PHYSICA [

ELSEVIER Physica D 115 (1998) 56-72

A modular network for legged locomotion

Martin Golubitsky *, Ian Stewart ®, Pietro-Luciano Buono ?, J.J. Collins ¢
& Department of Mathematics, University of Houston, Houston, TX 77204-3476, USA
Y Mathematics Institute, Umiversity of Warwick, Coventry CV4 7AL, UK
¢ Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston MA 02215, USA

Received 30 April 1997; accepted 26 August 1997
Communicated by C.K.R.T. Jones

Abstract

In this paper we use symmetry methods to study networks of coupled cells, which are models for central pattern generators
(CPGs). In these models the cells obey identical systems of differential equations and the network specifies how cells are
coupled. Previously, Collins and Stewart showed that the phase relations of many of the standard gaits of quadrupeds and
hexapods can be obtained naturally via Hopf bifurcation in small networks. For example, the networks they used to study
quadrupeds all had four cells, with the understanding that each cell determined the phase of the motion of one leg. However, in
their work it seemed necessary to employ several different four-oscillator networks to obtain all of the standard quadrupedal
gaits.

We show that this difficulty with four-oscillator networks is unavoidable, but that the problems can be overcome by using
a larger network. Specifically, we show that the standard gaits of a quadruped, including walk, trot and pace, cannot all be
realized by a single four-cell network without introducing unwanted conjugacies between trot and pace — conjugacies that
imply a dynamic equivalence between these gaits that seems inconsistent with observations. In this sense a single network
with four cells cannot model the CPG of a quadruped. We also introduce a single eight-cell network that can model all of
the primary gaits of quadrupeds without these unwanted conjugacies. Moreover, this network is modular in that it naturally
generalizes to provide models of gaits in hexapods, centipedes, and millipedes. The analysis of models for many-legged
animals shows that wave-like motions, similar to those obtained by Kopell and Ermentrout, can be expected. However, our
network leads to a prediction that the wavelength of the wave motion will divide twice the length of the animal. Indeed, we
reproduce illustrations of wave-like motions in centipedes where the animal is approximately one-and-a-half wavelength long
~ motions that are consistent with this prediction. We discuss the implications of these results for the development of modular
control networks for adaptive legged robots. Copyright © 1998 Elsevier Science B.V.
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1. Introduction

The dynamics of networks of coupled identical cells has been studied in connection with the phase relationships
observed in the gaits of legged animals [4-8,26,31,32] and creatures such as the lamprey [2,21-23,25] whose
locomotion is effected by traveling waves of muscle contractions. Here we use the term ‘cell’ to indicate self-
contained subcircuits of the network or, more mathematically, a system of ordinary differential equations. It is widely
believed that animal locomotion is generated and controlled, in part, by a central pattern generator (CPG), which is a
network of neurons in the central nervous system capable of producing rhythmic output. Current neurophysiological
techniques are unable to isolate such circuits among the intricate neural connections of complex animals, but the
indirect experimental evidence for their existence is strong (for reviews, see [17-19,24,27,29]). Irrespective of
physiological considerations, CPG-like networks of coupled cells (e.g., electronic circuits) are an attractive option
for the design and control of legged -obots, because they produce a variety of phase relationships in a stable and
natural manner.

Kopell and Ermentrout [21-23] have demonstrated that a linear network consisting of many coupled identical
cells can generate traveling wave motions similar to those observed in the lamprey, and some biological predictions
made by this model have been confirmed [30]. Although a lamprey has no legs, the phase relationships found in
these wave patterns are similar to thosz that occur in animals such as centipedes and millipedes. As regards creatures
with a small number of legs, Collins and Stewart [5-8] have shown that simple symmetric networks of coupled
identical cells possess natural patterns of oscillation with the same phase relationships as many observed gaits in
bipeds, quadrupeds, and hexapods. These oscillation patterns are determined by the periodic states that can arise by
Hopf bifurcation from the trivial gait ‘stand’, and their existence and stability can be analyzed using the theory of
symmetric Hopf bifurcation of Golutitsky and Stewart [14,16]. Since the assumption of symmetry is basic to our
approach, we discuss the appropriateness of symmetry in animal gaits in some detail at the end of this section.

Because of the symmetry assumption, we shall throughout use the term ‘network’ to mean a fixed system of
coupled identical cells (represented schematically by circles) with a fixed set of couplings (represented schematically
by arrows). The couplings themselves divide into classes and all couplings in a class are assumed to be identical.
(Different classes of couplings are represented by different arrow styles.) For example, the CPGs of bilaterally
symmetric animals are usually modeled by bilaterally symmetric networks where the couplings connecting cells
on the two sides of the CPG (contralateral coupling) are assumed to be identical and the couplings between nearest
neighbor cells on the same side of the CPG (ipsilateral coupling) are assumed to be identical, but the couplings
in these two classes are assumed to be different. Although it might be possible to arrange for the couplings in
different classes to be the same, by arranging for certain coupling strengths to be equal, we view this equality
as difficult to control and maintain, since the different classes of coupling represent different types of physical
connections.

As a consequence, certain properties of the networks, such as the symmetries of the network, are fixed even
though we do not specify at this level of abstraction the particular system of ODEs that represent a single cell or the
exact form of the coupling terms between cells. Thus the specification of a particular network scheme for a CPG is
a modeling assumption that fixes aspects of the network such as its symmetries.

With this view of networks in mind, Collins and Stewart show that suitable small networks can generate most
of the phase relationships found in cuadrupedal and hexapodal gaits. However, they do not describe any single
network structure that is capable of generating all observed patterns. Moreover, in some of their networks, patterns
corresponding to distinct gaits are ‘conjugate’ in the mathematical model — equivalent under a network symmetry
~ and hence must bifurcate together and possess the same stability characteristics. It is difficult to see why a
corresponding CPG would preferentially select one of these conjugate patterns and suppress the other. For these
reasons, it is necessary to seek a more satisfactory network.
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In this paper we describe a simple network of coupled identical cells which can generate the full range of phase
relationships observed in the gaits of 2n-legged animals, for all values of n. The same schematic structure also
generates traveling waves of the kinds observed in legless animals such as eels, worms, snakes, and lamprey.
Moreover, in this circuit there are no unwanted conjugacies, so patterns of oscillation that should be considered
distinct in the animal are also distinct mathematically, and in particular can bifurcate at different parameter values
from each other and can possess different stability characteristics. In addition, the structure of the network is
modular: in a 2n-legged animal the network has one ‘head’ module, one ‘tail’ module, and n — 2 identical ‘body’
modules. Such a structure has obvious utility in robotics. Importantly, our network schematics can be realized in
many different ways, and as long as the symmetry is preserved, the same basic range of phase relationships will in
principle be generated.

The crucial observation is that in order for a symmetric network of identical cells to reproduce the phase rela-
tionships found in gaits of a 2n-legged animal, the number of cells should be (at least) 4n, not 2r as proposed
by Collins and Stewart. For instance, 8 ceils are needed for a quadruped and 12 for a hexapod. This obser-
vation leads to predictions about wave numbers that potentially might distinguish such a network from linear
chains, and there is evidence from centipede gaits to support those predictions, a point that will be discussed
below. We note that Ermentrout and Kopell [12] consider cell networks with 8 and 12 cells that are similar
to ours. However, the form of the coupling in their networks (and the resulting symmetries) are different from
ours.

1.1. Rationale for symmetry

The assumption that a CPG has some degree of symmetry may seem rather arbitrary, but several different points of
view suggest that it is both natural and reasonable. We provide a few comments to motivate the symmetry assumption.
Bilateral symmetry is prevalent throughout the animal kingdom, so a bilaterally symmetric CPG seems virtually
mandatory. Although the physiclogy of animal limbs differs according to the position of the limb ~ especially in
quadrupeds, where front limbs typically differ in detail from back limbs — these differences need not extend to the
underlying CPG. The role of the CPG is to provide timing signals to the limbs, with suitable phase shifts: there is
nothing in the pattern of those phase shifts to indicate special timing differences between front and back. Indeed the
observed phase shifts in many gaits are simple fractions of the gait period, for example 0, 5 % % in the quadruped
walk and 0, % % in the metachrenal gait of a hexapod. Such phase relationships are common in symmetric networks
but unexpected in asymmetric ones.

Indeed most oscillator network models of CPGs assume that the oscillators are identical, which is a tacit symmetry
assumption. More crucial to our approach is the idea that the coupling patterns in the network also have some degree
of symmetry. It is possible, for example, to use variable couplings designed to enforce particular phase relationships.
We believe, however, that symmetry of the entire network is a more plausible mechanism, for several reasons. The
first is that while it is of course possible to design coupling strengths that enforce any reasonable set of phase
relationships, such models do not select particular phases as being in any way special. The same design principle
could equally readily produce a walk with phase of, say, 0, 0.173, 0.628, 0.844. Yet the phases actually observed
are simple fractions of the period. It is hard to see why a design principle that can produce any phase relationships
whatsoever should lead to the evolution of a CPG with simple fractional phases. In short, we wish to explain the
observed phases, within some hypothetical framework, and not just reproduce them in a CPG circuit. Another
argument is physiological. For creatures with six or more legs, there is often little overt difference between one
pair of limbs and another pair In most beetles, all six legs look fairly similar. This observation is even stronger
for arthropods, whose evolutionary history rests on the trick of developing large numbers of more or less identical
segments (which may later bacome specialized in some respects — especially at the head and tail). “Identical
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segments’ is a symmeiry statement: it implies that (modulo the ends) the animal has a translational symmetry. It
would therefore not be surprising to find that its CPG has similar (perhaps imperfect) translational symmetry.

We emphasize that the above considerations are introduced in order to motivate our symmetry assumptions.
Our network could have useful potential in robotics even if it does not turn out to model animal CPGs. However,
the case for symmetry — or approximate symmetry — in real CPGs seems to us to be plausible. It is important to
recognize, however, that real systems, especially biological ones, are never perfectly symmetric. This does not have
any serious effect on our analysis, for the following general reason. The dynamics of a system that is ‘close to’
symmetric — perturbed away from an ideal symmetric system — is in many respects very similar to that of the ideal
system. The loss of perfect symmetry resulting from a perturbation may change fine details of the dynamics (for
example states that were previously related by a symmetry may become distinct) but the broad pattern remains
much the same (the differences between those states will usually be small). The dynamics of a system that is close
to symmetry resembles that of the idzal symmetric system far more closely than it resembles the dynamics of a
‘generic’ asymmetric system.

For these reasons, we believe that symmetry 1s a reasonable modeling assumption, and our intention will be to
pursue the consequences of making such an assumption. As will become apparent, the dynamics of a symmetric
CPG is remarkably close to that observed in actual gaits — even for ‘exotic’ gaits such as gallops and the canter,
where at first sight the symmetry properties of phase relationships are not especially apparent.

2. The obstruction of conjugate solutions

Let Cy.C3, ..., Cy be nominally identical cells, and let the state variables of C; at time ¢ be represented by a
vector x! = (x’i, ey xé) e R*, where R* is an s-dimensional Euclidean space. In the literature it is usual to refer
to such a cell as an ‘oscillator ’, but we prefer to avoid this terminology since such cells need not be capable of
oscillating as individuals. They may nevertheless acquire the ability to oscillate when they are coupied in networks.
An early example of this phenomenon is due to Smale [28]; other examples can be constructed using cell systems
with s = 1.

We assume that each cell can be modeled by an ordinary differential equation (ODE) of the form

dx! ;

— = f(x", A), 1

dr JOEH) (1)
where A = (A, ..., Ap) is a vector cf p parameters and f : R* x R? — R* is a smooth vector field. Since f is

independent of i, each cell has the same dynamics as any other at given parameter values, and this is the sense in
which they are ‘identical’.

We further assume that these cells are coupled in a network, implying that the state of a given cell affects the
states of all those to which it is coupled. For simplicity of description we model unidirectional coupling of C; to
C; by aterm aijh(.xj, x'), where «;j s the strength of the coupling from C; to C;. For example, diffusive coupling
has the form A(x/, x') = x/ — x'. Notice that if o;; = 0, then cell C; has no direct effect on cell C;; they are
uncoupled. Bidirectional coupling will be represented as a combination of two equal and opposite unidirectional
couplings (¢;; = «;;). An alternative to diffusive coupling is synaptic (pulse) coupling. We stress that our results
do not depend on the form of this coupling, but only upon the symmetries of the resulting system, so many other
expressions for the coupling terms could be employed instead. In particular we could restrict the effect of the
coupling to one or more components of x! and x/, for example to model voltage-coupled networks.

Graphically we represent such a network as a set of nodes joined by lines marked with arrows. Coupling
from C; to C; is represented by a line of strength o;; whose arrow points towards C;, and couplings of strength
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zero are suppressed. In practice, connections of differing strength are represented by arrows with different
markings.

The network can thus be represented by a coupling matrix A = (a;;), where 1 < i, j < N. The equations for
the network become

dx! . .
— = a Zai_,-h(.xf, xh. )
S
Now we are in a position to address the issue of spatio-temporal symmetries of such systems of ODEs. By a spatial
symmetry we here mean a permatation of the cells, that is, a bijective mapping o : {1, ..., N} — {1...., N},
which preserves the coupling marrix. The permutation o acts on x = (x1, ..., x5) by
X = (,‘CU—](]), ..... X U“](A‘))'

Specifically, we let I be the group of permutations o such that
Qo(iyo() = o foralli, je{l,..., N} 3)

If we now write Eqs. (2) in the abbreviated form

L Fe )+ HO = g(x,
i X, x) = glx, 2).

then the function g will be I"-equivariant, that is, it will satisfy the condition
glox, ) =o0g(x,A)

for all o € I'. This implies that whenever x(¢) is a solution, so is o x(t). We call these conjugate solutions.

A temporal symmetry is a phzse shift on a periodic solution of Egs. (2). Specifically. if x(z) is a periodic solution
with period T, and ¢ € S' = R/Z = [0, T) with 0 and T identified, then x(¢) has spatio-temporal symmetry
(o,9) e ' x S if

ox(t+¢) = x(1) 4
for all ¢, or equivalently
ax(t) = x(t — @). &)

In other words, applying the spatial symmetry o has the same effect as shifting phase by a fraction ¢ of a period.

The symmetry group or isotropy group of a periodic solution x (¢) is the group of all spatio-temporal symmetries
of x(1), considered as a subgroup of I x S'. Conjugate solutions have conjugate symmetry groups.

The theory of symmetric Hepf bifurcation provides general conditions that guarantee the existence of primary
bifurcations, from the trivial solution x' = 0 for all i, to periodic oscillations with prescribed spatio-temporal
symmetries. The symmetry groups of the resulting patterns are the subgroups of I' x S! that have two-dimensional
fixed point spaces, see [14,16]. More recently such subgroups have been called C-axial subgroups, see [9,10].

We are now in a position to sketch a group-theoretic argument showing that there is no single network composed
of four identical cells in which symmetric Hopf bifurcation leads to all three quadrupedal gaits walk, trot, and pace,
with trot and pace non-conjugate. (See Table 4, Collins and Stewart [6] and Gambaryan [13] for a description of
these and other quadrupedal gaits.) Indeed, suppose that there is such a network, and let I" be the group of spatial
symmetries of the network. Then I” contains Z4 and I” is contained in Sq, so [I"| = 4, 8,12, or 24. To support trot
and pace, I” must be larger then Z4, so 7] > 4.
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Now [['| = 8 implies I" = D4, which conjugates trot and pace. If [I"{ = 24, then I = S4 and the same holds.
So the only possibility is [I"| = 12. However, there is no 12-element subgroup of S4 that contains Z4, because the
permutation (1234) is odd, so |I”| cannot be the alternating group A4, which is the only subgroup of order 12.

Within the assumed context, this zroup-theoretic observation rules out all four-cell networks. Similar conjugacy
obstructions arise when attempting to model 2r-legged gaits with 2n identical cells whenever 2rn > 4. However,
for bipedal gaits there is no analogous argument that rules out a two-cell network.

3. The modular network

We now show that a network with 4n cells avoids the above difficulty, and appears to generate the appropriate
kinds of gaits. The network is shown schematically in Fig. 1(a), with circles corresponding to the component cells
(all assumed identical) and bonds corresponding to types of coupling between cells. We emphasize that this figure
is not a ‘wiring diagram’, either for a CPG or for an electronic circuit controlling a robot: its sole intention is to
show the requisite symmetries in the simplest manner. Each type of bond corresponds to a fixed type of coupling
associated with a particular strength parameter (or parameters): arrows indicate unidirectional bonds and double
lines bidirectional bonds.

The structure of this network is motivated by the observed gaits in quadrupeds, hexapods, and multi-legged animals
such as centipedes. It respects the natural bilateral symmetry, and also possesses a 2n-fold cyclic ‘translational’
symmetry from back to front. The network consists of two cycles of 2n cells. For reference purposes the cells
are numbered 1, 3,5, ...,4n — 1l in one cycle and 2, 4, ..., 4n in the other. Unidirectional couplings, all assumed
identical in form, run from cell ; to cell / + 2 (mod 4n). Bidirectional couplings, again assumed identical (but

ecft) _ C‘f@gh( front @
!
7

—

—

I =\

9 = @ front @

=02 back
(a) (b)

Fig. 1. (a) Schematic 4n-cell network for gaits in 2n-legged animals. Only cells I, .... 2n are connected to legs. (b} Folding up the
network to eliminate long-range connections creates a structure with repeated modules, differing slightly at the two ends.
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differing from the unidirectional ones) run between cells 2i — 1 and 2i. We shall later assume that signals to the
limbs are generated only in the first half of the cells, numbers 1, ..., 2n. This assumption introduces a necessary
asymmetry between the front and back of the animal, as well as distinguishing them from the section in between.
Again this assumption is schematic for a wide range of alternatives with the same abstract structure: we expand on
this point below.

Note that although the diagramrs have been drawn with two unidirectional couplings that are longer than the
others, this has merely been done for convenience in representing the structure on the page. One way to make all
connections short in practice would be to fold the second part of the network, cells 2n + 1 through 4#, back over the
first half, as illustrated in Fig. 1(b). This structure is advantageous in potential applications to robotics, because it
permits a modular approach to circuit-building. While the absence of such long-range connections is also attractive
biologically, we do not wish to draw any conclusions about the layout of animal locomotor CPGs at this stage.

From the point of view of equivariant bifurcation theory, the most important aspect of the network is its symmetry
group. This is

I'=17;, x Z>. (6)

The subgroup Z», cycles corresponding pairs of cells around their respective loops, and the subgroup Z; inter-
changes left and right cells in corresponding positions. Specifically, in permutation notation, Z3, is generated
by

w=(135...4n—1)(246... 4n) (7)
and 75 is generated by
k=1(12)(34)...(4n —14n). (%)

The group I' is abelian (all elemants commute); so there is no problem with spurious conjugacies. In fact, we shall
see that if any periodic solution arising via Hopf bifurcation is transformed by an element of I, then the result is
equivalent to a phase shift on thzt solution.

We now analyze the possible patterns of symmetry-breaking bifurcation that can occur in the network. We
emphasize that these patterns are model-independent in the sense that the same patterns can in principle occur in
any network with the symmetry group 7”. This is important for applications to robotics (or CPGs) in which a more
complex network of connections would provide a broader range of parameters, which could simplify the practical
problem of producing desired gait patterns as stable periodic cycles. By ‘with the same symmetries” we mean that
if the schematic is modified by introducing an additional connection, then all connections that are symmetrically
related to it by 7~ must also be introduced (and be identical in form). With this proviso, as many connections as
desired may be added to the schematic. For an example where this option becomes important, see Section 6.

We apply the general theory of symmetric Hopf (and steady-state) bifurcation to read off the patterns of symmetry-
breaking that can occur in any network with symmetry group I”. This requires a little representation theory. Suppose
as before that each cell has internal state space R* for some s. Then the coupled network has state space

U=sR"™ =R x.. xR 9
4n
and I acts on this space by permuting the 4n components (each a vector of dimension s).

We first determine how the representation of I on U breaks up into real irreducible representations. As a first

step complexify the space U to get V = C*¥. Since I” is abelian, V is the sum of one-dimensional irreducible
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subspaces (over C); and these subspaces are Vjy, where 0 < j < 2n — 1 and k = 0, 1. To define Vi, let £ = el™/"
be a primitive 2nth root of unity. Then Vi is spanned over C by

vk = (1, (=D ¢/ (=DFed e¥ (=g gl (ke @n=niy, (10)
Observe that
wvjr = oy, KUjx = ("l)kvjk

so that the subspace Vj; are indeed I"-invariant.
The corresponding decomposition of U into irreducibles is into the representations U ik where

o Re(Vip) if j =0,n, 1
HE Re(Vi @ Vo) if 1< j<n—1. (4

See [16] for further details.

Local bifurcations from the trivial solution occur when the linearization (Jacobian matrix) has zero eigenvalues
(steady-state bifurcation) or purely imaginary eigenvalues (Hopf bifurcation). Generically, the zero eigenspace is
an absolutely irreducible representaticn for steady-state bifurcation, and is I'-simple for Hopf bifurcation (either a
direct sum of two isomorphic copies of an absolutely irreducible representation or a single nonabsolutely irreducible
representation). That is, the network ecuations can undergo steady-state bifurcations corresponding to the subspaces
Uno. Uno, Uot. Uni. The network can undergo Hopf bifurcation corresponding to any of the Ui when s > 1, but
when s = 1 the only Hopf bifurcations from the trivial branch are those corresponding to eigenspaces for which
J = 1,...,n — 1. (The reason for this restriction is the condition of I"-simplicity: imaginary eigenvalues cannot
occur unless the representations of real type have multiplicity at least 2.) OQur discussion in Section 6 treats the case
s = 2. (Standard model equations for neurons have s > 2, see [3].)

The effect of the assumed bilateral symmetry of the network (the x symmetry) can be detected immediately. Hopf
bifurcations corresponding to the subspace U}y lead to gaits in which (x symmetric) pairs of legs are in phase when
k = 0 and half a period out of phase when k = 1.

4. Primary bifurcations
4.1. Bipedal gaits

Recalling that n is the number of pairs of legs we see that the case 2n = 2 refers to bipedal gaits. This case is
exceptional because of its simplicity. For our proposed four-cell network the analysis of bipedal gaits leads to the
same patterns as a two-cell network [6]: after a primary Hopf bifurcation the legs are either in phase or half a period
out of phase.

We remark that other phase relationships, such as seen in the human gait ‘skip’, can occur via secondary period-
doubling bifurcations. Recall that in such a bifurcation a periodic state x () of period T makes a transition to a state
of period 27, in effect by modifying two successive periods of x(¢) in two slightly different ways. Suppose that a
bilaterally symmetric system has a T-2eriodic state (x1(r), x2(7)), where the symmetry permutes the indices 1 and
2. Then it is possible for such a state to undergo a period-doubling bifurcation to a state (v (¢). y2(+)) that has a
spatio-temporal symmetry:

) =y +T).
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This symmetry is observed in (one form of) the skip, and is also in the ‘half-bound’ of small animals such as the
jerboa, see [13].

4.2. Quadrupedal gaits

The difference between our 4n-cell model and Zn-cell models is evident when 2n = 4, the case of quadrupeds: in
this section we focus on that case. Each complex irreducible representation of I" supports either one or two primary
bifurcations to phase-locked patterns of oscillation. in which the phases are determined by the roots of unity in (10).
Specifically, on the space Uji the phase shift on cell Cy, is:

+(m — 1)‘-1]~ if m is odd,
J'ﬂ ' (12)
+(m —2)-— + - if miseven,
dn 2

where either the 4+ or — sign is chosen throughout, and for j = O or j = n only the + sign is used. (The reason for
this restriction is that for phases of 0 or % a sign change has no effect.)

We may now read off the corresponding patterns for the primary bifurcations. We denote them by an array of
phase shifts corresponding to cells arranged in the form

—_— L =
D~ O oo

Recall that for purposes of interpretation, we assume that only cells 1-4 drive the legs, so that:
— cell 1 drives the left rear leg,
cell 2 drives the right rear leg,
cell 3 drives the left front leg,
— cell 4 drives the right front leg.
Thus the phases of cells 5-8 are ignored as far as the gait patterns are concerned: those cells are present in order
to propagate the dynamics correctly. An alternative assumption with the same consequences for gait patterns is that
the left rear leg is driven by some asymmetric function of the states of cells 1 and 5, and the same function of cells
2 and 6, 3 and 7, and 4 and 8 is used to drive the right rear, left front, and right front legs, respectively. The ‘wiring
diagram’ for such a choice introduces long-range connections in a control network for multi-legged locomotion —
this is not an obstacle in robotic applications, where long-range connections can be made effectively as rapid as
short-range ones.

The primary patterns, in this notation, are found in Table 1.

4.3. Hexapodal gaits

When 21 = 6 we have a 12-cell network, and in the same notation the primary Hopf bifurcations from the trivial
state are listed in Table 2. From that table, we see that gaits Ugg and Up, are the insect analog of pronk and pace , and
gaits U3 and Uy are the standard tripod and metachronal gaits. (See (7] for a description of common hexapodal
gaits.)

Gait Usg is a somewhat curious gait which we call the Jurch. In gait U)g the animal (or robot) moves legs on left
and right in synchrony in a wave that passes from back to front, and then appears to pause before continuing. This
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T: 1

Qa::ja:grupedal gaits (in jump and walk choose either + or — throughout)

Uno Uoi Uo Un Uno Uz
0 0 01 RN R Il o
00 0o 1 ;4 5 0 0 0 0o 1
0 0 0 4 sl 2} sl 43 } 1o
0 0 0 1 0 0 0 1 00 0o 1
Pronk Pace Jump™ Walk= Bound Trot
Table 2

Hexapodal gaits (choose + or — throughout in gaits where relevant)

Ugo Uy Usp Us U Un Uao Uz

o0 o1 11 To i & 4 FERE R
00 0 4 0 0 0 % £2 % £3 £ =i =+l B
00 0o 1 14 1o 11 10 0 0 o 3
00 o 1 0 0 0 % £ ] +1 =2 +2 £2 £2 &}
T T sloxl ol
00 0 4 0 0 0 0 0 0o 1 0 o0 0o 3
Pronk Pace Lurch Tripod Inchworm™ Metachronal® Caterpillar™ Rolling tripod*

we call the inchworm gait because it is reminiscent of the motion of that animal. Gait Uy is another gait in which
the motion of left and right legs are in synchrony. We call it the caterpillar gait.

Finally. in gait Uz two waves travel from back to front, one third of a period out of phase, but left and right sides
are half a period out of phase. So the order in which the legs move is back left, front right, middle left, back right,
front right, middle right — at equally spaced interval. This is a kind of rolling tripod.

4.4. Many-legged gaits

A similar analysis applies to networks of the kind that might be associated with many-legged animals such as
centipedes and millipedes — and also legless animals such as eels, snakes, and lamprey, in which ‘leg’ should be
interpreted as ‘muscular unit’. The range of gait patterns is considerable, but they all have the same fundamental
characteristics First, select some divisor d of 2x, the number of cells on one side of the network, but also equal to
the total number of legs. Then group the cells on the left side into 21 /d clumps, each spaced d cells apart. The phase
relationships along that side of the network are like those of a (4n/d)-cell network of the same kind, but repeated
d times in the ‘forward’ direction. The left—right pairs of cells either are in phase throughout the cycle, or half a
period out of phase throughout the cycle. In centipedes, millipedes, and lamprey, the *half a period out of option’
option is the one observed, so we focus on that example.

Similarly clumped traveling waves can be produced in linear chains of cells by forcing them at the end and
imposing suitable boundary conditions at the free front end (the mathematically most tractable being periodic
boundary conditions). The same goes for pairs of chains, cross-connected to impose a half-period phase shift. A
model of this sort occurs in the work of Rand et al. [25]. In such a system there is no preferred ‘wave number’ for
the traveling waves: they can be any integer, and are not related to the number of legs (or muscular units in cases
such as the lamprey).
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wave

Fig. 2. Figure from |1). Thick lines indicate legs in contact with the ground. (Left) The centipede has 3 waves. (Right) The centipede has
3/2 waves.

This feature leads to a prediction that is specific to symmetry-based models of the type we are considering.
Namely, that the wave number (the spatial period between synchronously moving legs, measured along the length
of the animal) should always divide the tofal number of legs (or muscular units in cases such as the lamprey). For
example in a 30-legged centipede (n = 15) the predicted wave numbers are 1, 2, 3, 5, 6, 10, 15. In a linear chain
model, all numbers from 1 to 15 are possible; in a cyclic network model with 2n cells instead of 4n, only divisors
of n should appear — in this case 1, 3, 5, 15, excluding 2, 6, 10.

Another ways to state this, which is less sensitive to imperfections in the network, is that the number of waves
that fits into the ‘directly observable’ half of the network, cell 1 through 2n, is either an integer or half-an-odd
integer. The half-an-odd integer patterns are charecteristic of ‘doubled’ networks such as that described in this paper
(see {11]), and serve as an indirect indicator of the presence of the hidden half of the network. In the context of
possible applications to CPGs, it may therefore be significant that Alexander [1] provides drawings of several gaits
by a 40-legged centipede. In all cases the number of waves appears to be close either to an integer (4, 3, 2) or
half-an-odd integer (3/2). In particular, the half-an-odd integer pattern does seem to occur. See Fig. 2. The number
of legs depicted in the spatial period of the various traveling waves are not all exact divisors of 80: for example
one picture shows 13 legs per wave. However, they are very close to exact divisors. For example 13 is very close
to 80/6 = 20 x 2/3, where 20 is the number of legs along one side of the animal. So here the number of waves
passing along the animal is very close to 3/2.

Precise numerical agreement would be unlikely for several reasons: first, the symmetry of a real CPG will be
only approximate; and second, an animal CPG, even if it is of the form we are studying here, might involve
more cells than there are legs (for instance by assigning a chain of modules to each leg, which in this case would
lead to a multiple of 80 cells). The prediction that half-an-odd integer waves can occur is robust under such
changes.

The wavelike motion of the lamprey shown in [20] shows 5/2 waves along the animal’s length, both in forward
and backward motion: this is especially clear in the third and fifth images in the top figure on page 51. Again this
relationship is consistent with our model but requires special explanation for linear chain models.
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5. Secondary quadrupedal gaits
As discussed previously, periodic solutions x(¢) have spatio-temporal symmetries which form a subgroup X' C
I xSl So (0, 8) is a symmetry of x(¢) if
ox(t+0) = x(1), (13)
and X consists of all pairs (o, 8) satisfying (13). In our modular network for quadrupeds
x(1) = (x1(0), x2(8), ..., xg(1)),
where x;(#) describes the signal in cell j of the CPG. We then identified
(x1(@),  x2(0),  x3(0),  x3())

as the signals from the CPG that drive the four legs of the quadruped.

In Section 4.2 we listed the primary gaits generated by the I” = Z4 x Z; symmetry of our network. These gaits
satisfy two properties:
(a) The signals x;(r) all have identical waveforms (forced by symmetry) and differ only by phase shifts, and
(b) Periodic solutions with these symmetries can be expected to appear in model equations by Hopf bifurcation

from the trivial steady-state ‘stand’.

For simplicity we assume x(r) has period 1. As an example, reconsider the walk. In our network, the symmetry

group of a walk is generated by

(@,3) and (x, 3),
where
w=(1357)(2468) and « = (12)(34H(56)(78).
The (o, %) symmetry forces the components x;(r) to satisfy
3 =x1t+ 1) and xy(t) = x2(r + 1),
s =xi(+5) and x6(1) = x2(t + §),
(N =x1(t+3) and  xg(r) = x2(r + 3).
The (k, %) symmetry forces
x(n) =x1(t+ 1)
Consequently, the four signals sent by this CPG are
(1), x2(0). x3(0), x3(1)) = (), X1+ Hoxi(t + 3o+ ),

that is, the same waveform (x;(z)) is sent to each leg — but with the characteristic phase shifts associated with a
‘walk’.

In this section we discuss all of “he symmetries associated to periodic solutions in our modular network. By
making this classification we will find secondary gaits that may be associated to rotary gallops, transverse gallops,
and canters, as well as other possibilities. By the term secondary gait we mean that the CPG sends two different
signals to two pairs of legs. Neverthless, it is possible to associate a pattern of phase shifts for these gaits, as we
explain below.
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Table 3
Lattice of subgroups of I = 74 x Z,

Z4{w) x Z>(k)

e + AN
7 4(kw) Z4lw) Dok, w?)
N t / 0 ~N
Zz(wz) Za(x) Za{kw?)
AN I /!

5.1. Classification of isotropy subgroups

The strategy for classifying all isotropy subgroups of periodic solutions works as follows. Let K = X N I” be
the subgroup of space symmetries that fix each periodic solution pointwise, that is k € K if kx(r) = x(r) for all
time 7. For example, « is a space symmetry of any gait where left and right legs move in unison, such as the pronk
or bound. Let K C I be the subgroup obtained from X by stripping off the phase shift, that is, if (¢, ) € X, then
o € L. 1t follows that K is a subgroup of H and H/K is a finite subgroup of S!. Hence , H/K is cyclic. Our
strategy divides into three parts:

1. Classify all subgroups L of I' = Z4 x Z>.

2. For each L classify all normal subgroups K such that H/K is cyclic.

3. Foreach of the admissible pairs H /K determine the constraints on the signal x (1) to decide whether the associated
gait is secondary.

The lattice of subgroups of Z4 x Z3 is given in Table 3 where w is the generator of Z4 and « is the generator of
Z.

The possible choices for H and K are listed in Table 4. In this table we indicate the restrictions on the signals
from the network going to each leg. We assume that x1(¢) is a given waveform and write, where appropriate, the
restrictions of x3(1), x3(¢), and x4(t). We do not indicate the restrictions on x5(1), ..., xg(1).

We define the twist type to be the order of the cyclic group H/K . The group elements in H — K correspond to
spatio~temporal symmetries. When the twist type is 2, the only phase shift is % When the twist type is 4, there
are two types of phase shift possible. The generator of H/K can be phase shifted by _11 or —%. We indicate these
possibilities by 4% and 4~.

There are eight primary gaits — as we have discussed previously. The secondary gaits are those that have two
independent wave form and we tave indicated the 14 secondary gaits listed in this table by a™*.

5.2. Secondary gaits

Next we discuss the gait pattern that is associated with the secondary gaits of the previous subsection. We assume
that the signals x; (¢} produce approximately sinusoidal movement in the legs, that is, we assume for the purpose of
identifying gaits that

xj(t) = Ajsin2m (t + ;)

for some amplitude A; and some phase shift ¢;.
For example, consider the secondary gaits that we have called rotary gallop, transverse gallop and canter. Assume
after normalization of the phase shift and amplitude of x; (f) that

xi{ty = sin(Rxwt) and () = Az sin(@r(t + ¢2)).
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Table 4
Pairs of H and K for quadrupeds
H K Name Twist X () x3{t) x4(1)
Za(w) x Zy(x) Zy(w) x Z3(x) Pronk 0 x1(0) x1{t) X1
Z4(w) Rack 2 X1+ 5 x1(1) x1(t+ %)
Dk, w?) Bound 2 x1{t) x1{t + —é) x(r + %)
Za(kw) Trot 2 x@+ 1) X+ 3) x1 ()
Z5(x) Jump 4t xi(t) Xt + %) x(r + %)
47 x1(r) Xt =) Xt =3
Z3(kw?) Walk 4t Xt +3) x+1 X (t+3)
4- x4 -1 X —3)
Zalkcw) Z4(kw)* Loping trot 0 x2(1) x2(1) x1(1)
Zy(wh)* Rotary gallop 2 x2(1) @+ xit+ 5
1* Rotary canter 4+ x2(1) x2(t + %) xy(t + %)
4- x2() X0 — ) X -3
Zy(w) Zs{w)* Loping rack 0 x2(t) x( (1) x2(4)
Za(w?)* Transverse gallop 2 x2(1) xi(t+ %) xa(t + %)
1* Canter 4+ x2(1) x(t + }1) x(t + _,11)
4- x(r) Xt — 1) -1
Da(x, w?) D5 (k, w?)* Loping bound 0 x1(1) x3(t) x3(1)
Zr(w?)* Running walk 2 x+ 1 x3(1) xa(t+3)
Zr(kw?)* Running watk 2 xy(r + %) x3(t) x3(t + %)
Zs(k)* Loping bound 2 x1(1) x3(1) x3(1)
Zy(w?) Z3(@?) 0 x2(1) x3(1) x4(1)
1 2 x2(t) x3(1) x4(t)
Z5(x) Zr(ic)* Loping bound 0 x1(1) x3(t) x3(1)
1* Running walk 2 xit+ 5 x3(D) X3+ 5)
Zy(kw?) Z3(kw?) 0 x2(1) x3(1) x4(1)
1 2 x2(1) x3(t) x4(2)
1 1 0 x2(f) x3(t) x4(2)

The amplitude A, does not affect the determination of the time when a given leg strikes the ground. Assuming that
these approximations are accurate, we: can use the information in Table 4 to describe the order that the legs strike
the ground and their relative phase. The signals to the legs are:

e+ X+ | }EED RO+ | x@+ xE+ g
x1(1) x2(1) x1(#) x2(1) x1(1) x2(1)

rotary gallop transverse  gallop canter

This leads to relative phases:

o —

¢+ 3 ¢+
0 0 7
rotary gallop transverse gallop canter

| -
O
hs)
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Table 5

Parameter values where different gaits have been observed

Gait c o B y 8
Pronk 0.5 0.01 0.014 0.025 0.02
Pace 0.44 0.025 0.02 —0.01 —0.012
Bound 0.44 ~0.01 —0.0102 0.025 0.02
Trot 0.44 ~0.02 —0.002 —0.025 0.015
Jump 0.44 -0.02 0.01 0.025 0.015
Walk 0.44 -0.01 0.0102 —0.025 0.02

When g is small in the first two gaits we obtain the standard phase description of the rotary gallop and the transverse
gallop. In the third case, when ¢ =~ % we have the standard phase description of the canter. There are several other
phase relations possible from the other secondary gaits, but we do not enumerate them here.

6. Numerical results from model equations

In this section we consider the existence of the primary gaits in a specific system of differential equations. We are
particularly interested in stable periodic solutions that are obtained in our network via Hopf bifurcation. To specify
the network equations, we need "o choose the differential equations modeling the internal dynamics and the precise
form of coupling.

In order to have all Hopf bifurcations present in the network equations, the internal dynamics must be at least
two-dimensional. We assume that the internal dynamics are exactly two-dimensional, and we choose specifically
to work with the FitzHugh—Nagumo equations:

f=cx+y—ix)=fixy),  y=-lx—a+by) = frlx.y). (14)

It follows that the eight-cell network is 16-dimensional.

In our model system we assume that all couplings are linear and diagonal. in a sense that we now make precise.
Let (x;. ¥;) be the state variables of the ith cell. We assume that the contralateral coupling strength can be set at
values different from the ipsilateral coupling strengths. That is, we assume that

xi = filxi, yvi. M) +axi2—x;) + ¥ Xige — Xi),

. . (15)
vi = o, yi, A+ BGi-2 — yi) + 8Qive ~ Yids

where i = 1, ..., 8, the indices are taken modulo 8, and

.= +1, i odd,
] ~1, ieven.

Setting @ = 0.02 and b = 0.2 in the FitzZHugh-Nagumo equations we find that stable periodic solutions corre-
sponding to each of the primary gaits occur at the parameter values given in Table 5. Each of these solutions can
be found starting from the inizal condition (x;, ¥1) = (0.06, —0.04) and (x;, y;) = (0,0) for2 < i < 8. The
simulations verifying these statements were performed using dstool.

It should be noted that each of these periodic solutions is found near a supercritical Hopf bifurcation of the
appropriate type, as we now discuss.
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Table 6

Block diagonalization of the linearization at the stand

Gait Representation Block diagonalization

Pronk Uogo A

Pace Uoi A—-2C

Bound Ung A—28B

Trot Usy A-—-2B-2C
A-B -B

Jum U

p 10 ( B A_ B)

Walk Un A—B-2C -B

B A—-B-2C

6.1. Hopf bifurcations

Suppose that zo = (xg, yo) is an equilibrium of (14) so that setting the internal variables of all eight cells equal to
zg 1s an equilibrium for (15). We call this equilibrium the stand and look for Hopf bifurcation from the stand. To find
Hopf bifurcations, we must compute the linearization of (15) at the stand, find conditions when this linearization
has purely imaginary eigenvalues, and determine when the representation of I" on the eigenspace is of the type
corresponding to each primary gait. From representation theory we know that this linearization is block diagonal
with the blocks corresponding to the subspaces Ujy defined in (11).

Let

. o _|a b |« 0 |y 0
A_(dF);O,,,—[C d}, B_[O ﬁ], C_[O 5] (16)

Then the diagonal blocks of the linearization are given in Table 6. Using this information one can check that in each
case listed in Table 5, the periodic sclution found is near a point of Hopf bifurcation.

7. Conclusions

We have applied the theory of symmetric Hopf bifurcation to infer a plausible class of CPG network architectures
from the observed phase relationships of animal gaits. Previous attempts along similar lines have led to networks
that either generate too limited a set of gaits, or suffer from the problem of unwanted conjugacies in which gaits
that are expected to be distinct are related by a symmetry and hence have identical dynamical characteristics

We have shown that these probleras are inescapable if the gaits of 2n-legged animals are modeled by symmetric
CPGs composed of 2n identical cells. However, the proposed class of networks with 4n cells, which is characterized
by Z3, x Z» symmetry, reproduces all of the standard quadrupedal gaits (including the canter and the transverse and
rotary gallops), many of the standarc. hexapodal gaits, and the traveling-wave gaits/rhythms observed in centipedes,
millipedes and lamprey. Because the symmetry group is abelian, there are no nontrivial conjugacies, hence no
unwanted ones.

Whether the architectures of actual animal locomotor CPGs resemble the proposed networks requires further
investigation. However, these netwo ks have potential applications to the construction of legged robots. In particular,
they permit a modular design in which the number of pairs of legs of a robot can be varied merely by plugging
together or detaching the appropriaze number of modules. This type of design suggests new ways to generate and
control the motion of adaptive legged robots.
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