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Abstract Cell metabolism is an extremely complicated dynamical system that main-
tains important cellular functions despite large changes in inputs. This “homeostasis”
does not mean that the dynamical system is rigid and fixed. Typically, large changes
in external variables cause large changes in some internal variables so that, through
various regulatory mechanisms, certain other internal variables (concentrations or
velocities) remain approximately constant over a finite range of inputs. Outside that
range, the mechanisms cease to function and concentrations change rapidly with
changes in inputs. In this paper we analyze four different common biochemical home-
ostatic mechanisms: feedforward excitation, feedback inhibition, kinetic homeostasis,
and parallel inhibition.We show that all four mechanisms can occur in a single biolog-
ical network, using folate and methionine metabolism as an example. Golubitsky and
Stewart have proposed a method to find homeostatic nodes in networks. We show that
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their method works for two of these mechanisms but not the other two. We discuss the
many interesting mathematical and biological questions that emerge from this anal-
ysis, and we explain why understanding homeostatic control is crucial for precision
medicine.

Keywords Biochemistry · Homeostasis · Networks · Motifs

Mathematics Subject Classification 92C40 · 92C42 · 26B10

1 Introduction

The concept of homeostasis has a long history in physiology going back to the
French physiologist Claude Bernard who emphasized the importance of maintaining
“le milieu intérieur”. The word homeostasis itself was introduced by the Ameri-
can physiologist Walter Bradford Cannon (1926). In studying homeostasis, classical
physiologists were mainly concerned with the mechanisms that regulated whole body
variables like temperature, plasma sodium and glucose levels, and muscle tone, and
kept them within certain narrow limits. Figure 1 shows a recent example: the cerebral
blood flow is quite homeostatic as blood pressure varies. Homeostasis also occurs in
biochemical systems: Fig. 2 shows the homeostasis of fructose 2,6-biphosphate (an
important regulator of glycolysis) in an insect as the hormone corpora cardiaca is
varied.

In our own work on cell metabolism, we have found many such mechanisms that
buffer certain concentrations against large changes in amino acid inputs and protect
cells against genetic polymorphisms that occur in the genes that code for enzymes.

Fig. 1 Homeostasis in cerebral blood perfusion. The horizontal axis is cerebral perfusion pressure and the
vertical axis is cerebral blood flow in humans. Because of numerous homeostatic mechanisms, the cerebral
blood flow shows remarkable homeostasis over a wide range of pressures. LLA and ULA indicate the lower
and upper limits of pressures between which the homeostatic mechanisms work well. MAP indicates the
mean arterial pressure while resting. Once one leaves the homeostatic region, serious health effects occur.
The figure is redrawn from Green and Lee (2012)
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2536 M. Reed et al.

Fig. 2 Homeostasis of fructose 2,6-biphosphate. Fructose 2,6-biphosphate is an important regulatory
molecule in glycolysis. It, in turn, is regulated in insects (measurements in Blaptica dubia) by a hor-
mone from the corpora cardiaca. Fructose 2,6-biphosphate shows homeostasis as the amount of corpora
cardiaca hormone is varied. The figure is redrawn from Becker et al. (1996)

We have been continually surprised that even relatively small networks can have many
overlapping regulatory mechanisms. This is true in one-carbon metabolism Nijhout
et al. (2004), Reed et al. (2008, 2014), and it is true in dopamine and serotonin
metabolism in the brain Best et al. (2009, 2010). The study of such mechanisms is
central to understanding cell metabolism and also important for designing intervention
strategies when the mechanisms do not work, as is the case in many disease states.
Indeed, such regulatory mechanisms typically work only when the challenges that
the cell faces are within a finite range. Outside that range, the mechanisms become
ineffective, and the variables that the mechanisms are supposed to control change
rapidly, a phenomenon that Nijhout et al. (2014) call “escape from homeostasis.”
One can see the escape from homeostasis in both Figs. 1 and 2. Another example,
in bone remodeling, can be found in Elliott et al. (2016). Nijhout and Reed (2014)
called such graphs “chairs,” where one variable shows both homeostasis and escape
from homeostasis with respect to another. We note that in Drengstig et al. (2012),
two-node input–output motifs are classified, and the three-dimensional surfaces show
many chair curves.

Cell metabolism is an extremely complicated dynamical system, and it is important
to understand that “homeostasis” does not mean that the dynamical system is rigid
and fixed in the face of changes in external variables. Far from it. Typically, large
changes in external variables cause large changes in some internal variables so that,
through the regulatory mechanisms, certain other internal variables (concentrations or
velocities) remain homeostatic. For reasons that we will make clear in the discussion,
understanding homeostatic control is crucial for precision medicine.

The work of Nijhout, Best, and Reed on homeostasis Nijhout and Reed (2014),
Nijhout et al. (2014, 2015) led Golubitsky and Stewart (2017) to the idea of using
singularity theory to identify which nodes in a dynamical systems network could be

123

Author's personal copy



Analysis of Homeostatic Mechanisms in Biochemical Networks 2537

Fig. 3 The feedforward
excitation motif. The substrate X
activates the enzyme that
catabolizes Z

homeostaticwith respect to certain input variables. They observed that a typical “chair”
curve looks approximately like a function of the formC(λ) = (λ−a)3 +b(λ−a)+c
where b is small. See, for example, the curves in Fig. 4. Thus, if z is the variable that one
hopes is homeostatic and if z(I ) is the steady-state value of z as a function of the input
to the network, I , then one should search for a value I0 of I such that both z′(I0) = 0
and z′′(I0) = 0. If z′(I0) = 0 but z′′(I0) �= 0, we call I0 a GS homeostasis point. If
both z′(I0) = 0 and z′′(I0) = 0, but z′′′(I0) �= 0, we call I0 a GS chair point. One can
search for GS homeostasis points and GS chair points by using implicit differentiation
on the equations describing the conditions for steady states. If one finds a GS chair
point at I0 for a set of parameters, po, then singularity theory guarantees that, for p in
a small neighborhood of po, one can find corresponding curves z p(I ) such that z p(I )
is similar to z po(I ), but z′(Io) and z′′(I0) are small with either sign. That is, z p(I ) will
show homeostasis even though z′(I ) �= 0 and z′′(I ) �= 0 for any I near Io.

In this paper, we present mathematical analyses of four common homeostatic
mechanisms in cell metabolism: feedforward excitation, feedback inhibition, kinetic
homeostasis, and parallel inhibition (Sects. 2–5). We show that feedforward excita-
tion and kinetic homeostasis can arise from GS chair points, but feedback inhibition
and parallel inhibition cannot. In Sect. 6, we show that several mechanisms can occur
simultaneously in a small network resulting in a chair with three steps. In Sect. 7, we
examine a real metabolic network, folate and methionine metabolism, and show that
all four motifs occur there. In the discussion (Sect. 8), we point out many interesting
biological and mathematical questions suggested by this work.

2 The Feedforward Excitation Motif

Feedforward excitation occurs in a biochemical network when a substrate activates
the enzyme that removes a product, as depicted in Fig. 3. We will see a biological
example of feedforward excitation in Sect. 7. In all of our motif diagrams, X , Y , and
Z are the names of chemical substrates, and we denote their concentrations (in units
of micromolar, for example) by lower case x , y, and z. Each straight arrow represents
a flux (in micromolar/hour, for example) coming into or going away from a substrate.
The differential equations for each substrate simply say that the rate of change of the
concentration is the sum of the arrows going toward substrate minus the arrows going
away. Curved lines (see Figs. 3, 5, 9, 11) indicate that a substrate is activating an
enzyme (pointed) or inhibiting an enzyme (barred).

To gain intuition, we start by considering the simple case where each gi has linear
mass-action kinetics, gi (x) = ci x , and the feedforward excitation (f) has simple
product form. Then the differential equations are:
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2538 M. Reed et al.

ẋ = I − c4x − c1x

ẏ = c1x − c2y − c5y

ż = c2y − f (x)z. (1)

where the assumption f ′ > 0 would correspond to feedforward activation because
as x gets larger the rate of removal of z increases. We always suppose that f > 0 if
x > 0. First suppose f is a positive constant (no feedforward activation). Then, it is
easy to check that at equilibrium all three concentrations, x(I ), y(I ), and z(I ), will
grow linearly in I . However, if f ′ > 0, then z(I ) could be homeostatic, because as I
goes up, the increased synthesis of Z could be balanced by increased catabolism. We
will see that this is true for an appropriate choice of f and that the system has a GS
chair. The equilibria can easily be calculated explicitly:

x(I ) = 1

c1 + c4
I ; y(I ) = c1

(c2 + c5)(c1 + c4)
I ;

z(I ) = c1c2
(c1 + c4)(c2 + c5)

I

f
(

I
c1+c4

) .

To simplify the calculation, let Î = I/(c1 + c4) and ĉ = c1c2/(c2 + c5). Then,

z( Î ) = ĉ
Î

f ( Î )

GS homeostasis occurs when z′ = 0, and GS chairs occur when z′′ = z′ = 0, where
′ indicates differentiation with respect to Î . Since GS points are independent of ĉ, we
may assume ĉ = 1. Since

z′( Î ) = 1

f ( Î )
− Î f ′( Î )

f ( Î )2
, (2)

a GS homeostasis point occurs at Î when

f ′( Î ) = f ( Î )

Î
. (3)

Differentiating (2) and using (3), we find

z′′ = −2
f ′

f 2
+ 2

Î ( f ′)2

f 3
− Î f ′′

f 2
= − Î f ′′

f 2

so a GS chair occurs at a point Î where

f ′( Î ) = f

Î
and f ′′( Î ) = 0.
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Fig. 4 Simulations of the
feedforward excitation motif.
Here c1 = c2 = c4 = 1, c5 = 6,
f (x) =
1 + 1

/ [
1 + exp

(
50−x

σ

)]
. The

GS chair point occurs at
I0 = 100. For the red curve,
σ = 8.33, for the blue curve
σ = 7, and for the green curve
σ = 10 (Color figure online)

Example Consider the following choice for f :

f (x) = 1 + 1

1 + g(x)
where g(x) = e

50−x
σ .

Recall that along the curve of equilibria x = Î . Note that g′ = − 1
σ

g and g′′ = 1
σ 2 g.

We can calculate the derivatives of f in terms of g. In particular, f ′′ = 0 implies
g( Î ) = 1, which in turn implies Î = 50. It follows that I = (c1 + c4) Î = 100. Next,
use g( Î ) = 1 to compute

f ′ = − g′

(1 + g)2
= 1

σ

g

(1 + g)2
= 1

4σ

It follows that

3

2
= f ( Î ) = Î f ′( Î ) = 50

4σ
.

Therefore, σ = 25
3 . The fact that a GS chair occurs at σ ≈ 8.33 and I = 100 is

confirmed by numerical calculations; see the red curve in Fig. 4.

For nearby choices of parameters, σ = 7 or σ = 10, the curve z(I ) shows home-
ostasis but can be always increasing (green) or have a decreasing portion (blue). In all
three cases, the curves show escape from homeostasis when I is large or small because
in the corresponding ranges of x(I ), f is close to constant and, as we explained in
the beginning, when f is constant the equilibria scale linearly in I . This escape from
homeostasis is what one sees in real biological examples because the homeostatic
mechanisms work over only a finite range of input values. See Figs. 1 and 2 and
Nijhout et al. (2014).
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2540 M. Reed et al.

We now show that these calculations can be done quite generally. The differential
equations are:

ẋ = I − g1(x) − g4(x)

ẏ = g1(x) − g2(y) − g5(y)

ż = g2(y) − h(x, z), (4)

and feedforward excitation is represented by the following conditions on h:

∂h

∂x
> 0 and

∂h

∂z
> 0. (5)

Note that (1) is a special case of (4). It is convenient to define a specific space of
kinetic functions.

Definition 1 LetG be the set of real-valued functions on [0,∞) such that each g ∈ G

satisfies:

(i) g is twice continuously differentiable, and g′(x) > 0 for all x .
(ii) g(0) = 0.
(iii) g(x) → ∞ as x → ∞.

We note that G is a group under composition.

Theorem 2 Suppose gi ∈ G for each i . Suppose that h is twice continuously differ-
entiable, h(x, ·) ∈ G for each x > 0, and h satisfies (5). Then there is a unique stable
equilibrium (x(I ), y(I ), z(I )) for each I . GS homeostasis occurs at I0 if and only if

hx (x0, z0) = g′
1g′

2

g′
2 + g′

5
(6)

where (x0, y0, z0) = (x(I0), y(I0), z(I0)) and the g′
i are evaluated at x0, y0 or z0 as

appropriate.
A GS chair occurs at I0 if and only if (6) and

hxx (x0, z0) = 1

g′
2 + g′

5

(
g′′
1g′

2 + (g′
1)

2 g′′
2g′

5 − g′
2g′′

5

(g′
2 + g′

5)
2

)
. (7)

Proof The equations for equilibria in (4) are:

I − g4(x(I )) − g1(x(I )) = 0

g1(x(I )) − g2(y(I )) − g5(y(I )) = 0

g2(y(I )) − h(x(I ), z(I )) = 0 (8)

We first show that (8) has a unique solution (x(I ), y(I ), z(I )) for each I , and the
corresponding equilibrium for (4) is linearly stable. Since g1 + g4 is an unbounded
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increasing function that vanishes at the origin, there is a unique solution x(I ) > 0
to the first equation, g1(x) + g4(x) = I . Similarly, since g2 + g5 is an unbounded
increasing function that vanishes at the origin, there is a unique solution y(I ) > 0 to
the second equation, g2(y) + g5(y) = g1(x(I )). Finally, for each I , there is a unique
solution z(I ) > 0 to the third equation, h(x(I ), z) = g2(y(I )), since by (5), h(x, ·)
is unbounded, strictly monotone increasing, and vanishes at the origin. Finally, at an
equilibrium, the Jacobian of (8) is

J =
⎛
⎝

−(g′
1 + g′

4) 0 0
g′
1 −(g′

2 + g′
5) 0

−hx g′
2 −h′

z

⎞
⎠

all of whose eigenvalues are negative, so the equilibrium is asymptotically stable.
Next we discuss GS points. Differentiate (8) with respect to I obtaining

(g′
1 + g′

4)x ′ = 1

g′
1x ′ − (g′

2 + g′
5)y′ = 0

g′
2y′ − hx x ′ − hzz′ = 0 (9)

Solve the first equation for x ′ and the second equation for y′
x ′ obtaining

x ′ = 1

g′
1 + g′

4
and

y′

x ′ = g′
1

g′
2 + g′

5
(10)

The third equation then implies that z′ = 0 if and only if (6) is satisfied.
Next differentiate (9) with respect to I and evaluate at z′ = z′′ = 0 to obtain

(g′
1 + g′

4)x ′′ + (g′′
1 + g′′

4 )(x ′)2 = 0
g′
1x ′′ + g′′

1 (x ′)2 − (g′
2 + g′

5)y′′ − (g′′
2 + g′′

5 )(y′)2 = 0
g′
2y′′ + g′′

2 (y′)2 − hxx (x ′)2 − hx x ′′ = 0

which we can rewrite as

x ′′

(x ′)2
= −g′′

1 + g′′
4

g′
1 + g′

4

(g′
2 + g′

5)
y′′

(x ′)2
= g′

1
x ′′

(x ′)2
+ g′′

1 − (g′′
2 + g′′

5 )

(
y′

x ′

)2

hxx = g′
2

y′′

(x ′)2
+ g′′

2

(
y′

x ′

)2

− hx
x ′′

(x ′)2
(11)

Next use (10) and the first equation in (11) to solve the second equation in (11) for
y′′

(x ′)2 obtaining
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2542 M. Reed et al.

Fig. 5 The feedback inhibition
motif. The substrate Z inhibits
the enzyme that catalyzes the
conversion of X to Y

y′′

(x ′)2
= 1

g′
2 + g′

5

(
g′′
1 − g′

1
g′′
1 + g′′

4

g′
1 + g′

4
− (g′

1)
2 g′′

2 + g′′
5

(g′
2 + g′

5)
2

)

Substitute the formulas for x ′′
(x ′)2 ,

y′′
(x ′)2 ,

y′
x ′ in the third equation in (11) and simplify to

yield (7). �	
This theorem can be used to construct examples of homeostasis created by feedfor-

ward excitation as we did in the example above. The hypothesis that gi (x) → ∞ for
each i excludes Michaelis–Menten kinetics. However, that hypothesis was used only
to show that an equilibrium exists for each 0 ≤ I < ∞. If the gi satisfy Michaelis–
Menten kinetics (or other saturating kinetics), then there will be no equilibrium for I
large enough because mass cannot leave the system as fast as it is coming in. In that
case, there will be a finite interval, [0, I1), on which the theorem holds true, and the
proof is the same. So the issue with Michaelis–Menten kinetics is only the existence
of equilibria, not the effect of feedforward excitation.

3 The Feedback Inhibition Motif

Feedback inhibition is probably one of the simplest and best known homeostatic
mechanisms in biochemistry. In its simplest form, feedback inhibition means that the
product of a biochemical chain inhibits one or more of the enzymes involved in its
own synthesis. Thus if the concentration of the end product goes up, synthesis is
slowed, and if the concentration goes down, the inhibition is partially withdrawn and
the synthesis goes faster. See Fig. 5.

Examples of feedback inhibition abound, and we mention three. Phosphofructoki-
nase is the third enzyme in glycolysis and is strongly inhibited by the end product ATP
Hall (2017). S-adenosylmethionine (SAM) is the universalmethyl groupdonor in cells.
There are more than 150 different reactions, each catalyzed by a different enzyme, in
which SAM gives up a methyl group and is transformed into S-adenosylhomocysteine
(SAH). Almost all of these enzymes are inhibited by SAHClarke and Banfield (2001),
Reed et al. (2014). Third, the enzyme tyrosine hydroxylase catalyzes the key step in the
synthesis of dopamine (DA) in neuronal terminals, and it is inhibited by cytosolic DA.
Cytosolic DA is packaged into vesicles, and some are released when an action poten-
tial arrives. In the extracellular space, DA binds to auto receptors on the terminals
that inhibit tyrosine hydroxylase and the release of vesicles. Thus both the cytoso-
lic and the extracellular concentrations of DA are regulated by feedback inhibition
Benoit-Marand et al. (2001), Best et al. (2009).
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Fig. 6 Homeostasis and escape
in the product inhibition motif.
In this simulation, gi (x) = x for
all i and f (z) =
1 + 200/(1 + exp(z − 50)/0.5).
At equilibrium, z(I ) grows
linearly for small I and large I
and in between shows a
homeostatic region where
z′(I ) > 0, but z(I ) hardly
changes at all

For simplicity and to develop intuition, we first suppose that each of the kinetics,
gi for i ≥ 2, is linear mass-action, but that g1(x) is multiplied by a function f that
depends on z. The corresponding differential equations are:

ẋ = I − c4x − f (z)c1x

ẏ = f (z)c1x − c2y − c5y

ż = c2y − c3z. (12)

Product inhibition would be expressed by the hypothesis f ′ < 0. Suppose, instead,
that f is a positive constant. Then it is easy to see that for each I , there is a unique
steady state (x(I ), y(I ), z(I )), and that the three functions x(I ), y(I ), z(I ) are each
linearly increasing in I . However, if f ′ < 0, then, as z goes up with I , f will inhibit
the synthesis of z, which will moderate the increase. Figure 6 shows the result for
particular choices of the constants ci and the function f . The variable z(I ) shows very
strong homeostasis in the middle range of I but shows the escape from homeostasis
for low I or high I because f is almost constant for low and high z. Of course we
have chosen the function f in order to make this point. Rather than the simple product
form, f (z)c1x, in this example, in general the kinetics of the reaction from X to Y
will be given by h(x, z), where ∂h

∂x > 0 (more substrate, faster reaction) and ∂h
∂z < 0

(higher Z , more inhibition of the reaction). See Eq. (13).
Though the feedback inhibition motif can create a strongly homeostatic region,

it cannot have a GS singularity. We will prove this by showing, under quite general
hypotheses, that ∂z

∂ I > 0 for all I . For brevity, we omit the proof of existence of the
equilibrium for all I and just give the local result. The differential equations are:

ẋ = I − g4(x) − h(x, z)

ẏ = h(x, z) − g2(y) − g5(y)

ż = g2(y) − g3(z). (13)

Theorem 3 Suppose that gi ∈ G for all i . Suppose that h(x, z) is continuously dif-
ferentiable in the positive orthant, h > 0, ∂h

∂x > 0, and ∂h
∂z < 0. Suppose (13) has
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2544 M. Reed et al.

an equilibrium in the positive orthant at I0. Then the equilibrium extends uniquely to
equilibria (x(I ), y(I ), z(I )), where the solution functions are smooth, and dz

d I > 0
for all I at and near I0.

Proof Replacing the second equation in (13) by the sum of the first two equations
shows that equilibria of (13) satisfy:

g4(x) + h(x, z) = I

g4(x) + g2(y) + g5(y) = I

g2(y) − g3(z) = 0. (14)

Let E0 = (x0, y0, z0) be a solution to (14) at I0. The Jacobian of this system at E0 is

J =
⎛
⎝

g′
4 + hx 0 hz

g′
4 g′

2 + g′
5 0

0 g′
2 −g′

3

⎞
⎠

whose determinant −(g′
4 + hx )(g′

2 + g′
5)g

′
3 + hzg′

2g′
4 is negative by the assumptions

on the gi s and h. It follows from the implicit function theorem that solutions extend
uniquely to (x(I ), y(I ), z(I )) where (x(I0), y(I0), z(I0)) = (x0, y0, z0). Differenti-
ating (14) with respect to I yields

J

⎛
⎝

x ′
y′
z′

⎞
⎠ =

⎛
⎝
1
1
0

⎞
⎠

We use Cramer’s rule to solve for z′(I ), namely

z′ = det(J )/ det

⎛
⎝

g′
4 + hx 0 1

g′
4 g′

2 + g′
5 1

0 g′
2 0

⎞
⎠ = −(g′

4 + hx )(g′
2 + g′

5)g
′
3 + hzg′

2g′
4

−g′
2hx

Since ∂h
∂x > 0 and ∂h

∂z < 0, we see that z′(I ) > 0 as claimed. �	
The actual kinetic formulas for inhibitory functions like h(x, z) have been studied
extensively Segel (1975), Cornish-Bowden (2012) and depend on the details of the
chemical binding of the substrate Z to one or more sites on the enzyme. Thus, the
actual kinetic formulas depend on the particular enzyme under consideration. The
size of the homeostatic interval and the flatness of the graph depend, of course, on the
properties of h.

4 The Kinetic Motif

We now consider the possibility that Z might show homeostasis with respect to the
input I because the homeostasis is built into the kinetics between Y and Z . See Fig. 7.
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Fig. 7 The kinetic motif.
Homeostasis is built into the
kinetics from Y to Z

Suppose that g2(y) has a functional form like one of the curves in Fig. 4. For
simplicity, we assume g1, g3, g4, and g5 have linear mass-action kinetics. Then, the
equilibrium equations associated with this system are:

(c1 + c4)x = I

g2(y) + c5y = c1x

c3z = g2(y) (15)

It follows immediately that x scales linearly in I and that z(I ) = 1
c3

g2(y(I )), so the
shape of z(I ) is a rescaling of the shape of g2(y(I )), which is why we call this the
kinetic motif.

Consider the general case:

ẋ = I − g1(x) − g4(x)

ẏ = g1(x) − g5(y) − g2(y)

ż = g2(y) − g3(z) (16)

where g1, g3, g4, and g5 are in G, but g2(y) can have a more general shape (for
example, a negative derivative over certain intervals).

Theorem 4 Suppose that g1, g3, g4, g5 ∈ G, that g2 is twice continuously differen-
tiable on R and that 0 < α ≤ g′

5(y) + g′
2(y) for some α. Then, the system (16) has

a unique, stable equilibrium for each I ≥ 0. Furthermore, z has a GS homeostasis
point at I0 if and only if g′

2(y0) = 0 and z has a GS chair point at I0 if and only if
g′
2(y0) = g′′

2 (y0) = 0, where y0 = y(I0).

Proof Suppose I ≥ 0. Since g1 + g4 ∈ G, the first equilibrium equation, g1(x) −
g4(x) = I , can be solved uniquely for x(I ) and x ′(I ) > 0. Similarly, since g′

5(y) +
g′
2(y) ≥ α, the second equilibrium equation has a unique solution and y′(I ) > 0.Since

g3 ∈ G, the third equilibrium equation can be solved uniquely for z(I ). By writing
down the Jacobian, it is easy to check that the equilibria are stable. Differentiating
g2(y(I )) = g3(z(I )) with respect to I yields

g′
2(y0)y′(I0) = g′

3(z0)z
′(I0).

Thus since y′(I0) �= 0 and g′
3(z0) �= 0,we see that z′(I0) = 0 if and only if g′

2(y0) = 0.
Differentiating again gives

g′′
2 (y0)(y′(I0))

2 + g′
2(y0)y′′(I0) = g′′

3 (z0)(z
′(I0))

2 + g′
3(z0)z

′′′(I0) = 0

Hence, z′(I0) = z′′(I0) = 0 if and only if g′
2(y0) = g′′

2 (y0) = 0. �	
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This raises the natural question whether the kinetics of enzymes can have compli-
cated forms like the curves in Fig. 4.Wewill briefly explainwhy the answer is “yes.” In
what follows, Y will be denoted by S and its concentration by [S] and g2(y) is replaced
by V ([S]) to connect with traditional biochemical notation. S is called the substrate
of the reaction and V ([S]) is called the velocity of the reaction because it is that rate
at which the product of the reaction is formed as a function of the concentration of
substrate. Panel A of Fig. 8 shows the reaction diagram for “simple” enzyme kinetics
that yields the Michaelis–Menten formula Michaelis and Menten (1915) for the rate
of product formation, V . The straightforward derivations of all the formulas in Fig. 8
make use of the equilibrium assumption that the reversible reactions in the diagrams
are fast compared to rates of product formation Segel (1975). Note that Michaelis–
Menten kinetics has a kind of homeostasis since the velocity curve, V ([S]), becomes
flat for large values of [S] though it does not have a homeostasis point or a chair point.
The reason is simple. There is only a finite amount of enzyme, so the reaction cannot
make product faster than k2Eo, where Eo is the total amount of enzyme present.

In the 1930s, Haldane introduced the concept of substrate inhibition in which the
substrate of the reaction itself inhibits the enzyme that catalyzes the reaction Haldane
(1930). There are many different ways in which this can happen, but a simple way is if
two molecules of the substrate can bind to the enzyme as shown in Panel B of Fig. 8,
and the rate of formation of the product is lower when two substrate molecules are
bound than if one is bound (i.e. k4 < k2). In this case, the velocity curve will first rise
to a maximum and then descend to k4Eo as [S] gets larger and larger. It is estimated
that about 20% of enzymes show substrate inhibition Chaplin and Burke (1990). We
have shown that substrate inhibition often occurs for biologically significant regula-
tory reasons Reed et al. (2010). For example, it occurs in tyrosine hydroxylase and
tryptophan hydroxylase (the rate-limiting enzymes for the synthesis of dopamine and
serotonin) and in phosphofructokinase in glycolysis. And, as we will see in Sect. 7,
substrate inhibition occurs in the folate cycle. In case of substrate inhibition, the kinetic
motif would have GS homeostasis point but not a GS chair.

If an enzyme hasmultiple binding sites for a substrate, thenmuchmore complicated
velocity curves can occur. Many such biological examples are given in Segel (1975,
1980, 1984), Storey (2004) where kinetic formulas are derived. We give a simple
example in Panel C of Fig. 8 in which the velocity curve has the classic chair shape
if k6 > k2 > k4, and the other constants are chosen appropriately. In such a case,
the kinetic motif has a GS chair point. We remark that once a section of a gene for
an enzyme codes for a binding site for S, the section can be duplicated to create an
enzyme with many binding sites, and it is not surprising that evolution has created
such enzymes in order to create homeostatic regions via the kinetic motif.

5 The Parallel Inhibition Motif

In the motif shown in Fig. 9, I1 is a fixed input, and we consider how the equilibrium
value of z changes as a function of I.As I rises, z will start to rise inhibiting, via f1, the
synthesis of x . As x declines, the inhibition of the catabolism of z is withdrawn. Thus
z is removed faster, which will tend to keep its steady-state concentration relatively
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Fig. 8 Multiple binding sites and kinetic formulas. In a, we show the simplest reaction diagram for
enzyme kinetics that leads to the Michaelis–Menten formula for the velocity, V , in terms of the substrate
concentration, [S]. The parameters are: K −1

1 = k−1/k1 = 30, k2 = 1, E0 = 10. b Shows a simple reaction
diagram that leads to substrate inhibition if k4 < k2 and the corresponding velocity curve. The parameters
are: K −1

1 = 450, k2 = 2, K3 = k3/k−3 = 0.1, k4 = 0.04, E0 = 100. c Shows an example of enzyme
kinetics when there are three binding sites and the corresponding velocity curve. The parameters are:
K −1
1 = 450, k2 = 2, K3 = k3/k−3 = 0.1, k4 = 0.04, K5 = k5/k−5 = 0.00003, k6 = 10, E0 = 100

constant over the ranges in which f1 and f2 provide increasing inhibition. We will see
this motif in the biological network considered in Sect. 7.

In a simple case, corresponding to Fig. 9, the catabolism of Z would be given by
f2(x)g4(z). Instead, we immediately consider the general case:

ẋ = g1(I1) f1(z) − g3(x)

ż = g2(I ) − g5(z) − h(x, z).
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Fig. 9 The parallel inhibition
motif. The substrate Z inhibits
the synthesis of X, and X inhibits
an enzyme that catabolizes Z

The parallel inhibition hypotheses corresponds to the conditions:

∂ f1
∂z

< 0,
∂h

∂x
< 0. (17)

Theorem 5 Suppose that g2, g3, g4, g5 ∈ G, that f1 is positive and continuously
differentiable for z ≥ 0, that h is continuously differentiable in the positive orthant,
that h(x, ·) ∈ G for all x > 0, and that (17) holds. Then, for each I , there is a unique
stable equilibrium, (x(I ), z(I )), and x ′(I ) < 0 and z′(I ) > 0. Thus, z cannot have a
GS homeostasis point nor a GS chair point.

Proof The constant g1(I1) does not affect the proof so, for simplicity assume it equals
1. Solving the first equilibrium equation for x(I ) in terms of z(I ) and substituting in
the second equilibrium equation yield:

g2(I ) = g5(z) + h(g−1
3 ( f1(z)), z) ≡ F(z). (18)

Differentiating with respect to z,

F ′(z) = g′
5(z) +

(
∂h

∂x

)
(g−1

3 )′ f ′
1 + ∂h

∂z
.

From the parallel inhibition hypotheses (17) and the hypothesis that h(x, ·) ∈ G,
it follows that F ′(z) ≥ g′

5(z) for all z ≥ 0. Since F(0) = 0, Eq. (18) has a unique
solution z(I ) for each I ≥ 0 and since g3 can be inverted the first equilibrium equation
yields a unique x(I ). It is easy to check that (x(I ), z(I )) is stable.

Differentiating F(z(I )) with respect to I gives:

g′
2(I ) =

[
g′
5(z) + ∂h

∂x
(g−1

3 )′ f ′
1 + ∂h

∂z

]
z′(I ),

so by the parallel inhibition hypotheses (17), we see that z′(I ) > 0 and the statements
about GS homeostasis points and chair points follow. �	

Although the parallel inhibition motif cannot have a GS homeostasis point or a GS
chair, nevertheless Z can have a large region of homeostasis as Fig. 10 shows.
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Fig. 10 Homeostasis caused by
the parallel inhibition motif. In
the middle region, as I rises,
f1(x(I )) inhibits the synthesis
of X more and more, so x(I )
falls. When x(I ) descends to
approximately 50 μM, the
inhibition of the catabolism of Z
by X is withdrawn, f2[x(I )],
and this increased catabolism of
Z compensates for the increased
synthesis of Z as I rises. f1 has
the form f1(z) =
1 + 1/(1 + exp(z − 50)/0.5)
and f2 has the form f2(x) =
4(1 + 1/[1 + exp(x − 50)])
I1 = 50 and gi (β) = β for each
i (Color figure online)

We will describe why Z(I ) shows homeostasis between I = 260 to I = 360
in Fig. 10. Below I = 240, both f1(z(I )) and f2(x(I )) are constant so z(I ) rises
linearly as expected. Once z(I ) approaches 50, f1(z(I )) begins to decrease inhibiting
the synthesis of X , and so the concentration x(I ) decreases rapidly. However, the
inhibition of the catabolism of Z does not begin to be withdrawn until x(I ) approaches
50. Then every increase in I stimulates lower x(I ) which in turn removes inhibition
and increases the catabolism of Z , thus keeping Z to a very small rate of increase (the
homeostatic plateau). Notice that since z(I ) increases very slowly, x(I ) decreases
slowly in the plateau region. When x(I ) and z(I ) get far enough away from 50 (for I
near 360), then the two inhibitory functions become constant and z(I ) begins to rise
linearly at a much faster rate. When I is low, f1(z(I )) and f2(x(I )) are constant in
I and thus the two pathways have constant influences on each other. But when x(I )
and z(I ) get into the ranges where f1 and f2 change rapidly, the homeostatic plateau
is created. Finally, when I is high, the influences again are constant and z(I ) resumes
its rapid rise.

6 Multiple Motifs in One Network

We have discussed separately four homeostatic biochemical motifs, but, of course,
more than one can occur even in a very simple network. Figure 11 shows a network
that contains feedforward excitation, f2(x), feedback inhibition, f1(z), and the kinetic
motif g2(y). Each one alone would create homeostasis for z over an interval of I input
values, with escape from homeostasis to the right and the left of the interval. What
happens if all three are present?

The answer depends on the ranges of x, y,, and z values over which the nonlinear
functions f1, f2, and g2 change rapidly. If those regions overlap, the homeostatic
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Fig. 11 Three homeostatic
mechanisms: feedforward
excitation, feedback inhibition,
and the kinetic motif in one
small network

Fig. 12 Three homeostatic
plateaus in z(I ) for the network
in Fig. 11. The differential
equations, the functions
f1(z), g2(y), and f2(x), and the
parameters are similar to those
given in Sects. 2, 3 and 4.

effects can be additive, or if they are disjoint, the effects can occur over separate ranges
of the input parameter, I . The latter case is illustrated by the simulation in Fig. 12.
Feedforward excitation kicks in first for fairly low values of I . Then, for higher values
of I , the feedback inhibition motif makes a homeostatic plateau. Finally, for very high
values of I , the kinetic motif (from Panel C of Fig. 8) creates a third plateau. To the
left and right, we see the expected escape from homeostasis. In the central region, the
concentration of z takes on one of three homeostatic levels with fairly rapid transitions
between them.

One interesting aspect of the phenomenon in Fig. 12 is that it shows that, even
though concentrations vary continuously, a concentration can essentially have three
distinct values with rapid transitions between them as I is varied over the middle
range. These three distinct values for z are not created by different equilibria but by
three different homeostatic mechanisms.

Finally we note that if one adds a second motif to a motif in a network, then one can
change the nature of the first motif. In Sect. 5 we showed that the parallel inhibition
motif cannot have a GS homeostasis point. However, if one adds a kinetic motif, then
the parallel inhibition motif can have a GS homeostasis point.
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Theorem 6 Assume all of the hypotheses of Theorem 5 for the parallel inhibition
motif except that we relax the hypothesis on g3 to allow points where g′

3(x0) = 0.
Then, the GS homeostasis points of z are exactly at the equilibria where g′

3(x0) = 0.

Proof As in the proof of Theorem 5, we let g1(I1) = 1. Let (x(I ), z(I )) be a family
of equilibria. Differentiation with respect to I yields

f ′
1(z)z

′(I ) = g′
3(x)x ′(I )

g′
2(I ) =

[
g′
5(z) + ∂h

∂z

]
z′(I ) +

(
∂h

∂x

)
x ′(I ). (19)

Observe that z′(I0) = 0 if and only if

g′
3(x0)x ′(I0) = 0 and

(
∂h

∂x

)
x ′(I ) = g′

2(I0).

Since g′
2(I0) > 0, it follows that x ′(I0) �= 0 and hence that g′

3(x0) = 0. Conversely,
if g′

3(x0) = 0, then the first equation implies z′(I0) = 0 since f ′
1(z0) < 0. �	

This phenomenon is interesting because the kinetic motif in the catabolism of x
creates a GS homeostasis point in a different variable, z, that is neither the substrate
nor the product of the kinetic motif itself.

7 Motifs in a Real Biological Network

Motifs of the kind we have been considering occur in large, realistic biological net-
works. For example, the folate and methionine cycles in liver cells are depicted in
Fig. 13, and we shall see that all four of the motifs that we have discussed occur
there. The rectangular boxes indicate the substrates and the blue ellipses contain the
acronyms of the enzymes that catalyze the reactions. The amino acids serine, glycine,
and methionine, are inputs to this part of one-carbon metabolism. For simplicity, we
will assume the concentrations of serine and glycine are constant and focus on the
effects of changes in methionine input. After meals, amino acid concentrations in the
blood increase by a factor of 2–6 Kilberg and Haussinger (1992). How does the cell
maintain homeostasis in these cycles with such a large change in methionine input?
The answer is with a large set of overlapping homeostatic mechanisms, including the
four mechanisms we have singled out in this paper.

Whenmethionine input goes up dramatically, one would expect all the substrates of
the methionine cycle, methionine (MET), s-adenosyl-methionine (SAM), s-adenosyl-
homocysteine (SAH), and homocysteine (Hcy) to rise accordingly. Since Hcy is the
major biomarker for cardiovascular disease Clarke and Banfield (2001), one might
expect that the cell has a mechanism to keep the Hcy concentration from rising too
high. This mechanism is feedforward excitation from SAM that activates the enzyme
CBS that sends Hcy down the transsulfuration pathway. Figure 3 in Nijhout et al.
(2014) shows that the steady-state Hcy concentration has a chair shape and is quite
homeostatic over a wide range of methionine inputs.
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Fig. 13 The folate and methionine cycles. The green and pink boxes represent substrates and the blue
ellipses contain the acronyms of the enzymes catalyzing particular reactions. The complete set of differential
equations and kinetics formulas for all the reactions, including the red homeostatic mechanisms, can be
found in Reed et al. (2014) (Color figure online)

The reactions from SAM to SAH on the right side of the diagram are methyltrans-
ferase reactions in which a methyl group is taken from SAM and attached to some
substrate leaving SAH and the methylated substrate. There are over 150 methyltrans-
ferase reactions that use SAM as the substrate; we have depicted five important ones.
The DNMT reaction attaches methyl groups to cytosines in promoter regions of genes
(the basis of epigenetics). The AS3MT reaction replaces a oxygen bound to arsenic
with a methyl group, which helps in detoxifying arsenic. The GAMT reaction is the
final step in the synthesis of creatine, and the PEMT reaction is a major step in the con-
struction of cell membranes. Almost all the methyltransferase reactions show strong
or weak product inhibition from SAH Clarke and Banfield (2001). In one case, the
“purpose” of the production inhibition is clear. When blood methionine goes up, SAM
goes up as does the product SAH. The increased SAMdrives the PEMT reaction faster,
and the increased SAH inhibits the PEMT reaction. These two effects almost exactly
cancel, so the PEMT reaction hardly varies as blood methionine changes Reed et al.
(2014).

The pink boxes on the left side of the diagram are all different forms of folate,
vitamin B-9, which comes from green vegetables. The TS reaction and the AICART
reaction aremajor steps in the synthesis of pyrimidines and purines, respectively, so the
folate cycle is highly upregulatedwhen the cell is trying to divide. The enzymes TS and
DHFR are the targets of the chemotherapeutic agents 5-fluorouracil and methotrexate
that attempt to disrupt this functionof the folate cycle.Almost all of the folate substrates
bind non-enzymatically and reversibly to various of the folate enzymes, taking both
the substrate and the enzyme out of service. This is a kind of substrate inhibition as
was discussed in Sect. 4. As the total folate in the liver decreases (because of the lack
of vegetables), some of the reversible bonds dissociate making both more folate and
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more enzyme available. We have shown that, because of this substrate inhibition, the
velocity of the reactions in the folate cycle change very little as the total liver folate
varies from normal to 25% of normal and have proposed that this effect protected our
ancestors against the lack of vegetables in the winter Nijhout et al. (2004).

The diagram shows that SAM inhibits the enzyme MTHFR in the folate cycle, and
the product of that reaction, 5mTHF, inhibits the enzyme GNMT, which is a methyl
transferase. This is the parallel inhibition motif. To understand what this regulation
does, one needs to understand that the parallel methytransferase reactions pose a seri-
ous problem for the cell: they all have the same substrate, SAM. By upregulating
and downregulating the individual methyltransferases, the cell could hope to control
the individual fluxes of the reactions. However, suppose one of the reactions, say
GAMT, is downregulated to zero (if you eat plenty of creatine, the body doesn’t need
to synthesize it and GAMT is downregulated). Then SAM will go up, and the other
methyltransferase reactions will tend to go faster. Thus, because the methyltransferase
reactions all use the same substrate, it is hard for the cell to regulate them individually.
The parallel inhibition motif helps the cell to solve this problem. Suppose the GAMT
reaction is downregulated. Then SAMwill start to go up. This inhibits MTHFR more,
so the 5mTHF concentration will drop. This removes some of the inhibition of GNMT
so the GNMT reaction will go faster preventing SAM from going up very much. Simi-
larly, if the GAMT reaction goes up, the same chain of reasoning (with “increases” and
“decreases” switched) shows that SAMwon’t change toomuch. The parallel inhibition
motif was discovered by Wagner Wagner et al. (1985) who dubbed GNMT the “sal-
vage pathway.”We have shownwith mathematical modeling that it actually does work
that way, and we have shown that this mechanism is very effective at keeping the DNA
methylation reaction going at a constant rate Reed et al. (2014), Nijhout et al. (2006).

Thus all four of the motifs discussed in Sects. 2–5 occur in this pathway. And there
is more. Normally, about half the flux that arrives at Hcy from SAH is directed to the
transsulfuration pathway via CBS, and half is recirculated to Met via the reactions
MS and BHMT. However, as indicated in the diagram, SAM inhibits BHMT. When
methionine in the blood goes up after a meal, SAM rises which increases the inhibition
of BHMT. This sends more Hcy down the CBS pathway and less back to Met via
BHMT, and this tends to stabilize the total mass in the methionine cycle. Finally,
notice in the diagram that SAM excites one of the enzymes that synthesizes it (MAT-
III) and inhibits the other enzyme that synthesizes it (MAT-I). We are not certain what
this regulation is for, but in our computational experiments, it seems to prevent large
swings in the Met concentration.

8 Discussion

Biochemical networks (for example, the folate and methionine cycles, Fig. 13) are
complicated but traditionally understood as flowdiagrams throughwhich one can track
influences and changes in concentration.However,many of the regulatorymechanisms
that we have discussed involve substrates at one location in the network influencing
enzymes that catalyze distant reactions in the network.When one adds these regulatory
mechanisms, it is not easy to see how the networkwill respond to perturbations because
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themechanisms are non-local in the network, and it is not easy to seewhat the emergent
properties of the network are. Homeostasis of some substrate concentrations and some
velocities in the face of large changes in amino acid inputs is an important emergent
property of all the biochemical networks that we have studied Nijhout et al. (2004),
Reed et al. (2008), (2014), Best et al. (2010). Thus the study of how the homeostasis
comes about and breaks down is a crucial part of understanding cell metabolism.

In this study, we have analyzed four different mechanisms: feedforward excitation,
feedback inhibition, the kinetic motif, and the parallel inhibition motif. All occur in
folate and methionine metabolism. Golubitsky and Stewart (2017) proposed that a
good way to find homeostatic nodes in a network is to look for nodes z and input
values I0 at which z′(I0) = 0 and z′′(I0) = 0. Interestingly, we found that two of
our motifs have this property and that although the other two do not, they all show
homeostatic plateaus and exhibit escape fromhomeostasis. So somemechanisms show
homeostasis, but they do not have GS singularities.

In our analysis of the motifs, the regulations are given by nonlinear functions of
substrate concentration but, except for the the kinetic motif, we have not discussed
the actual excitatory and inhibitory mechanisms, which are themselves normally con-
structed out of biochemical mechanisms. These mechanisms are very diverse. Some
metabolites bind to promoter regions of genes and influence the expression of genes
that code for enzymes. Somemetabolites bind to sites on enzymes and change the con-
formation of the enzyme and thus its activity. And some metabolites compete directly
for the substrate’s binding site.

There are several natural and important questions that we have not addressed. First,
what determines the height of the homeostatic plateau? This is called the “set point”
in physiological systems. For example, what determines body temperature, or salt
concentration in the blood, or diastolic blood pressure. These set points can change
over short and long times, and understanding how they are set would contribute to
medical understanding. In the four simple motifs, one can study how the set point is
affected by the parameters and the nonlinear function that represents the regulation.
A second natural biomedical question is to determine which parameters and which
properties of the nonlinear control function affect the width of the homeostatic plateau.
For both questions, new understanding would lead to possible intervention strategies
to change the set point or to widen the plateau.

Since the work of Alon (2007), motifs have been an important topic in biology
and systems biology. However, there is a deep and natural question that has not often
been addressed. Motifs in real biological networks do not exist in isolation but are
imbedded in much larger networks. Under what conditions does the imbedded motif
operate in the same way as the isolated motif? Of course, the natural answer is, “if the
influence of rest of the network on the motif is small and the influence of the motif
on the rest of the network is small.” A rigorous formulation of this principle seems
to require complicated estimates and technical conditions, but it broadly supports that
intuition. The results depend on exactly how the motif is coupled into the rest of the
network.1

1 Golubitsky and Stewart, in preparation.
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Fig. 14 Extracellular dopamine as a function of TH and DAT activity. TH is the rate-limiting enzyme
for the synthesis of dopamine and DAT transports dopamine from the extracellular space to the terminal
cytosol. These are computations from a mathematical model Best et al. (2009), Nijhout et al. (2014) that
includes various regulatory mechanisms for dopamine. “Normal” is represented by the large white dot in
the homeostatic plateau. The small white dots are combinations of polymorphisms in the human population
in the genes that code for TH and DAT. They are all on the plateau because if they weren’t they would have
been selected against (Color figure online)

Finally, we have considered motifs that generate homeostasis in one variable as a
function of an input variable. But one is interested also in homeostasis as a function of
many variables or parameters and there is no reason why those variables or parameters
need to be inputs. Here is an example. Figure 14 shows the dopamine concentration in
the extracellular space in the brain as a function of the activity of tyrosine hydroxylase
(TH) and the activity of the dopamine transporter (DAT) computed from a mathemat-
ical model Best et al. (2009), Nijhout et al. (2014). TH is the rate-limiting enzyme in
dopamine neurons in the pathway that synthesizes dopamine. DAT is the transporter
that puts dopamine back in the neuron terminal after it has been released in the extra-
cellular space. The large white dot represents “normal,” and as one can see, it is in
the middle of a large homeostatic plateau. The small white dots are combinations of
many of the polymorphisms in TH and DAT in the human population. They are all on
the homeostatic plateau! In others words, it does not matter much how well or poorly
your TH and DAT function, your dopamine in the extracellular space will remain
about the same (because of regulatory mechanisms that we haven’t described). So, the
natural challenge is to design mathematical methods to find such higher dimensional
plateaus in biochemical networks. For example, there is an analog of GS chairs in two
input systems; it is the hyperbolic umbilic of elementary catastrophe theory. Figure
14 exhibits the mathematical characteristics of the hyperbolic umbilic; see Golubitsky
et al. (2017).

The idea of personalized (or precision) medicine is that there is great biological
variation and therefore patient treatments should be designed based on the individual
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characteristics of patients. What characteristics? Well, certainly their genotype, but
also their diet, their exercise patterns, the air they breathe, and so forth. These last
variables are very hard to quantify especially since one would want to know them
over the patient’s lifetime. But determining a patient’s genotype is cheap and easy.
So researchers expect that we can determine treatments based on genotype alone.
But as the surface in Fig. 14 shows, the genotype may be very different, but the
phenotype (the extracellular dopamine concentration) may remain the same because
of regulatory biochemical mechanisms. Thus, it unlikely that personalized medicine
treatment strategies based on genotype alone will work well.
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