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For each irreducible representation of SO(3) and 0(3) we determine, up to conjugacy, all isotropy subgroups and identify, 
in particular, the maximal isotropy subgroups. Each isotropy subgroup corresponds to a possible planform for the spherical 
B6nard problem. Using an equivariant branching lemma of Cicogna [1] we prove, for each of these representations, the 
existence of solutions corresponding to a number of different planforms, thus extending substantially the work of Busse [2, 3] 
and Sattinger [4]. We also give a useful criterion for showing when solutions obtained by the equivariant branching lemma 
must be unstable. 

1. Introduction 

The study of the steady-states in the buckling of 
a spherical shell of finite thickness and in thermal 
conduction and convection of a fluid confined 
between two concentric spherical shells have one 
important point in common: the partial differen- 
tial equations which model these phenomena are 
invariant under the action of the orthogonal group 
0(3). This invariance implies that the mathemati- 
cal study of the two problems will have much in 
common. It is the purpose of this paper to indi- 
cate, using group theoretic results alone, some of 
the common structure induced on these problems 
by the existence of the symmetry group 0(3). 

See Busse [2] and Knightly and Sather [5] and 
references therein for precise mathematical de- 
scription of the fluids problem and the buckling 
problem, respectively. Technically, the way in 
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which the symmetry group enters each of these 
problems is through what is classically called the 
Liapunov-Schmidt  reduction. The idea behind this 
reduction is to view the system of PDE's as an 
operator 

dp. B × R ~ B ' ,  

where B and B' are (appropriately chosen) Banach 
spaces and the scalar variable ~ is the bifurcation 
parameter. In the buckling problem we assume a 
uniform load applied to the outer shell of strength 
~; in the fluids problem we assume constant tem- 
perature source on the inner shell whose difference 
from the temperature of the outer shell is h. The 
steady state solutions are given mathematically by 
solving the equation 

* ( b , X )  = 0 .  

The invariance of • with respect to 0(3) takes the 
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form 

(/)(31. b, X) = 7" O(b,  7~) "y ~ O(3). (1.1) 

We assume that the only point in B fixed by 0(3) 
is b = 0. This invariance then implies that b = 0 is 
always a solution, called the trivial solution; i.e. 

The trivial solution in the buckling problem is the 
undeformed shell; the trivial solution in the fluids 
problem is the pure conduction solution where the 
fluid remains stationary but heat is conducted 
radially, by thermal diffusion, from the inner 
sphere to the outer sphere. 

The Liapunov-Schmidt method works as fol- 
lows. Let L (~) be the linearization of the (nonlin- 
ear) operator • with ~ held fixed about the trivial 
solution b = 0. Typically, L is a Fredholm opera- 
tor of index zero and this is indeed true for the 
two problems described above. The values ~ where 
d i m k e r L ( ~ )  > 0 are called eigenvalues for ~. Our 
interest is in studying the solution structure of 

= 0 locally near b = 0 and ~ = h0, where ~0 is 
the first eigenvalue of ~. Using the implicit func- 
tion theorem, one shows that the solutions to 

= 0 in B X R are parametized by the zeros of a 
smooth mapping 

g: V x R ~  V, 

where V--kerL(~0) .  Moreover, V is invariant 
under the action of 0(3) and the commutativity of 

with O(3), eq. (1.1), implies that g commutes 
with the representation of 0(3) on V; i.e. 

g ( y . x , h )  = ~/ .g(x ,h) ,  y ~ 0(3) .  (1.2) 

(See Sattinger [4].) 
In order to understand (1.2) one must identify 

which representation of 0(3) actually occurs in V. 
Typically, such actions are irreducible. This im- 
plies that kerL(~o)  is isomorphic to the space of 
spherical harmonics of some order l which we 
denote by V t. Recall that dimV t = 2l + 1 and that 
there are two irreducible actions of 0(3) on V t. 

This point is explained in section 3. The actual 
value of l which occurs depends on a geometric 
parameter called the aspect ratio. The aspect ratio 
p is the ratio of the radius of the inner sphere to 
the radius of the outer sphere. In fact, in each of 
these physical problems, l i m p ~ l / =  oo; thus, each 
of the irreducible representations of 0(3) on 
spherical harmonics appears for some choice of p. 
See Chossat [6] for fluids and Knightly and Sather 
[5] for buckling. For the fluids problem, one is 
typically interested in relatively thick shel ls- the 
inner mantle of the Earth, for example-while for 
the buckling problem one is typically interested in 
thin shells where the aspect ratio is near unity and 
l is quite large. 

There are two questions regarding the physical 
problems which we discuss in this paper. First, for 
each 2, how many distinct solutions to g(x, ~) = 0 
exist. Note that the commutativity condition (1.2) 
implies that g vanishes on orbits of the action of 
0(3). We consider two solutions to be distinct if 
they lie on different orbits. Second, can one make 
any inferences about the form of the correspond- 
ing solutions to (/i = 0? The answers to both of 
these questions involve the understanding of the 
isotropy subgroups of the action of 0(3) on V t. 

Recall that if F is a group acting linearly on a 
vector space V then the isotropy subgroup (or little 
group) of a point x in V is 

Y.x = {v rlvx=x) (1.3) 

consisting of those group elements which fix x. 
The isotropy subgroup may be interpreted as the 
symmetries of the point x. For example, axisym- 
metric steady state solutions to the physical prob- 
lems correspond to solutions x in V t whose isot- 
ropy subgroup "~x contains the circle group SO(2). 

Isotropy subgroups also appear in the discus- 
sion of when two solutions are distinct. In particu- 
lar, two points in the same orbit have conjugate 
isotropy subgroups; that is, 

Thus, two solutions are distinct if their isotropy 
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subgroups are not conjugate. We use this fact to 
enumerate solutions. 

There is one last point in our general discussion. 
Isotropy subgroups are not equally likely to occur 
as solutions to g = 0. To understand this statement 
we need to discuss the lattice of isotropy sub- 
groups. We. say that one conjugacy class of isot- 
ropy subgroups represented by ~x is contained in 
another, represented by ,~y, if some conjugate of 
2~ x is contained in Zy. We denote the containment 
of conjugacy classes by 2~ x < ~y. In this way, we 
can make the set of conjugacy classes for a fixed 
representation of F into a lattice. There is much 
evidence for the following statement- but no proof. 
For a generic set of g's satisfying (1.2) the only 
solutions to g = 0 near the trivial solution have 
isotropy subgroups which are maximal subgroups. 
An isotropy subgroup 2~ is maximal if ,~ is proper 
and the only isotropy subgroup containing Z is F. 
See Golubitsky [7] and lemma 3.1. 

There is a physically motivated plausibility 
argument supporting this conjecture. Loosely 
speaking, it takes energy to break symmetries and 
thus, it seems reasonable that it is harder for a 
system to break more symmetries than less. This 
conjecture is proved in the case l - - 2  in 
Golubitsky and Schaeffer [8]. 

Conversely, one must ask whether there is a 
method for guaranteeing the existence of solutions 
to g = 0 which have a given isotropy subgroup. 
The answer is yes for a special class of maximal 
isotropy subgroups with one-dimensional fixed 
point subspaces. See Cicogna [1]. A proof of this 
equivariant branching lemma is also given (with 
slightly different hypothesis) in Sattinger [5] and 
Golubitsky [7]. Related ideas are considered in 
Michel [9] where a restricted version of Cicogna's 
result is obtained. The lemma is proved by an 
elementary application of the implicit function 
theorem once the appropriate setting has been 
described. We will give a proof in section 4 as the 
details are needed in our discussion of linearized 
stability. Now we state that lemma. 

Let F be a Lie group acting absolutely irreduci- 
bly on the space V; that is, the only linear map- 

pings on V which commute with the given 
representation of F are scalar multiples of the 
identity. Note that (1.2) implies that the Jacobian 
(dxg)o.x = c()~)1 where c()O is a scalar. For a 
bifurcation of solutions to occur at )~ -- 0 one must 
have c(~0) = 0. 

Let Z c F be an isotropy subgroup and let 

V ~= ( y ~  V.,loy=y for each o ~ 2;} (1.4) 

b e  the fixed point set of Z. Assume 

(a) c'()~0) ~: 0; i.e., the trivial solution changes 

stability in a non-degenerate fashion; (1.5) 

(b) dimVZ = 1. 

The equivariant branching lemma states that 
there exists a unique branch of solutions to 
g(x, h) = 0 given by x = A(~) ~ V ~, A'(0) = 0. 
That is, there is a unique solution branch having 
isotropy subgroup Z. For example, axisymmetric 
solutions have one-dimensional fixed point sets. 
See Sattinger [4]. 

We note that condition (1.5a) is satisfied by the 
mathematical models of both the fluids and buck- 
ling problems described above. In addition (1.5b) 
implies that ~ is a maximal isotropy subgroup 
of F. 

In this paper we consider several questions con- 
cerning the isotropy subgroups of SO(3) and 0(3) 
in each irreducible representation: 

I) What is the lattice of dosed subgroups of 
SO(3) and O(3), up to conjugacy? The complete 
description of the conjugacy classes of subgroups 
of 0(3) which are known to chemists (Cotton [10]) 
as crystallographic groups and physicists as point 
groups is given in section 2. The subgroups of 
SO(3) -D n, Zn, (dihedral and cyclic subgroups, 
respectively) and the exceptional groups O, T and 
I (octahedral, tetrahedral and icosahedral, respec- 
tively)- are well known (cf. Wolf [111). In O(3), 
there are several classes of non conjugate but 
isomorphic subgroups-which we denote by vari- 
ous superscripts. It is these subgroups, in particu- 
lar, that we describe in section 2. 
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II) What are the dimensions of the fixed point 
sets for each closed subgroup of 0(3) and each 
irreducible representation? In particular, which of 
these subgroups have one-dimensional fixed point 
sets? For these subgroups, the equivariant branch- 
ing lemma proves under generic hypotheses the 
existence of a unique solution branch. In section 3 
we give a complete enumeration of the dimensions 
of the fixed point sets. Michel [12] computes the 
dimensions of the fixed point subspaces for sub- 
groups of SO(3). The formulas for the subgroups 
of O(3), when - I  acts trivially, are identical to the 
ones Michel obtains. We complete the computa- 
tions for these dimensions for subgroups of 0(3) 
when - I  acts as minus the identity. See section 3 
for a careful discussion of these representations of 
0(3). 

Sattinger [4], by a slightly different method, has 
found the dimensions for the fixed point subspaces 
of the octahedral subgroup of SO(3). In particular, 
he has calculated for which 1 the fixed point 
subspace of O is one dimensional. 

Busse [2] and Busse and Riahi [3] found, im- 
plicitly, the isotropy subgroups with one-dimen- 
sional fixed point subspaces when ! = 2, 3, 4 or 6. 

III) What are the maximal isotropy subgroups 
of 0(3)? This question is answered as a corollary 
to our computation of the dimensions of fixed 
point sets in section 3. 

IV) What is the full lattice of isotropy sub- 
groups of 0(3)? This is a much more difficult 
calculation. Our results are given in theorems 6.6 
and 6.8. Sample results for small ! are given in 
tables I and II. For large 1, the results are simpler. 
See corollaries 6.7 and 6.9. 

Michel [12], in appendix A, outlines a method 
for calculating the isotropy subgroups of the irre- 
ducible representations of SO(3). We use a similar 
approach with modifications for the actual calcula- 
tion of the dimensions of the fixed point subspaces 
of SO(3). Our results differ from Michel's in two 
points: 

a) Unfortunately, Michel's criterion for de- 
termining when a subgroup is actually an isotropy 
subgroup (lemma 2, p. 639) is incorrect as stated. 

Table I 
Lattice of isotropy subgroups of SO(3) acting on V t for 1 = 2, 4, 6. 

,5O(3) (o) 
? 
0(2) (I) 

!,/, 

so(3) (°) 

o('/~1 ~ ~o(z)(1) 

J/[;', 
(9) 

sO(i) {°) 
/ t " ~  1 o(1) i(1) o(2) ( ) 

;7, 

\ , . /  
£ -2 9.=a £ 6 

Table II 
Lattice of isotropy subgroups of 0(3) acting on V/for l = 3, 5. 

0(3)(0) ~ °(~){°) 

1) / ~ (1)~nd (1) Dd (1)0d (1)D~(1)~d ( E  (1) 
0 "( 0(2)- .,6 ~ 6 10 08 ~(i )-~ 

D?(2) 02d (3) D~• (2)D~ (2)05z (2) 

1(11) 

£-3 £~5 

(For example, it is incorrect for the identity sub- 
group in SO(3).) In section 5 we give a correct 
version of this lemma. See lemma 5.3. Its proof is 
involved. It seems likely that the condition we give 
is both necessary and sufficient though we have 
not been able to prove this. 

b) We complete the calculation of the dimen- 
sions of the fixed point subspaces for the irreduci- 
ble representations of 0(3). 

V) Are the solutions obtained in the equivariant 
branching lemma linearly (orbitally) stable? Our 
results, given in section 4, are partial and negative. 
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Loosely speaking, if there exists a mapping g2: 
V---, V which commutes with F and is homoge- 
neous of degree 2, then the solutions given by the 
equivariant branching lemma are usually unstable. 
See theorem 4.2 for a precise statement of this 
result. In particular, when l is even generically the 
solutions whose existence is guaranteed by the 
equivariant branching lemma are unstable. In such 
a case, to find physically meaningful solutions one 
must study degenerate bifurcation problems. See 
the discussion in section 4. 

We now describe our results for the irreducible 
representations of 0(3) on Vt, the spherical 
harmonics of order I, in more detail. The exact 
form of these representations are given in section 
3. We begin by presenting the list of maximal 
isotropy subgroups. These results follow directly 
form propositions 3.6-3.9. 

Theorem 1.1. Let 0(3) act on the spherical 
harmonics of order 1 in the standard way (see 
section 3). The maximal isotropy subgroups are 

t=2: o(2) 
l=4 ,8 ,14 :  O ( 2 ) ~ Z ~ a n d O ~ Z ~ ;  

all other even 1: 0(2) • Z~, O • Z~ and I • Z~; 

l = l :  O(2)-;  

l=3 ,7 ,11 :  O ( 2 ) - , O - a n d D 2 ,  ( / < n < / ) ;  

1= 5" O(2)-, D d and D~; 

l = 9,13,17,19,23,29: 

O(2)-,  O-,  O and D2dn ( l < n < l ) ;  

all other odd 1: 

0(' ) O ( 2 ) - , O - , O ,  IandD2n ~ < n < l  . 

See section 2 for the precise definition of the 
subgroups listed here. Note that Z~ is the center of 
0(3) and the superscripts c and d indicate noncon- 
jugate but isomorphic subgroups of 0(3). 

Theorem 1.2. A complete listing of the isotropy 
subgroups of 0(3) acting on V / whose fixed point 
sets are one-dimensional is given as follows: 

(a) 0(2) • Z~: all even t, 

(b) O ~ Z ~ :  1=4,6,8,10,14, 

(c) I ~ Z ~ :  1=6,10,12,16,18,20,22,24,26, 

28,32, 34, 38, 44, 

(d) 0(2) - :  a l lodd/ ,  

(e) O: 9,13,15,17,19,23, 

(f) O-: 3,7,9,11,13,17, 

(g) I: 15,21,25,27,31,33,35,37,39,41,43,47, 

49, 53, 59, 

(h) D2a,: l / 2 < n < l ,  alloddl> 3. 

Remarks. 
a) It is interesting to note that the isomorphic 

but non-conjugate octahedral subgroups O and 
O-  are both maximal isotropy subgroups with 
one-dimensional fixed point sets when l--- 9. Thus, 
there exist, by the equivariant branching lemma, 
two distinct branches of solutions with octahedral 
symmetry for (almost) all g's commuting with 
0(3) when l = 9. 

b) As a corollary of the above theorems one 
finds that all of the maximal isotropy subgroups 
of 0(3) acting on V t have fixed point subspaces 
which are one-dimensional when 1 < 11. Thus, the 
equivariant branching lemma guarantees the ex- 
istence of solution branches for each of these 
maximal isotropy subgroups. If the conjecture that 
generically only maximal isotropy subgroups ap- 
pear as solutions is true then for 1 < 11 one has 
generically a complete description of the solution 
branches. This calculation extends the work of 
Busse and Riahi [3] about as far as seems reason- 
able. 

c) Sattinger [4] found only the instances where 
O • Z~ or O were isotropy subgroups with one- 
dimensional fixed point subspaces. Our results on 
O-  in theorem 3.5f augments his list when consid- 
ering octahedral symmetry. 
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In tables I and II we list the lattice of isotropy 
subgroups of 0(3) acting on the spherical harmon- 
ics of order l when l - -2,  3, 4, 5 and 6. These 
tables are compiled from the information listed in 
theorems 6.6 and 6.8. For even l each isotropy 
subgroup has the form K SZ~ where K is a 
subgroup of SO(3) and Z~ = ( + I } is the center of 
0(3). In table I we list only the K 's. The dimen- 
sions of the fixed point subspaces are listed as 
superscripts in parentheses on the individual 
groups. This information is obtained using theo- 
rems 3.2 and 3.5. 

Undirected Circle Directed Circle Undirected Hexagon 

0(2) SO(2) ~. 

Fig. 1. The regular planar figures. 

2. The lattice of closed subgroups of 0(3): the 
point groups 

Directed  He×aqon 

2.1. The subgroups of SO(3) 

The set of conjugacy classes of subgroups of 
0(3) is a known object; our purposes here are to 
familiarize the reader with this classification and 
to set notation. Each subgroup of SO(3) may be 
viewed as the symmetry group of a regular planar 
or solid figure in R 3 with the planar figures having 
both a directed and undirected version. In figs. 1 
and 2 we picture certain of these regular figures. 
The notation for the symmetry groups associated 
with each of these figures is also given. Note that 
the octahedral group O is the symmetry group of 
both the cube and the regular octahedron while I 
is the symmetry group of both the regular icosa- 
hedron and the regular dodecahedron. We call the 
symmetry groups of the platonic sol ids-T (the 
tetrahedral group), O, and I - the exceptional sub- 
groups of SO(3). 

For definiteness we let 

cosO sinO i )  
Ro = - sine cos 0 (2.1) 

0 0 

be the rotation of the xy-plane counterclockwise 
through the angle 0. Then 

S0(2) = ( RolO <_ 0 < 2rr } (2.,2) 

+ 

Fig. 2. The platonic solids. 

is one realization of the rotation group. Clearly, 
SO(2) leaves the unit circle and its orientation 
invariant. There is, however, an element of SO(3) 
which maps the circle onto itself but changes the 
orientation; namely, rotation through the angle ~r 
in the yz-plane. Let 

(l°i) c =  0 - 1  . (2 .3)  
0 0 - 
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The group generated by SO(2) and C in SO(3) is 
the symmetry group of the undirected circle and is 
isomorphic to 0(2). We emphasize that this reali- 
zation of 0(2) lies inside the connected group 
so(3). 

It is now easy to see that 

Z.={R2,~k/nlk~Z } (2.4) 

is the symmetry group of the directed regular 
n-gon. Augmenting Z.  by the rotation C yields the 
subgroup D n of SO(3), the symmetry group of the 
undirected n-gon. We will not give specific realiza- 
tions for the exceptional subgroups. 

Note. D2, and 0(2) have two reflectional symme- 
tries R~ and C which are conjugate in 0(3) but 
not in 0(2). 

The following theorem is proved by combining 
results in Bredon [13, p. 153] and Wolf [11, p. 85]: 

Theorem 2.1. Every proper closed subgroup of 
SO(3) is conjugate to one of the following sub- 
groups: 

O(2), SO(2), I, O, T, O n or Z n. 

For future reference we list here the normalizer of 
each subgroup A, denoted by N(za) and the order, 
when finite, Ial . 

Lemma 2.2. 

(a) N(Z. )  = N(SO(2)) = N(O(2)) = O(2), 

N(T) = N(O) = N(D 2) = O, 

S ( I ) = I ,  N(D. )=D2n,  n •2 ;  

(b) lZ . l=n ,  IDn[=2n, ['1"1=12, IO1=24, 

III = 6 0 .  

Having enumerated the closed subgroups of 
SO(3), up to conjugacy, we now describe the lattice 
of subgroups. The lattice structure is defined as 
follows. Let H and K be (conjugacy classes of) 
subgroups in SO(3). We say that H is contained in 

K, denoted H < K, if some conjugate of H is 
actually contained in K. 

The containment relations among the D, and Z n 
subgroups are easily obtained; namely, 

(a) Z.  c D .  cO(2) ,  for alln; 

(b) Z n C Z  m iffndividesm; 

(c) Z.  c SO(Z) c O(2), for all n; 

(d) Z 2CD,. ,  for al lm 

and Z.  c D  m whenndividesm.  

(2.5) 

Note. In (d) the copy of Z 2 we refer to is generated 
by C. 

These containment relations are indicated by 
arrows in fig. 3. Of course, (2.5b) is impossible to 
sketch. 

The real difficulty in determining the contain- 
ment relations involves the exceptional subgroups. 
These relations are indicated in fig. 4. Observe that 
O(2), I and O are maximal subgroups of SO(3) 
and that T is contained only in I and O. 

sa(~) 

so(z) 

Fig. 3. Lattice of the non-exceptional subgroups of SO(3). 

5o(3) , ¢ ~  

Fig. 4. Lattice of subgroups of SO(3) involving exceptional 
subgroups. 
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There is a simple decomposition of the excep- 
tional groups which enables one to determine the 
lattice structure of fig. 4. More importantly, this 
decomposition is also the key to determining which 
irreducible representations of SO(3) and 0(3) have 
the exceptional groups as isotropy subgroups. 

Definition 2.3. Let K 1 . . . . .  K s be subgroups of H. 
Then H is the disjoint union of the K~'s if 

s .  
(a) H =  ~JKi,  

i = 1  

(b) KiI"IKj= ( I } ,  forall i4:j. 

We use the notation H = © ]= 1K~ to indicate dis- 
joint unions. 

It is unusual for a group to be a disjoint union; 
nevertheless, both D, and the exceptional sub- 
groups have disjoint union decompositions into 
cyclic subgroups. These decompositions are rooted 
in the regular polyhedra. 

Lemma 2.4. 

(a) o . =  z.0"z , 

(b) T = 0 '  0 

(c) I = 0 6 Z 5 010 Z 3 015 Z2, 

(d) O 03 Z404 Z306 Z2 , 

where the rotation 0kZ/ indicates the disjoint 
union of k subgroups all conjugate to Z I. 

For example, the octahedral group O is the 
symmetry group of the cube. The rotations in 
SO(3) which have an axis of symmetry intersecting 
the center of a face are generated by rotation by 
90 ° about the axis. This axis generates the group 
Z 4. Similarly, axes intersecting the center of an 
edge generate the group Z 2 and axes intersecting a 
vertex generates the group Z 3. There are 3 axes 
intersecting faces, 6 axes intersecting edges and 4 
axes intersecting vertices. This leads to the decom- 
position 

O = 0 3 Z4 0 6 Z2 0 4 Z3. 

Similarly, symmetries of the dodecahedron, pic- 
tured in fig. 2, leads to the decomposition of the 
icosahedral group I. The decomposition of the 
tetrahedral group is obtained by a slightly differ- 
ent enumeration. Here, the axes of symmetries fall 
into two classes, those connecting a vertex and the 
center of the opposing face and those connecting 
the centers of opposing edges. [] 

We now prove that the containments indicated 
in fig. 4 are correct. 

Lemma 2.5. The conjugacy classes of proper sub- 
groups of the exceptional subgroups are 

(a) T: Z 3, D 2 and Z2; 

(b) O: D4, Z4, D 3 and the subgroups of T; 

(c) I: Ds, Z s, D 3 and the subgroups of T. 

Proof. We give here only the basic ideas involved 
in the proof. The decomposition for D, is easy to 
verify. We now discuss the exceptional subgroups. 

Each rotation in SO(3) has an axis of symmetry. 
That axis must intersect the invariant polyhedron 
in either a face, an edge or a vertex. Moreover, to 
be a symmetry of that polyhedron it must intersect 
the center of the face, the center of an edge or a 
vertex. The idea behind this lemma is to classify 
the elements in the exceptional groups by their 
axes of symmetry. 

Proof. We sketch a geometric proof of these facts. 
The dements of a cyclic subgroup of SO(3) must 
share a common axis. These cyclic subgroups have 
been identified in lemma 2.4. If Z n appears as a 
subgroup of T, O or I, then the corresponding Dn 
appears only if the axis of symmetry of Zo con- 
nects like cells; e.g., vertex to vertex or face to 
face. The reasoning is simply that one can invert 
the axis of rotation by a rotation in a plane 
containing the axis and then rotate about the axis 
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to align the cells. This information is contained in 
the proof of lemma 2.4. 

By simply comparing the orders of the excep- 
tional subgroups, we see that the only contain- 
ments which are possible are T < O and T < I. 
One can show that both of these containments 
occur by embedding regular tetrahedrons in the 
cube and the icosahedron so that the vertices of 
the tetrahedron lie on vertices of the containing 
figures. [] 

(c) Subgroups H of 0(3)  not containing - I  

and not contained in SO(3). (2.7) 

We call the subgroups of class (2.7c) the class III  
subgroups of 0(3). Closed subgroups of types 
(2.7a) and (2.7b) are clearly classified, up to con- 
jugacy, by theorem 2.1. We shall show that the 
class III subgroups H are determined by pairs of 
subgroups (K, L) in $0(3) where K =  ,r(H) and 
L = H n SO(3). 

2.2. The subgroups of 0(3) 

To describe the structure of the closed sub- 
groups of 0(3) we first note that 0(3) splits as 

0(3)  = SO(3) <9 Z~, (2.6) 

where 

(_+I} 

is the center of 0(3). 
We may now divide the subgroups of 0(3) into 

two classes, those that contain - I  and those that 
do not. 

Consider the first case and let H be a subgroup 
of 0(3) containing - I .  It follows from (2.6) that 
H = K<9 Z~ for some subgroup K of SO(3). In 
fact, if we let ,r: 0(3) ---, SO(3) be the group homo- 
morphism whose kernel is Z~; i.e., ,r is the projec- 
tion onto SO(3) stemming from (2.6), then K is 
just , r (n) .  

The subgroups of 0(3) which do not contain - I  
fall into two classes: those that are in SO(3) and 
those that are not. The first class has been enu- 
merated in section 2.1; the second class is the 
source of all of the essential difficulties in describ- 
ing the subgroups of 0(3). 

The discussion above is summarized as follows. 
The closed subgroups of 0(3) divide into three 
classes: 

(a) Closed subgroups K of SO(3); 

(b) K<9 Z~ with K a closed subgroup 

of so(3); 

Lemma 2.6. Let H be a class III subgroup of 
0(3). Then 

a) H and K = rr(H) are isomorphic subgroups; 
and 

b) L = H A  SO(3) is a subgroup of index 2 
in H. 

Proof. Since ,r is a group homomorphism, K = 
*r(H) is a subgroup of SO(3). Since - I  is not in 
H, it follows that ker,r n H = { I } and that H and 
K are isomorphic. 

To prove part (b), observe that if g and h are in 
0 ( 3 ) -  SO(3) then gh is in SO(3) since 
O(3)/SO(3) = Z 2. Now suppose g and h are in 
H - L, then h-  lg ~ L and g ~ hi. Thus, there are 
precisely two cosets in H/L .  [] 

We now show that K=¢r (H)  and L = H A  
SO(3) uniquely determine H. 

Lemma 2.7. Let L c K c SO(3) be subgroups with 
the index of L in K being 2. Then, there is a 
unique subgroup H of 0(3) satisfying , r ( H ) =  K 
and H n SO(3) = L. 

Note. H has to be a class III subgroup. For if 
- I  ~ H then ,r(H) = H n SO(3) which is impossi- 
ble since K #: L. 

Proof. First we show that H exists. Since L has 
index 2 in K the cosets of K / L  are L and gL 
where g is in K -  L. Using the direct sum decom- 
position 0(3) = SO(3) <9 Z~ we let h = (g, - I )  and 
define H = L U hL. Since h 2 = g2 E L, it follows 



10 E. lhrig and M. Golubitsky / Pattern selection with 0(3) symmetry 

that H is a subgroup of 0(3). Moreover, 7r(H) = K 
and H n SO(3) = L. 

Next, we prove that H is unique. Let /~ be 
another subgroup of O(3) satisfying ~r(/-))= K 
and / t  n SO(3)= L. Note that ~r induces an iso- 
morphism of H with K and /4 with K. Hence L 
is a subgroup of / t  of index 2. It follows that 
/4 = L u hL where h ~ / t  - L. Let ~ = ~r(h) and 
note that ~ ~ K - L. It follows that g = ~l where 
g is the group element used in the construction of 
H and I is in L. Hence, [ I = L U h L = H ,  as 
desired. [] 

It follows from lemma 2.7 that we can enu- 
merate, up to conjugacy, all class Ill subgroups of 
0(3) by enumerating all pairs of dosed subgroups 
(K, L) in SO(3), up to conjugacy, where L has 
index 2 in K. One can do this using theorem 2.1, 
lemma 2.5 and the lattice of closed subgroups of 
SO(3) pictured in figs. 3 and 4. These pairs are 

O(2) DSO(2), O ~ T ,  D n ~ Z  ., Dz, D D  ., 

Z2n ~ Z n and Z~ ~ 1. (2.8) 

There is one subtlety which we have noted by Z~, 
(s denoting subtlety!). Inside of 0(2) , there are 
two subgroups Z 2 which are conjugate in 0(3) but 
which are not conjugate in 0(2). To see this, 
observe that a fixed choice of 0(2) is equivalent to 
choosing a plane in which the rotations of O(2) 
act. The first choice of Z z is generated by a 
rotation through the angle ~r in this plane. This 
choice has been assigned the pair (Z 2, Z1) = (Z 2,1). 
The other choice of Z 2 is made by considering 
rotation through the angle ~r in a plane perpendic- 
ular to the one fixed by 0(2). This we have de- 
noted by the pair (Z~, 1). Note that Z~ is a fixed 
cyclic subgroup in O(2) which is not in SO(2); this 
is the only special case. Our concerns about con- 
jugacy of pairs will make more sense to the reader 
after seeing lemma 2.11. This point effects the 
determination of the lattice of dosed subgroups of 
0(3). See lemma 2.12. 

For a class III subgroup H we use the rotation 
~r(H)-, with one exception. The group D2, has 

two isomorphic subgroups of index 2, Z2n and D n. 
We let D~ denote the class III subgroup corre- 
sponding to the pair D, D Z,  and Dan denote the 
class III subgroup corresponding to the pair D2, 
~ D , .  

We now list the conjugacy classes of subgroups 
of O(3). 

Theorem 2.8. Every closed subgroup is conjugate 
to precisely one of the following: 

(a) SO(3), O(2), SO(2), I, O, T, D., Z.,or 
1 , ( n > 1 ) ;  

(b) K ¢ Z~ where K is a subgroup listed in (a) 

a n d Z ~ = { + I } .  

(c) O(2)-,  O- ,  DZ(n > 2), odn(n > 2) or 

zL(  > 1). 

Notes. 

1) D~ is conjugate to D E. 
2) It is important to emphasize that the sub- 

groups O and O-,  etc., are isomorphic as groups 
but are not conjugate as subgroups of 0(3). 

3) There are three non-conjugate 2 element sub- 
groups of 0(3): Z~, Z 2 and Z 2. These subgroups 
are generated by (, o 0 ) ( 1  

0 - 1  0 , 0 - 1  , 
0 0 - 1  0 0 

( - ,  0 0)  
and 0 1 0 , respectively. 

0 0 1 

There are three non-conjugate subgroups of 0(3) 
isomorphic to  D2n , D2n, DEn and D~,. It is amus- 
ing to see how each of these is a different reali- 
zation of the symmetries of the 2n-gon in R 3. In 
the first two cases, one generates the cyclic sub- 
group Z2. by rotation through the angle rr/n. In 
Dz. one generates the planar reflection by a rota- 
tion of ~r in a perpendicular plane while in D~. 
one generates the planar reflection by a reflection 
in 0(3) across a perpendicular plane. In D~n the 
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cyclic subgroup is generated by the rotation t 
through the angle ,r/n in the plane of the n-gon 
followed by a reflection across that plane. This 
copy of Z2, is not contained in SO(3). The reflec- 
tion in D d. is the rotation described in D2,. We 
denote the normalizer of a subgroup K of 0(3) by 
No(K). The proof of the following lemma is left to 
the reader. 

Lemma 2.9. Let K be a subgroup of 0(3). Then 
No(K ) -- N( ~r( K )) • Z~. 

To begin our discussion of the lattice of closed 
subgroups of 0(3) we first give the disjoint union 
decompositions of the finite class III subgroups 
into cyclic subgroups. 

Lemma 2.10. 

(a) O - =  0 3 Z 4  0 4 Z 3 0 6 2 2  ; 

(b) D z =  Z.O"Z~-; 

(c) D L = Z 2 . 0 " Z 2 0 " Z  2. 

Proof. Each of these cases involves a combina- 
torial argument based on the disjoint unions of O 
and D, given in lemma 2.4 and the fact that 
exactly half of the elements of each of these groups 
must not be in SO(3). 

In (b) the fact that D~ = Z,  t3~Z2 implies that 
the only cyclic subgroups of D z are isomorphic to 
Z,  and Z 2. Since D, ~ N SO(3)= Z~ it follows that 
the remaining n elements of D~ are not in SO(3). 
Since - I E  D~ the only possibility for the Z 2 
factors is that they are all Z 2. Similarly, in (c) 
Dd~ tq SO(3) = D,. Since one factor of D~. is iso- 
morphic to Z2~ and Z2n is not in D, it follows 
that that factor is Z~ .  Since exactly half of the 
elements of Z2. are in SO(3) it follows that exactly 
half of the elements in D d. - Z2. are in SO(3) and 
that Dd~ = Z~, 0"Z2 0"Z2  . 

The argument for O-  is similar. Recall that 
O = 03Z4 k3*Z 3 06Z2 and note that Z 3 must lie 
in SO(3). Hence, O-  has t)4Z3 as part of its 
disjoint union decomposition. Moreover, both Z 4 

and Z 2 contain Z 2 and hence have one non- 
identity clement in SO(3). This implies that 
~J3Z 4 [~J4Z 3 has 12 elements in SO(3). Since IO] = 
24 it follows that O - =  u3Z 2 CJ4Z3 ~J6Z 2. [] 

In discussing the lattice of closed subgroups of 
0(3) we make two simplifications. First, we ignore 
all subgroups of the form K *  Z~ where K is a 
subgroup of SO(3). In the representation theory 
results described in the next section, these groups 
enter in only a trivial way. Second, we describe 
only that part of the lattice that includes the class 
III subgroups. The remainder of the lattice has 
been given in the lattice for SO(3). 

In fig. 5, we describe that part of the lattice 
contained in the maximal subgroup O-  and in fig. 
6 we indicate relations among the other class III 
subgroups. 

In order to determine the inclusion relations, up 
to conjugacy, of the class III subgroups we need 
the following lemma: 

1 

Fig. 5. Lattice of subgroups of O-. 

0(2)- Dd n 

Fig. 6. Part of the lattice of class III subgroups. 
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L e m m a  2.11. Let HI~ and H 2 be class III sub- 
groups with K, = 7r(H~) and L~ = Hi n SO(3). Then 
H 2 c H 1 if and only if 

(a) K 2 c K 1 and L 2 c L 1; 

and 

(b) K 2 ¢: L 1. 

Proof. The necessity of (a) is obvious. The point 
of interest in the lemma is the need for condition 

(b). Now assume that H 2 c H 1 and that K 2 c L v 
We claim that these inclusions imply that - I ~ / / 1  
which contradicts the assumption that H x is class 
III. 

Let h be in H 2 - L 2. Then ~r(h) ~ K 2 c L 1 c H 1. 
Since H 2 c H~ it follows that h ~ Hx and that 

, r ( h ) - l h ~ H 1 .  

We now compute using the direct sum decomposi- 

tion 0(3) = SO(3) @ Z~. Since h ~ H 2 - L 2 it fol- 
lows that h = (g, - I )  and that ~r(h) -~ = (g-~, I ) .  
Thus 

, r ( h ) - l h  = ( g - l ,  I ) ( g ,  - I )  = - I  ~ H i 

yielding the desired contradiction. 
Conversely, suppose that (a) and (b) are satisfied. 

Using condition (b) we may choose h ~ K 2 - L 1. 
Since L 2 c L 1 it follows that h ~ K 2 ~ L 2 and that 
H 2 = L 2 U hL  2. Since K 2 c K 1 it follows that h 

K 1 - L 1 and that H 1 = L 1 U hL 1. Since L 2 c L 1 
we have proved H 2 c H I as desired. [] 

We can now list the subgroups of the class III 
subgroups. 

(c) Z2,: Z2m where m divides n and 2m does 

not divide n and subgroups of  Z~; 

(d) D2d,: D~,,, Z2m where m divides n and 2m 

does not divide n, Z~ and subgroups of Dn; 

(e) D~: D~ where m divides n, Z 2 and 

subgroups of Z , .  

Proof. There are two general comments in de- 
termining the subgroups of a class III subgroup H. 
First H n SO(3) and all of its subgroups are con- 
tained in H. Second, the class III subgroups can 
be obtained by use of lemma 2.11 and the listing 
of pairs of subgroups (K, L)  of SO(3) of index 2 
in (2.8). We give the arguments for (a) and (b). 

a) Since T = O - n  SO(3), all of the subgroups of 
T are contained in O- .  Let H be a class III 
subgroup with K = r r (H)  and L = H n SO(3). 
Lemma 2.11 states that H c O -  if and only if 

K c O ,  L e T  and K C T .  

Inspection of the list of subgroups of O and T in 
lemma 2.5a and 2.5b and the possible pairs (K, L)  
in (2.8) shows that eligible pairs are (Da,D2) 
(Z a, Z2) and (D 3, Z3). In addition, there is a reflec- 
tional group Z~ which is not contained in T. Thus, 
one sees that D~, Z 4 , D~ and Z 2 are subgroups 
of O- .  

b) Since O(2)-N SO(3)= SO(2) we see that all 
subgroups of SO(2) are contained in O(2)-. Lemma 
2.11 states that if a subgroup H of class III is 
contained in O(2)-, with K = ~r(H) and L = H n 
SO(3), then 

L c S O ( 2 ) ,  K C O ( 2 )  and K ¢ S O ( 2 ) .  

From (2.8) we see that the only possibilities are 
( D , , Z , )  and the spurious Z~ sitting in 0(2) - Z 2. 
Thus, D~ and Z 2 are in 0(2)- .  [] 

L e m m a  2.12. The conjugacy classes of the sub- 
groups of the class III groups are 

(a) O-"  D4 d, Z~ ,  D~, Z 2 and subgroups o f T ;  

(b) 0 ( 2 ) - :  D~, Z 2 and subgroups of SO(2); 

3. Fixed point spaces and maximal 
isotropy subgroups 

Our method for finding the maximal isotropy 
subgroups for the irreducible representations of 
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SO(3) and 0(3) is quite simple. First, we enu- 
merate the dimensions of the fixed points spaces 
for each closed subgroup. To fix notation let lv be 
a Lie group acting linearly on the vector space V 
and let a be a subgroup of iv. Let 

V'a= {y~ VIAy=y} (3.1a) 

be the fixed point subspace of A and let 

d(A ) = dim V a (3.1b) 

be the dimension of that subspace. 
There is a simply proved characterization of 

maximal isotropy subgroups given in terms of the 
dimensions of fixed point sets. 

Lemma 3.1. Let A be a subgroup of i v. Then A is 
a maximal isotropy subgroup if and only if 

(a) d (L l )>0 ,  

(b) d (~ )  = 0 for every subgroup X ~ A. (3.2) 

Proof. Suppose LI is a maximal isotropy subgroup. 
Then d (A)>  0 since, by definition of isotropy 
subgroup, A must fix some non-zero vector in V. 
Moreover, if d(Z) > 0 then Z fixes some non-zero 
vector in v in V. Thus, the isotropy subgroup of v 
contains Z and hence zl; so LI is not maximal as an 
isotropy subgroup. 

Conversely, if (3.2) holds then there is a non-zero 
v in V which is fixed by A. The isotropy subgroup 
F v of v contains A and d(ivv)~ O. By (3.2b) ivv 
must equal A so A is an isotropy subgroup. The 
same argument shows that a is also maximal as an 
isotropy subgroup. [] 

Our strategy for finding maximal isotropy sub- 
groups for SO(3) and 0(3) is as follows. We com- 
pute the dimensions of the fixed point spaces for 
each of the closed subgroups, using in equal parts 
the decomposition of finite subgroups of 0(3) into 
a disjoint union of cyclic subgroups, the trace 
formula and the weight space decomposition of 
the irreducible representations of SO(3). Then we 

use the description of the lattices of closed sub- 
groups of $0(3) and 0(3) presented in section 2 to 
find the largest subgroups which have positive 
dimensional fixed point sets and apply lemma 3.1. 

We begin by describing the irreducible represen- 
tations of SO(3) and 0(3) along with some well- 
known facts about these representations. There is, 
up to conjugacy, a unique irreducible representa- 
tion for SO(3) in each odd dimension. A standard 
presentation for each of these representations is 
given by the action of $0(3) on It, the space of 
spherical harmonics of order I. The dimension of 
V: is 21 + 1. Recall that the spherical harmonics 
of order l may themselves be realized as the re- 
striction to the sphere of those polynomials p: 
R 3 --, R which are homogeneous of degree I. The 
action of y in 0(3) on p(x) is given by 

(3.3) 

There are two distinct irreducible representa- 
tions of 0(3) in each odd dimension. In each of 
these SO(3) acts irreducibly and the distinction 
between the representations of 0(3) depends only 
on whether - I  acts as the identity on V or as 
minus the identity. In the first case - I  lies in 
every isotropy subgroup of 0(3) and thus the 
isotropy subgroups have the form K • Z~ where K 
is an isotropy subgroup of SO(3) acting on It. The 
lattice of isotropy subgroups for these representa- 
tions of O(3) may be determined directly from the 
representations of SO(3). In the second case - I  
fixes no dement of I t , save the origin, and occurs 
in no isotropy subgroup of O(3), save 0(3) itself. 
For these representations the isotropy subgroups 
are either subgroups of SO(3) or class III sub- 
groups of 0(3). It is for this reason that we have 
ignored the subgroups of the form K • Z~ in our 
description of the lattice of dosed subgroups of 
0(3) given in fig. 5. 

We are particularly interested in the action of 
0(3) on It defined by (3.3) as it is these represen- 
tations that often occur in applications. For these 
representations ( - I ) .  p (x) = p ( - x) = ( - 1)tp (x) 
since p is homogeneous of degree I. Thus, the 
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parity of I determines which of the two irreducible 
representations of 0(3) described above occurs in 
the representation of 0(3) on spherical harmonics. 

We begin the determination of the maximal 
isotropy subgroups by finding the dimensions of 
the fixed point sets for the irreducible representa- 
tions of SO(3) and then discuss the corresponding 
result for the non-trivial irreducible representation 
of 0(3). 

Theorem 3.2. Let SO(3) act irreducibly on V l, the 
space of spherical harmonics on order l. The di- 
mensions of the fixed point sets of the closed 
subgroups of SO(3) are 

(a) d ( Z , , ) = 2 [ / ] + l ,  ( n > l ) ;  

,oa , 

(b) d(D, ,)= (n >2)  

[ / ] + 1 ,  /even; 

(c) d(SO(2)) = 1; 

(d) d ( O ( 2 ) ) = (  0, /odd,  
1, l even; 

(f) d(O) = [ / ]  + [ / }  + [ / ] - l +  1; 

where Ix] is the greatest integer less than or equal 
to x. 

The proof of theorem 3.2 divides into two steps. 
First, one uses the weight space decomposition of 
the representation to compute the dimensions of 
the fixed point spaces of SO(2) and Z~. Then, one 
uses the Weyl trace formula and the decomposi- 
tion of the finite subgroups into a disjoint union of 
cyclic subgroups to determine the dimensions of 
the fixed point spaces for the remaining groups. 

Recall that the Cartan subgroup of SO(3) is 
SO(2) and the root space decomposition of V t is 

V / = W 0 @ W 1 ~ . . .  @ l, Vt, (3.4) 

where dim I4/0 = 1 and dim W k = 2 for k > 0. More- 
over, if O E SO(3) and w ~ Wk then O acts on w by 
rotation through the angle kO. 

Remark. In the standard basis for the (complex) 
spherical harmonics of order l. {Y-l . . . . .  
Y0,..., Yt }, Wk is the real subspace in the span of 
Y-k and Yk. 

From this decomposition one sees immediately 
that V s°(2) = W 0 and d(SO(2))= 1 as desired. Re- 
call that Z n is generated by R2,r/H; i.e., rotation 
through the angle 27rn. Therefore, the group Zn 
fixes a non-zero vector in W~ (and hence all of 
Wk) only if n divides k. There are [l/n] integers k 
between 1 and l for which n divides k. Each of 
these adds two dimensions to the fixed point set. 
Adding 1 for the dimension of 
formula 

W 0 yields the 

We claim that the fixed point sets for each of 
the remaining subgroups of SO(3) may be com- 
puted from (3.5) using the decomposition of finite 
subgroups into disjoint unions and the trace for- 
mula. 

Theorem 3.3. (Trace formula). Let p be a rep- 
resentation of a finite group H on the finite dimen- 
sional vector space V. Then 

1 E Trp(h) .  
d i m V H  = IHI h~n 

Proof. Define the linear transformation on V 

1 A=- I E o(h) 
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and observe that A 2 = A. Here one uses the fact 

Y'~ o (h )  = Y'~ p(h'h) (3.6) 
h ~ H  h ~ H  

for each h'  ~ H. It follows that V = kerA • I m  A 
and AII m A = identity. Moreover, TrA = dim Im A. 

We claim that V n = Im A from which the theo- 
rem follows. It is easy to show that V n c  Im A. 
For the converse, let v be in Im A. So v = Aw for 
some w. Now compute using (3.6) that 

o(h)o = o(h)Aw = o(h) E o(h')o 
Inl  h'~U 

1 
_ 1 E p ( h h ' ) w = - ~ [  ~_~ o(h')w 

[HI h'EH h'eH 

=AW=O. 

Hence o ~ V u and the claim is verified. [] 

Corollary 3.4. Let H = H 1 0 H 2 0 . . .  0 Hk. Then 

k 
1 E IHildimVH'-( k -  1)dimV. dimVH= IHI i=1 

Proof. From theorem 3.3 we have 

1 Y'~ T ro (h ) .  d i m v n  = IHI h e n  (3.7) 

The RHS of (3.7) can be divided into the sums of 
elements in Hi; however, by doing so, one counts 
Trp(e) ,  where e is the identity in H, k times, 
whereas it should only be counted once. Thus, 

dim V n = Inl ]~ E T r p ( h ) - ( k -  1)Xrp(e)  . 
i ~ l  h E H  i 

Now p(e) -- Iv, so Tr0(e)  = dimV. We apply the 
trace formula to the first term on the RHS of (3.2) 
to obtain 

Proof of theorem 3.2. First, one uses corollary 3.4 
and the disjoint union decompositions of lemma 
2.4 to derive the formulas for the dimensions of 
the fixed point subspaces of Dn, T, I and O using 
the calculation for Zn in (3.5). Second, one makes 
the simple observation that 

(a) Vt s° 2) = N v, z", 
n=2 

(b) Vi °(2) = N V/Dn. 
rt~2 

(3.8) 

To prove the validity of (3.8a), observe that since 
Z ,  c SO(2) for each n we have Vt s°~2) c Vt z. for 
each n. Conversely, if a vector v is fixed by Z ,  for 
each n (that is, o is fixed by rotation through 
every rational angle) then] by continuity, o must 
be fixed by SO(2). The argument proving (3.3b) is 
similar. It follows that 

d(O(2)) = lim d ( D , ) =  { 0, l odd, 
n--. o~ l ,  I even. 

(This last computation could have been done di- 
rectly. The expense would have been the introduc- 
tion of more specific details about the action of 
SO(3) on spherical harmonics.) 

We now discuss the dimensions of the fixed 
point sets for the irreducible representations of 
0(3) for which - I  acts as minus the identity. As 
discussed in the beginning of this section we need 
only consider the subgroups of $0(3) and the class 
III subgroups. The results for the subgroups of 
SO(3) are identical with those of theorem 3.2. We 
now present the results for the class III subgroups. 

d imVn = 1 
IHI 

as desired. 

[i~=llHilcfimVn'-(k-1) dim V] Theorem 3.5. Let 0(3) act irreducibly on V t with 
- I  acting as minus the identity. Then the dimen- 
sions of the fixed point spaces for the class III 
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subgroups are 

2 [ l + n ] .  
(a) d ( Z 2 , ) =  [ 2n 1' 

(b) d ( D ~ ) = / [ / ] '  ,even, 

(c) d(Ddz,)=[l+n]; 
[ 2n 

(e) d ( O ( 2 ) - ) = (  O' /even, 
1, I odd. 

Proof. To compute d(Z~,) observe that Z~, is 
generated by a rotation through an angle ~r/n, 
R ~/, followed by - I. The only way a vector v can 
be fixed by this element, and hence by the cyclic 
group Z~,, is for R,/,v = -v.  Since R,/ ,  is in 
SO(2) we may use the root space decomposition of 
V t (3.4) to determine the possible v's. Since R~/, 
acts on Wk by Rk~/, we see that v in W k is fixed 
if and only if k/n is an odd integer. Thus, d(Z2,) 
is equal to twice the number of integers k _< l for 
which k/n is an odd integer. (Recall that dim W k 
= 2 for k > 0.) One can now show that d(Z2,) is 
2[(/+ n)/Zn]. 

Next, one uses corollary 3.4 and the decomposi- 
tion of the finite class III subgroups into a disjoint 
union of cyclic subgroups, lemma 2.10, to compute 
d(D,~), d(D2d,) and d(O-).  Finally, one shows 
that 

V ° ( 2 ) - =  U vDZ,  
n - 2  

so that 

d ( O ( 2 ) - ) =  lim d(D~). 
tl "~ OO 

The crucial point here is the observation that 
elements of D~ - Z,  actually lie in O(2)- and this 
fact follows from the construction of D~ and 
O(2)- using lemma 2.7. [] 

We begin our discussion of the maximal isot- 
ropy subgroups of SO(3) with the observation that 
if a maximal subgroup has a positive dimensional 
fixed point set then it is a maximal isotropy sub- 
group. There are three maximal subgroups of 
SO(3): O(2), O, and I. One can see directly that 
there is a basic difference in the description of the 
maximal isotropy subgroups when l is even and 
when 1 is odd. From theorem 3.2d we see that 
0(2) is a maximal isotropy subgroup when I is 
even and is not an isotropy subgroup when n is 
odd. 

Proposition 3.6. Let SO(3) act irreducibly on V t 
with l even and positive. With four exceptions, the 
maximal isotropy subgroups are 

O(2), O and I. 

The exceptional cases, along with the maximal 
isotropy subgroups, are 

l =  2: 0(2) ;  

l = 4, 8,14: 0(2)  and O. 

Proof. The idea of the proof is to show that, in 
general, the fixed point subspaces of the maximal 
closed subgroups are all positive dimensional. As 
remarked above, d(O(2))= 1 for all even l so that 
0(2) is a maximal isotropy subgroup for all even l. 
From theorem 3.2f and g, we see that the functions 
d(O) and d(I) have a kind of periodicity in l. In 
particular d(O) (l + 12) = d(O) (l) + 1 and d(I) 
(l + 30) = d(I) + 1. It follows that O is a maximal 
isotropy subgroup whenever l >  12 and I is a 
maximal isotropy subgroup whenever l > 30. To 
prove precisely our results we list d(O) (1 < / < 12) 
and d(I) (1 _< l_< 30) in table III. Note the only 
even l for which O is not a maximal isotropy 
subgroup is l = 2 and the only even l 's for which I 
is not a maximal isotropy subgroup are l = 2, 4, 8 
and 14. 

To complete the proof note that the only sub- 
groups of SO(3) which are not contained in 0(2) 
are the exceptional subgroups. Thus, if 0(2) is an 
isotropy subgroup the only possibilities for maxi- 
mal isotropy subgroups are the exceptional sub- 
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Table III 

/ d(O) / d(I) 1 d(I) / d(T) 

1 0 1 0 16 1 1 
2 0 2 0 17 0 2 
3 0 3 0 18 1 3 
4 1 4 0 19 0 4 
5 0 5 0 20 1 5 
6 1 6 1 21 1 6 
7 0 7 0 22 1 
8 1 8 0 23 0 
9 1 9 0 24 1 

10 1 10 1 25 1 
11 0 11 0 26 1 
12 2 12 1 27 1 

13 0 28 1 
14 0 29 0 
15 1 30 2 

groups. When O is also a maximal isotropy 
subgroup it follows that since T c O only I can be 
a maximal isotropy subgroup. It only remains to 
note that in the case l = 2, T is not an isotropy 
subgroup as d (T)=  O. [] 

We now consider the case when l is odd. The 
distinction here is that SO(2), rather than O(2), is 
always a maximal isotropy subgroup. 

Proposition 3.7. Let SO(3) act irreducibly on V t 
with l odd. In general, the maximal isotropy sub- 
groups are 

SO(2), O, I and D~ ( / < n _ < l ) .  

The exceptional cases are 

l -  9,13,17,19,23,29: 

(' ) SO(2), O and D~ ~- < n < I ; 

(' ) 1--3,7,11:  SO(2) ,TandD~ ~ < n < l  ; 

l =  5: SO(2), D 3, 1:)4; 

/ = 1 :  SO(2). 

Proof. First, we consider the stable picture. From 
table III we see that T is a isotropy subgroup for 
all odd 1 except 

1 = 1, 3, 5, 7, 9, 11, 13, 17, 19, 23 and 29 

and that O is a isotropy subgroup for all odd l 
except 

l--- 1, 3, 5, 7 and 11. 

It is possible for T to be a maximal isotropy 
subgroup only when both O and I are not isotropy 
subgroups (lemma 3.1). From table III it follows 
that T is a maximal isotropy subgroup only when 
1= 3, 7 and 11. 

Since SO(2) is a maximal isotropy subgroup it 
follows that only the Dn's are possible maximal 
isotropy subgroups. From theorem 3.2b we see 
that when 1 is odd 

Thus, D n can be an isotropy subgroup only when 
n < l. Moreover, when n < 1/2 Dn is contained in 
D2, whose fixed point space has positive di- 
mension. Hence, D~ is not a maximal isotropy 
subgroup (lemma 3.1). 

The remaining point is that some of the D~'s are 
also contained in the exceptional subgroups which 
could prevent certain D~ from being a maximal 
isotropy subgroup. This does not happen but one 
must check for the possibility. The containment 
information we need may be found in fig. 4. It is 

I ~ D  5,D 3,D 2; OD1)4 ,D  2; and T D D  2. 

Combining the information above yields the proof 
of proposition 3.7. [] 

Proposition 3.8. We enumerate which of the maxi- 
mal isotropy subgroups of SO(3) have fixed point 
sets which are precisely 1-dimensional: 

0(2) :  a l l / even ;  

SO(2): a l l / o d d ;  

Dn: lodd ,  1/2 < n < l; 

I: l = 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 
26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 

41,  43, 44, 47, 49, 53, and 59; 
O: l =  4, 6, 8, 9, 10, 13, 14, 15, 17, 19 and 23; 
T: 1=3 ,7 ,11 .  
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The proof involves combining the results of 
propositions 3.6 and 3.7 and table III. 

Next we consider the non-trivial irreducible rep- 
resentations of 0(3): that is, those representations 
where - I  acts as minus the identity of V~. As was 
discussed in the beginning of this section, the 
isotropy subgroups for the non-trivial representa- 
tions of 0(3) are either subgroups of SO(3) or class 
III subgroups. (Thus, we do not consider sub- 
groups of the form K~9 Z~.) In this class 
of subgroups of 0(3) there are three maximal 
closed subgroups: SO(3), 0(2)-  and O . However, 
SO(3) acts irreducibly on V~ and cannot be an 
isotropy subgroup. Thus, the obvious candidates 
for maximal isotropy subgroups are: O(2), O(2)-, 
O, O-  and I. Immediately, we again see a dif- 
ference depending on the parity of l. For l even 
0(2) is a maximal isotropy subgroup and O(2)- is 
not while the reverse is true for l odd. 

Proposition 3.9. Let 0(3) act irreducibly on V~ 
with I odd and let - I  act as minus the identity on 
V t. Then, in general, the maximal isotropy sub- 
groups are 

0(2)  , O  , O , I  and D2an ( 3 < n _ < / ) .  

The exceptional cases are 

l =  9,13,17,19,23,29: 

< < l  ; O(2) , O- ,  O and Dzd, n 

(' ) / = 3 , 7 , 1 1 "  O ( 2 ) - , O - a n d D ~ ,  -~<n<_l ; 

l=5:  o(2)-, D4d, Dg, Dsd and D~0; 
/ = 1 :  O(2)- .  

Proof. Since we assume l is odd, O(2)- is always a 
maximal isotropy subgroup. Since Z2-, and D z are 
contained in O(2)- they cannot be maximal isot- 
ropy subgroups. The only possibility for maximal 
isotropy subgroups of class III are O-  and D2dn 
(n > 2). 

In table IV we enumerate d (O- )  as a function 
of l noting the periodicity 

d(O-)(l+12)=d(O ) ( / ) + 1 .  

By inspection of this table it follows that O is a 
maximal isotropy subgroup for all odd l except 
l = l a n d l = 5 .  

From theorem 3.5c we see that Dd, has a non- 
trivial fixed point subspace when n < I. In addi- 
tion, D~n c D6d,, implies that D2d,, can be a maximal 
isotropy subgroup only if n > 1/3. We claim that 
each such subgroup is a maximal isotropy sub- 
group. We use lemma 3.1. Observe that the only 
subgroups containing Dzdn are those Dza., where n 
divides m except for D4 d which is contained in O-. 
Now O is not an isotropy subgroup when l = 5 
and when l >  5 the condition n > 1/3 rules out 
D~. So the claim is valid. 

We now consider the subgroups of SO(3). Using 
lemma 3.1, we may rule out Z ,  c O(2)-, SO(2)c 
0(2) and D, c D2d,. The only possible additional 
maximal isotropy subgroups are the exceptional 
groups. Note that T is contained in O, O-  and I. 
Thus, T can be a maximal isotropy subgroup only 
when none of O, O-  and I are isotropy subgroups. 
This happens only when l = 1  or 1=5  and in 
neither case can T be an isotropy subgroup. See 
table III. 

Finally, note that O and I are maximal isotropy 
subgroups of 0(3) precisely when they are maxi- 

Table IV 

/ d(O-) 

1 0 
2 0 
3 1 
4 0 
5 0 
6 1 
7 1 
8 0 
9 1 

10 1 
l l  1 
12 1 
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mal isotropy subgroups of SO(3) and this informa- 
tion is contained in proposition 3.7. 

In a similar vein, we state without proof 

Proposition 3.10. Let 0(3) act irreducibly on V t 
with l even and let - I  act as minus the identity 
on ~. Then, in general, the maximal isotropy 
subgroups are 

O(2), O-, O, I and D2d,, ( / <  n < 1). 

The exceptional cases are 

1=14: O ( 2 ) , O - , O a n d D d ,  ( 5 < n < 1 4 ) ;  

(' ) l = 4 , 8 :  O ( 2 ) , O a n d D ~ .  5<n<l ; 

I -  2: o(2),  and Og. 

Finally, we enumerate those maximal isotropy 
subgroups of 0(3) which have one dimensional 
fixed point sets. 

Proposition 3.11. Let O(3) act irreducibly on V I 
with - I  acting as minus the identity. The follow- 
ing is a complete list of those maximal isotropy 
subgroups of 0(3) which have one-dimensional 
fixed point sets: 

0(2) :  alleven l; 

0 ( 2 ) - :  all odd I; 

O-:  ! = 3, 6, 7, 9, 10, 11, 12, 13, 14, 16, 
17 and 20; 

l 
D2d.: ~<n<l, a l l l > 2 ;  

O: see proposition 3.8; 

I: see proposition 3.8. 

The proof involves combining the results of 
propositions 3.9 and 3.10 and table IV. 

4. The equivariant branching lemma and asymptotic 
instability 

In section 3 we enumerated those maximal isot- 
ropy subgroups whose fixed point sets are 1- 
dimensional. As indicated in the introduction, 
solution branches corresponding to such isotropy 
subgroups exist under very mild assumptions. The 
proof of this fact is quite simple once one de- 
termines the correct setting. In this section we 
show that for many group actions (generically) the 
solutions found by Cicogna's [1] equivariant 
branching lemma must be linearly unstable. In the 
context of the present paper, it will follow that 
generically the resolutions we have found for 0(3) 
acting on the spherical harmonics of order 1 must 
be unstable if l is even. 

There are four hypotheses needed for the equi- 
variant branching lemma. 

(H1) Let /" be a compact Lie group acting 
absolutely irreducibly on the vector space V. 

By absolute irreducibility we mean that the only 
linear maps on V commuting with/" are multiples 
of the identity. (Over C Schur's lemma states that 
absolute irreducibility is equivalent to irreducibil- 
ity. Over R a representation is absolutely irreduc- 
ible precisely when its complexification is 
irreducible.) 

(H2) Let g: V × R ---, V be a smooth mapping 
commuting with/ ' ;  that is g(3,v, h) = yg(v, ?~) for 
all 3,~F.  

The absolute irreducibility of the action o f / "  on 
V along with (H2) imply 

(a) g(O, x) = o, 
(4.1) 

(b) (dg)0,x-c(X)I. 

Thus, g has a trivial solution v = 0 (4.1a) and 
along the trivial solution the Jacobian matrix in 
the V-direction dg is a multiple of the identity. (To 
prove (4.1b) apply the chain rule to the commutiv- 
ity relation (H2) to obtain for each "t in F 

(r ig) : (4.2) 
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and evaluate at v = 0.) It follows that 

g(v, x) = c(X)v + g2(v, x) 

+ . . .  + g , ( v , X ) +  - - -  (4.3) 

when gk is homogenous of degree k in v. 
(H3) Assume that c(0)= 0 and that c'(0)< 0 

where c(h)  is defined in (4.1b). 
The assumption that c(0)= 0 is just the state- 

ment that there is a bifurcation along the trivial 
solution at h = 0. We consider the system of ODE's 

Theorem 4.1. Assume hypotheses (H1)-(H4). Then 
there is a unique branch of solutions to g = 0 with 
isotropy subgroup X. 

Proof of theorem 4.1. Let v 0 be a non-zero vector 
in V ~. Let to o coordinatize the one-dimensional 
space V ~ and let 

h ( t, )~ ) vo = g( tVo, )~ ). (4.7) 

It follows from (4.1a) that h(0, h ) =  0, hence 

dv 
d--}- + g(v,  h)  = O. 

For such a system a steady state solution g(v 0, h0) 
is linearly (asymptotically) stable if the eigenvalues 
of (dg)oo, xo all have real parts which are positive. 
The solution is unstable if there is one eigenvalue 
of (dg)vo, Xo with real part negative. 

The assumption that c'(0)< 0 means that the 
trivial solution is linearly stable for h < 0 and 
unstable for ~ > 0 with a non-degenerate change 
in stability occurring at ?~ = 0. 

(H4) Let X be an isotropy subgroup of F with 
dim V z =  1. 

Assumption (H4) is the crucial hypothesis. In 
particular, one should note that (H4) implies that 
X is a maximal isotropy subgroup of F. Note that 
if X is an isotropy subgroup of F and V z is its 
fixed point set then (H2) implies 

g: V z x R ~ V z. (4.4) 

The proof is quite simple. If yv = v then 

~g(v, X) = g(~v, X) = g(v,  X); 

hence g(v, h)  is fixed by y. Note also that N(X) is 
the largest subgroup of F whose elements leave 
V e invariant. If we let 

h = glV z, (4.5) 

then h: V z x R ---, V z commutes with N(X). 

The following theorem has appeared in Cicogna 
[1], Sattinger [4] and Golubitsky [7]: 

h ( t , h  ) =  tk(t , )~ ) (4.8) 

by Taylor's theorem. From (4.1b) and (H3) it 
follows that 

k ( 0 , 0 ) = 0  and k x ( 0 , 0 ) = c ' ( 0 ) < 0 .  (4.9) 

Using (4.9) and the implicit function theorem, 
there exists a unique function A ( t )  satisfying 

k ( t , A ( t ) ) - O ,  A(0) = 0. (4.10) 

It follows that there is a unique nontrivial solution 
branch to g = 0 in V z x R given by t --* (w  o, A( t ) ) .  
For t ¢ 0 these solutions all have isotropy sub- 
group Z. [] 

Theorem 4.2. Assume hypotheses (H1)-(H4). Then 
the branch of solutions with isotropy subgroup X 
obtained in theorem 4.1 is unstable if either 

(A) some term in the Taylor expansion of 
h(v,O) = gl V~ X (0) is non-zero and the branch is 
subcritical; or 

(B) (dgz)v0,0 has an eigenvalue with nonzero 
real part where o 0 ~ V z is nonzero. 

Remarks 4.3. 
(a) The instability of subcritical bifurcation is 

well known (cf. Crandall and Rabinowitz [14]). 
Since g: V z x R ~ V ~ by (4.4) and dim V ~ =  1 
by (H4) it follows that v 0 is an eigenvector for 
(dg)v0, x. The claim of theorem 4.2A is that the 
corresponding eigenvalue is negative when the 
branch is subcritical. 
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(b) The proof of instability in theorem 4.2B 
requires information about eigenvalues of dg which 
are not associated with V :~. 

(c) The assumption of theorem 4.2B implies, in 
particular, that g2 is nonzero. In some sense the 
simplest way in which g2 may be nonzero is for 
(d2g2)o,o(Vo, Vo) to be nonzero. Since the eigen- 
value of (dg2)oo.O corresponding to v 0 is just 
(d2g2)o,o(Vo, Vo) we see that in this case the hy- 
pothesis in (B) is satisfied. We claim that the 
assumption that (d 2g 2)o,0(v0, v0):~ 0 is equivalent 
to the solution branch being transcritical, i.e., 
A'(0) ~ 0. Thus, we are led to the conclusion, 
surprising to those who only consider bifurcation 
problems in one state variable, that transcritical 
branches are unstable. 

To prove the claim, note that it follows by 
implicit differentiation of (4.10) that 

At(O)  = - k t (O , O)//kh(O, O), 

where kx(0, 0) < 0 by (4.9). Moreover, 

k t (O,  O ) = htt(O, O ) = (d2g)o,0(o0, u0). 

Thus A'(0) is nonzero if and only if (d2g)0.0(v0, v0) 
is nonzero, as desired. 

(d) Recall from the discussion after H4 that 
h = glV z x R commutes with the action of N(~)  
on V :~. Since ~ acts as the identity h actually 
commutes with D(~)  = N(Y,)/Y,. Since we assume 
V :~ is one-dimensional there are only two possibil- 
ities for D(N); it is either trivial or equal to Z 2. In 
the latter case h is forced to be odd in v and 
(d2g)o,o(Vo, Vo) is forced to be zero. In such cases, 
it is still possible for the assumption of theorem 
4.2B to be valid. For example, see the study of the 
planar B6nard problem given in Buzano and 
Golubitsky [15]. In that context there are two 
maximal isotropy subgroups; one corresponding 
to rolls and the other to hexagons. The hexagons 
give a transcritical branch and are unstable but the 
rolls have D ( N ) =  Z 2 and the instability of that 
branch may be deduced from the more general 
hypothesis. 

(e) On the other hand, the simplest way for the 
hypothesis in theorem 4.2B to fail is for there to 

exist a group element i n / "  which acts as minus the 
identity on V. Then (H2) implies that g is an odd 
function in v and that g2 -= 0. Such a group ele- 
ment appears in the representations of 0(3) on V t 
when l is odd, and the instability results (B) do 
not apply to these representations. In Golubitsky, 
Swift and Knobloch [16] another instance of the 
existence of a group element acting as minus the 
identity occurs. There, several (orbitally) stable 
planforms may be stable; however, to deduce this 
fact one must consider third and fifth order terms 
in g. 

(f) The theorem we would like to prove would 
state that if g2 = 0 then all of the nontrivial solu- 
tions to g = 0 are unstable. Here we are, of course, 
assuming (H1)-(H3). We have not proved such a 
theorem for two reasons. First, in the proof that 
transcritical solutions are unstable we will need to 
know that subcritical solutions are unstable whose 
proof relies on the assumption (H4). Second, it 
may be possible for (dg2)v0.0 to have all of its 
eigenvalues on the imaginary axis. It is true that 
for many group actions, dg 2, must have real eigen- 
values. Hence, hypothesis (B) is satisfied if g2 is 
nonzero. 

(g) There are two distinct criteria which imply 
that dg 2 has real eigenvalues. We consider first 
that g2 is the gradient of an invariant homoge- 
neous cubic function. Then (dg2)v0,x is a symmet- 
ric matrix and has real eigenvalues. Sattinger [4] 
observed that for the representations of 0(3) on 
the spherical harmonics of order l where l is even 
there is one quadratic mapping g2(v) satisfying 
the commutativity property (H2) which can be 
nonzero and that mapping is the gradient of an 
invariant function. This observation implies that 

g(o,  x)  = c(X)o + c2(X)g2(o) + - - - .  (4.11) 

Thus, assuming that c2(0)4:0 implies that all of 
the solutions corresponding to isotropy subgroups 
whose fixed point sets are one-dimensional are 
unstable. 

(h) One should keep firmly in mind that the 
proof of instability holds generically for Vt, I even, 
but not always. For example, in the spherical 
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B6nard problem when l = 2, Chossat [6] has shown 
that under certain circumstances (self-adjointness 
of the linearized problem) Q(0)=  0 in (4.11) and 
that there exists an (orbitally) stable (axisymmet- 
ric) solution whose existence was implied by theo- 
rem 4.2. 

We have shown that if one wishes to find physi- 
cally relevant (stable) solutions for / even by local 
(perturbation) arguments one must consider special 
cases. Then, one may use more sophisticated per- 
turbation theorems such as found in singularity 
theory to universally unfold the (degenerate) spe- 
cial case and to determine qualitative behavior 
near the degeneracy. See Golubitsky and Schaeffer 
[8] for a discussion of the unfolding of Chossat's 
example when 1 = 2. A similar example occurs in 
the planar Bdnard problem. See Buzano and 
Golubitsky [15]. 

(i) A second way in which hypothesis (B) may 
be satisfied is for (F, X) to form a V Gelfand pair. 
That is, let 

v=v,+...+vk 

be the decomposition of V into the direct sum of 
irreducible rcprescntations of Z. Then (F, X) is a 
V Gelfandpair if all of the representations ~'s are 
distinct and X acts absolutely irreducibly on cach 
Vj. It follows from (4.2) that if y e X and v ~ V z 

then 

( dg) o,x~, = r( dg)t,,~. 

Thus, 

r+-, r, 

and (dg)o, xlV j is a multiple of the identity, this 
means (dg)o,X has real eigenvalues and is di- 
agonalizable. Moreover, the same argument shows 
that any two equivariant maps A and B have real 
eigenvalues, are diagonalizable and commute. This 
means in particular the eigenvalues of AB are 
products of eigenvalues of A with eigenvalues 
of B. 

Examples of this approach are given in Buzano 
and Golubitsky [15] and Golubitsky, Swift and 
Knobloch [16]. 

Proof of theorem 4.2A. Note that the eigenvalue of 
(dg)tvo.A(t) corresponding to eigenvector o0 is 
ht(t, A(t)). Since k(t, ~) vanishes along the solu- 
tion branch, we have 

h,(t ,  a ( t ) )  = - t a ' ( t ) k x ( t ,  A( t ) )  

and that 

sgn (hi(t ,  A( t ) ) )  = sgn ( tA'( t)) ,  (4.12) 

since kx(0, 0) < 0. 
The assumption that some derivative of h(t, O) 

is nonzero implies that on one side of the origin, 
but near 0, A'(t) has a definite sign. It is now easy 
to check that the solution branch t--, (to, A(t)), 
t > 0 or t < 0, is subcritical precisely when 

sgn[ tA'(t)] = - 1. (4.13) 

coupled with (4.12) we have proved that the eigen- 
value in the direction of V z is negative and the 
solution branch consists of unstable solutions. 

Before proving theorem 4.2B we need the fol- 
lowing observations: 

Lemma 4.4. a) Let f :  V--+ R be invariant and 
homogeneous of degree one. Then f =  0; 

b) If (dg2)v. ~ has an eigenvalue with positive 
real part then it has an eigenvalue with negative 
real part. 

Proof. a) Let G(v) = ( v f ) v .  Note that G com- 
mutes with F and is homogenous of degree 0. The 
irreducibility of the action of F implies that G(0) 
= 0. Hence, by homogeneity, G ~- 0. It follows that 

f is constant. However, f ( 0 ) =  0 by linearity and 
f = 0 as desired. 

b) Define 

f (  v, X ) = Tr( dg2)v,x. 

It follows from (4.2) that f is invariant and ho- 
mogenous of degree 1 in v. By (a) f (v ,  ~)=-O. 
Since the trace is the sum of the real parts of the 
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eigenvalues it follows that if one eigenvalue has a 
positive real part then one has a negative real part. 

Proof of theorem 4.2B. We first consider the case 
of transcritical bifurcation, A'(0)~ 0. See remark 
4.3c. Since A'(O)~ 0 the branch of solutions in 
V ~ × R has both a subcritical and a supercritical 
part. From (A) we know that the subcritical part is 
unstable; we concentrate on the supercritical part 
where from (4.13) we have 

tA ' ( t )  > 0. (4.14) 

Define T(v, k) = Tr(dg)~,x and let 

m ( t )  = r ( tv  o, A ( t ) ) .  

Using the Taylor expansion of g in (4.3) and 
lemma 4.4a we see that 

m( t) = nc (A( t ) )  + O(t2). 

where n = dim V. It follows that 

re(t)  = nc'(O)A'(O)t + O( t2 ). 

It follows from (4.14) and A'(0) 4:0 that 

sgn (A'(O)t) = sgn ( tA ' ( t ) )  = + 1. 

on the supercritical branch. Since c'(0)< 0 (H3) 
we see that m(t )<O for all t near 0 on the 
supercritical side. This can happen only if there is 
some eigenvalue of (dg)t~o,A( 0 which has a nega- 
tive real part. So the supercritical solution branch 
consists of unstable solutions for t near 0. 

We may now assume that (d2g)o,o(Vo, v0)= 0; 
that is, A'(0) = 0. Consider the Jacobian matrix of 
g expanded along the solution branch using (4.3), 

( dg )too,a(O = c( A ( t ) ) I  + t( dg2)oo,a(, ) + 0( t2) .  

(4.15) 

Here we have used the fact that (dgk)v, t is homog- 
enous of degree k - 1. Since c(0) = A(0) = A'(0) = 
0 it follows that the first term on the RHS of (4.15) 

is also tg(t2); hence 

(dg),oo. = t[(dg2)oo.0 + tJ ( t ) ] ,  

where J(t) is an n × n matrix depending smoothly 
on t. By assumption (dg2)v0,0 has an eigenvalue 
with nonzero real part and by lemma 4.4b that it 
has eigenvalues with real parts negative and posi- 
tive. By continuity the same can be said for 

( dg2)vo,o + tJ( t ); 

the eigenvalues of a matrix vary continuously with 
parameters. Thus (dg)tvo, A(t ) has at least one ei- 
genvalue with a negative real part wtien t 4~ 0 and 
the corresponding solutions are unstable. 

We finish this section with a brief discussion of 
when the signs of the eigenvalues of (dg)o,x are 
preserved under equivalence. The basic result in 
this direction (4.4) states that this is the case when 
the isotropy subgroup F o of the solution forms a V t 
Gelfand pair with /'. Remark 4.5 gives the V t 
Gelfand pairs for SO(3) and 0(3). Unfortunately, 
very few solutions other than the axisymmetric 
ones have isotropy subgroups with this property. 
However, there is some indication that the as- 
sumption of being a Gelfand pair may be 
necessary for stability to be preserved under equiv- 
alence for all bifurcation problems. If we insist 
that stability be an equivalence invariant only 
generically then more situations may become per- 
mitted. 

Proposition 4.4. Suppose (F, Fv) is a V Gelfand 
pair. Then the eigenvalues of (dg)v, x are real and 
their signs are preserved under equivalence. 

Proof. We will suppress h here since it plays no 
essential role. For y : Fo we have 
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Thus by remark 4.3h dg~ has real eigenvalues. We 
must only show their signs are preserved under 
equivalence. Suppose g is equivalent to g'. Then 
there are an X: V---, V and a T: V × V--, V with 

g ' ( x ) =  

where T(x)y  - T(x, y). Moreover, X is an equi- 
variant diffeomorphism with de t (dX0)>0 ,  and 
T(x) is an invertable linear transformation for all 
x such that 

vr(v )v-' = 

~, ~ F , x  ~ Vand det(T(O))  > O. 

We now calculate dg" using the product and chain 
rule: 

dg[, = dTv g( X( v ) ) + T( o ) dgx(v) dXv, 

where g'(v) = 0. Since g(X(v))  = T(v) -ag'(v) = 0, 
we have dg~ = T(v)dgxtv)dXv. Each of these four 
matrices are A equivariant so Remark 3.3(h) shows 
that the eigenvalue of dg~ are a product of eigen- 
values of T(v), dXo and dgx(v). Since both T(0) 
and dX o are multiples of I (F  acts absolutely 
irreducibly on V), the determinant conditions 
above imply T and dX have all positive real 
eigenvalues at 0 and thus in a neighborhood of 0. 
Therefore, the signs of the eigenvalue of dg and 
dg' are the same near the 0. 

Remark 4.5. a) The Z for which (Z; SO(3)) are V t 
Gelfand pairs are the following: 

SO(2) for all odd 1; 

0 (2 )  for all even 1; 

I for 1= 6; 

O for l = 4 .  

b) The Z for which (Z, 0(3)) are V l Gelfand 
pairs (for the non-trivial representations of 0(3)) 

are the following: 

0 (2 )  for all even 1; 

O - ( 2 )  for all odd 1; 

I for l =  6; 

O f o r / =  4; 

O -  f o r / =  3; 

DzOz for all I. 

The proof of this remark is straightforward. It 
involves only reducing the representation of A on 
V/. For  A c 0(2) or O-(2).  This reduction can be 
done using the weight space decomposition. For 
the exceptional groups, an upper bound on the 
dimension of V l is given by the sum of the dimen- 
sions of all the distinct irreducible representations 
of F. These bounds are 16, 10, 10 and 6 for I, O, 
O- ,  and T respectively. This, together with the 
constraint dim(V/r) = 1 leaves only the possibili- 
ties of l = 6, 4 and 3 for I, O and O respectively. 
T is ruled out altogether. A simple character check 
shows that these cases actually give V t Gelfand 
pairs. 

5. The relationship between isotropy subgroups and 
fixed point sets 

At first glance there would seem to be a very 
simple method for determining when a closed sub- 
group Z of F is an isotropy subgroup. The idea is 
to consider in the lattice of closed subgroups each 

subgroup A ,~ 2. If V a ~ V ~ for each such A then 
one is tempted to conclude that Z is, in fact, an 
isotropy subgroup. Certainly, the condition is nec- 
essary; for if V a = V x and Z fixes a point v in V 
then so does A; thus, Z cannot be an isotropy 
subgroup. However, it may happen that each point 
in V z is also contained in some V '~ with A de- 
pending on v, so that Z is not the isotropy sub- 
group for any o in V z. Let I (F,  Z)  be the set of all 
isotropy subgroups A of F such that a ~ Z. The 
appropriate statement is 
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Lemma 5.1. 2: is an isotropy subgroup of F if and 
only if 

c) N(2;, A) is closed under multiplication from 
the left by elements of N(Z). 

U v c. v (5.1) 
A ~ I ( F , Z )  

Proof. The necessity of (5.1) was shown above. 
Assume that (5.1) is valid and let v be in V z -  
ua~ l [ r . z )V  ~. We claim that Z is the isotropy 
subgroup of v, Z v. Clearly, Z c Z~. Moreover, if 
Z v ~ Z then Zv is one of the isotropy subgroups 
in the union considered in (5.1). Since v ~ V z,' we 
have a contradiction and Z = Z v. [] 

Lemma 5.1 suggests an inductive procedure for 
determining the lattice of isotropy subgroups. First, 
one finds the maximal isotropy subgroups, which 
may be determined using only the computation of 
dimensions of fixed point sets. See lemma 5.2. In 
theory, one may then use lemma 5.1 to find the 
submaximal isotropy subgroups, etc. However, 
lemma 5.1 is inadequate in two distinct ways. 
First, although the dimension of V a is often easily 
determined, it is rarely the case that V a itself is 
known explicitly. Second, although the lattice of 
conjugacy classes of all isotropy subgroups of a 
Lie group F is often known, it is rarely the case 
that all isotropy subgroups of F can be given 
explicitly. Since lemma 5.1 uses this information it 
is not particularly useful as it stands. 

Our first task is to understand better the con- 
struction of U a • ~(r,~) Va- Suppose ~ ~ Z, let 

N(Z,a)= (V r13'a3'-' (5.2) 

Lemma 5.2. a) N(Z, A) is closed under multiplica- 
tion from the fight by elements of N(A), 

b) U v 
z ~ l ( F , Z )  

= U U (5.3) 
za ~ C / ( F ,  Z), ~N(2~ ,  A) /N(a)  

where CI(F, Z) is the set of conjugacy classes of 
isotropy subgroups in I( / ' ,  2~) and ~ is the projec- 
tion of 3' ~ F into F /N(A) ;  and 

Assuming for the moment the validity of lemma 
5.2 and that N(Z, A) is a sufficiently nice subset of 
F (see lemma 5.4) one is led to 

Proposition 5.3. Assume that CI(F, Y,) is at most 
countable. If for every conjugacy class of A in 
CI(F, Z) one has 

dimV a + dim N(Z,  a )  - dim N ( A )  < dimV z, 

(5.4) 

then Z is an isotropy subgroup of F. 

Remarks. Crudely, the proof of proposition 5.3 is 
obtained from lemmas 5.1 and 5.2 as follows. The 
dimension of the set 

sa= U 
~t e N( Z, A )/N( A ) 

can be no larger than dimVA+dJmN(Z,A)/  
N(A). Moreover, if N(Z,A)  is sufficiently nice, 
then dim N(Z, A)/N(A) will equal dim N(~, A) -- 
dim N(A). Thus, if eq. (5.4) is valid we see that 
dim S a < dim V z and that S a has measure zero in 
V z. If (5.4) is valid for all A > ,~ and these are 
only a countable number of such A's then the 
RHS of (5.3) has measure zero in V z. Thus, (5.1) 
is valid and, using lemma 5.1, Z is an isotropy 
subgroup of F. 

It appears likely that the converse of proposi- 
tion 5.3 will be true under fairly general circum- 
stances but we have been unable to find a proof of 
this. However, a converse is not needed for 0(3) 
since the fixed point sets of the subgroups that do 
not satisfy (5.4) may be easily calculated directly. 

Proof of lemma 5.2. To prove (a) we must show 
that if o~N(2~,A)  and 8 ~ N ( A )  then o8 
N(Z, A). Observe that 

( o 8 ) a ( o 8 )  -1 = o ( 8 a 8 - 1 ) o  -1 = o a o - 1  
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since o is in the normalizer of A. It follows from 
the definition of N(X, za), eq. (5.2), that ozlo -1 D X 
and that o6 ~ N(X, z~). Note that (a) implies that 
N(X, zS) is invariant under N(A) and that 
N(X, A)/N(A) is a well-defined subset of the coset 
space F/N( A ). 

To prove that (b) is valid, we first show that the 
RHS of (5.3) makes sense. In particular, suppose 

that 3'1 and Y2 are in N(X, A) and that ~a = ~2 in 
N(X,A)/N(A).  We claim that yl(V~)=3'2(Va). 
This claim follows from 

N(A)c  {V FIv(V ) = (5.5) 

the assumptions on 3'1 and Y2 imply that there is a 
in N(A) such that "/1 = "~2 'r" Assuming (5.5) we 

see that 

v , ( v  A) = a)  = 

as claimed. To verify (5.5), note that if ~" is in the 
normalizer of A and if 8 is in A then 8~ = ~-8' for 
some 8' in A. It follows that if v is in V a that 

• v = ~8'v = 8~v. 

So ~-v is fixed by each 8 in A and ~'v is in V ~. 
(Note that if A is an isotropy subgroup then 

N(A)= rlv(Va)= va). (5.6) 

For suppose A = Go, the isotropy subgroup for 
v ~ V a. Since 3'v ~ V 'a it follows that the isotropy 
subgroup Zvo certainly contains A. However, 

~ ' v  = ~ v ~ -  1 = -yA-y- 1. 

Thus, the only possibility is that ~yv is A. This 
means 3, is in the normalizer of A, as stated.) 

Finally, observe that if a and A' are conjugate 
isotropy subgroups of F, both containing X, then 
there is a "t in F such that a '  = ~,a-/-1. Moreover, 
since A ' D Z  we see that 3' is in N(~ ,A) ,  by 

definition. Thus, 

U V a =  
A~I(F.X) 

U U v~a 
A~Cl(i.,x) A'~I(I',X) 

A' conjugate to 

U U 3'(v 
A~CI(I',X) y~N(X,A) 

U U 
AECI(F,X) ¢{EN(X,A)/N(A) 

as desired. 
We finish by showing (c). Let o be in N(Z)  and 

let 7 be in N(Z,A). Then (03')A(o3') 1 =  
O(3'A~ 1)O"-1DO~O -1 = ~ .  Hence, o3'~N(X,A) 
as claimed. [] 

As indicated in remark (a) above, the proof of 
proposition 5.3 requires knowing that N(~,  A) is a 
sufficiently nice subset of F so that its dimension 
behaves well. This requirement is satisfied by the 
following result: 

Lemma 5.4. Let A be an isotropy subgroup of F 
containing X, a closed subgroup. Then 

a) N ( X , A ) =  {7 ~ FlY( V a ) a  VZ}; 
b) N(X,A) is a real analytic subvariety of F; 

and 
c) N(X, A) is compact in F. 

Proof. First, note 

za D X if and only if V a a V z. (5.7) 

The necessity of (5.7) is obvious. To prove the 
sufficiency, suppose that V a a V z and let o be in 
~. Then ov = v for all v in V a. In particular o 
fixes V a. Now choose x in V a such that A is the 
isotropy subgroup for x. Then, since ox = x, it 
follows that o is in A. Thus, X a A. 

Using (5.7) we see that 

7A 7 - 1 D X  if and only if V ray ' c V  ~. 

But V ray ' = 7(V a) and (a) is proved. 
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To prove (b) and (c), let ~r: V ~  V / V  z be the 
cononical projection. Consider the mapping 

O: r--, Hom(Va ,V /V  ~) O(~ , )=~roy .  (5.8) 

The representation of F on V is real analytic 
because F is a Lie group and F acts by linear 
transformations which are real analytic (see 
Montgomery and Zippen [17, p. 212]). It then 
follows that • is real analytic. Moreover, observe 
that O('),) = 0 if and only if y(V a) c VZ; that is, "), 
is in N(Z, A). Thus, N(Z, A)=  O-1(0) is a real 
analytic subvariety of r (consider that the coordi- 
nate functions of # define N(Z, A)) and N(Z, ,5) 
is closed. Since r is compact N(Z,`5) is also 
compact. 

The fact that N(Z, A) is a compact real analytic 
variety has several important consequences. The 
basic reference is Lojasiewicz [18]. The most im- 
portant point is: N(Z, `5) is a stratified set with a 
finite number of strata, each of which is a smooth 
manifold. Thus, the dimension of N(Z, A) is the 
maximum of the dimensions of these strata. 

Proof of proposition 5.3. The idea behind the proof 
is to show that for each `5 ~ I(F, Z) 

S~ = U Y( v~ ) 
:yeN(X,A)/N(A) 

is a set of measure zero in V z. If this claim is 
valid, then the RHS of (5.3) has measure zero 
since we assume that CI(F, Z) is at most count- 
able. It follows from lemma 5.2 that w a ~ l(r,z) Va 

V z and from lemrna 5.1 that Z is an isotropy 
subgroup of F. 

There are three additional facts which we need 
to complete the proof: 

(a) N(Z,  A) /N(A)  is an analytic variety; 

(b) dim N(Z,  A )/N(`5) = dim N(Z,  A) 

- - d i m N ( A ) ;  

(c) Locally, on each stratum S of 

N(,~, `5 ) /N(  A ), 

(5.9) 

there is a smooth section s mapping S into 

N(Z,`5). 
Assuming the validity of (5.9), there is a smooth 

mapping defined locally on a stratum S of 
N( Z, A ) /N(  ̀ 5 ), 

s ×  v 

where s: S -* N(Z, A) is the smooth local section 
whose existence is guaranteed by (5.9b). Sard's 
theorem states that the image of a smooth map- 
ping has measure zero if the dimension of the 
domain is less than the dimension of the range (cf. 
Golubitsky and Guillemin [19, p. 31]). Now 

dim S x V a < dim N(Z, `5 )/N(`5 ) + dim V a 

= dim N(Z, `5) + dimV a 

- d i m N ( ` 5 )  

using (5.9c). Thus, assumption (5.4) implies that 
d i m S x V  a < d i m V  z and the image of 6 has 
measure zero. We can cover each stratum S by an 
at most countable collection of open sets, each 
having a local section; moreover, there exists a 
finite number of strata by (5.9a). Thus, taking the 
union of the images of 6 for each open set and 
each stratum still yields a set of measure zero. 
However, that union is just S a. 

To prove (5.9), note that locally F is (analyti- 
cally) isomorphic to [F/N(`5)] x N(`5). Using this 
isomorphism and fact (lemma 5.3a) that N(Z,  `5) 
is invariant under multiplication on the right by 
N(`5), we see that locally 

N(Z,  `5) = N(Z,  A ) /N(  A ) × N(A) .  

Recall that N(~,  A ) =  O-1(0) for the • defined in 
(5.8). Write • locally in the cross-product 
[r/g(`5)]xY(`5) and let qJ= OlF/N(`5)× {e} 
where e is the identity in F. Note that ff is a real 
analytic mapping on r/N(`5) and that I/,-1(0)= 
N( Z, A ) /N(  ̀ 5 ). Thus, N(Z,A) /N(A)  is a real 
analytic variety and, by Lojasiewicz, is a stratified 
set. Moreover, one can choose the strata to be the 
images of the strata of N(Z,  A) under the projec- 
tion ~r. It is easy to see that (5.9) follows from this 
local cross-product presentation of N(Z,  A). [] 
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We end this section with a lemma which sim- 
plifies the calculation of N(Z, A) where A is finite. 
Since most of the subgroups of 0(3) are finite this 
result will prove quite useful in the next section. 
We define 

c ( z ) =  (v  ~ r l v o = o v  for all 0 ~ 2;). (5.10) 

Lemma 5.5. Let 2; and A be finite subgroups of 
F. Assume A is an isotropy subgroup. Then 

dimN(2;,A)=dimC(Z).  

Proof. Let s = 12;I and let 2: = { o l , . . . ,  o~ ). Define 

F: N ( 2 ; , A ) ~ A S = z a X  " "  x a ,  
s-times 

F(T)= (y 10"1~ . . . . .  ~-lOsy ) . 

Recall that for each 1, ~ N(2;, A), ~63 ,-a ~ 2:. 
Hence, 7-xZT c A and the image of F lies in N. 
Moreover, F ( y l ) =  F(3'2) precisely when T2-1TI is 
in C(2;). Thus, F induces a 1 : 1 mapping 

~': C(,~)\N(2;,A)--* A s. 

Since A s is finite so is C(Z)\N(2; ,A)  and 
dim N(2;, A) = dimC(2;). [] 

Lemma 6.1. (a) Each nontrivial dement  o in SO(3) 
lies in a unique toms; that is, a unique conjugate 
of SO(2); 

(b) d i m C ( Z , ) =  1; 
(c) let Z be a noncyclic finite subgroup of 

SO(3). Then C(Z) is finite. 

Proof. (a) If o is in a torus T, then o commutes 
with all of T since SO(2) is an abelian group. If o 
is contained in two tori T~ and T2 then o com- 
mutes with the group generated by T~ and T2. 
Since dim(Tx. T2) = 2; it follows that the group 
spanned by T l and T 2 is SO(3). However, no 
nontrivial element in SO(3) commutes with SO(3). 

(b) Since SO(2) is abelian it follows that C(Z,)  
SO(2). Conversely, if 7Z,) ,  -1 = Z ,  then 
"rSO(2)'y-1 = SO(2) since Z ,  lies in a unique torus. 
It follows that 3' ~ N(SO(2))= 0(2). So C ( Z , ) c  
0(2) and d i m C ( Z , ) =  1. 

(c) Let 2: ~ Z ,  be a finite subgroup of SO(3). 
Since 2: 4: Z, ,  2: intersects two distinct tori T1 and 
T 2 in nontrivial elements 01 and o 2. After conjuga- 
tion, if necessary, we may assume that 7'1 = SO(2). 
Now let "r be in C(Z). By definition, "go/y - t =  o~ 
and hence rT/~ - 1 =  T~. It follows that "~ is in 
N(T1) (7 N(T2) = 0(2) A N(T2) which is a sub- 
group of 0(2). This subgroup is not 0(2) or SO(2) 
since T 1 v~ T 2. Thus, N(T1)AN(T2) is finite and 
C(2;) c N(Tx) • N(T2) is also finite. [] 

6. The isotropy subgroups of SO(3) and 0(3) 

We finish this paper by given the full lattice of 
isotropy subgroups for all of the irreducible repre- 
sentations of SO(3) and 0(3). The major work 
remaining is the calculation of dim N(2;, A); then 
proposition 5.3 may be used. These results are 
given in theorems 6.3 and 6.5. Then all the terms 
in the inequality (5.4) will have been calculated 
and it becomes a straightforward, although tedi- 
ous, task to determine when this inequality is 
satisfied. The final result is given in theorems 6.6 
and 6.8. We begin with a basic lemma. 

When trying to use proposition 5.3, in particu- 
lar, when implementing condition (5.4) one needs 
to compute 

d(2;,A)=_ dim N(2;, A ) -  dim N(A).  (6.1) 

When 2: and a are subgroups of SO(3) there is the 
possibility of confusion over whether d(2;, A) is 
being computed relative to SO(3) or 0(3). How- 
ever, 

(6.2) 

where the LHS of (6.2) is computed with sub- 
groups of 0(3) and the RHS of (6.2) is computed 
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as subgroups of SO(3). To prove (6.2) observe 
from lemma 2.9 that d imN(A)=dimn(rr (za) ) .  
Moreover, one can use the direct sum O(3)= 
SO(3) * Z~ to show that 

N(,~, A) = N(1r(2;), ~r(A)) ~9 Z~. 

Thus, dim N(~,  a )  = dim N(rr(2;), ,r(A)) and (6.2) 
is proved. 

Proposition 6.2. Let ~ and A be subgroups of 
SO(3) with 2; ,c A **. SO(3). Then d(2~, A) = 0 ex- 
cept for the following: 

(A1) 

(A2) d (Z2 ,A)  = 1, 

(A3) d(Z3,A ) = 1 ,  

(A4) d(Z4, A) = 1, 

(AS) d ( Z s , a )  = 1, 

(A6) d (Z , ,Dm)  = 1. 

d ( ( 1 } ; A )  = 3 -  d imN(A) ,  

if A -- O(2), Din, T, O or I; 

if Zl = D,. ,T,  O or I; 

if A =Dm or O; 

if A = D m or I; 

Proof. We begin by considering the cases when 
both S and A are finite. If 2; :~ Z .  then lemmas 
5.5 and 5.6 imply that dim N(2;, A)= 0. This fact 
implies that d(2;, A) -- 0. If 2; = Z ,  (n > 2) then 
lemmas 5.5 and 6.1 imply that d imN(2 ; ,A)=  1. 
Since dim N(Z,,)--  1 and dim N(A)=  0 if za is not 
cyclic we obtain d(Z, ,Zm) -- 0 and d(Z n, za)= 1 
when A is not cyclic. The various subgroups A 
which are possible are listed in (A2)-(A6). Note 
there is the remaining case of d(Z2,0(2))  listed 
under (A2). 

Next, note that N( (1} ,A)=  SO(3) and hence 
d ( { 1 } , a ) =  3-dimN(A) which yields the last ex- 
ception (A1). 

The infinite subgroups of SO(3) are all con- 
jugate to either $0(2) or 0(2). We claim that 
dim N(SO(2), 0(2) )=  1 from which it follows that 
d (SO(2) ,  0 ( 2 ) )  = 0. S u p p o s e  t ha t  3, 
N($0(2),O(2)). Then 3,O(2)3,-: D SO(2) There is 
only one toms in 3,0(2)3, -1 we must have 
3,SO(2)3, -1 -- SO(2). Thus,  3, ~ 0(2)  and 
N(SO(2), 0(2)) = 0(2). 

We now consider the case when 2: is finite and 
A is infinite. If A = SO(2) then 2; = Z,.  Using a 
proof similar to the last one shows that 
N(Z, ,  SO(2)) = 0(2) and hence d(Z, ,  SO(2)) = 0. 
We now assume that A = 0(2). There is one excep- 
tional case 2; = Z 2 which we consider first. We 
claim that dim N ( Z : , O ( 2 ) ) =  2 and hence 
d(Z2,O(2))= 1 as claimed in (A2). Note that if 
3, ~ N(Z2,0(2)) then 3,-:Z23 , c 0(2). Let o be the 
nontrivial element in Z 2. Since o is contained in 
exactly one toms SO(2) we see that each 3' 
N(Z2, O(2)) corresponds to a unique toms 
3,-180(2)3, which has a non-trivial intersection 
with 0(2). Since the space of tori which intersect 
0(2) nontrivially is two-dimensional we see that 
dim N(Z2,0(2))< 2. One can show that any 3, 
SO(3) whose axis of rotation lies in the plane of 
0(2) is in N(Z2, O(2)). The invariance of 
N(Z2,O(2)) under multiplication by 0(2) on the 
right, lemma 5.4a, shows that dim N(Z2, 0(2)) > 2. 

We now show that dim N(Z, 0(3))-- 1 if 2; is a 
finite subgroup of SO(3) equal to Z2. The salient 
feature of such Z is the existence of o 1 and o 2 in 
2; satisfying o:, 02 ~ 1. Since 2: is finite, there are a 
finite number of tori which intersect 2; and since 
all tori are conjugate there exist 3,1 . . . . .  3,, in F 
such that 

c 3,1 SO(2)3,x - 1 U . . .  U3,s SO(2)3,7:. 

We claim that 

0(2)  c N(2;,O(2)) c Y10(2) U . - -  Uys O(2 ). 

(6.3) 

Note that the first inclusion follows trivially from 
lemma 5.2a as N(2; ,0(2))~ N(O(2))= 0(2). As- 
suming the validity of (5.3) we see immediately 
that dim N(2;, 0(2))= 1 as desired. 

We now prove that the second inclusion in (6.3) 
is valid. Let y be in N(2;, 0(2)). Then, by defini- 
tion, yO(2)y -1 ~ 2;. We claim that 3,SO(2)3,-: n 
4= (1}. Since 3,0(2)3, -1D 2; it follows that 

oi = 7"ri7 - I ,  i - - 1 , 2 ,  
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for some z~ in 0(2). If either ~-~ is in SO(2) the 
claim is satisfied. If both ~ are in 0 ( 2 ) -  SO(2) 
then 

0102 = 3'Tlq'23' - 1  ~ 3'SO(2)3' -~ A 2 ,  

since ~':2 ~ SO(2). Since we have assumed OlO 2 ~ 1 
the claim is valid. 

Note that 3,SO(2)3,-~ is a torus which intersects 
Z in a nontrivial element. As such, it must equal 
one of the tori I,~SO(2)1,~ -1. This equality implies 
that 3'~-~3' E N(SO(2)) = 0(2). Thus, 3' ~ 3'~O(2) 
proving (6.3). [] 

We now apply propositions 5.3 and 6.2 to F = 
SO(3) and F = 0(3). Recall the notation d( ,~)= 
dim V z. 

Theorem 6.3. Let Z be a closed subgroup of SO(3) 
and assume that SO(3) acts irreducibly on V/. 

(I) If 2; is an isotropy subgroup of SO(3) then 
(B1) d(2;)> 0; and 
(B2) for each proper isotropy subgroup A ~, ,~ 

d(A) < d(,~). 
(II) If 2; 4: Zn then 2; is an isotropy subgroup if 

conditions (B) are satisfied. 
(III) (1} is an isotropy subgroup of SO(3) if for 

every proper isotropy subgroup A, 

d (A)  - dim N(za) < 21 - 2. 

(IV) Z ,  is an isotropy subgroup of SO(3) if (B) 
and 

( C ) a  d(A)  + 1 < d ( Z . )  

Proof. The necessity of conditions (B) follow di- 
rectly from the definition of isotropy subgroups. 
To prove the sufficiency we must use proposition 
5.3 and the formula (5.4) which has the form 

a( a ) + a ( z , A  ) < d(2;). 

The computations of proposition 6.2 are now suffi- 
cient to prove the remainder of theorem 6.3. We 
just make two observations. When A = F then 
(5.4) is just d(2;) > 0. So, we may assume A is a 
proper isotropy subgroup. At the other extreme 
2; = (1). It is obvious that d({1})= 2 l +  1, which 
when coupled with proposition 5.7 (A1) yields part 
(III). [] 

Remark. The situation with 0(3) is similar. Note 
that when - I  in 0(3) acts as the identity on 1:/ 
then considerations of isotropy subgroups of 0(3) 
reduce to questions about isotropy subgroups of 
SO(3). So we now restrict our attention to the 
irreducible representations of 0(3) in which - I  
acts as minus the identity on V~. 

Proposition 6.4. Let ~ ~ A be subgroups of 0(3) 
with A a class III subgroup. Then d(2;, A)=  0 
except for the following: 

(D1) d ( ( 1 } , A ) = 3 - d i m N ( A ) ,  fo ra l lA;  

(02)  d ( Z . , A ) = I  ( n > 2 )  

if A = O(2)- ,  D d 2 2m, Dm o r  O . 

d ( Z • , A )  = 1 ( n > a )  

Note. We have not listed which subgroups A actu- 
ally contain Z n or Z2, in this proposition. 

are valid for 

n > 6 :  

n = 5 :  

n = 4 :  

n = 3 :  

n = 2 :  

A = Dnk , 

A = D5~ and I,  

A = D4k and O, 

A = D3k , O ,  I a n d  T, 

za = O(2), D3k, O, I and T. 

Proof. Recall (6.2) which states that d (2 ; ,A)=  
d(~r(2;), or(A)). From proposition 6.2 we see that 
d ( ~ , A ) = 0  unless t r (2 ; )=Z, .  Hence, we have 
three possibilities: 2; = {1}, 2: = Z ,  or 2: = Z2". 
The first case is simple. Next, note that the class 
III subgroups A must have ~r(A) equal to one of 
the groups listed in (A2)-(A6). The possibilities 
are 0(2) (for Z 2 and Z2), D d z 2m, Dm and O-.  [] 
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Theorem 6.5. Let ~ be a closed subgroup of 0(3) 
and assume that 0(3) acts irreducibly on V t with 
- I  acting as minus the identity on V t. 

(I) If 2; is an isotropy subgroup of 0(3) then 
(B1) d(2;)> 0; and 
(B2) for each proper isotropy subgroup A 

2; d ( a )  < d(Z). 
(II) If 2 :¢  (1}, Z~,Z2n then Z is an isotropy 

subgroup if conditions (B) are satisfied. 
(III) {1} is an isotropy subgroup of 0(3) if for 

every proper isotropy subgroup A 

d ( A ) -  dim N(A) < 21 -  2. 

(IV) Z m is an isotropy subgroup of 0(3) if Z,  is 
an isotropy subgroup of SO(3) and, in addition, 
conditions (B) and 

d(a )  + 1 < d(Z.)  

are valid for 

n > 4 :  

n = 3 :  

n = 2 :  

A = D g  ,, or DZm ; 

A = D6dm, D~m or O-; 

A = 0(2) -, D4dm, D~m or D- .  

(V) Z2. is an isotropy subgroup of 0(3) if 
conditions (B) and (C)a are valid for 

n 1: A = O ( 2 ) - ,  d z = D2 m, Dm or O- ;  

n = 2 :  a=D4~2m+l ) ( m > l )  o r O - ;  

d ( m >  1). n >_ 3: A = DEn(Em+l  ) _ 

Proof. One combines the results of proposition 6.4 
and the enumeration of the subgroups of class III 
groups given in lemma 2.12 and mixes with the 
statement and proof of theorem 6,3. [] 

At this point we have all the information we 
need to determine when a subgroup is an isotropy 
subgroup. It only remains to compare the dimen- 
sions of the fixed points sets calculated in section 

4. This process, while rather lengthy, is straightfor- 
ward. We have two comments to make which may 
prove helpful. The first is that 

d ( ~ )  = [2//1~1] or [2//1~1] + 1 

for every finite N. This observation (proven by 
direct comparison with the formulas for the di- 
mensions of the fixed point sets already obtained) 
serves to help organize the computations and to 
prove the result that the exceptional groups are all 
isotropy subgroups for large I. The second com- 
ment concerns the fact that we have not demon- 
strated the converse of proposition 5.3. 

Theorems 6.3 and 6.5 state that this only pre- 
sents a problem for ~ = Z n. In this case the fixed 
point set can be easily computed explicitly using 
the weight space decomposition of V I. In the cases 
in which (5.4) of proposition 5.3 is not satisfied, it 
can be easily seen that each vector in the fixed 
point set of N has a larger isotropy subgroup. 
Thus, (5.4) does give a necessary and sufficient 
condition for ~ being an isotropy subgroup in 
O(3). 

As the calculations described above are 
straightforward, we will leave them to the reader. 
We give the results in theorems 6.6 and 6.8. 

Theorem 6.6. The following are the isotropy sub- 
groups of SO(3) acting on V t with l > 0: 

(a) 1, forl>_3; 

n _~/ ,  

(b) Z . ( n > 2 ) ,  fOr~n_<~,  

(c) D. (n>_2) ,  forn_<l; 

(d) T, f o r l = 6 , 7 o r l > _ 9 ;  

(e) O, for lg :1 ,2 ,5 ,7 ,11;  

(f). I, for l = 6, 10, 12, 15, 16, 18 
or l > 20 with l ÷ 23,29; 

(g) S0(2), fo r !odd ,  

(h) 0(2),  for l even. 

when ! is odd, 

when I is even; 
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The exceptional groups appear as isotropy sub- 
groups in a somewhat irregular fashion. However, 
for large / the picture stabilizes. 

Corollary 6.7. Let l > 30. The following are the 
SO(3) isotropy subgroups: 

(a) When / is odd: 
1, T, O, I, SO(2), Z.  (n < l), D. (n < l); 

(b) when l is even: 
1, T, O, I, O(2), Z .  (n <_ l /2),  D. (n <_ l). 

(b) When / is even: 
1. 1, T, O, O-,  I, O(2); 
2. Z, for n <_ l/2; 
3. Z[ . ,  for n < l/3; 
4. D., for n <_ l; 
5. D~, for n < / / 2 ;  
6. D d f o r l < n < l .  2n, 

We finish with the isotropy subgroups of 0(3). References 

Theorem 6.8. The following are the isotropy sub- 
groups of 0(3) acting on V t with l > 0 (the nontriv- 
ial representations): 

(a) 1, f o r l > 3 ;  

(b) Z. ,  for2<_n<_l /2;  

(c) Z•,  for n < l / 3 ;  

(d) D,, f o r ( l l < n < - l / 2 '  i f l i s o d d ,  
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(1) O(2)-,  f o r lodd .  

Corollary 6.9. Let 1> 30. The following are the 
0(3) isotropy subgroups. 

(a) When / is odd: 
1. 1, T, O, O-,  I, 0(2)-; 
2. Z, ,  for n < 1/2; 
3. Z~,,  for n < l/3; 
4. Dn, for n < / / 2 ;  
5. D,~, for n < l; 
6. Dza,, for n < 1; 
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