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HOPF BIFURCATION IN THE PRESENCE OF SYMMETRY 

BY MARTIN GOLUBITSKY1»2 AND IAN STEWART2 

In this note we state a generalization of the Hopf bifurcation theorem to 
differential equations with symmetry. We state the results for ordinary differ­
ential equations although they apply, via standard reduction techniques (see 
Marsden and McCracken [1976]), to certain partial differential equations as 
well. Consider the ordinary differential equation 

(1) dz/dt + F{z, A) = 0 {F: R n x R -> R n is C°°), 

where F(0, A) = 0 and F commutes with an (orthogonal) action of a compact 
Lie group T on V = Rn ; that is, F(^x, A) = *)F(x, A) for 7 G I\ Assume dF|0,o 
has pure imaginary eigenvalues. The symmetry can force these eigenvalues to 
have high multiplicity and the standard Hopf theorem does not apply. Despite 
this degeneracy, the symmetry can also force the occurrence of a branch of 
periodic solutions to (1). 

Interactions between Hopf-type bifurcation and symmetry have been stud­
ied previously by several authors. Ruelle [1973] deals mainly with bifurca­
tions of mappings, Schecter [1976] analyzes the continuous case. Rand [1982] 
and Renardy [1982] mainly consider bifurcations to tori from rotating waves. 
Schecter [1976], Bajaj [1982], Van Gils [1984], and Chossat and Iooss [1984] 
all consider the example T = O(2). Our approach differs from these by em­
phasizing the general role of isotropy subgroups in determining the occurrence 
of branches. 

These ideas prove useful in studying Taylor-Couette flow of a fluid between 
coaxial rotating cylinders. See Chossat and Iooss [1984] and Golubitsky and 
Stewart [1984b]. Other potential applications include systems of identical 
coupled chemical oscillators (see Alexander and Auchmuty [1984]). 

For x G V define the isotropy group Ex = {a G T\ax = x}. Let S Ç T and 
define the fixed-point subspace V^ = {y G V\ay = y for all a G £} . Notice 
that F maps V^ to itself. 

In order for dF|o,o to have pure imaginary eigenvalues, the representation 
of r on V must satisfy certain conditions. There are two 'simplest' cases: 

(a) The action of T on V is irreducible but not absolutely irreducible. 
(b) V = W 0 W, where T acts absolutely irreducibly on W and by the 

diagonal action on W © W. 
Henceforth we assume (b) holds. If c/F|o,o has pure imaginary eigenvalues 

then we may assume, without loss of generality, that dF|o,o = (? V)- The 
eigenvalues of <£F|O,A are a(X) ± i</>(A), each of multiplicity dimVT = n/2. 
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We assume the transversality condition <r'(0) ^ 0. By scaling time we may 
assume the eigenvalues are ±i at À = 0. 

To motivate our main result, we note that if E Ç T is an isotropy group 
with dim WE = 1, then there exists a branch of periodic E-invariant solutions 
to (1), of period near 27r, bifurcating at À = 0. Indeed, restrict F to (iy®VT)E, 
which has dimension 2. The eigenvalues of <£F|o,o become simple: apply Hopf. 

Periodicity induces a further temporal S1 symmetry by a shift of phase. 
(Here S1 is the circle group.) Define an action of T x S1 on W 0 W by 
identifying W © W with W ® R C and setting (7,0)w ® z = ^w (g> el6z. Apply 
the Liapunov-Schmidt reduction proof of the Hopf Theorem (Hale [1978], 
Golubitsky and Langford [1981]), introducing a period-scaling parameter r 
as usual. This procedure leads to a reduced bifurcation equation g(x, À, r) = 0, 
where g: ( W ® C ) x R x R — > W ( g ) C commutes with the T x S1 action on 
W ® C. Sattinger [1983] has observed that the Liapunov-Schmidt procedure 
leads to g having T x S1 symmetry. 

Our main result, which is the periodic analogue of an equivariant branching 
lemma of Cicogna [1981], is: 

EQUIVARIANT HOPF THEOREM. Let E Ç r x S1 be an isotropy group 
with dim(W (g) C) E = 2. Then there exists a branch of periodic E-invariant 
solutions to (1), of period near 27r, bifurcating at X = 0. 

The idea of the proof is to analyse the structure of g\(W ® C ) s x R x R 
using symmetry arguments. 

Note. If (7,0) is in the isotropy subgroup of a solution z(t) to (1), then 

z{t) = «fz(t + 0). 

Therefore z has a mixture of spatial (7) and temporal (0) symmetry. 
Chow, Mallet-Paret and Yorke [1978] use the Fuller index to prove the 

existence of a branch of periodic solutions to (1) when 0"'(O) ^ 0. Using our 
methods we can prove the existence of many periodic solutions branches each 
with prescribed symmetries. 

EXAMPLE 1. r = 0(2). Let T act on R2 = W as usual. There are 
two conjugacy classes of isotropy groups E with a 2-dimensional fixed-point 
subspace. One is given by the reflectional symmetry in O(2). The other is 
isomorphic to SO(2) and consists of all (0, —0) G 0(2) x S1. Such a solution 
z(t) satisfies z(t + 6) = R$z(t), where Re is rotation. This is a rotating wave; 
see Auchmuty [1979]. We thus recover the results of Schecter [1976]. Note 
how the symmetry under E identifies the solution as a rotating wave. 

For general T, every isotropy subgroup E of T x S1 is of the form {(ft, 0(ft)) 
I ft G H C T}, where the twist 0: H —> S1 is a homomorphism. Let K = 
ker(0) = E n T. Say that E is spatial if dim{W <g> C)K = 2. The spatial sub­
groups were covered by the simple Hopf theorem above. Nontrivially twisted 
groups E give rise to solutions which combine spatial symmetry K with a 
generalized rotating wave symmetry H/K. 

EXAMPLE 2. r = O(3). By using ideas from representation theory 
(cf. Ihrig and Golubitsky [1984]) we have classified all possible E satisfy­
ing diam(W (8) C) E = 2 when r = O(3) acts on spherical harmonics of order 
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/ for all /. For small I we tabulate those results here: 

I 
1 

2 

3 

H 
0(2),SO(2) 
SO(2) 
0 ( 2 ) , D 2 , D 4 

T 
SO(2) (twice) 
0(2),SO(2) octahedral 

group 0 , D 2 , D 3 

SO(2) (three times) 

(spatial) 
(rotating wave (0, -9)) 
(spatial) 
(Z3-twisted tetrahedral) 
(rotating waves (0, -0) , (0, -20)) 
(spatial) 

(rotating waves (0, -0) , (0, -20), 
(0,-30)) 

Note in particular the Z3-twisted tetrahedral group. Such twistings of T occur 
for / = 2,4,5,6,7,9 precisely. 

By putting (1) into normal form, that is, assuming F commutes with TxS 1 , 
we can describe the orbital stability of the bifurcating periodic solutions in 
specific cases, including r = O(2). We show that for a vector field in normal 
form, stability is determined by the eigenvalues of the reduced mapping g 
(compare Kielhöfer and Lauterbach [1983]). Subcritical solutions are unsta­
ble, but supercritical solutions need not be stable, even for O(2). 

By an extension argument involving hardly any computations we show that 
the case of O(n) acting on R n exactly parallels that for O(2). 

Further results and detailed proofs are in Golubitsky and Stewart [1984 
a]. 
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