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0. Introduction 

This paper has two purposes: to study from the singularity theory point of 
view certain bifurcation problems which commute with the five-dimensional 
irreducible representation of the orthogonal group O(3) and to give some 
implications of this study for the Benard problem in spherical geometry. We shall 
now describe in general terms our results and compare them with the work of 
Chossat [3] whose paper motivated our own interest in the problem. 

The Benard problem is concerned with convection in a viscous fluid when it 
is heated from below. The fluid is assumed to be confined in a spherical shell of 
outer radius R, and inner radius qRo, where q is near 0.3. This choice of q is 
partially motivated by considering convection within the molten layer of the core 
of the earth (see Busse [ l ]  for further discussion). 

We consider the Binard problem in the Boussinesq approximation. In this 
model there is a trivial solution representing pure heat conduction radially 
outward. As the temperature on the inner sphere (that is, the Rayleigh number 
R) is increased, this trivial solution loses stability, say at  R = R'. The Benard 
problem is the study of the resulting bifurcation. Chossat studies this problem 
using the Lyapunov-Schmidt reduction. In the Boussinesq approximation the 
fluid is driven from the pure conduction state by a term in the momentum 
equation involving the gravity vector g(r) and a term in the temperature equation 
involving the gradient of the conduction temperature VT,. Assuming that the 
production of heat and the density are uniform throughout the shell, these 
vectors have the form 
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where yi, are constants. If 

(0.2) YI /Y2  = P I / P 2 3  

the equations governing the motion linearized about the pure conduction state 
are selfadjoint. We shall refer to the serfaqoint case when (0.2) is satisfied. 

For the selfadjoint case the kernel of the linearized Boussinesq equations at 
R = R* is five-dimensional, having the angular dependence of the spherical 
harmonics of order 2. We denote this five-dimensional space by Y. The 
Lyapunov-Schmidt reduction shows that solving the full Boussinesq equations 
for steady state solutions near the pure conduction solution is equivalent to 
solving reduced bifurcation equations of the form 

(0.3) H ( x , X )  = 0, 

where H:  Y X R+ Y is C“ and X = R - R*. Moreover this reduction implies 
that the linear terms (d ,H)  are zero and that H commutes with the action of 
O(3) on spherical harmonics, i.e., 

H ( y  x , h )  = y H ( x , h )  

for every y E O(3). We discuss the above issues in more detail in Section 6. We 
remark that Chossat shows in the selfadjoint case that the quadratic terms in 
(0.3) are also zero. 

In this paper we study the form the reduced bifurcation equations (0.3) can 
assume consistent with the symmetry (0.4). This analysis provides a specific 
example of the general theory developed in [4], [5] .  Our goals are two-fold: 

(A) To give conditions on H and its derivatives at the bifurcation point 
which ensure that (0.3) may be put into a simple normal form by an appropriate 
change of coordinates. 

(B) To enumerate all qualitatively distinct, small perturbations of the equa- 
tions (i.e., enumerate these perturbations up to changes of coordinates). We 
consider two cases in detail: 

(i) The quadratic term in (0.3) is non-zero. 
(ii) The least degenerate situation where the quadratic terms in (0.3) are zero. 
Our results concerning these two problems are summarized in Theorem 4.7. 

In Section 5 we discuss the solution sets of (0.3) in the two cases. 
The solution of problem (B) for case (ii) will allow us to comment on 

non-selfadjoint perturbations of the selfadjoint problem. This is the major point 
in which our analysis differs from Chossat’s. For example Chossat shows that the 
bifurcating solutions are always axisymmetric in the selfadjoint case. We show 
that nonaxisymmetric solutions can result from arbitrarily small non-selfadjoint 
perturbations. 

We also correct a statement of [3] that the stability of the bifurcating 
solutions depends “on the sign of a certain coefficient.” It turns out that a stable 
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solution is uhvuys present; the coefficient in question merely determines whether 
the preferred motion is upwards at the equator and downwards at the two poles 
or the reverse. (See Sections 5 and 6 for details.) 

Our presentation relies more heavily on group theory than [3]. An attribute of 
the five-dimensional irreducible representation of 0(3) will permit us to reduce 
studying the 5 X 5 system of equations (0.3) depending on a parameter to a 2 X 2 
system depending on a parameter. The reduced system will have a solution set 
consisting of curves in R3 while the original system has a solution set consisting 
of three- and four-dimensional varieties in R6. This is a significant simplification 
allowing one explicitly to calculate and picture the bifurcation diagrams asso- 
ciated with this problem. Moreover, the singularity theory analysis is technically 
simpler in the 2 x 2 case, a point on which we will elaborate later. 

It  should be noted here that the reduced problem 

(0.5) G ( x , X )  = 0, 

where G : R2 X R-+ R2 commutes with the standard representation of the permu- 
tation group S, (thought of as symmetries of a triangle) on R2. This problem has 
independent interest of its own; see, for example, the work of Buzano, 
Geymonat, and Poston [2] on the buckling of a triangular beam. Our results, of 
course, apply equally to this case. 

Finally, we note that our analysis relies on the explicit calculations of Chossat 
regarding the mapping H in (0.3) obtained from the Lyapunov-Schmidt reduc- 
tion. In his analysis Chossat was forced to make several non-degeneracy assump- 
tions about higher-order terms in H ;  we are forced to make the same assump- 
tions. Aside from elegance, the advantage of the singularity theory approach is to 
allow the partial study of the non-selfadjoint case while using no new additional 
information other than that needed to study the selfadjoint case. 

This paper has the following organization. In the first section we describe 
explicitly the needed group theory. In the second section we calculate the general 
information required to do singularity theory on (0.5) and apply these results in 
Section 3 to study the two singularities of interest mentioned above. Section 4 
contains the reduction from the 5 X 5 system to the 2 X 2 system along with the 
interpretation of the results of Section 3 for the 5 x 5 case. In Section 5 ,  we 
present explicitly the bifurcation diagrams associated with the problems of 
Section 3 along with the linearized stability analysis of the corresponding 
solutions. The last section contains the interpretation of the results for the 
Benard problem. 

1. Group Theoretical Preliminaries 

The irreducible five-dimensional representation of 0(3), the one we consider 
in this paper, has a very special form which distinguishes it from higher- 
dimensional irreducible representations of O(3).  This special form permits the 
reduction of (0.3) from a 5 X 5 system to the 2 X 2 system (0.5). In the language 
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of Lie groups, this representation is the representation of k on p in the k @ p  
decomposition of S1(3, W). Kostant and Rallis [6] study such representations and 
some of our results below are a special case of their theory. More pragmatically, 
let 

(1.1) 

Then O(3) acts on V by similarity, i.e., 

V = { 3 x 3 symmetric matrices A with trA = O}. 

( 1 4 y - A = yAy' for y E O(3).  

This is the presentation of the five-dimensional irreducible representation of O(3)  
with which we work. We note that this presentation is considered in [8]. Let 
D c V be the two-dimensional subspace of diagonal matrices. 

LEMMA 1.3. Let H : V +  V be equivariant with respect to the action of 0(3 )  
given in (1.2). Then D is invariant under H and H is determined by its restriction 
to D .  

Proof: The assumption that H is equivariant means that H ( y  A )  = 
y H ( A ) .  Note that if y fixes A ,  then y also fixes H ( A )  as 

( 1.4) H ( A )  = H ( y  ' A )  = y ' H ( A ) .  

Let 

0 0  0 

0 1  0 - 1  
y 1 =  [ -a  - I  01 and y 2 =  [a - 1 :]. 

It is easily seen that D = { A  E VI y, A = y z * A  = A ) .  Hence, if A is in D, then 
A and H(A)  are fixed by y ,  and y2 .  So H ( A )  E D. Finally, for A in V ,  choose y 
so that y * A  is in D. (This is possible since every symmetric matrix may be 
diagonalized by an orthogonal matrix.) Then H(A)  = y ' H ( y  A ) .  

Note that the subgroup of O(3) which both preserves D and acts faithfully on 
D is the group S,  of permutations on three letters (the diagonal entries). We shall 
show in Section 4-though Lemma 1.3 indicates why-that studying bifurcation 
problems H commuting with the five-dimensional representation of O(3) is 
equivalent to studying bifurcation problems 

(1.5) G : D  x R+D 

commuting with this action of S,  on D, where G is the restriction of H to D x R. 
Note that Lemma 1.3 implies that the image of G is D. In Sections 1-3 we 
concentrate on problems of the form (1.5). 
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We shall use the notation A for the permutation group S, which acts on D. 
This group also acts naturally on C, being generated (as a group) by the 
operations 

(1.6) Z + Z ,  z + e i a z ,  

where a = $ T. Here i denotes the complex conjugate of z .  There is a (real) linear 
isomorphism of the (real) two-dimensional space D with C such that the action 
of A on D assumes the form (1.6). Indeed one such isomorphism is given by 

d ,  = x ,  d* = t (  - x + b y),  4 = ;( - x - b y ) ,  

where di are the entries of a diagonal matrix and ( x ,  y )  are Cartesian coordinates 
in the complex plane. Below we use z = x + for the complex coordinate on D 
associated with this isomorphism. We find it preferable to use the respresentation 
of A on C since there one can compute the zero set of G more easily than in (1.5). 

A point which we should emphasize is that the techniques of singularity 
theory are local in nature. Although we write the domain of our functions as R5, 
V, D, C, etc., we are implicitly thinking of these domains as some unspecified 
neighborhood of the origin in these spaces. No confusion should result from this 
convention except perhaps when we explicitly graph the zero set of G. Then we 
shall disregard branches of G = 0 which occur far away from the origin. The 
technical device which permits us to work with an unspecified neighborhood of 0 
is the notion of a germ. A germ is an equivalence class of mappings, two 
mappings being equivalent if they are identical on some neighborhood of the 
origin. Pragmatically, one can work with germs as if they were functions. 

We now set our notation. Let g be a compact group acting orthogonally on 
R"; denote the action of y E g on x E R" by y. x .  A function f :  R"+R is 
invariant if f(y x )  = f ( x ) .  The set of germs of invariant C " functions forms a 
ring denoted by &:. A mapping G : R" + R" is equivuriunt if G(y - x )  = y G(x) .  
In this case one can also say that G commutes with the action of g. The set of 
germs of equivariant C" mappings, denoted by &:.", forms a module over the 
ring &:. The singularity theory calculations require the use of a second module. 
Consider those mappings T : R" X R" + R" which are linear in the second variable 
and satisfy T(y x ,  y w )  = y T(x ,  w).  The space of such T's is also a module 
and is denoted by % f n .  We study here bifurcation problems G : R" x R+ R". 
The equivariance condition in this case is G(y . x , X )  = y G(x ,X) ;  that is, the 
group acts trivially on the bifurcation parameter A. Thus, we shall use the 
notation &:+ ,, &:+ ,,", and %:+ to indicate that the bifurcation parameter X is 
implicitly included in the discussion. 

We note that we shall consider only two groups in this paper r = O(3) and 
A = S,. We shall also consider only one representation of each of these groups 
though in each case we look at two presentations of these representations. As we 
have discussed, we shall use the representation of r on spherical harmonies of 
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order 2 and the representation of r on V .  We shall use the representation of A on 
D and the representation of A on 63. One of our main points is that the 
singularity theory analysis of bifurcation problems H commuting with r is 
identical to the singularity theory analysis of bifurcation problems G commuting 
with A. Moreover, for the remainder of this paper we use H when referring to 
equivariant mappings relative to r, and C when referring to equivariant map- 
pings relative to A. 

Recall that a finitely generated module A over a ring R is said to be free if 
there is a set { fl ,  - - , fh ) in A such that every f E A is represented uniquely as 
f= a I f ,  + - * + a k h  where each a, is in R .  The set (f,, * - * ,h )  is called a 
basis for A and we use the notation A = R { f,, - . . , }. 

We now analyze the two-dimensional representation of A on C. 

PROPOSITION 1.8. (a) Let f be in &$. Then there is a C" germ g(u ,u )  such 
lhat 

(*I f ( z )  = g(lzl2,Q..z3). 

Moreover, iff is a polynomial, then there is a unique polynomial g( u, v )  saiisjving 
equation (*) 

(b) &?.2 = & : { z , t 2 ) ,  
(c) 9R;.2 = G ; {  w , 2 w , z 2 B , z 3 w } .  

Note. We shall refer to the four generators of bX;.2 by To, T,, T,,  T 3 ,  where 
the subscript i refers to the degree of homogeneity of T, in the z-variable. 

Proof: (a) A theorem of G. Schwarz [9] states that (p is onto if lz12 and 
91c ( z 3 )  form a Hilbert basis for the ring of invariant polynomials. Let 

( 1.9) f ( z )  = Za,,z?" 

be invariant and real-valued. Thus 

(1.10) aJh = a,,, alk = 0 unless j = k (mod3), and aJx = 

It follows that a basis for the vector space of invariant polynomials is given by 

Observe that 

(1.12) 
- 
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We see by induction, using (l.12), that z 3 /  + F3‘ can be written as a polynomial in 
zZ and 3 2  z3 .  Finally, if g is a polynomial satisfying g(z2, 3 s  z 3 )  3 0, then g E 0 
since the image of z +(zf, 92s z 3 )  contains an open set in R’. 

(b) Again, we work first on the level of polynomials. Let G : C + C be an 
equivariant polynomial map where 

(1.13) G ( z )  = ZaikzJFk. 

The conditions on the ajk induced by equivariance under (1.6) are 

(1.14) ajk = ujk and aik = 0 unless j = k + 1 (mod3). 

Thus a basis for the equivariant polynomials in St.’ is 

(1.15) ( z q k z 3 / + I ,  j > k, and ( z 2 ) J I 3 / + ’ ,  j < k, 

where I 2 0. Observe that 

- 

By induction, we see that z and 2’ generate the module of equivariant polynom- 
ials over the ring of invariant polynomials. A generalization of Schwarz’s theo- 
rem by Poenaru [7], page 65, states in this case that every equivariant function 
may be written as 

(1.17) f(lz12, qS Z’)Z + g(lt(’, qS z3)z2.  

To show that z and 2’ are independent assume that (1.17) is equal to 0 and 
that z = x + b. Then, assumingy # 0, 

(1.18) f =  2xg and x f +  (x ’  - y 2 ) g  = 0. 

Thus 

(1.19) (3x2 - y’) g = 0 

and g = 0 by continuity. Hence f = 0. 
(c) Let T(z ,  w) be a polynomial in %*’. Then 

(1.20) T ( z , w )  = Z(u,,z&kw + bJkz;2%). 
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The equivariance conditions generated by (1.6) imply 
- a$ = ajk and a,k = 0 unless j = k (mod 3), 

bJk = bJk and bjk = 0 Unless j = k + 2 (mod3). 

The proof that the four generators of Em;,, are as listed in Proposition 1.8(c) and 
that those generators are independent proceeds in a fashion similar to the proof 
of (b). The details are left to the reader. 

One has, of course, a corresponding statement for the representation of A on 
D;  namely, 

- (1.21) 

PROPOSITION 1.22. (a) Let f be in &;. Then 

(*) f(A) = g(tr(A2),detA), where A E D. 

(b) &t,2 = & t { A , A 2  - f tr(A2)I}, where I is the 2 X 2 idenfity matrix. 
(c) Em;., = & : ( B , A B  - 5 tr(AB)I,A2B - f tr(A2B)I,tr(A2B)A}, where 

B E D .  

Proposition 1.22 may be proved in a fashion analogous to the proof of 
Proposition 1.8, or proved directly using Proposition 1.8 as follows. From (a) of 
Proposition 1.8 one sees that there is precisely one invariant polynomial homoge- 
neous of degree 2 ( 1 ~ 1 ~ )  and one homogeneous of degree 3 (ao z3 ) .  Since t r A Z  
and detA are homogeneous with the same degrees, (a) of Proposition 1.22 is 
proved. Similarly, by Proposition 1.8 (b) there is only one equivariant map 
homogeneous of degree 1 and one homogeneous of degree 2, so (b) of Proposi- 
tion 1.22 follows. Note that there is one term in homogeneous of degree 0 
(To), one homogeneous of degree 1 (T,), two homogeneous of degree 2 ( T2 and 
Iz12To) and three homogeneous of degree 3 (T3, Iz(’T,, Q C  z3To). If we label the 
generators of in (c) of Proposition 1.22 by S o , S , , S 2 , S 3 ,  respectively, one 
can show that the same structure (in degrees of homogeneity) holds. In particu- 
lar, S,  and tr(A2)S0 are independent as are S3,  tr(A2)S, and det(A)S,. Hence (c) 
is proved. 

There are several observations which follow directly from Proposition 1.22. 
The first involves an issue left unresolved in Lemma 1.3. 

LEMMA 1.23. Let G : D + D be in &;,2. Then G extends uniquely to an 
H :  V +  V in &$. 

Proof: In Lemma 1.3 we showed that G extends uniquely to an H; what we 
could not show at that point was that H is a smooth germ. However in view of 
Proposition 1.22, the map G has the form 

G ( A )  = a(trA2,detA)A + b(trA2,detA)(A2 - 4 tr(A2)I). 
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Since tr(A2), detA, and A' - + tr(A2)l clearly extend to smooth invariant and 
equivariant functions on V, the result follows trivially. 

In exactly the same fashion one has: 

LEMMA 1.24. Let S be in %$.,. Then S extends to a mapping in "x!,,. 

The proof is identical to that of Lemma 1.23 since the generators for the 
module WA,, (So, S,, S,, and S,) extend smoothly. Note that we do not claim 
that this extension is unique; it is not. Consider, for example, tr(AB)A which has 
the same restriction to D as - + tr(A ' ) B  + 3[A2B - -f tr(A 'B)l]. 

We mentioned in the introduction that it is technically simpler to work with 
the two-dimensional representation of A than the five-dimensional representation 
of r. The reason is that it is much simpler to find generators for a;,, than for 
"n:,, * 

2. Computations of BG 
Let G : W" x R + W" be a bifurcation problem with symmetry group g, i.e., 

G ( y x ,  A) = y G ( x ,  A) for all y E g. Let G and H be two such bifurcation problems. 
As defined in [5], G and H are g-equivalent if 

where X ( 0 , O )  = 0, A(0) = 0, det(d,X)(O,O) > 0, h'(0) > 0, and T(x,A)  is an 
invertible n x n matrix. Moreover, T and X satisfy T(yx,A)y = y T ( x , A )  and 

Observe that for the representations which we study the linear part of 
X,(d,X)(O,O), is cl  for some real number c. So det(d,X)(O,O) > 0 if either n is 
even or n is odd and c > 0. In this paper we use two irreducible representations, 
the five-dimensional representation of O(3) and the two-dimensional representa- 
tion of S,, and we relate these representations by a restriction mapping. Thus if 
we allow S,-equivalences which have c < 0, then such equivalences will corre- 
spond to 00)-equivalences which are orientation reversing. Therefore, we assume 
in this paper that S,-equivalences always satisfy c > 0. 

We showed in [5] that the computation of a universal unfolding relative to r 
depends on computing a basis for the vector space 

X(YX,  A) = Y X ( X ,  A). 

where i G  is the submodule of over the ring generated by 

(2.3) fG= { ( d , G ) ( X ) +  T O G } ,  



90 M. GOLUBITSKY AND D. SCHAEFFER 

X and T satisfying the equivariance conditions in (2.1) (though not the invertibil- 
ity conditions). The way that EG is obtained is to consider a one-parameter 
family G,(x ,X)  of equivariant bifurcation problems such that Go = G and, for 
each t ,  G, is g-equivalent to G. We assume, however, that, in (2.1), A(A, t) E h for 
these g-equivalences. Then (d/dr)G,I, = o  is the typical element of EG. It should be 
clear from (2.3) that EG is a submodule of and that generators for this 
module may be determined once generators for the modules of the X ' s  and T's 
are known. Note that the module of the X's  in (2.3) is just and that the 
module of the T's is identified with "xi+ I,n. 

We observed in [5 ]  that if certain assumptions were satisfied, then the 
symmetry group g could be removed from the calculation (2.2). In particular, we 
needed to know that the modules of the T's and X ' s  are each finitely generated, 
that the module of the X ' s  is free, and that the ring of polynomial invariant 
functions 9i+ I C & $ + I  is a polynomial ring. As we saw in Section 1 these facts 
are true for the representation of S, on R2. 

Let G : R2 x R + R2 be a bifurcation problem with symmetry group A = S,. 
As in Section 1 we view G : C X R + C. We see by Proposition 1.8(b) that 

(2.4) G ( z , h )  = a(u,u,X)z + b(u,u,X)i2,  

where u = zf and u = %.c. z3.  The parameter h is unaffected by the group action. 
Let &, be the ring of germs of C" functions from R2 X R+R with coordi- 

nates (u,o,h) on R2 X R. Let &3.2 be the module of germs of C" mappings of 
R2 X R + R2 over the ring &,. Proposition 1.8 allows one to eliminate the group A 
from the singularity theory calculation implied by (2.2). More precisely, define 

(2.5) by @ ( G ) = ( a , b ) ,  

where G has the form (2.4). Observe that 
that 

is an isomorphism. It follows directly 

PROPOSITION 2.7. Let G be as in (2.4). Then @(AG) is generated by the six 
generators 

(i) 

(ii) 

Proof: 

(a ,b) , (ub ,a) ,  (ua + ob,O),(ua + u2b,0), 
(2uau + 3ua,,b + 2ubu + 3ob,),(ub + 21x4, + 3u2a,,2ubu + 3u2b,). 

Let To, T I ,  T,, T3 be the generators for the module %;., given in 
Proposition 1.8(c). Let GI, G, be the generators for the module &;,,. Then 
T(z, G(t,X)),  i = 0, - - , 3, and (d,G)(G,), i = 1,2, are generators of the module 

(2.8) 
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d G  (see (2.3)). It is an easy calculation to show that the span of the generators 
TiG is the same as the span of the generators listed in (2.8Xi). 

Using a suggestion of D. Sattinger we compute the last two generators as 
follows. Observe that the Jacobian of G may be computed using complex 
notation as 

Letting 6G act on ( z )  one finds 

(2.10) 6 G ( w )  = Gzw + G i l .  

An easy computation yields 

G, = a + UU, + $u2b, + +uvz3 + buZ3, 
(2.1 1) 

G2 = (2b + ~ U U ,  + ub, + 3ub,)Z + (a ,  - tUb,)z2 

Next, using (2.10) and (2.11), one computes 

BG(z) = ( a  + 2ua, + 3ua,)z + (26 + 2ub, + 3ub,)Z2, 
(2.12) 

6G(Z2) = (2ub + 2ua, + 3u2a,)z + (a + 2ub, + 3u2bu)Z2. 

One sees that the generators in (2.12) are equivalent to the ones in (2.8)(ii). 

3. Analysis of Specific Singularities 

We have shown that bifurcation problems commuting with the action of A 
have the form 

(3.1) G(x ,y ,X)=a(u ,u ,h)z+ b(u,u,X)Z2, 

where u = x2 + y 2 ,  o = x 3  - 3xy2, and z = x + Q. We wish to analyze-up to 
A-equivalence-certain singularities which are present in the Benard problem. 

We assume that 0 = ( O , O , O )  is a bifurcation point for G and that the 
bifurcation parameter X enters non-singularly in G; that is 

(3.2) a(0)  = O  and ax(0) # O .  

We consider two situations: 

(3.3) b(0) + 0, 
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(3.4) b(0)  = 0, 
where the linear terms of a and b are nondegenerate, defined as follows. If we 
write 

a(u ,o ,X)  = Au + Bo + ah + - . , 
b(u,u,X) = CU + Do + PA + - * * , (3.5) 

then G in situation (3.4) is non-degenerate if all of the conditions (3.6) hold: 

(i) A # 0, 
(ii) a! # 0, 

(iii) 
(iv) 

aC - PA # 0, 
A D  - BC # 0. 

Note that (3.3) is the simplest case where bifurcation occurs while Chossat [3] 
has shown that (3.4) holds for the selfadjoint case. The non-degeneracy condi- 
tions (3.6) define the simplest case when (3.4) holds. Although we have analyzed 
more singular problems, we do not present the results here. 

PROPOSITION 3.7. (A) Assume a(0)  = 0, b(O).a,(O) ZO. Then G is A- 
equivalent to 

(3.8) N(z,X) = 2 ’ 2  Xz, 

where sgn(Xz) = sgn(b(0) a,(O)). 
(B) codim N = 0, i.e., all small perturbations of N are &equivalent to N. 

THEOREM 3.9. (A) Assume a(0) = b(0)  = 0 and that G is non-degenerate (as 
in (3.6)). Then G is A-equivalent to 

(3.10) N(z,X) = ( u  ? X)z + (k u + do)r2, 

where 

(i) sgn (Az) = sgn(Aa) in (3.6)(i), (ii), 
(3.1 1) (ii) sgn (u.T2) = sgn(aC - PA) sgn(Aa) in (3,6)(iii), 

(iii) sgn(d)  in (3.10) = sgn(A D - BC) in (3.6)(iv). 

In fact, d = ( A D  - BC)a2/ (aC -  PA)^. 

(3.12) 

(B) codim N = 2 and a universal unfolding is given by 

F(z,A,D,E) = ( u  2 A)z + (2 u + Du - E ) 2 ,  

where E is near 0 and D is near 6. 



BIFURCATIONS WITH O(3) SYMMETRY 93 

The results are obtained in three basic steps. First one puts the lowest-order 
terms in the normal form N; thus G = N + p ,  where p represents the “higher- 
order” terms in G. Second, one shows that bG = bN for all possible p .  Then one 
applies Theorem 1.13 of [ 5 ]  to show that G is A-equivalent to N thus proving part 
A .  For the final step, let &, denote the space of germs of real-valued C” 
functions depending on the one parameter X and let i3G/i3X = U ~ Z  + b,F2. One 
then computes a complementary vector subspace Q to 

(3.13) 

in &$,2. (Note that AG is not necessarily a submodule of &!2 over the ring &$. As 
a result thes? computations are best done by first finding a complementary 
subspace to AG.) The dimension of Q is defined to be the codimension of G. 

For computational convenience we recall Nakayama’s lemma (in the form we 
need). Let 312. be the (maximal) ideal in &, generated by the coordinate functions 
u,  u, A. Let S be a submodule of &3*2 over the ring &, generated by p I ,  - , pk. 
(For example, let S =  @(bG).) Let q l ,  * * - , q k  be in 9R * S, the submodule 
generated by 111 * s, where ~ I L  E 312. and s E S. Then p I  + q l ,  - - - , pk + qk is 
another set of generators for S. 

Let 

9rLk =%,*-.,9R 
k-times 

be the ideal in &, consisting of those functions whose Taylor expansion at  0 
begins with terms of order at least k. We shall use the notation that mk is some 
unspecified element of GXk . 

Proof of Proposition 3.7: Since b(0) # 0, one sees that G is A-equivalent to 
(l /b)G = clz + F2, where a“ = a / b .  One can rescale X so that lZ,(O)l = 1. Thus 
one may assume that G = N + p z ,  where p E &$ satisfies p ( 0 )  = px(0)  = 0. We 
now see that the first three terms in (2.8)(i) and the first term in (2.8)(ii) have the 
form (assuming p = a,u + a2u + h + - * ) 

(3.14) ( a l u + a 2 u + h + m 2 , 1 ) ,  (u,m,), (u+m2,0) ,  (2a,u+3a2v,1).  

Multiplying the fourth element by m, and subtracting from the second yields 
( u  + m2,0) E @(bG). Moreover, subtracting the fourth generator from the first 
yields an equivalent set of generators 

(3.15) (A - a,u - 2a2u + m2,0), ( u  + m2,0), (u + m2,0), (2a,u + 3a2v, I ) .  

By Nakayama’s lemma, the first three elements in (3.15) generate the submodule 
(%,O). It follows from the fourth generator of (3.15) that (0 , l )  E @(AG). As a 
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result, @ ( i G )  = (31t,O) G3 (0, S3) which is independent of p .  Hence (using Theo- 
rem 1.13 of [ 5 ] )  G is A-equivalent to N. Finally, observe that @(AG) = &3.2 as 

In order to prove Theorem 3.9, we proceed through the three steps outlined 
above. We begin by computing the general A-equivalence up to first order. Our 
approach is to compute the lowest-order terms of 

(3.16) 

a,(O) # 0. 

G ”  = T ( z ,  A)G(Z(z, A), A@)), 

where 

(3.17) Z = ~ Z + E ~ ’ ,  A = a X +  

and 

(3.18) (in the notation of Section 2). 

Here 6, E ,  p, 7 , + ,  J/ are functions of u = zZ, o = Q C  z3 ,  and A. Note that T(0,O) is 
invertible and Z and A are orientation preserving changes of coordinates: hence 

(3.19) p ( 0 )  # O  6(0) > 0 and u > 0. 

T = pT, + TT, + +T2 + J/T, 

We use the following notation: 

G(z,A) = uz + bZ2, 

G(  Z ,  A) = a’z + b’T2, 

G ”  = T G ( Z , A )  = a”z + b“L2, 

(3.20) 

Since 

(3.21) 

one has 

G(Z,A)  = u ( Z , A ) Z  + b ( Z , A ) Z * ,  

(3.22) 
a ’=  S u ( Z , A )  + 2 ~ ( 6 u  + e o ) b ( Z , A ) ,  

b‘ = CU(Z,A) + (6’ - <’u)b(Z,A).  

Also one computes 

a” = (p + +U + 24m)a’ + (TU + 2@ + J/u2)b’, 

b” = (T - @)a’ + (p - + ~ ) b ’ ,  
(3.23) 

U ( Z )  = zz= 6% + 2SEU + €2U2, 
(3.24) 

u ( z )  = ;(z3 + Z 3 )  = a3” + 362Eu2 + 3tkzuO + 2E302 - 2c3u3 
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Now one can compute G ”  to first order. Let 

G =  ( A u  + BU + ah)z + (CU + DU + /?h)F2 + * * * , 

G ”  = ( i u  + ku + iu’h)z + (CU + i o  + ph)Z2 + * * * ; 
(3.25) 

(3.26) 

then 

A“= pS3A, 

k =  p a 2 ( 2 d  + S2B) ,  

l? = pSua, 

c = (76 + p E ) s 2 ~  + ps4c, 
d = (76 + p)(26cA + a 3 B )  + pS3(2cC + S2D) ,  

p = (76 + p ) u a  + p62up, 

where p, 6, u, r ,  c are constants and p # 0, 6 > 0, u > 0. 

LEMMA 3.27. (i) A”d - kc = p2S8(AD - BC) ,  
(ii) SC - /?A” = p 2 u ~ 5 ( a ~  - /?A), 
(iii) A”; = p264uAa. 

The proof is a straightforward calculation. From (3.26) and Lemma 3.27 one 
sees that the four non-degeneracy assumptions (3.6) are invariants of A- 
equivalence. 

Note. 
recover the formula for d in (3.1 I ) .  

By using Lemma 3.27(i) and (iii) and the fact that iu‘ = p6ua one can 

Proof of Theorem 3.9: We first show that the lowest-order terms in G can 
be put in the form (3.10) by a A-equivalence. Choose c and T by 

(3.28) E = - S 2 B / ( 2 A )  and r6 + p = -p6 ’P /a .  

Then (3.26) becomes 

A”= pS3A, 

(3.29) 

c = pS4(aC - /?A) /a ,  

iu‘= p&a, 

i = (*), 

p= j = O .  
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One can now choose p so that A’ = 1,6 so that d = sgn(aC - PA) * sgn(aA) 
and u so that G = sgn(Aa). (Recall that 6 and u must be positive). Note that 
s g n ( D )  in (3.10) is determined by Lemma 3.27(i). 

We may now assume that G has the form 

(3.30) G = ( u + ~ ) z + ( u +  Du)T2+ * . .  = N +  P 

since the cases with the other signs are identical. The second step is to prove that 
EG = EN for all such G and for N as in (3.10). From (2.8) the generators for 
@(KC) have the form (where I U  indicates an element of CXk ). Note the change 
of basis from (2.8)(i) indicated by (3.31)(iii) and (iv): 

(i) 

(ii) 

( u  + h + 1~~ 2 ,  u + Do + 111 2 ,  = ( a ,  b), 

(u2  + Duu + III ’, u + X + 111 ’)  = (ub, a),  

(iii) (uu + Do2 + 3, - u2 - DUO + ’) = (ub, - ub), 
13.3 1) 
\ I  

(iv) uu + Du2 + 111 ’) = ( - u2b, ub), 

(v) (U + 111 2 , j ~  + 2D0 +in 2 ) ,  

(vi) ( v  + 2, u + 2 ). 

One may use (i) and (ii) to eliminate X from the higher-order terms in the 
generators (iii)-(vi). Thus we think of (iii)-(vi) as generators of a submodule of 
&2,2 .  Nakayama’s lemma states that the ideal generated by u + m2 and u + m2 in 
&* is equal to the maximal ideal 3R. generated by u and u. Thus we may replace 
(v) and (vi) by 

(v’) ( u , ~ u  + 2D0 + i n 2 ) ,  

(vi‘) (u ,  u + 111 2 ) .  

(iii’) (uu + Do’, - u2 - Duo + 
(iv’) (0, uu + Do2 + nl ’). 

Consequently (iii) and (vi) may be replaced by 

Here one shifts the third-order terms in the first coordinate to third-order terms 
in the second coordinate using (v’) and (vi’). Next replace (iii’) by -(iii’) + 
u(v’) + Du(vi’) to obtain 

Observing that the quadratic terms in (iii”) and (iv’) are relatively prime allows 
us to conclude-by using the following lemma-that (0, a’) C 3R. @(iG). 

(iii”) (0, u2 + ( D  + $)uu + 3 Do2 + ni ’). 

LEMMA 3.32. Let C be the ideal in 6 ,  generated by p and q, where p = p 2  + 
111- , q = q2 + 171 and p 2  and q2 have no common factors. Then %’ = 3R.f and p 2 ,  
q2 form a set of generators for C. 

3 
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Proof: This lemma is known (cf. [ 1 I]); we include a proof for completeness. 
The case where p ,  and q2 have linear factors is the case of interest. Assume 

(3.33) p z  = 1,1, and q, = t l t  , m ,. 
We claim up,, vp,, uq,, oq, are all linearly independent. If this is true, then 
%(p, ,q , )  = 3n3 since the space of homogeneous cubics has dimension 4 as a 
real vector space. By Nakayama, %!2 = % ( p z , q 2 ) .  

To prove the claim, assume 

(3.34) (u + BV)PZ + (YX + 6Y)qz = 0. 
Then the factors I, and I ,  must each divide ( y x  + Sy)tm,m2. Thus one of I, and I ,  
must divide one of m , and m2 implying that p ,  and q2 have a common factor. As 
this contradicts our assumption, (3.34) is not possible unless a = /3 = y = S = 0. 

We return to the proof of the theorem. Note that (v') and (vi') imply that 
3n3G3*, c %@(dG). Next one checks that the six quadradic terms given by u(v'), 
v(v'), u(vi'), ~(vi ') ,  (iii") and (iv') are linearly independent over W. Thus %'&3,2 

c @(KC). Finally, one has 

(3.35) q d ~ )  = E I L ~ E ~ , ~  + R{(U + X , U  + D O ) , ( O , U  + x ) , ( u , $ u  + ~ D U ) , ( U , U ) ) ,  

which is independent of the higher-order terms in G. So we conclude that 
dC = dN and that G is A-equivalent to N. 

To obtain part B of the theorem, note that 

(3.36) 

It is now easy to show that 

@(AG) = @(dG)  + R{(l,O),(X,O)}. 

(3.37) 

Apply the unfolding theorem in [ 5 ]  to yield the result. 

4. Bifurcation Problems Commuting with O(3) 

We wish to show that the singularity theory of bifurcation problems commut- 
ing with the five-dimensional representation = O(3) on V is the same as for 
bifurcation problems commuting with the two-dimensional representation of 
A = S3 on D. We showed in Lemma 1.23 that the module &I.s over the ring &: is 
isomorphic to the module &$,, over the ring &$, this isomorphism being given by 
restriction and denoted by \k. 
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PROPOSITION 4.1. Let H I  and H ,  be in with GI and G2 in &;., their 
restrictions. Then H ,  and H ,  are r-equivalent if and on4 if GI and G, are 
A-equivalent . 

Proof: First we assume that GI and G, are A-equivalent; then 

(4.2) GI(A,  A) = T ( A  3 A) G , ( X ( A ,  A), A(A)), 

where T is in %;., and X is in &!,,. 
Lemmas I .23 and I .24 show that there exist smooth extensions of both X and 

T to V which we denote by Z and S. Hence S ( A , A )  H,(Z(A,A) ,A(A))  is a 
smooth extension of G,(A,h)  to V .  As state in Lemma 1.23 the extension of a 
given G is unique; hence it follows that 

(4.3) H , ( A , h )  = S(A,A) - H 2 ( Z ( A y A ) 4 A ) ) .  

To prove that the equivalence of the H’s  imply the equivalence of the G’s, we 
assume that (4.3) holds. If we knew that for each diagonal matrix A in D, 
S(A,  A) : D + D, then we could obtain (4.2) from (4.3) by restricting to D. This 
fact is proved as follows. Recall from the proof of Lemma 1.3 that A E D if and 
only if y,  A = y,  A = A ,  Now observe that if A and B are in D, then 

(4.4) S ( A , B )  = S(y; A , y ;  B )  = y; S ( A , B ) .  

Hence S ( A , B )  is in D. 

restriction G if we can show 
The unfolding theory for H is the same as the unfolding theory for the 

PROPOSITION 4.5. \ k (TH)  = AG, where 9 is the isomorphism of the module 
&L,5 with &tS2 induced by restriction. 

Proof: Recall that AG is really the tangent space to the orbit of all elements 
in &;,, which are A-equivalent with G. That is, we may represent an arbitrary 
element GI of AG by 

where T(A,A,O) = 12. X ( A , A , O )  = A ,  and A(A,O) = A. The proof of Proposition 
4.1 shows that the extensions of T and X may be done smoothly in t. So one sees 
that the extension H I  of GI is in r H  and conversely. Thus \ k ( r H )  = AG. 

We now have proved the following analogue of Proposition 3.7 and Theorem 
3.9. 

THEOREM 4.7. Suppose H = aA + b ( A 2  - f t r (A2)I ) ,  where a and b are in 
&:, that is a = a(u,u,A), b = b(u,u,A), u = tr(A2) and u = detA. 
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(I) Assume a and b sarisfi (3.2) and (3.3), then H is r-equivalent to 

(4.8) N ( A , A )  = ( A 2  - itr(A2)Z) + AA, 

where sgn(AA) = sgn(b(0) a,(O)). 
Moreover, codim H = 0. 
(11) Assume a and b satisfi (3.2) and (3.6); then H is r-equivalent to 

(4.9) N ( A , A ) = ( u ? A ) A  + ( + u +  Do)(A2-ftr(A2)1). 

The signs are determined as in (3.1 1). 
Moreover, codim H = 2 and a universal unfolding of N is 

(4.10) F ( A , X , D , E ) = ( u + A ) A  + ( ? u + D o - E ) ( A 2 - f t r ( A 2 ) 1 ) .  

5. The Bifurcation Diagrams 

The results of this section give an analysis of the solution sets and of the 
linearized stability of each solution of the 2 x 2 canonical forms of Section 3. 
Because of the reduction from five to two dimensions discussed in Sections 1 and 
4, this calculation leads to the same results for the five-dimensional problem, but 
some preliminary comments on this reduction are necessary in order to under- 
stand this fully. 

The three-dimensional group 0 (3) acting on the two-dimensional linear space 
D fills up the five-dimensional space V.  Thus the orbit of a typical point in D is 
three-dimensional. However, not every point in D has a three-dimensional orbit. 
For example, the orbit of 0 consists of a single point. In general for d E D we 
define the isotropy subgroup of d as 

that is, the subgroup of O(3) which commutes with d when considering ordinary 
matrix multiplication. If the isotropy subgroup of d has dimension I ,  then the 
orbit of d has dimension 3 - 1. There are two possibilities for Z, when d is 
non-zero. If d has a double eigenvalue (that is, two equal entries), then Z, 
= O(2) @ Z,. If d has distinct eigenvalues, then Z, consists of diagonal matrices 
in O(3).  Since such diagonal matrices must have + 1  in each entry on the 
diagonal, we see that Z, = Z, @ Z, @ Z ,  is finite. Note that if d has a triple 
eigenvalue, then d = 0 since trd = 0. 

In terms of the isomorphic representation of O(3) on the spherical harmonics 
of order two, the harmonic polynomial associated with d has axial symmetry if 
and only if there is a copy of SO(2) in 2,. Thus axisymmetric solutions 
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correspond to solutions in V with a double eigenvalue. Also non-zero axisym- 
metric solutions have two-dimensional orbits (for fixed A) in V while non- 
axisymmetric solutions have three-dimensional orbits (with 8-fold symmetry). 

This classification of orbits into three types appears naturally in trying to 
solve an equivariant bifurcation problem H : V X R+ V. As in Sections 1 and 4, 
let G = H I D X R. According to Section 3, we may write 

(5 3 

where u = z l ,  u = 30 z3 and z = x + b. In real coordinates, (5.2) becomes 

G(z,A) = u(u,u,A)z + b(u,u,A)F2 = 0, 

(5.3) 
G(x,y,A)  = ( x x 2 -  y 2 ) (  a )  = 0, 

- 2xy 

where u = x2 + y 2  and u = x3 - 3xy2. A point (x, y,A) can satisfy (5.3) only if 
one of the three following possibilities obtains: 

(i) x = y  = 0, 

(5.4) (ii) det(; x 2  - y 2 )  = y3 - 3 x 5  = 0, 
- 2xy 

(iii) a = b = 0 and (ii) does not hold. 

Note that (5.4)(ii) consists of three lines y = 0, y = ? f i x  which are invariant 
under rotation through 120", that is, invariant under the action of A. We may 
therefore characterize case (ii) by the equations 

(5.5) y = O ,  u + x b = O ,  

obtaining the other two lines in (5.4)(ii) by symmetry. 
Now in (1.7) we gave explicitly an isomorphism between the action of A on R2 

in the coordinates (x, y )  as above and the action of A on the diagonal matrices 
D. From this one sees that points of the form y = 0 correspond to diagonal 
matrices with double eigenvalues. Thus case (5.4)(ii) corresponds exactly to 
axisymmetric solutions while case (5.4)(iii) corresponds to non-axisymmetric 
solutions. 

The above discussion concerned the relationship between the zeroes of H and 
of G. It is also possible to relate the eigenvalues of dH and dG at solutions, 
thereby relating the stability of the respective solutions. As we have noted many 
times, D is an invariant subspace for H and thus D is an invariant subspace for 
dH. So dH and dC share two eigenvalues. We claim that the remaining three 
eigenvalues of dH are also determined, though determined differently in each of 
the three cases. 
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We consider these cases separately. Fix A and suppose that d E D with 
H ( d , A )  = 0. If d has three distinct eigenvalues (i.e., d corresponds to a non- 
axisymmetric solution), then its isotropy subgroup is discrete, hence the orbit 
through d is three-dimensional. Hence H ( . ,  A) vanishes identically on a three- 
dimensional manifold passing through d and dH has three zero eigenvalues at d.  

If d = 0, then both dH and dG at d are multiples of the identity matrix, that 
multiple being a(O,O,A). The only difference in the structure of the eigenvalues of 
dH and dG is the multiplicity of the eigenvalue a(0, 0, A). 

Finally, suppose d has a double eigenvalue (i.e., d corresponds to an axi- 
symmetric solution). Then the isotropy subgroup Z d  is O(2) @ 2,. Hence the 
orbit of d under the action of O(3) is two-dimensional a t  d and transverse to D. 
Consequently two of the three remaining eigenvalues of dH are zero. We show 
that the two eigenvalues of dG are real in case (ii) and that one of them is a 
double eigenvalue for dH, thus accounting for the fifth eigenvalue of dH. Before 
proving this statement we make a general comment. 

Let g be a group acting linearly in R" with G E 6&,. By definition, G 
commutes with the action of g, that is, G(y  - x )  = y - G ( x )  for y in g. The chain 
rule states that 

for all u E R". In particular, if Z is the isotropy subgroup of g corresponding to x 
and y is in Z, then 

(5-7) (dG)x  0 y u = y ( d G ) x ( ~ ) .  

So ( d G ) ,  commutes with y for all y in Z. 
We now return to the two-dimensional representation of A and analyse a 

point (x ,O)  in W2. The isotropy subgroup in this case is Z = Z, ,  where the 
non-trivial element y in Z is generated by complex conjugation. In real coordi- 
nates, y = (A -4. According to (5.7), (dG)( ,=,  commutes with this y .  Hence 
(dG)(,=, has the same eigenvectors as y ,  which proves 

LEMMA 5.8. (dG)I,-, is diagonal. 

Nofe. The same trick shows that if T E 9R%, then TI,,, is diagonal since 
T ( y  ( x ,  0 ) )y  = y T ( x ,  0). Since y ( x ,  0) = ( x ,  0), T(x ,  0) also commutes with y .  

Returning now to the five-dimensional representation of r, let d E D be a 
point with axial symmetry (that is, d has a double eigenvalue as a matrix in D 
and corresponds to a pointy = 0 in the real representation of A). Let H be in 
9R&. We claim that d itself is an eigenvector for (dH)& First we prove that if 
d' E D and Z,- 3 &, then d' is a multiple of d. Our assumption on d implies that 
Z, = O(2) @ Z,. If Z,- = O(3), then d = 0 and the result holds. If not, then 
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Z j  = 2, so that d has a double eigenvalue also. It follows that the two equal 
entries in d and d' occur in the same positions; otherwise one would not have 
2,- = z,. 

From (5 .7)  it follows that 

for y E Z,. Thus y E 22, where d= (dH)(d) .  So d is a multiple of d and the 
claim holds. 

Now (dH) ,  I D = ( d G ) ,  since D is an invariant subspace for H .  Lemma 5.8 
implies that there is an eigenvector e # d (with eigenvalue denoted by a)  for 
( d C ) ,  since (dG),  is diagonal. Hence e is an eigenvector for (dH) , .  Next choose 
y E Z, such that y ( D )  !Z D. (The existence of y follows from the fact that 
dim 2, = I.) I t  follows that y e G! D (as y d = d). One applies (5 .7 )  once again 
with tj = e to see that ( d H ) , ( y  e) = y . (dH) , (e )  = ay e. Thus y - e is an 
eigenvector for dH with the same eigenvalue as that of e.  We have now found the 
fifth eigenvalue of (dH),. 

We note that one could have used an argument involving Clebsch-Gordon 
coefficients for SO(2)  C SO(3)  to obtain the same result. 

PROPOSITION 5.9. A solution of G = 0 is (hnear!y) stable if and on4 if as a 
solution of H = 0 it has (linearized) orbital stabiliq. 

We shall use this fact to label solutions of H = 0 in our diagrams as follows: 

s : both eigenvalues of dG have positive real part (stable), 
- . * the eigenvalues of dG have opposite sign (negative degree), 
u : both eigenvalues of dG have negative real parts (unstable). 

(5.10) 

Of course the case "-" is also unstable. We normalize our labelling by the 
convention that the trivial solution is stable below criticality, i.e., for X < 0. I t  
may be necessary to multiply the equation G = 0 by an overall minus sign to 
achieve this. (Similarly, a possible multiplication by - I was also required to 
derive the normal form (3.10).) Recall that dG at the trivial solution is a multiple 
of the identity, so that the degree is always positive. 

Our intention is to make the stability assignments listed in (5.10) for the 
bifurcation problems considered in Section 3 by computing with the normal 
forms. To do this, we must show that these assignments are invariants of 
A-equivalence. We cannot make this argument in general, however we can prove 
this invariance for the specific cases of Section 3. 

We begin our discussion with a general remark about g-equivalence. Suppose 
acts linearly on R" and H, and H ,  are equivariant with respect to this action. 

To show that the eigenvalues of d H ,  and dH, are invariants of g-equivalence we 
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observe that one has only to consider g-equivalences of the form H ,  = TH, .  
For if H 2 ( x )  = H , ( X ( x ) ) ,  then 

(5.1 1) 

Note that the term within the brackets in (5.1 1) is just the formula for transform- 
ing a vector field by the diffeomorphism X ( x ) .  More precisely, consider j = 
H(y)  and y = X ( x ) .  In the x-coordinates one obtains x = ( d X ) ; ’ H , ( X ( x ) ) .  
Clearly the linearization of this vector field at a zero is an invariant of changes of 
coordinates. Hence to show that the linearized stability is an invariant of 
g-equivalence one must show this for H , =  TH,. Moreover, we need only 
compute dH, and dH, on solutions. Then one has ( H ,  = 0} = ( H I  = 0) .  Hence 
dH, = TdH, on solutions. 

We now return to the specific case of A-equivalence. We let G, and G2 be in 
&$., and assume that GI = TG,. For the trivial solution x = y  = 0, (dG,)o,o.A, 
= T(O,O,A)(dG,),o.o.A,. From Proposition 1.8(c) one sees that T has the form 

(5.12) ~ o T o + p l T ,  + P Z T Z + P ~ T ~ ,  where P ~ = P ~ ( U , U , ~ )  

are invariant functions and the Ti are generators for the module %$,,. Note that 
T(0) = po(0 ) l  where, as stated in Sections 1 and 3, 

(5.13) POP) > 0. 

It follows from (5.13) that the sign of the eigenvalues of dG are invariant along 
the trivial solution. 

For solutions corresponding to axisymmetric solutions (in the five- 
dimensional space) one can assumey = 0. From Lemma 5.8 it follows that (dG),, 
T, and (dG) ,  are diagonal matrices on y = 0. Moreover (5.13) asserts that (for 
(x, A) near (0,O)) T has positive entries. Thus linearized stability is an invariant of 
A-equivalence along axisymmetric solutions. 

Finally, observe that if GI = TG,, then 

(5.14) det(dG,) = det Tdet(dG,) 

on a solution. Since det T-p(O)’ > 0 for (x, y,h) near 0, the sign of the 
determinant is an invariant of A-equivalence and so the assignment of a “-” 
along a solution branch is always an invariant of A-equivalence. 

Thus the only stability assignments which can be confused by a A- 
equivalence are “s” and “u” for a non-axisymmetric solution. It turns out that 
this one bad case can be eliminated by ad hoc arguments for the normal forms 
we consider here, as we show below. 

Note that (5.6) implies that detdG and trdC are invariant functions in &$. 
These functions can be evaluated explicitly as: 
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Figure I .  N = Z 2  - Xr = 0. 

LEMMA 5.15. For non-axisymmetric solutions, that is, a = b = 0, one has 

det(dG) = (u3  - u’)[ a,b, - a,b,], 
(5.16) 

tr(dG) = 2ua, + 3~x7, + 2ub, + 3u2b,. 

Note that u3 - u2 = y2(y2 - 3x212 2 0. 
We now begin the discussion of the bifurcation diagrams. In the figures 

below we indicate non-axisymmetric solution branches by dashed lines. We draw 
only the axisymmetric solutions in the plane { y = 0 ) ,  as the other branches are 
obtained by rotating this plane by 120’ and 240O. 

The bifurcation diagram associated with the normal form N ( z , X )  = f 2  - XI is 
shown in Figure 1. Using the notation of (5.3), we have in this case u = - A  and 
b = 1. There are no non-axisymmetric solutions; hence the stability assignments 
of the figure are invariants of A-equivalence. Moreover the eigenvalues of dG 
along the axisymmetric solution branch are x and - 3x.  For x # 0, one of these 
is negative and one positive, so the degree of the solution branch is negative, as 
indicated in the figure. The normal form N has codimension 0; thus any small 
perturbation will only produce a A-equivalent problem. 

In Figure 2 we show the bifurcation diagram associated with the normal form 
N ( z , h )  = ( u  ? A)z + (2  u + Du)Z2, where D = 0. We consider the case 

(5.17) a = u - h  and b = u + D v .  

Figure 2. N = ( u  - h)z + ( u  + Do)Z2 = 0. 
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The choice of the sign of A in a corresponds to supercritical bifurcation which 
Chossat proved occurs in the selfadjoint Benard problem. In any event, the 
choice of + A  is entirely analogous. We have also chosen + u for 6 .  This choice 
determines which of the two families of axisymmetric solutions which bifurcates 
from the trivial solution is stable. Again, the other choice of sign is analogous. 

There are no non-trivial non-axisymmetric solutions for this normal form. To 
see this observe that b = 0 yields (in real coordinates) 

u + DV = x2(1 + D x )  +y2(1 - 3Dx) = 0. 

For x ,  y near 0 the only solution is x = y = 0, the trivial solution. So in this case 
the stability assignments are invariants of A-equivalence. A simple calculation 
shows that along the non-trivial solution branch in Figure 2 the eigenvalues of 
dG are 2 x 2  + O(x3)  and - 3 x 3  + O(x4), which suffices to verify the stability 
assignments of the figure. 

We now compute the bifurcation diagrams associated with the universal 
unfolding F ( z ,  A, D, E )  = ( u  - A)z + ( u  + Dv - E)P2, the diagrams obtained by 
perturbing the problem of Figure 2. Thus we have 

(5.18) a = # - A  and b = u + D v - E .  

Not surprisingly, thking E # 0 makes the bifurcation of the axisymmetric solu- 
tions transcritical, as in Figure 1. It is less obvious that taking E # 0 can lead to 
secondary bifurcation of non-axisymmetric solutions, depending on the sign of 
E. The occurrence of non-axisymmetric solutions may be demonstrated by 
writing (5.4)(iii) explicitly from (5.20). Thus a = 0, b = 0 yield 

(5.19) A = x 2 + y 2 ,  x2(1+ D x ) + y 2 ( 1  - 3 D x ) = E .  

Provided E > 0, (5.19) has real solutions in a neighborhood of the origin. From 
(5.16) one can compute the stability of the non-axisymmetric solutions. In 
particular, 

(5.20) 

Since u3 - v2  > 

det(dG) = D ( u 3  - v2) ,  

tr(dG) = 2u + 20 + 3Du2. 

for non-axisymmetric solutions and tr(dG) > 0 .x ( x ,  y, A) 
near (0, 0, 0), one knows that the non-axisymmetric solutions have negative 
degree if D < 0 and are stable if D > 0. Here for the first time we encounter a 
stability assignment which is not a priori an invariant of A-equivalence. We now 
present an ad hoc argument to justify our claim that in this particular case the 
stability assignment for a non-axisymmetric solution is in fact an invariant of 
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A-equivalence. Consider 

(5.21) G ( ~ , x )  = ( A U  + BV + Q A ) Z  + (CU + DV + px - ~ ) t ~  + . . . = 0. 

From (5.16) we see that for non-axisymmetric solutions of (5.17) one has 

(5.22) 
tr(dC) = 2 ~ u  + o(14~). 

From Lemma 3.27 we see that the sign of A D  - BC is an invariant of A- 
equivalence and from (3.26) we see that the sign of A is an invariant of those 
A-equivalences for which p(0 )  > 0 (as described above), thus proving our asser- 
tion. We give these bifurcation diagrams in Figure 3. 

(C) 

Figure 3. (a) F = ( u  - X)z + ( u  + Do - E ) r Z  = 0, E > 0, and D > 0. 
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The only point remaining is to describe how the non-axisymmetric solutions 
are fit into these figures. Observe that when E > 0 but small, the solutions to the 
second equation of (5.19) (which are near the origin) form a circle-like curve in 
the x,y-plane with radius approximately a. This would be exactly true for 
D = 0; however, the curve is only approximately a circle for D # 0. It follows 
that in x, y, A-space this curve intersects the y = 0 plane at  two points (x- ,A- ) 
and (x + , X + ), where x - < 0 and x + > 0. The information we need .is which of 
A+ and A- is bigger. Of course, from (5.19) one has x +  = X: and x- = A!. Now 
compute 

(5.23) x +  - x -  
ED (1  + Dx - )( 1 + Dx + ) * 

A- -A+ = 

Thus 

(5.24) sgn(X - - h + ) = sgn( D ). 

The zero sets of F = 0 are now proved to be those in Figure 3. When D < 0, 
there exists for A- < X < A, two distinct stable axisymmetric solutions and no 
stable non-axisymmetric solutions. For D > 0, there is always one stable solution 
for h > 0, and this stable solution (unique modulo the symmetry group) is 
non-axisymmetric for A +  < X < h - . As we have shown, the stability of the 
non-axisymmetric solution is given by the sign of D; the stability for the 
axisymmetric solutions are calculated directly from (dF)J,,,,. 

6. Implications for the &nard Problem in a Spherical Shell 

We begin this section with a brief review of the formulation of the Benard 
problem in the Boussinesq approximation. We refer to [3], [lo] for more detail. 

The problem is posed in a three-dimensional annular region 

Q = { x E R3 : vRo < 1x1 < R o } ,  

where we suppose 
of 11.) After subtraction of the conduction solution the equations become 

(6.la) 

near 0.3. (But see the remarks below concerning other values 

U, = - V p  + AU + Rg(r)B - (U - V)U, 

1 
P 0, = - {A@ + R V To u} - (u V ) e .  (6.1 b) 

Here u, p ,  and B measure velocity, pressure, and temperature, respectively, R and 
P are the Rayleigh and Prandtl numbers, respectively; the gravity vector g(r) and 
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the equilibrium temperature gradient V To have the form (0.1). Of course (6.1) 
must be supplemented by appropriate boundary conditions on dQ: a typical 
choice would be (homogeneous) Dirichlet conditions for 8 and either Dirichlet or 
free surface conditions for u.  

We consider only steady state solutions of (6.1), which we regard as a 
bifurcation problem with R as the bifurcation parameter. The zero solution of 
(6.1) is stable for small R but loses stability as R is increased. 

We study the first bifurcation from the trivial solution with the standard 
Lyapunov-Schmidt reduction. Let i = 1, - * * , n, be a basis for the kernel of 
the linearization of (6.1) at the first bifurcation point, say R = R*. The reduction 
is based on looking for a solution of (6.1) in the form 

n 
u = C x&+ W(x,h) ,  

I =  I 

where h = R - R* and (#,, W >  = 0 for i = 1, - - - , n. (Here x denotes the 
n-vector of unknown coefficients in (6.2), nor a spatial coordinate.) I t  is not 
difficult to show that 

(6.3) W ( x , h )  = O(lx12). 

The Lyapunov-Schmidt method leads to a parametrization of steady state 
solutions of (6.1) near the bifurcation point by the solutions of a certain n x n 
system of equations 

(6.4) G ( x , h )  = 0. 

The reduced mapping G : R" X R+ R" provides the starting point for the singu- 
larity theory methods. With minor modifications (the center manifold theorem) 
the reduction may be performed so that a solution is stable if and only if the 
eigenvalues of dG are all positive; we shall suppose this done here. 

Because of the symmetry of (6.1) with respect to 0(3), the bifurcations of this 
equation have high multiplicity. As observed by Sattinger [8], the symmetry 
group O(3) acts on the kernel of the linearization, typically irreducibly. The 
dimension of the kernel (or representation of O(3)) tends to 00 as q + 1. We 
consider = 0.3 in this paper so that at the first bifurcation the kernel will have 
dimension five. See [3], [lo] for calculations verifying that this does occur for 
77 = 0.3. 

The velocity field and temperature distribution of the bifurcating solutions 
are graphed in Young [ 101. The flows typically involve convection upwards at the 
equator and downwards at the two poles. Of course by (6.3) the solution u in 
(6.2) is to lowest order just a linear combination of the eigenfunctions I),. It is of 
great importance to realize that a linear combination of eigenfunctions, say 
Zx,\c/,, and its negative, -Ex&, are nor related to one another through opera- 
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tions in the symmetry group. This is in contrast to rolls in the planar Benard 
problem where a periodic eigenfunction and its negative are simply translates 
through half a period of one another; i t  is analogous to hexagons. In the 
spherical case, J/ involves upwelling fluid at the equator, a connected one- 
dimensional set, while -+ involves upwelling fluid at  the two poles, a two- 
component zero-dimensional set. No symmetry operation can transform one of 
these to the other. 

We now begin the application of singularity theory methods to the BQard 
problem. 

Our earlier results show that the reduced equations (6.4) may be written in 
the form (3.1). Chossat [3] proved that in the selfadjoint case b(0) = 0, so that 
Theorem 3.9 gives the relevant normal form. We assume that the non-degeneracy 
conditions (3.6) are satisfied. 

The first application is to correct a statement of Chossat [3] that the stability 
of the bifurcating solution depends on the sign of a coefficient. Rather it may be 
seen from Figure 2 that there are two distinct solution branches emerging from 
the bifurcation point, one stable and the other unstable, and as remarked above, 
these branches are not related through any symmetry operation. In particular, there 
is always a stable solution emerging from the bifurcation point. If one changes 
the sign of aC - BA, the coefficient which Chossat refers to and which appears 
in our condition (iii) of (3.6), this interchanges the stable and unstable solutions, 
but it does not eliminate either. Thus the coefficient effects the choice between 
upwelling at the equator versus upwelling at the poles, as discussed above. 

The unfolding (3.12) allows one to discuss perturbations from the selfadjoint 
case such as the one considered in the numerical simulation of Young [lo], 
provided the perturbation is not too great. If Figure 3(a) obtains, the bifurcation 
will be modified from Figure 2 in that the non-trivial solution will be stable for 
values of R lower than predicted by the linear theory. There will also be 
hysteresis effects, i.e., the jump in the solution will occur at different values of R 
when this parameter is increased or decreased. If Figure 3(b) or (c) obtains, the 
solution set will have an even richer structure, involving an initial bifurcation 
with circulation in the opposite sense of its eventual pattern and involving 
possible non-axisymmetric flows. 

Young [ 101 finds good agreement of the bifurcation point with the predictions 
of the linear theory and makes no mention of hysteresis in the bifurcation. Of 
course his scan in Rayleigh number was rather coarse. However, his results 
suggest that the perturbation from the selfadjoint case is rather small. Thus we 
shall assume (3.12) is applicable. Also, Young only sees axisymmetric solutions 
with upwelling at the equator and does not find non-axisymmetric solutions near 
the bifurcation point. Thus it seems likely that in his case E < 0, although it is 
quite possible that the secondary bifurcations indicated in Figure 3(b) or (c) 
occur in a small range of Rayleigh numbers between the fairly widely spaced 
points Young investigated. Young considers the case p2 = y1 = 0 (notation of 
(0.2)) of heating from below and equal density for 1x1 < qRo and qR, < 1x1 < R,. 
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It would be desirable to investigate a perturbation from the selfadjoint case of 
the opposite sign, say = y 2  = 0, to see whether the secondary bifurcations of 
Figure 3(b) or (c) appear here. 

We conclude with some speculative remarks on Young's data in [lo]. Young 
finds that there are non-axisymmetric solutions of (6.1) which appear a t  Rayleigh 
number roughly twice that of the bifurcation point R+ which remain stable as far 
as his calculations go (-5.5 R*). Since these remain stable over so large a range 
and since they can coexist with stable axisymmetric solutions, Figure 3 does not 
seem like the appropriate diagram to match this data. However, it is most 
interesting to note that the zero set of (3.10) includes non-axisymmetric solutions 
which are some distance from the origin. (we were unable to find a normal form 
not possessing these solutions.) Although at present there is not enough data to 
test this, we conjecture that these non-axisymmetric solutions are related to those 
seen by Young. It seems that terms of higher order than in (3.12) would be 
required for an accurate match of the experimental data. 
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