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Synopsis
In this paper we show that in O(2) symmetric systems, structurally stable, asymptotically stable,
heteroclinic cycles can be found which connect periodic solutions with steady states and periodic
solutions with periodic solutions. These cycles are found in the third-order truncated normal forms of
specific codimension two steady-state/Hopf and Hopf/Hopf mode interactions.

We find these cycles using group-theoretic techniques; in particular, we look for certain patterns in
the lattice of isotropy subgroups. Once the pattern has been identified, the heteroclinic cycle can be
constructed by decomposing the vector field on fixed-point subspaces into phase/amplitude equations
(it is here that we use the assumption of normal form). The final proof of existence (and stability)
relies on explicit calculations showing that certain eigenvalue restrictions can be satisfied.

1. Introduction

Let Si, . . . , Sk be flow invariant sets for some fixed system of ODEs. A
heteroclinic cycle of the 5,s is a collection of trajectories Xj(t) (j = 1, . . . , k) such
that each xf is asymptotic to Sj+l as t—* +°° and 5, as t —» — °°. (Here we use the
convention Sk+i = Sl.) Typically one does not expect heteroclinic cycles to exist
for general systems.

For symmetric systems however, Field [7] has shown that heteroclinic cycles
between saddle points can be structurally stable. More recently, Guckenheimer
and Holmes [15] have shown that a primary branch of asymptotically stable
heteroclinic cycles can appear in steady-state bifurcation in the presence of
T © Z2 symmetry, where T is the twelve-element group of orientation-preserving
symmetries of the tetrahedron. (In fact, this bifurcation was noted earlier by
Busse and Clever [3] and Busse and Heikes [4] in the specific context of rotating
Rayleigh-Bernard convection. The bifurcation was also noted by May and
Leonard [21] in the population dynamics of three competing species. See also
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Swift [26].) Finally, Field and Richardson [10] have shown the existence of
primary bifurcations to branches of heteroclinic cycles for a number of different
finite symmetry groups. It is worth noting that structurally stable connections in
symmetric systems sometimes have implications for systems of ODEs without
symmetry. Melbourne [22] shows that a variant of Guckenheimer and Holmes'
example implies the existence of heteroclinic type behaviour of a cycle between
three distinct periodic orbits in systems with three parameters.

Symmetric systems have the property that if S is a flow invariant set, then so is
the set y5 for any y in the group of symmetries. We say that S and y5 are
conjugate. When attempting to enumerate the types of dynamic behaviour
possible in symmetric systems, it seems appropriate to identify conjugate
attractors, since these conjugate attractors all have the same (dynamic) prop-
erties. With this in mind we make the following definition.

DEFINITION 1.1. Let Slt . . . , Sk+l be flow invariant sets for some fixed system
of ODEs with symmetry group F where Sk+l is conjugate to Sx. A heteroclinic
cycle of the 5,s is a collection of trajectories Xj(t) (j = 1, . . . , k) where Xj connects
Sj to 5/+1.

Remark 1.2. If the group T is finite, then the heteroclinic cycle will eventually
return to the given Si, not just a conjugate Sx.

In another direction, Jones and Proctor [17, 23] (in the context of the Benard
problem) and Armbruster, Guckenheimer and Holmes [2] have shown the
existence of structurally stable, asymptotically stable, secondary branches of
heteroclinic cycles connecting saddle points in 2:1 resonant steady-state/steady-
state mode interactions with O(2) symmetry. In the latter reference, these
solutions were then used to describe certain phenomena in the Kuramoto-
Sivashinsky equation (with periodic boundary conditions) observed numerically
by Kevrekidis, Nicolaencko and Scovel [18]. Chossat and Armbruster have found
heteroclinic cycles in the corresponding mode interaction with O(3) symmetry [1].

In this paper, we continue the study of heteroclinic cycles in mode interactions
with O(2) symmetry. In Section 3, we show that steady-state/Hopf mode
interactions can produce heteroclinic cycles connecting the primary branches of
2-tori foliated by periodic standing waves and circles of steady states. The
steady-state and periodic solutions of such systems are described in [13]. (See also
[14].) In Section 4, we show that Hopf/Hopf mode interactions with O(2)-
symmetry can produce heteroclinic cycles connecting two branches of rotating
waves and cycles connecting two branches of 2-tori of standing waves. Cycles
connecting these branches of rotating waves and standing waves are also possible.
The basic structure of these Hopf/Hopf mode interactions is discussed in [6].
Further examples of connections between limit cycles may be found in work of
Armbruster [1].

The basic idea in our analysis is that certain structures in the lattice of isotropy
subgroups lead one to suspect the existence of heteroclinic cycles. We discuss
these structures in Section 2, along with a general condition which is sufficient to
prove asymptotic stability for heteroclinic cycles. The actual computations
verifying the existence of heteroclinic cycles in the two mode interactions we
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consider is based on the phase-amplitude decomposition of the centre manifold,
normal form, vector field. The computations for steady-state/Hopf and
Hopf/Hopf mode interactions will be presented in Sections 3 and 4, respectively.

Let

2. Heteroclinic connections and the lattice of isotropy subgroups

§=/(*). (2.1)

be an T-equivariant system of ODEs, where F<=O(«) is a compact Lie group.
Thus

f(yx) = yf(x) (2.2)
for all y € F. The feature of symmetric systems that allows the existence of
structurally stable heteroclinic cycles is the existence of flow invariant subspaces.
These so-called fixed-point subspaces are found as follows. Let 2 c F be a
subgroup;then

Fix (2) = {yeW: ay = y V a e 2 } (2.3)

is flow invariant for (2.1). More precisely, (2.2) implies

/ : Fix ( 2 ) ^ Fix (2). (2.4)

Typically, we apply (2.4) to those 2 which are isotropy subgroups, that is,
subgroups of the form 2y = {o e T: oy = y } for some fixed y e W.

To understand how (2.4) can force the existence of a heteroclinic cycle,
imagine the following situation. There exist two nonzero saddle points A and B
for (2.1) and two subgroups 2 and T such that

A, Be Fix (2) n Fix (T), (2.5a)
dim Fix (2) = 2 = dim Fix (T), (2.5b)

Fix(Z)#Fix(r) . (2.5c)

See Figure 2.1. Imagine that in the plane Fix (2): A is a saddle, B is a sink and

Figure 2.1. Heteroclinic cycle between two equilibria.
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Figure 2.2. Heteroclinic cycle between three equilibria.

the unstable manifold of the saddle A connects to the sink B. Simultaneously, it is
possible that in the plane Fix (T): B is a saddle, A is a sink and the unstable
manifold of B connects B to A. In this way one can construct a heteroclinic cycle
connecting A to B and back to A. This cycle is structurally stable since
equivariant perturbations of / will still have Fix (2) and Fix (T) as invariant
planes and saddle sink connections are structurally stable in U2. This situation is
precisely the one found in the 2:1 resonant steady-state/steady-state O(2) mode
interaction example.

Indeed, one can imagine longer strings of saddles connected through more
complicated configurations of fixed-point subspaces. The Guckenheimer-Holmes
example is based on a connection sequence like that pictured in Figure 2.2.

The proofs of the existence of these heteroclinic cycles in bifurcation problems
proceed along the following lines. Truncate the general / satisfying (2.2) at lowest
nontrivial order (usually third order). Find the cycle in the truncated system and
use structural stability arguments to show that the cycle persists for general /. This
argument seems straightforward enough. There is, however, a simple obstruction
to finding heteroclinic cycles in the truncated system - the truncated system may
be forced by symmetry to be a gradient system, and heteroclinic cycles cannot
occur in gradient systems. In fact, the only symmetry group which admits this
construction of a primary branch of heteroclinic cycles in a generic one-parameter
bifurcation problem in three dimensions is the group T © Z2 considered by
Guckenheimer and Holmes. In two-parameter systems (where mode interactions
are generic possibilities) and in higher dimensional systems, more examples can
be constructed.

We now abstract certain properties of the cycles connecting saddle points
pictured in Figures 2.1 and 2.2:

(i) each saddle sits on a flow invariant line and each such line is the
fixed-point subspace for the isotropy subgroup of that saddle,

(ii) the isotropy subgroups of the invariant lines are all maximal isotropy
subgroups,
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(iii) the invariant plane containing the invariant line is the fixed-point subspace
of a submaximal isotropy subgroup,

where we define inclusion with respect to the lattice of isotropy subgroups. This
lattice consists of conjugacy classes of isotropy subgroups ordered by inclusion as
follows:

2j <Z2 O 2i is contained in some conjugate of Z2. (2.6)

Group theoretically we can identify a certain class of heteroclinic cycles.

DEFINITION 2.1. A homoclinic cycle is a heteroclinic cycle connecting saddle
points whose isotropy subgroups are all conjugate.

The examples given in [2] and [15] are examples of homoclinic cycles.
Next we discuss when a connection between two saddles on invariant lines is

possible.

DEFINITION 2.2. Two flow invariant lines /] and l2 are adjacent inside the
invariant plane P if there exists a wedge region W as in Figure 2.3(a) such that no
invariant line, besides lx and l2, intersects W.

Remark 2.3. In this definition, we allow the possibility that I\ = l2 = l (see
Figure 2.3(b)). In this case W is a half plane.

We address the following question. Suppose we are given two adjacent,
flow-invariant lines /, = Fix (Z,) contained in a flow-invariant plane P = Fix (T)
where Zi, Z2 and T are isotropy subgroups. When do there exist saddle points in
l^ and l2 and a trajectory in P connecting these saddles? Moreover, we pose this
question in the sense of bifurcation theory. Thus we assume that (2.1) depends
explicitly on a parameter A; that is,

§=/(*, A), (2.7)

where /:IR" x R-*R" is T-equivariant. We also assume that (2.7) has a trivial
solution (/(0, A) = 0) and undergoes a steady-state bifurcation at A = 0; that is,

Fix(r) = {0},| (2.8a)
(d/)o.o = 0. J (2.8b)

We begin our discussion by making assumptions which imply the existence of
the desired equilibria. Since dim Fix (Zy) = 1 the equivariant branching lemma
[14] implies that there exists a unique branch of equilibria bifurcating from the

(a)

W

(b)
Figure 2.3. Wedge region of Definition 2.2.
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(a) (b)
Figure 2.4. Dynamics in a wedge region.

origin in /, as long as

3_

3A
(2.9)

where Vj e lj is nonzero. We assume > rather than ¥= in (2.9) to ensure that the
trivial solution is subcritically asymptotically stable in /,-. Next we assume that

W(Zy)/Zy s Z2) (2.10)

where N(E) is the normaliser of 2 in F. Assumption (2.10) implies that the
bifurcations in /, are pitchfork bifurcations. Finally, we assume

(d3f)o,o(Vj,Vj,Vj)<0, (2.11)

so that the pitchfork bifurcations are supercritical. Thus, in P, the dynamics for
A>0 are as pictured in Figure 2.4(a).

To ensure that there is a trajectory connecting B to A, we need to assume

and

there are no equilibria inside W (that is, no
equilibria with submaximal isotropy A in W)

orbits of / ( • , A) remain bounded inside W.

(2.12a)

(2.12b)

Then the Poincare-Bendixson theorem implies dynamics like that pictured in
Figure 2.4(b). (Of course, the connecting trajectory could go from A to B.)

In fact, when the action of F is absolutely irreducible and there do not exist
quadratic F-equivariant mappings, conditions (2.12) can be replaced by condi-
tions on coefficients in the Taylor expansion of f(x, 0). Field [8] shows that
conditions on d3f consistent with (2.11) imply the existence of an attracting
flow-invariant (n - l)-sphere in U"; thus, trajectories starting near 0 in W remain
bounded in W. A more complicated argument of Field and Richardson [9] shows
that the (generic) existence of submaximal solutions in P depends on equations
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involving the nonidentity generators of the module of F-equivariant mappings.
This implies, in particular, that generically the existence of equilibria in W is
determined by inequalities in a finite number of Taylor coefficients which are
independent of those needed to ensure the existence of bounded trajectories.

At this stage, we assume

conditions on d3f ensuring the existence of a flow- , . „.
invariant (n - l)-sphere. ^

PROPOSITION 2.4. Let lx and l2 be adjacent flow-invariant lines in a flow-
invariant plane P and let W cP be the wedge between /i and l2. Assume that F
and the system of ODEs (2.7) satisfy (2.8)-(2.11) and (2.13). Finally assume that

Zi and 22 are conjugate isotropy subgroups. (2.14)

Then {for an open set of coefficients in a truncated Taylor expansion of f) either
there exist equilibria of (2.7) inside W (with submaximal isotropy A) or there exist
homoclinic cycles in (2.7) connecting saddles in /i and l2.

Proof. In our discussion above, generically, either the conditions of Field and
Richardson [9] imply the existence of equilibria with submaximal isotropy in W or
(2.12) is satisfied. In the latter case, a trajectory connecting A with B exists.

To complete our proof, we need only show that the equilibria A and B lie on
the same group orbit. By (2.14), there exists y e F such that yB = A or yB - -A.
Assumption (2.10), however, implies that d e N(Zl)~1,1 satisfies 6A = —A.
Thus, in the second case 6yB = A. So A and B are on the same group orbit and
the homoclinic cycle between saddles exists. •

Remark 2.5. In the example given in [15], both homoclinic cycles and
submaximal branches may exist, depending on the coefficients of /at third order.
This is consistent with Proposition 2.4.

Proposition 2.4 can be extended to heteroclinic cycles in conceptually a
straightforward manner. Suppose that llr . . . ,lk+x are flow invariant lines with
isotropy 21 ? . . . ,?.k+1 and suppose that Z*+1 is conjugate to Sj. Suppose that /,
and li+l are adjacent lines in a flow invariant plane Pj = Fix (7J) and that there do
not exist equilibria in Pt with submaximal isotropy 7J. Finally suppose (2.8)-(2.10)
and (2.13) are valid. Then there exist trajectories connecting /, and l2, l2 and
/3, . . . , 4 and lk+l. Of course one must show that these connections can be made
in the correct directions /t to l2, etc., to prove the existence of the heteroclinic
cycle.

In subsequent sections, we show how such heteroclinic cycles can be con-
structed explicitly in the normal forms of steady-state/Hopf and Hopf/Hopf mode
interactions with 0(2) symmetry. Some of the details will differ from our
description of heteroclinic cycles given here, since we construct connections
between steady-state and periodic solutions. Nevertheless, the essence of the
argument remains the same: should there exist a part of the lattice of isotropy
subgroups, as in Figure 2.5, then the possibility for a heteroclinic cycle exists. The
proof of the existence of such a cycle requires explicit control over the equilibria
in Fix (Z;) and Fix (7J) and the boundedness of orbits.
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Tl T2 \ - \ \
Figure 2.5. Structure within the isotropy lattice suggesting possibility of a structurally stable
heteroclinic cycle.

One technical difficulty that we find when considering mode interactions is that
the action of F will be reducible; hence Field's results on boundedness of
trajectories will not apply. Fortunately, we do not need the full generality of the
conclusion to Field's theorem to assert the existence of bounded orbits. In
Proposition 2.6 below, we derive sufficient conditions for showing that the flow in
certain two-dimensional fixed point subspaces (of the type occurring in the
examples of later sections) remains bounded. As in [8], these conditions depend
only on terms to degree three in the Taylor expansion of /.

PROPOSITION 2.6. Consider the system of ODE

dx , .

dy ( Z 1 5 )

where ax, a2>0 and bt, b2<0. Then all trajectories starting within a circle of
radius O(VA) stay bounded near the origin if:

^ > 2 ( 2 1 6 )
bxa2

Remarks 2.7. Equation (2.15) has other noteworthy properties:
(a) If the equilibria on the axes are a pair of saddles and a pair of sinks, then

there are no equilibria off the axes.
(b) If a, = a2, bx - b2, Ci = c2, there are invariant lines x = ±y, each with two

equilibria corresponding to maximal isotropy subgroups. In this case, generically,
there are no submaximal equilibria in this plane. Moreover, if all four maximal
branches of equilibria bifurcate supercritically, then condition (2.16) is automati-
cally satisfied.

Proof. Rescale (2.15) so that b^ = - a , and b2 — —a2 and consider the Liapunov
function N = (x2/a1 +y2/a2)/2. To see that N is a Liapunov function, calculate
dN/dt = k(x2 + y2) - {x2 + y2)2 + (2 - C)x2y2. If 2 - C < 0, then dN/dt < 0 when
k<x2 + y2, as desired. If 2 - C>0 , then we use the identity x2y2^ (x2 + y2)2/4
to show that dN/dt^(x2 + y2){X. - (2 + C)(jc2 + y2)/4}. Thus dN/dt <0 when
A < (2 + C)(x2 + y2)/4, which proves the proposition upon assuming (2.16). •

We remark that it is possible for heteroclinic cycles such as those pictured in
Figures 2.1 and 2.2 to be asymptotically stable. This point will be addressed
below in Theorem 2.10, but only after we have discussed more general
heteroclinic cycles.
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2.1. Heteroclinic cycles involving periodic solutions

In this section, we concentrate on homoclinic cycles and heteroclinic cycles
connecting equilibria lying in invariant planes. Now reconsider Figure 2.5, but
suppose that the fixed-point subspaces of the depicted isotropy subgroups are of
arbitrary dimension. It is still the case that if there is an attractor 5, in each
Fix (2,-) which is attracting in Fix {Ti_l), but repelling in the transverse directions
to Fix (2,) in Fix (7;), then there is the possibility of a heteroclinic cycle
connecting the sets 5,.

The general possibility of the existence of such a cycle is analogous to the cases
already considered in this section. However, the problem of actually finding
sufficient conditions for the cycle to exist is more difficult. Our method for
establishing heteroclinic connections relied on the two-dimensional Poincare-
Bendixson theory and it is this theory that we can extend, in certain instances, to
higher dimensions.

As we have seen in dimension two, symmetry permits the existence of
structurally stable heteroclinic cycles by forcing certain subspaces to be invariant
under the flow of an equivariant vector field. In higher-dimensional subspaces,
symmetry can also simplify the flow on a flow-invariant subspace; it is this
observation that we use in the examples of Sections 3 and 4. (We note that it may
be the case that an equivariant version of the Poincare-Bendixson theory [20]
could be applied to give general results; in our examples, however, a more
straightforward approach applies.) In these examples, we find that there is, in
each three- or four-dimensional Fix (7)) which we consider, a two-dimensional
subspace which intersects every group orbit in Fix (7J). Moreover, the vector field
restricted to Fix (7)) decouples into phase-amplitude equations, and the dynamics
in Fix (7J) are determined by the dynamics of the amplitude equations on the
two-dimensional cross-section. The flow-invariant sets 5, in our examples are
either periodic solutions or (group orbits of) equilibria. These both reduce to
isolated equilibria of the (two-dimensional) amplitude equations and the methods
of this section are then applicable.

The theorem on asymptotic stability rests on information about the flow in a
neighbourhood of each flow-invariant set Sh whereas the phase-amplitude
reductions used in this paper only hold in a proper subspace of this neighbour-
hood. However, as we now describe, we have recourse to a more general
decomposition of the vector field, analogous to, although less explicit than, the
decoupling into phase-amplitude equations. This decomposition holds in a full
neighbourhood of 5,.

Krupa [19] shows that if 5 is a group orbit, then in a neighbourhood of 5, the
vector field / can be decomposed as f=fiw+fT> where both fT and fN are
equivariant, fT is tangential to group orbits, and fN is transverse to group orbits.
Moreover, the dynamics of / may be understood as the dynamics of fN coupled
with drift along group orbits. In particular, if the group orbit 5 is invariant under
the flow of /, then it corresponds to an equilibrium of fN and the (orbital)
asymptotic stability of S is given by the asymptotic stability of this equilibrium.

DEFINITION 2.8. The flow-invariant set 5 is a relative equilibrium if 5 is a group
orbit under the action of T. The isotropy subgroup 2 of 5 consists of all group
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elements in T which fix S pointwise. We call 5 hyperbolic if fN | {normal fibres}
has hyperbolic zeros at points in 5.

Remarks 2.9. (a) If S has isotropy 2, then by definition 5 c Fix (2).
(b) Our examples of relative equilibria in Sections 3 and 4 involve periodic

solutions obtained through (generalised) Hopf bifurcation. In Birkhoff normal
form, these solutions lie on group orbits given by the phase shift S1 introduced in
the normal form, and it is this normal form that we study.

THEOREM 2.10. Suppose that there exists a structurally stable heteroclinic cycle
connecting hyperbolic relative equilibria 5, and that the connecting trajectories lie in
fixed-point subspaces Pj. For Xj e 5,, suppose further that:

(a) (dfN)x has precisely three eigenvalues corresponding to directions in
/>•_, + Pj, and

(b) these eigenvalues have real parts ay < bj < 0 and Cj > 0.
Suppose that the eigenspace of (dfN)x corresponding to c; (possibly multiple due
to symmetry) is contained in the stable manifold of SJ+l. Let fi, denote the
maximum of the real parts of the remaining eigenvalues of {dfN)x which are not
forced by the group action to equal c,-. / / the conditions

(c) fij < 0 for each j , and
(d) Itf=i min (-bj, cj - n,) > Uf=l Cj,

hold, then the heteroclinic cycle is generically asymptotically stable.

A proof of this theorem including a discussion of genericity is outlined in the
Appendix (Section 5). We note that this theorem includes the intuitively plausible
case when, at each node 5;, the contracting eigenvalues in Pj_l (a, and bj) are
stronger than the expanding eigenvalue in Pj (c;), and that the remaining
eigenvalues are contracting.

The hypotheses of this theorem are sufficient but not necessary. We have striven
for a generality that includes the variety of examples considered in this paper and
in the references cited in this paper. However, for many of the examples in these
references, it is known that asymptotic stability does not depend on the value of
the contracting eigenvalue in P;_! n P}. It may also be possible that condition (c)
can be weakened.

3. O(2) steady-state/Hopf mode interactions

In two-parameter families of vector fields, one may expect to find points where
a steady state loses stability by having eigenvalues of the linearised equation
simultaneously at 0 and ±coi. In systems with symmetry, this so-called
codimension two point is further complicated by the fact that these eigenvalues
may each be multiple. In this section, we show the existence of heteroclinic cycles
in the unfolding of certain codimension two singularities in the presence of O(2)
symmetry. Unlike our discussion in the previous section, these cycles will connect
equilibria with periodic solutions. Through the use of phase-amplitude equations,
our analysis, however, will follow the discussion in Section 1. We assume that the
reader is familiar with the discussion of such singularities given in [14, XX,
Section 2] and begin by briefly reviewing the necessary background material.
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We assume that the system of ODEs

^ = F(x,k,n), xeMN (3.1)
at

is O(2)-equivariant and that x = 0 is a 'trivial' equilibrium. We also assume that
the Jacobian (dxF)000 has eigenvalues 0, ±mi each of which is double (due to the
O(2)-symmetry).

Under these assumptions on (3.1), we may perform a centre manifold
reduction, arriving at a system of ODEs

jt=g{z,k,ii), zeC3, (3.2)

where g(0, X, fx) = 0 and (dzg)000 has double eigenvalues at 0 and ±a>i. One can
always choose coordinates z = (z0, zlt z2) such that the O(2)-action has the form

<t>. (z0, zu z2) = (eki*z0, eli%, <r"*z2) cj> e SO(2), (3.3a)
K . (z0, zu z2) = (z0, z2, zi), (3.3b)

where k and / are positive, coprime integers. Note that the z0-coordinate
corresponds to the eigenvectors associated with the zero eigenvalue and leads to
steady-state solutions, while (zlf z2) corresponds to the ±a>i eigenvalues and leads
to periodic solutions. Although our investigation could, in principle, be carried
out for all k and /, this would be a somewhat tedious exercise. Thus we study here
only the case k = I = 1, which occurs for instance in the Taylor-Couette system
[11,13].

Next we assume that (3.2) is transformed into Poincare-Birkhoff normal form,
arriving at the system

^ = / ( Z , A , M ) + . . - , (3.4)

where/is the normal form of g. As shown in [12], 'normal form' in this instance
may be formulated as: / is also SO(2)-equivariant where the (phase shift) SO(2)
acts by

0.(zo,z1,z2) = (zo,e'ez1,e'ez2). (3.5)

(We remark that the symmetry group of the Taylor-Couette system is actually
O(2) X SO(2), and thus the centre manifold vector field g is automatically in
normal form as in (3.4).)

Our demonstration of the existence of heteroclinic cycles will be for the normal
form system

jt=f(z,k,n), zeC3, (3.6)

where / is O(2) x SO(2)-equivariant. The equivariance is generated by

(<P, d). (z0> zu z2) = (e'*zo, e'(8+*>zi, e'(8-*>z2), (3.7a)

K . (z0) zlt z2) = (z0, z2, z^. (3.7b)
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Now the general O(2) x SO(2)-equivariant mapping has the form

f(z, A, ft) = (c1 + idc2 0
. 0 .

P1

+ (

"o"

2_

c3 + idcA)

+ P26

202iZ2

0
0

0

Zl

0

•^0*^2 + P<6
0

where 6 = |z2|2 - |z,|2 and c>: e U, P> e C are functions of

(3.8)

(3.9)

and the parameters A, //. Here A = z^z2. Note that the eigenvalue structure of F
leads to:

c\0) = 0, (3.10a)
P1(0) = (oi. (3.10b)

Finding heteroclinic cycles in (3.6), even when using the explicit description of/
in (3.8), is not easy. However, our task is made easier by help from the lattice of
isotropy subgroups. This lattice is given in Figure 3.1. Observe that this lattice
suggests a possible heteroclinic cycle connecting (steady states with) isotropy
Z2(*:) X SO(2) to (periodic solutions with) isotropy Z2(JC) © Z| with a connecting
trajectory going one way through isotropy Z2(*r), and the other way through
isotropy Z2(K: . (JI, n)). The various subgroups are defined as follows:

Z2(«r) = {1, *:}, (3.11a)

(3.11b)

(3.11c)
S={1,

Z2(K . {n, n)) = {1, K . (n, n)},
SO(2) = {(<£, -<t>):<pe SO(2)}.

In Table 3.1, we list the four relevant isotropy subgroups, their fixed-point
subspaces and the restriction of equation (3.6) to each of these subspaces. The
restricted equations can be further simplified by observing that on the fixed-point

O(2) x SO(2)

/ 1
Z2(JC) x SO(2) Z2(JT) 0 Zf §0(2)

IX i '
Z2(JC) Z2(ic.(«,

\ t
{1}

Figure 3.1. Lattice of isotropy subgroups of O(2) x SO(2) acting on C3.
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TABLE 3.1
Restricted equations on Fix (2)

Isotropy subgroup

Z2(K) x SO(2)

Z2(K)@Z2

Z2(K)

2(K . (n, n))

Fixed-point

(x,0.

(0, zu

(x, zu

W>z,,

subspace

0)

Z\)

Restricted equations

dx
d~t~

dt

dy

dt

dz,
dt

dx j

~dt~CX

dzx ,

A ~ Z l

= ( c l + c 3 | Z l | 2 ) A r

1 3 2

= (P + P X )Zj

1 3 2s

" ^ C ~ C ' 2 l ' ' y

1 3 2

- (P - P y )zi

subspaces the complex parts of these equations decouple into amplitude/phase
equations. Specifically, if we write zx = re'* then the equations in the amplitude
variables are those given in Table 3.2. There

p1 = RePl and p3 = Re P3. (3.12)

Note that zeros (x, r) of the amplitude equations correspond to steady states of
(3.6) if r = 0, and periodic solutions of (3.6) if r =£ 0.

The equations in Table 3.2 are now in the form discussed in Section 2. The
'effective' dimensions of the fixed-point subspaces of Z2(K) X SO(2) and Z2(K) ®
Z\ are one and the 'effective' dimensions of the fixed-point subspaces of Z2(K)
and Z2(K • (n, JI)) are two. Observe that the flow-invariant lines (x, 0) and (0, r)
are adjacent in Fix (Z2(JC)) while (y, 0) and (0, r) are adjacent in
Fix (Z2(K . (jt, n))). Also note that (x, 0, 0) and (iy, 0, 0) are conjugate fixed-
point subspaces in C3.

Amplitude

Isotropy subgroup

Z2(if) x SO(2)

Z2(,)©Z5

Z2(K)

TABLE 3.2
equations on Fix (2)

Amplitude equations

^ = c'(x2, 0, 0, 0,0, A, n)x

^ = p'(0, 2r2, 0, 0, 0, A, fi)r
at

T = (P' -p' y )r
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To demonstrate the existence of heteroclinic cycles, we need to make certain
hypotheses on the function c \ c3, p1 and p3. Our strategy is as follows. We set
the second parameter \i to zero; then as A is varied through zero, a double
bifurcation occurs. We shall find conditions which guarantee the existence of
structurally stable heteroclinic cycles when A > 0 (analogous conditions hold when
A < 0). Structural stability will then guarantee the existence of heteroclinic cycles
in an open region of the (A, \i) plane abutting on the codimension two point
(0,0). We make no effort here to determine how large this region of existence is
as (A, fi) approaches the origin. The results in [22] suggest, however, that this
region will be a large wedge rather than a thin cusp near the origin.

To state our theorem, we define:

(3.13a)

(3.13b)

83 = (P\(2c1
N + c3) - 2c\px

N)lpl (3.13c)

«54 = {p\{2cl
N- c3) - 2c\pl

N)lpi, (3.13d)

5 =
c3)

x x • -, i i — • (3-13f)

THEOREM 3.1. Fix ju = 0. There exists a structurally stable branch of heteroclinic
cycles in (3.6) for small A>0 connecting an equilibrium in Fix (Z2(K) X SO(2))
VWV/I a periodic solution in Fix (Z2(K) © Z2) through Fix (Z2(ie)) and
Fix(Z2(ir.(w,w)))i/:

ci(0)>0, cp(0) <0, (3.14a)

p!(0)>0, pU0)<0 , (3.14b)

sgn (60 = sgn (<54) = -sgn (<52) = -sgn (83), (3.14c)

6 5 > - 2 , (3.14d)

<56>-2. (3.14e)

Note 3.2. In order to have a heteroclinic cycle, conditions (3.14a-c) must be
satisfied.

Proof. The normaliser condition (2.10) is satisfied for the maximal isotropy
subgroup, as indicated by the fact that the primary bifurcations are of pitchfork
type. To ensure that these primary bifurcations are supercritical, and that the
dynamics in the two planes (when A>0) are like those in Figure 2.4(a), we
assume (3.14a,b). These assumptions are just (2.9) and (2.11) interpreted for this
example.

We need to establish three points about the amplitude equations in Fix (Z2(K))

and Fix (Z2(JC . (ft, Jt)))'-
(a) the equilibrium in Fix (Z2(JC) x SO(2)) is a saddle (respectively sink) in

Fix (Z2(K)) and a sink (respectively saddle) in Fix (Z2(K . (n, n))) while the



Heterodinic cycles involving periodic solutions 329

TABLE 3.3
Other eigenvalues for amplitude equations in fixed-point planes

Eigenvalue in
Equilibrium in Fix (Z2(x:)) Fix (Z2(JC . {n, n)))

Fix (Z2(*r) x SO(2)) d^2 d2x
z

Fix (Z2(*r) 0 Z2) 63r2 6tr
2

equilibrium in Fix (Z2(JC) © Z2) is a sink (respectively saddle) in Fix (Z2(ic)) and a
saddle (respectively sink) in Fix (Z2(K . (n, n)))\

(b) there are no other equilibria in Fix (Z2(JC)) and Fix (Z2(K . (n, JZ)));

(c) solutions starting near the origin in the fixed-point planes remain bounded.
Firstly, we consider whether the equilibria in Fix (Z2(*r) X SO(2)) and the

periodic solution in Fix (Z2(K) ® Z2) (represented as equilibria in the amplitude
coordinate r) are saddles or sinks in the two fixed-point planes Fix (Z2(K)) and
FIX(Z2(K. (n> Jt)))- Assumptions (3.14a,b) imply that the eigenvalues of df at
these equilibria corresponding to eigenvectors in the (corresponding) fixed point
subspaces of maximal isotropy are negative. Symmetry forces the eigenvectors
corresponding to the other eigenvalues of df to be perpendicular to the maximal
isotropy subspaces. Thus, we can compute the leading term of the expansion of
this eigenvalue and the sign of this term determines whether the equilibrium is a
saddle or a sink. These leading terms are recorded in Table 3.3. From Table 3.3
we see that point (a) holds when (3.14c) is assumed.

Point (b) follows from Remark 2.7 when point (a) is satisfied. To establish
point (c), we must show that trajectories of (3.6) with initial point near the origin
in Fix (Z2(JC)) and Fix (Z2(K . (JV, Jt))) remain bounded. Applying Proposition 2.6
to the amplitude equations (3.15) gives a sufficient condition for proving
boundedness in Fix (Z2(K)).

[cl
p(0)x2 + (c3(0) + 2cU0))r2 + c\(0)k]x = 0, (3.15a)

[(/>P(0) +P3(0))X2 + 2pl
N{0)r2 + p\{Q)X\r = 0. (3.15b)

This condition yields (3.14d). A similar calculation using the amplitude equations
in Fix(Z2(*. {n, re))) yields (3.14e).

These arguments complete the proof of existence of a branch of structurally
stable heteroclinic cycles when A > 0 in the normal form equations (3.6) truncated
at third order. The structural stability of these cycles allows us to conclude that
the existence of higher-order terms in the normal form equations does not alter
the conclusion, thus proving the theorem. •

Next we determine conditions when the heteroclinic cycles found in Theorem
3.1 are asymptotically stable. Assumptions (a)-(d) of Theorem 2.10 give
sufficient conditions for heteroclinic cycles to be stable. We apply these
assumptions here to determine conditions when the heteroclinic cycles just
constructed are asymptotically stable.

Asymptotic stability will follow from assuming (3.16) and either (3.17a) or
(3.17b), where

p2>0, (3.16)
- 2 4 , -d2} min {-4/?Jv, -d3, 64 + 4p2} (3.17a)
-2cl, - 6 J min {-4pl,, - 6 4 , 63 + 4p2}. (3.17b)
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TABLE 3.4
Eigenvalues at equilibria

At e Fix (Z2(K) X SO(2)) A2 e Fix (Z2(«r) © Zc
2)

6xx
2

d2x
2

+.
+.

0
. . (twice)
. . (twice)

0 (twice)
- 4 p V + . . .

6,r2 + ...
<v2+...

THEOREM 3.3. Assume (3.14), (3.16) and either (3.17a) or (3.17b) are valid.
Then the heteroclinic cycle whose existence is asserted in Theorem 3.1 is generically
asymptotically stable.

Remark 3.4. The hypotheses of Theorem 3.3 are simultaneously valid for a
nonempty open subset of the coefficients of the linear and cubic terms in /(z, A).

Proof. The eigenvalues of the Jacobian of / at 'equilibria' Ax in /, =
Fix (Z2(JC) x SO(2)) and A2 in l2 = Fix (Z2(*r) © Z2) may be computed from
[14, XX, Table 2.9]. The results are presented in Table 3.4. Let P, = Fix (Z2(K))
and P2 = Fix (Z2(K . {n, n))). Except for —4/?2(0), all of the nonzero eigenvalues
of d/are determined by df \ (Pr + P2) and multiplicity (forced by isotropy).

It follows from Table 3.4, (3.14b,c) and (3.16) that Theorem 2.10 (a,b,c) are
valid.

The trajectories connecting A1 to A2 can be made in either forward (6l > 0) or
backward (6j<0) time in Fix(Z2(jc)). (Assumptions (3.14) imply that this
connection is made in the opposite direction in Fix(Z2(ic. {n, ^r))). When 6, >0,
the contracting eigenvalues at Ax are d2 and 2cl

p and the expanding eigenvalue is
dx. Similarly at A2, the contracting eigenvalues are <53 and 4p^ and the expanding
eigenvalue is 64. The fact that Theorem 2.10(d) is valid follows from (3.17a).
Similarly, if S^O, then the roles of dx and d2 and the roles of d3 and <54 are
reversed, yielding conditions (3.17b). D

4. O(2) Hopf/Hopf mode interaction

In this section, we discuss the existence of heteroclinic cycles connecting
periodic solutions in two-parameter families of vector fields, whose linearisation
about a trivial steady state has eigenvalues simultaneously at ±icol and ±ico2. As
in the previous section, we study this interaction using 'amplitude equations'
associated with Birkhoff normal form on a centre manifold.

More precisely, we again consider (3.1), the O(2)-equivariant system of ODEs
in U.N, for which x = 0 is a 'trivial' equilibrium. We now assume, however, that
(dxF)000 has eigenvalues ±i<aY, ±ia)2, where cox/(o2 is irrational. Due to the
O(2) symmetry, we expect these eigenvalues to be either simple or double, and,
to avoid trivial situations, we assume that ±ico2 are each double eigenvalues.
Thus, we discuss two cases: iico, are simple eigenvalues, and ±ia>, are double
eigenvalues. We show that, in each case, there are configurations in the isotropy
subgroup lattice which indicate the possible existence of heteroclinic cycles. In the
first case, however, there are restrictions on the eigenvalues, forced by symmetry,
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which prohibit the existence of cycles. In the second case, we isolate three
configurations in the lattice which suggest heteroclinic cycles, and demonstrate
that each of these connections actually exists and may be asymptotically stable.
Our results rely heavily on the discussion of the codimension two mode
interactions given in [6]. We freely reference results in that paper.

A centre manifold reduction transforms (3.1) to an equation

ft = g(z,X,n), zeC", (4.1)

where n = 3 in the first case, and n = 4 in the second. We refer to these mode
interations as the six- and eight-dimensional interactions, respectively. Next we
transform (4.1) to Birkhoff normal form, obtaining

^ = / ( z , A,/*) + . . . , (4.2)

where / commutes with O(2) x T2, the 2-torus of symmetries of normal form
coming from the two rationally independent frequencies (ox and co2. Finally, as in
Section 3, we study only the dynamics of the normal form equation

jt=f(z,k,n), z = (zo,zx,z2)eC3 (4.3)

by ignoring the higher-order terms in (4.2).
This section is divided into two main subsections: subsection 4.1 examines

possible heteroclinic cycles in the six-dimensional Hopf bifurcation, while
subsection 4.2 deals with the eight-dimensional case.

4.1. The six-dimensional interaction

In the six-dimensional case, the O(2) x T2 symmetry allows us to rewrite (4.3)
in phase amplitude equations. Set zy = r; exp (idj). Then the amplitude equations
have the form

~^ = Poro> (4-4a)

^={Pl + 6pJru (4.4b)

^=(P,-Sp2)r2, (4.4c)

where the pj are functions of p = r\, N = r2 + r\, A = 82 and where 8 = r\ - r\.
The amplitude equations (4.4) retain the symmetries Z2 x D4 from O(2) x T2

where Z2 = {1, Fo}, D4 is generated by the reflections F, Flt F2 and

F0(.r0, ru r2) = ( - r 0 , rx, r2), (4.5a)

^ifo. ru r2) = (r0, -rx, - r 2 ) , (4.5b)
F2(r0, rx, r2) = (r0, ru -r2), (4.5c)

F(r0, rx, r2) = (r0, r2, rx). (4.5d)
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Z2xD4

x {F} D4 Z2 x {F2}

{F} Z2 {F2}

t
{I}'

Figure 4.1. Lattice of isotropy subgroups in the six-dimensional case.

Zeros of (4.4) correspond to periodic solutions and invariant tori of (4.3). A
heteroclinic cycle connecting equilibria in (4.4) corresponds to a heteroclinic cycle
connecting periodic solutions (or tori) in (4.3).

The lattice of isotropy subgroups of Z2 x DA is given in Figure 4.1. Note
that, in principle, a heteroclinic connection from Fix (Z2 x {F}) to Fix (Z2 x {F2})
(through Fix(Z2)) to Fix(D4) (through Fix ({F2})) to F ix (Z 2 x{F}) (through
Fix ({F})) is possible. To have such a cycle, the fixed point in Fix (D4) must be a
saddle in one of the planes Fix ({F}) and Fix ({F2}) and a sink in the other.
Symmetry, however, forces the equilibrium in Fix (D4) to be of the same type in
both planes.

Thus we have an example where the lattice suggests a possible heteroclinic
cycle, but fine structure of the symmetries precludes its existence.

4.2. The eight-dimensional interaction

We now assume that both ±iot)1 and ±i<o2 are double eigenvalues. We can
choose coordinates z = (zly z2, z3, z4) on C4 so that the O(2) action is generated
by:

4>.z = {ett+zx, e-'ilpz2, emi<pz3, e" m '*2 4 ) , (4.6a)
K . z = (z2, Zi, z4, z3). (4.6b)

Factoring out by the kernel of the representation, we may assume that / and m
are coprime and that l^m. In addition, the normal form equation

jt=f{z,X,»), zeC4 (4.7)

commutes with the action of T2 defined by (Vi, i/>2) • z = (C '^ 'ZL e'Vllz2»
el^z3, e'V2z4).

Due to symmetry, the vector field / in (4.7) has the form / = ( / i , / 2 ) / 3 ) / 4 )
where

Mz) = P% + R1zT-1zT(z3z^)1, (4.8a)
f2(z)=f1{K.z), (4.8b)
f3(z) = P3z3 + RXz&rz'fVt, (4.8c)
/ 4 ( Z ) = / 3 ( K . Z ) . (4.8d)
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O(2) x T2

V

333

Figure 4.2. Upper part of lattice of isotropy subgroups of O(2) x T2 acting on C4. Isotropy subgroups
(1) and (4) correspond to rotating waves and (2) and (3) to standing waves (of wave numbers / and m
respectively). Isotropy (*) is (10) if m odd and (11) if m even.

The functions P1, P3, R1, R3 are complex-valued functions of pk = \zk\
2(k =

1, . . . , 4), Re a, Im a, where a = (z1z2)
m(z3Z4)'. Moreover, P'(0) = icol and

P3(0) = i(o2.
The top part of the lattice of isotropy subgroups of O(2) x T2 is given in Figure

4.2. The actual subgroups are listed in Table 4.1 using the following notation:

, ipi, ip2) = group generated by (0, Vi, V2) e SO(2) x T2, (4.9a)

ZK(<p, Vi, V2) = group generated by K. {<j>, xpu i/>2), (4.9b)

S(k, I, m) = {(kd, Id, md) e SO(2) x T2: d e S1}. (4.9c)

From the lattice in Figure 4.2, we can isolate three different types of possible
heteroclinic cycles. These are shown in Figure 4.3.

The observation that makes analysis of heteroclinic cycles possible in this case
is: the restriction of the vector field/in (4.8) to any four-dimensional fixed-point
subspace of a (submaximal) isotropy subgroup yields a vector field that decouples
into phase/amplitude equations. Thus the effective dimension of these fixed-point
subspaces is two, and the observations of Section 2 apply.

We show below in subsections 4.2.1-4.2.3 that cycles inspired by Figure 4.3 can
both exist and be asymptotically stable. To do this we must compute the

TABLE 4.1
Isotropy subgroups in eight-dimensional case

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

(11)

Isotropy subgroup

O(2) x T2

5(0, 0, 1) x 5(1, - / , 0)
5(0, 0, 1) x IK x Z(JI/1, n, 0)
5(0, 1, 0) x ZK x l(n/m, 0, jr)
5(0, 1, 0) x 5(1, 0, m)
5(0, 0, 1) x Z(:r//, n, 0)
S(0, 1, 0) x Z(jc/m, 0, n)
5(1, /, m)
5(1, /, -m)
ZK x Z(n, In, mn)
ZK(0, n, 0) x Z(w, In, mn)

(m odd)
ZK(0, 0, n) x Z(n, In, mn)

(I odd, m even)

Fixed-point subspace

{0}
22 = 23 = 24 = 0
2 l = 2 2 , 23 = 24 = 0
Zl = Z2 = 0, Z3 = Z4

2l = 22 = 23 = 0
23 = 24 = 0
21 = 22 = 0
2 l = 2 3 = 0
2, = 2 4 = 0
z l = Z2, 23 = Z4
2a = - 2 2 , Z3 = 24

2l = 2 2 , Z3=-Z4

Dimension

0
2
2
2
2
4
4
4
4
4
4

4
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(a) (1) (4)

IX!
(7) (8)

(c) (1) (2)

Figure 4.3. Isotropy connections indicative of possible heteroclinic cycles: (a) cycle of rotating waves,
(b) cycle of standing waves, and (c) cycle of rotating and standing waves.

eigenvalues of the 8 x 8 matrix df, where / is defined in (4.8), at solutions with
isotropy (l)-(4). This calculation is made easier by using some elementary
representation theory and the complex notation of (4.8). Here we follow [6] (see
also [14]).

The isotypic decomposition of C4 by each of the isotropy subgroups 2 in
(l)-(4) has the form Fix (2) © V2 ® V3 ® V4 where each of the summands is
two-dimensional and 2 acts irreducibly on the Vt. These decompositions are
presented in Table 4.2 when / = m = 1. Otherwise, for the standing waves, the
isotypic components are actually Vu V2, V3® V4. (This has the result that the
eigenvalues of df are the same in V3 as V4.) One can check, moreover, that on
each of these two-dimensional isotypic components, either (O(2) x T2)/2 forces
one eigenvalue of df to be zero, or the effective action of 2 is by the rotation
group SO(2), which forces the eigenvalues of df to be complex conjugates. In
either case stability is determined by tr (df \ V/).

In complex coordinates df, where / = (fu f2, /3, /t), has the form

TABLE 4.2
Isotypic decompositions if maximal isotropy subgroups (here w e C)

Fix (Z) = Vt ^ V̂  V4

(1) (w, 0, 0, 0)* (0, iv, 0, 0) (0, 0, w, 0) (0, 0, 0, w)
(2) (w, w, 0, 0)* (w, -w, 0, 0) ' (0, 0, w, w) (0, 0, w, -w)
(3) (0, 0, w, w)* (0, 0, w, -w)* (w, w, 0, 0) (w, -w, 0, 0)
(4) (0, 0, 0, w)* (0, 0, w, 0) (w, 0, 0, 0) (0, w, 0, 0)

* Existence of one null vector for df.
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TABLE 4.3
Eigenvalues of df \ Vf at solutions with maximal isotropy. In fact, tr (df | V})/2 is given by the

real part of the entries in this table

Isotropy subgroup V,

(1)

(2)

(3)

(4)

3f2

3z2

^rih+U) -£-&-)

3z3

3/, 3f2

dz2

where W = (wi, w2, w3, w4) e C4. In this form, it is easy to compute df \ Vj for
each of the isotypic components. Since df is a real linear map on the
two-dimensional subspace Vjt df \ Vj has the form w >-» aw + /3w», where a, /S € C.
The trace of this linear mapping is just 2 Re (a). The calculation of tr (df | V̂ )
from (4.10) is now possible; the results are recorded in Table 4.3.

Next we compute the eigenvalues of (df) using the form of/ in (4.8). These
results are recorded in Table 4.4, where p' = Re P' and r1 = Re (/?').

Finally, we expand the entries in Table 4.4 to lowest order in a2. To do this, we
need to know the equations denning the solutions (l)-(4) to lowest order. They

are:

(1) P1 = 0,

(2) pl = 0,

(3) p3 = 0,

(4) p4 = 0,

1
Pk

Pi

(4.11)

We calculate the real part of the eigenvalue of (df) | V, at a solution with isotropy
(j) to be £yfl2 + . . . , where the 4 x 4 matrix (e,y) is given in Table 4.5.

Computation of eigenvalues

Isotropy at z =

(1)
(2)
(3)
(4)

(a, 0, 0, 0)
(a, a, 0, 0)
(0, 0, a, a)
(0, 0, 0, a)

V,

2(p'z,a+p1)
2(p1 + a(p'+p2),,)

P2(p\a+p<) 23

TABLE 4.4
of df at maximal

v2

P2

2(p^ + a(p^-i

%P +«(P3

isotropy in

32) ) p 3

'4) ,1) P'

terms

PL
+ a2V

Pl

of p', r'

^ 1 ' ! Pl

v4

p2

Note: p2(z)= p'(K. z) and p4(z) =p3(*r. z) (similarly for r2, r*). 6^ is the Kronecker delta
function.
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TABLE 4.5
Coefficients giving eigenvalues of (df) | Vj for solutions with isotropy (/) to lowest order

e,4 = 2pP3

£ 2 4 - P p 4 Pp3

~PAPP 1) /PA

, + PP2 + r36ndml) -p\(pp x + pp2)]/pl
x

x

= IPKPI, +PK - r3dn6ml) -pl{Ppx +pP2)]lp\

£43 = [pl(pP3 +PPi ~ rl6n6ml)

£44 = ( P A P « - PIP P 3 ) /PA

4.2.1. Heteroclinic cycles between rotating waves

Define:

( 4 . 1 2 a )

THEOREM 4.1. Fix n =0. T/iere ejciste a structurally stable branch of heteroclinic
cycles in (4.3) /or A>0, connecting rotating waves (1) to rotating waves (4)
r/iroug/i Fix (7) and Fix (8) //:

pi(0)>0, pl(0)>0, (4.13a)

£n<0, £14<0, (4.13b)

sgn (e31) = sgn (e34) = -sgn (e41) = -sgn (£44), (4.13c)

£ 5 > - 2 , £ 6 > - 2 . (4.13d)

Note 4.2. Conditions (4.13a,b,c) must be assumed in order for the heteroclinic
cycle to exist.

Proof. The existence of a heteroclinic cycle connecting (1) and (4) is proved in
a fashion similar to the proof of Theorem 3.1. The basic observation is that when
/ i n (4.8) is restricted to Fix (7) or Fix (8), it decouples into phase-amplitude
equations and periodic solutions (1) and (4) correspond to equilibria of the
two-dimensional system of amplitude equations. These amplitude equations may
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be written in terms of the py and are:

in Fix (7), (4.14a)

in Fix (8). (4.14b)

2, p3, 0, 0, 0, A,

^ = p\p2, 0, p4, 0, 0, 0, A,/i)p4at

^ p(
at

As in Theorem 3.1, we set ju = 0, and note that (4.13a,b) imply that solutions
(1) and (4) occur supercritically in A and are asymptotically stable in Fix (1) and
Fix (4), respectively. We need to establish three points:

(a) solution (4) is a saddle in one of the planes Fix (7) and Fix (8) and a sink in
the other,

(b) there are no other equilibria of the amplitude equations in Fix (7) and
Fix (8), and

(c) solutions starting near the origin in Fix (7) and Fix (8) stay bounded so that
connecting trajectories actually exist.

Using the data in Table 4.6, one may check that point (a) is established if
(4.13c) is assumed. Point (b), the nonexistence of equilibria in (4.14) with
submaximal isotropy, follows directly from Remarks 2.7. Finally, point (c) is
established using Proposition 2.6, as in Theorem 3.1, by assuming (4.13d). •

Similarly, one can derive conditions sufficient to imply asymptotic stability.
THEOREM 4.3. The branch of heteroclinic cycles between rotating waves in (4.3)

found in Theorem 4.1 generically consists of asymptotically stable cycles if (4.15)
and either (4.16a) or (4.16b) is valid where:

£21<0, £24<0, (4.15)
min { -£„ , - £ 4 i , £3i - £21} • mm {-e14, -£44, £34- £24} > £3^34, (4.16a)

m i n { - £ n , - £ 3 1 , £ 4 1 - £ 2 i} . min {-£14, - e 3 4 , £44 - £24} > £41£44- (4.16b)

Proof. The proof proceeds like that of Theorem 3.3.

4.2.2. Heteroclinic cycles between standing waves
Define:

r ^pl(pPl+PP2 + r) pKpU+pl + r)
7 PI(PI+PP2) P\(P3+PI) ' ( }

c ... Pl(PPl+P3
P2-r

3) .
8 " Plip^+Pti

TABLE 4.6
Other eigenvalues for amplitude

equations in fixed-point planes

Fix (7) Fix (8)

(1) £31 £4i
(4) £44 e3 4
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TABLE 4.7
Other eigenvalues for amplitude

equations in fixed-point planes

Fix (9) Fix (10)

(2) £32 E42
(3) £33 £43

THEOREM 4.4. Fix fi = 0 and I = m - 1. There exists a structurally stable branch
of heteroclinic cycles in (4.3) for A>0, connecting standing waves (2) to standing
waves (3) through Fix (9) and Fix (10) 1/:

p!(0)>0, pl(0)>0, (4.18a)
£12 <0, £13<0, (4.18b)

sgn (E32) = sgn (e43) = -sgn (£33) = -sgn (e42), (4.18c)
£ 7 > - 2 , £ 8 > - 2 . (4.18d)

Note 4.5. Conditions (4.18a-c) must be assumed in order for the heteroclinic
cycle to exist. When l^m, £32 = £33 and hence (4.18c) fails; therefore no such
cycle exists.

THEOREM 4.6. The branch of heteroclinic cycles between standing waves in
(4.3) found in Theorem 4.4 generically consists of asymptotically stable cycles if
(4.19) and either (4.20a) or (4.20b) is valid, where:

£22 <0, £23<0, (4.19)

min {-£12, - £ 4 2 , £32 - £22} • min {-£13, - £ 3 3 , £ « - £23} > £32£43> (4.20a)

min {-£1 2, - £ 3 2 , £42 - £22} • min { -£ i 3 , - £ 4 3 , £33 - £23} > £42£33- (4.20b)

Remark 4.7. The hypotheses of Theorems 4.4 and 4.6 can be satisfied
simultaneously only when / = m = 1.

The proofs of Theorems 4.4 and 4.6 are identical in spirit with those of
Theorems 4.1 and 4.3. The calculations needed are those corresponding to Table
4.6 and are given in Table 4.7.

4.2.3. Heteroclinic cycles between rotating and standing waves

Next, we consider the possible heteroclinic cycles inspired by Figure 4.3. In
this case, heteroclinic cycles exist as a primary branch when / = m = 1. (This is an
important special case as it occurs in Hopf/Hopf mode interactions in the
Taylor-Couette system, see [5]. It turns out, however, that the specific cases
considered in that reference do not lead to heteroclinic cycles of this kind.) Such
heteroclinic cycles may exist for other /, m, but we have not pursued their
classification here. In particular, these cycles are never asymptotically stable when
li-m.

THEOREM 4.8. Fix /* = 0. There exists a branch of structurally stable heteroclinic
cycles in (4.3, 4.8) for A > 0, connecting rotating waves (1) to standing waves (2) to
standing waves (3) to rotating waves (4) and back to rotating waves (1) through the
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TABLE 4.8
Other eigenvalues for amplitude equations in fixed-point planes

Fix (5) Fix (9) or Fix (10) Fix (6) Fix (7) or Fix (8)

(1) £2i £3, o r £41

(2) £22 £32 or £4 2

(3) £33 or £43 £2 3

(4) £2 4 £44 or £34

subspaces Fix (5), Fix (9) or Fix (10), Fix (6), and Fix (7) or Fix (8), respectively,
if'-

pi(0)>0, pi(0)>0 (4.21a)

£ n < 0 , £12<0, £13<0, £14<0 (4.21b)

sgn (E23) = sgn (E21) (4.21c)

either sgn (E32) = -sgn (E33) = sgn (E21), e7 > - 2

or sgn (£42) = -sgn (£43) = sgn (£21), £8 > - 2 ,

either sgn (eM) = -sgn (f31) = sgn (£21), £5 > - 2

or sgn (£34) = -sgn (£41) = sgn (E21), e6 > -2.

Proof. Conditions (a), (b) ensure that the trivial solution is stable subcritically
and that the branches of rotating waves and standing waves bifurcate supercriti-
cally. To determine the existence of the heteroclinic cycle, we need to consider
the eigenvalues of the Jacobian in the relevant fixed-point planes. This informa-
tion is listed in Table 4.8.

As usual, we require that the entries in Table 4.8 are alternately positive and
negative in order to get the appropriate saddle-sink connections. This immedi-
ately yields (4.21c). The entries £22 and £24 automatically have the correct sign
since £22 = — 2e21 and £24 = -£23/2.

The situation is complicated by the fact that there are choices of routes
between the rotating waves (1) and (4) and between the standing waves (2) and
(3). For existence of the cycle, at least one route must satisfy the appropriate
eigenvalue conditions. The choices (4.21d) ensure that (2) and (3) are connected
through Fix (9) or Fix (10) with a trajectory going in the correct direction.
Similarly, (4.21e) guarantees a connection between (1) and (4) through Fix (7) or
Fix (8).

Note that conditions ek > — 2 are conditions that guarantee boundedness in
Fix (k + 2). By Remark 2.7, boundedness is automatic in Fix (5) and Fix (6) and
there are no submaximal solutions in any of the relevant fixed point planes. •

Each of the cycles whose existence is guaranteed by Theorem 4.8 can be
asymptotically stable. Conditions sufficient to imply stability are given in the next
theorem.

THEOREM 4.9. Assume (4.21) 50 that heteroclinic cycles in (4.3) exist as
guaranteed by Theorem 4.8. These cycles may be formed in one of four ways
depending on whether (4.21d(i)) or (4.21d(ii)) is valid and whether (4.21e(i)) or
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(4.21e(ii)) is valid. In each case we can have asymptotic stability and this stability
may be determined as follows.

At each node in the cycle there is a radial eigenvalue r, {with eigenvector in
Fix (2,))> a contracting eigenvalue c, and an expanding eigenvalue e, {with
eigenvectors in Fix(7^_1) + Fix (7])), and a transverse eigenvalue f,. Asymptotic
stability generically holds if: r, < 0, c, < 0, e, > 0 {which identifies c, and e,), f, < 0,
and YlUi min {rh ch e, - tt} > Ut=i et.

We now identify these eigenvalues in each of the four cases. First, set r, = eu.
7/(4.21d(i)) and (4.21e(i)) are valid:

ti = £4u h= £42. '3 = £43, and t4- e34,

and either

Ci = £31, c2 = e22, c3 = e33, and c4 = e2 4,

e1 = e21, e2 = £32, e3 = e23, and e4 = e^,

or the c's and <?'s can be interchanged.
7/(4.21d(i)) and (4.21e(ii)) are valid:

t\ = £31) ^2 = £42> '3 = £43) a n Q ^ = £ 4 4 ,

and either

C] = £41, c2 = £22, c3 - £33) and c4 = £24,

^i = £21, e2 = £32, e 3 = £23, and e4 = £34,

or the c's and e's can be interchanged.
7/(4.21d(ii)) and (4.21e(i)) are valid:

h = £41. h =£32. '3 = £33, and f 4 = £ 3 4 ,

and either

Ci = £31, c2 = e22, c3 = £43, and c4 = £24,

ei = £2i, e2 = £42, e3 = £23, and e4 = £44,

or the c's and e's can be interchanged.
7/(4.21d(ii)) and (4.21e(ii)) are valid:

t\ = £31, '2 = £32, h = £33, and U = EM,

and either

C l = e41» C2 = £22» C3 = £43> a n d C4 = £ 2 4 ,

ei = £2i, e2 = e42, e3 = e23, and e4 = £34,

or the c's and e's can be interchanged.

Proof. The proof of each case proceeds as the proofs of the previous stability
results. The results are more tedious to display than they are to prove.
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5. Appendix: Asymptotic stability of heteroclinic cycles

In this section, we obtain sufficient conditions for asymptotic stability of
heteroclinic cycles. Although this result is not the best possible, it is sufficient to
prove Theorem 2.10. A simpler example of a heteroclinic cycle is studied in [22],
and necessary and sufficient conditions for stability are given there. We begin
here by first proving the theorem in the case that F is finite, and then return to
the case where dim F > 0 at the end.

5.1. The case of finite F

We use the notation of Section 2. The heteroclinic cycle consists of (group
orbits of) equilibria Au . . . , Ak lying in the flow invariant lines llt . . . , lk (where
lj = Fix (Zy) for some maximal isotropy subgroup 2;) and (group orbits of)
trajectories Xj(t) joining Aj and Aj+1. For / = 1, . . . , k the lines ljt lj+l are
adjacent in the flow invariant plane Pj (recall that Ak+l = yAx and lk+1 = ylx for
some y e F). For each j , the trajectory Xj(t) is assumed to lie in the invariant
plane Pj.

For definiteness, suppose that Xj(t) is forward asymptotic to Aj+l, for each /'.
Then our assumptions are that Aj is a sink in the plane Py_! and a saddle in Pj.

Let fl;, bj, Cj be the (real) eigenvalues of (df)A. restricted to the three-
dimensional subspace Pj-\ + Pj. We have assumed that only one of these
eigenvalues is positive. So, without loss of generality, assume that a, < bj < 0 < c;.
Suppose that the eigenspace corresponding to the possibly multiple eigenvalue cy

is contained inside the stable manifold of Aj+X. Let ju, be the maximum real part
of the remaining eigenvalues of (df)A that are not forced to be cy by the group
action. In words, Lemma 5.3 below states that the rate of contraction/expansion
in a neighbourhood of the saddle point At is bounded by

as long as /i ;<0. In particular, if —bj>Cj, then the flow is contracting near Aj
(since vt > 1).

The only singular points in a neighbourhood of the heteroclinic cycle are the
equilibria Aj themselves. It follows that the flow from a neighbourhood of A, to a
neighbourhood of Aj+X is nonsingular. It turns out that the contraction rates at
each saddle point can be combined to give:

THEOREM 5.1. The heteroclinic cycle {Al,A2, . . . , Ak, Ak+l} is generically
asymptotically stable, if

fij > 0, for all j , and
k k

[ I min {-bj, c, - fij} > f l Cy
;=i 1 = 1

Remark 5.2. The main idea in the proof is to use Sternberg's theorem to
estimate the contraction or expansion rates near each equilibrium and then to
combine the rates to obtain an overall estimate (this is where the products appear
in the statement of Theorem 5.1). The factors in the product come from estimates
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around each equilibrium, and these are described in Lemma 5.3 below. An
overall contraction corresponds to stability of the cycle.

The proof relies on linearising the flow near each equilibrium by a
differentiable change of coordinates. By Sternberg's theorem [24, 25], this can be
done, provided finitely many nonresonance conditions are obeyed by the
eigenvalues at each equilibrium. Hence we are only able to prove the theorem for
generic heteroclinic cycles.

Before proving this theorem, we discuss expression (5.1), with subscript ;'
suppressed, and state Lemma 5.3. Let L = (df)A be the linearisation of / at a
saddle point A. We begin by finding cross-sections 9' and 8° for the inflow and
outflow of trajectories near the saddle, suitable for deriving (5.1). We know that
L commutes with 2, the isotropy of A. We assume that L has three eigenvalues
a, b, c (in the three-dimensional subspace Pj_l + Pj) satisfying a < b < 0 < c, and
let du . . . , ds denote the remaining eigenvalues. Since commutativity of L with 2
may force eigenvalues to be multiple, we make the convention that the dm's
include only the remaining eigenvalues not forced by 2 to be equal to c. In this
way we may choose a basis such that

L =

D

where Ip is the p x p identity matrix and D is an s x s matrix with eigenvalues
du . . . , ds, s = n-p-2.

Let (w, x, y, z) denote the coordinates corresponding to this form of L, where
w corresponds to a, x to b, y to the c's, and z to the <i's. Let ||.y||o = max {|.ym|}
and define the cross-sections

Ql = {(w, x, y, z): \w\ < 1, x = 1, 0 < y m < l , | | z | |< l} ,

Q° = {(w,x,y,z):\w\<l,O<x<l, \\y\\0=l, | | z | | < l } ,

where || || is the norm on IRS constructed in [16, lemma, p. 145].

LEMMA 5.3. The first hit map <&: Q'—»Q° is well-defined and there exists a norm
HI HI on Q° such that, in (n — l)-dimensional spherical coordinates on Q',

\\\<S>(r,8u...,6n_2)\\\^Hr'' + o(r»)

for some constant H.

Proof of Theorem 5.1. A change of coordinates linearises the flow in a
neighbourhood of each equilibrium. Let Xj_i(t) be a heteroclinic trajectory which
is forward asymptotic to At. Then, as f —»• +oo; xj_1(t) is tangential to the
eigenvector corresponding to bjt since that is the weaker eigenvalue in Pj_v

Similarly, as t—* -°°, yxj(t) is tangential to an eigenvector corresponding to c; for
each y e T. It follows from Lemma 5.3 that <!>, is defined in a deleted
neighbourhood of the heteroclinic cycle.

Now define the first hit maps
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These first hit maps are diffeomorphisms, so

Let g be the Poincare map obtained as the composition of the \pj. <I>;,
j = \, .. . ,k and let v = n*=i v,. Then

and Theorem 5.1 is proved. D

Proof of Lemma 5.3. The linear flow is

(w, x, y, z) >-H> (e"'w, eb'x, ec'y, exp (Dt). z).

The first hit map <& sends (H>, /, y, z) into (w ' , x', y', z') where | | . y ' | | o= l -
Hence the 'time of flight' t is given by | |e">' | | 0= 1 or

t = — logHyllo,

which is positive since 0 <ym < 1, and c > 0. Therefore,

*(w,y, z) = (\\y\\^W, \\y\\o>"c, e ^ " *

It follows from the proof of [16, Theorem 1, p. 145] that

where \i = maxRe(dm). Therefore, the first hit map <I>:Q'—>£2() is well-defined,
and moreover

l l l c & K y , 2 ) | | | 2 ^ l ^ l l o ^ \w\2 + | | y | | ( 7 2 f t / r + l l ^ l l o - 2 ^ \\z\\2.

Hence, in spherical coordinates, we obtain the bound

|||*(r, du . . . , 8n_2)l
2^r2™n{i-"k^b":A->i":)h(r, 6),

where h is bounded in 6. The result follows since this minimum is ^v. •

5.2. The case dim T > 0

We now sketch the proof of Theorem 2.10. The main differences here are that
the nodes in the heteroclinic cycle may be periodic, and that the nodes (whether
equilibria or periodic) may lie on continuous group orbits. The solution to both
these problems is the same; we must replace the linear analysis around an
equilibrium in the analysis above with a linear analysis near the whole group orbit
of nodes. We note, however, that in the examples of Sections 3 and 4, we are
analysing normal form vector fields where the periodic solutions actually lie on
group orbits. Such a flow invariant group orbit is called a relative equilibrium.

Krupa [19] shows that if S is a group orbit, then in a neighbourhood of S the
vector field / can be decomposed as

f=fN+fr, (5-2)
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where both fT and fN are equivariant, fT is tangential to group orbits, and fN is
transverse to group orbits. Moreover, the dynamics of/may be understood as the
dynamics of fN coupled with drift along group orbits. In particular, relative
equilibria of / correspond to equilibria of fN and the (orbital) asymptotic stability
of these relative equilibria is given by the asymptotic stability of the equilibria.

It follows from (5.2) that the real parts of the eigenvalues of dfN at 5 are
precisely the real parts of the eigenvalues of df at S which correspond to
eigenvectors not tangential to 5. These are the eigenvalues which dominate the
estimates we need to establish stability in Theorem 2.10.

We end by discussing the term 'genericity' as we apply it to Theorems 3.3, 4.3,
4.6, and 4.9 concerning asymptotic stability. When a system of ODE depends on
parameters, generically the eigenvalues of the Jacobian matrix at equilibria will
be nonconstant and vary continuously. For such systems, except for a measure
zero closed set of parameters, these eigenvalues will satisfy the nonresonance
conditions of Sternberg's theorem as required in the proof of Theorem 5.1.
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