,I/ fι,xι �= 0 and

x ′
ρ = − fρ,xιx

′
ι/ fρ,xρ . (7.12)

Since fo,xι is identically zero

H ≡ fo,xρ fρ,xι . (7.13)

Hence, H = 0 if and only if fo,xρ = 0 or fρ,xι = 0.
In the first case fo,xρ = 0 and fρ,xι �= 0. By Lemma 20

H = H′ = 0; H′′ �= 0 if and only if fo,xρ = f ′
o,xρ

= 0; f ′′
o,xρ

�= 0.

We therefore verify (7.10) by showing

f ′
o,xρ

= 0 if and only if fo,xρ xρ = 0 (7.14)

and

f ′′
o,xρ

�= 0 if and only if fo,xρ xρ xρ �= 0. (7.15)

Direct computation shows

f ′
o,xρ

≡ fo,xρ xιx
′
ι + fo,xρ xρ x

′
ρ + fo,xρ xo x

′
o

≡ fo,xρ xρ x
′
ρ + fo,xρ xo x

′
o

= fo,xρ xρ x
′
ρ

(7.16)

where the second identity holds because fo,xι ≡ 0. By (7.12) x ′
ρ �= 0 and hence (7.14)

holds.
Differentiating f ′

o,xρ
in (7.16) leads to

f ′′
o,xρ

≡ ( fo,xρ xρ x
′
ρ)′ + ( fo,xρ xo x

′
o)

′
= ( fo,xρ xρ x

′
ρ)′

= fo,xρ xρ xρ x
′2
ρ
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because x ′
o = x ′′

o = 0 at I0 and fo,xι ≡ 0. It follows that (7.15) is true. Hence this
case is verified. �	
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