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Consider the autonomous differential equation
z' = flx,u) (L.1)

where f:ﬂ?” x R » R" 1is smooth. Assume that for each u
there is a steady state solution to (l1.1) x(u) which we
assume to be jdentically zero. In addition we assume that
this steady state is asymptotically stable for u < 0 and
unstable for u > 0. More precisely, it will be assumed that
0 1is a simple eigenvalue of fx(o,o) and that %% (0) > 0
where X = A(u), A(0) = 0, 1is the smooth extension of the
7~ro eigenvalue of fx(o,o) for u # 0. All other eigen-
values of fx(o,o) are assumed to lie in the negative half-

plane. These assumptions give a well-known sufficient condi-

tion for the bifurcation of a steady state from the zero
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steady state at u = 0.
The problem considered here is to periodically perturb

(1.1) and to consider the existence of 2r-periodic solutions.

k

More precisely let F:R" xR x B x R » r"

Flae,u,t,a) Flzyu,t + 8m,0)

(1.2)
Fle,u,t,0) = fla,u)

We consider perturbations depending on the k-parameters «.

Our goal is to find all 2r-periodic solutions to

!

x! = Flz,u,t,a) (1.3)

having small (supremum) norm for {u,a) near (0. It should
be noted that if fx(o,o) were to have no eigenvalues of
the form wni, =n =0, +1,+2, ... then a straightforward
implicit function theorem argument would imply the existence
of a unique small norm 2m-periodic solution =z = x(u,a),
z2(0,a) = 0 for small yu and o.

This problem has also been considered by Rosenblat and
Cohen [2] for some specific "model" equations. Their
approach is formal and involves matching an outer solution
for u # 0 obtained as a perturbation expansion (generated
by the implicit function theorem) with an inner solution in
the limit 1y » 0. 1In this paper we extend and give rigorous
proofs of results of Rosenblat and Cohen by using the singu-
larity theory techniques of [1]. Besides putting these re-
sults in what we feel is a more natural setting we extend
and simplify them. We also show why a perturbation theory
based on one parameter as used in [2] leads to difficulty.

Our approach will be to reduce the problem of finding 2y-
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periodic solutions of (1.3) to finding zeros of a scalar

"bifurcation" equation
Alz,p,a) = 0 (1.4)

by the classical Liapunov-Schmidt Technique. In (l1.4) 3z 1is
the average of a 2n-periodic solution measured along the di-
rection ¢ # 0 where fm(0,0)¢ = 0. We will exploit the

very simple observation that
alz,u) = A(z,n,0) =0 (1.5)

is precisely the bifurcation equation arising from the steady
state bifurcation problem (1.1). 1In (1.5), 2z represents

the component of the bifurcating steady states in the ¢
direction. In the language of singularity theory, A4(z,u,o)
is a k-parameter unfolding of a(z,u). We consider two situa-
tions. First, very briefly we consider the case that f has
"effective" quadratic terms so that the bifurcation of steady
states of (1.1) is transcritical near (x,u) = (0,0) (see
Figure 1.1). Secondly, we consider in more detail the case
that f(:,u) has no quadratic terms and that cubic terms of

f determine the direction of the bifurcating steady states.
In this last case the bifurcating steady states exist for
either uy > 0 or u < 0 but not both, i.e., we have the
pitchfork diagram (see Figure 1.2). This situation would
arise naturally if there were a reflectional symmetry in the
differential equation (1.1) which caused f +to be odd in .
While our discussion will be limited to these two cases, our
techniques apply in more complicated situations (the essential

point is that a(z,u) has finite codimension, see [1]).
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Figure 1.1. Solutions of (1.5) when £ has effective
quadratic terms.
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Figure 1.2. Solutions of (1.5) when cubic terms determine
diveetion of bifuveation. The pitehfork.

For o # 0, the equation 4(+,+,a) = 0 can be viewed
as a perturbation of (1.5). Hence the bifurcation diagram
corresponding to (1.4) will be perturbations of those in
Figures 1.1 and 1.2. Our first objective will be to classify
gualitatively all possible perturbations of the bifurcation

diagrams in Figures 1.1 and 1.2 which can be realized by (1.4).
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The question of which particular perturbed diagram corresponds
to a particular perturbation F depends on various assump-
tions on the form of F. We return to this question briefly
in a later section in order to compare our results with those
in [2]. 1In pursuit of our first objective we will be led to
determine conditions on F so that (1.4) will be a universal
unfolding of (1.5) in the two cases which we consider. Ele-
mentary results of singularity theory will be used in this
determination. The possible (stable) perturbed bifurcation
diagrams (1.4) that we find are shown below. The stability
assignments are obtained by straightforward consideration of
the dynamics on the one dimensional center manifold and
continuity arguments. WNote that solution branches correspond

to 2m-periodic solutions in these figures.
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Figure 1.3. Perturbations (1.4) of Figure 1.1, a,, < 0.

The possibility of hysteresis phenomena as in Figure 1.4 (b)
and (d) is overlooked in [2].

In the next section we recall some elementary definitions
and results from singularity theory. For a more detailed
treatment the reader is referred to [1]. 1In section three
the bifurcation equations (1.4) and (1.5) are derived and
singularity theory is applied to obtain the perturbed diagrams
in Figures 1.3 and 1.4. Moreover conditions on F(ax,u,t,a)

are presented which insure that the various diagrams result.
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Finally, we show how to obtain rigorously the results of
Rosenblat and Cohen [2].

(a)

(b)

(d)

Figure 1.4. Perturbations (1.4) of Figure 1.2,

II. SOME ELEMENTARY RESULTS OF SINGULARITY THEORY

The singularity theory approach, as described in [1], to
the bifurcation problem
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Gla,u) (2.1)

]
>

where G¢:IR x R - IR, G(0,0) = 0 isdefined in some neigh-
borhood of the origin in & x IR, is to change variables in
order to put (2.l) into a normal (standard) form. The normal
form can be taken to be a polynomial map whose zeros are read-
ily found. The changes of variable that will be allowed are
now described. Two such maps, ¢ and #H, are said to be
contact equivalent, written ¢ ~ H, 1f there exists a smooth
map t:R x R - R, <(0,0) # 0 defined on a neighborhood

of the origin and a diffeomorphism of a neighborhood of the
origin in ® x IR of the form (z,u) > (p(z,u), Aful)),

with p(0,0) = 0 and A(0) = 0 such that
H(z,u) = t(z,u)G(p(z,u),A(u))

We assume op(°,u) and A are orientation preserving
(02(0,0) > 0, Au(0) > 0). It is easily seen that if # and

¢ are contact equivalent then their bifurcation diagrams are

equivalent in the sense that for each ¢, the number of solu-
tions 2z of H(z,u) = 0 1is the same as the number of solu-
tions 3 of G(z,A(u)) = 0 1is some neighborhood of the

origin. Furthermore the bifurcation diagrams are diffeomor-
phic. More motivation for the form of the allowed changes of
coordinates is given in [1].

The following proposition can be found in [1].

PROPOSITION 2.1.
(a) If alz,u) satisfies a(0,0) = az(0,0) ) au(0,0) =0,
2
aZU(O,O) # 0, azz(0,0) # 0 then al(z,u) ~ z° + uz.

(b} If a(0,0) = aZ(O,O) = ap(0,0) = aZZ(O,O) = 0,



266 M. Golubitsky and H. L. Smith

3
azu(0,0) # 0, aZZZ(O,O) #0 then al(z,u) ~ 2~ + uz where

3 a > 0 - 7 a a < 0.
& q22z zZu and ! Z2Z 2y

In fact, the hypotheses in parts (a) and (b) are also
necessary. Proposition 2.1 contains the answers to the ques-
tions: When do we have a transcritical bifurcation as in
Figure 1.1? When do we have the pitchfork bifurcation as in
Figure 1.2?

A principal aim of singularity theory is to describe the
perturbations of a particular bifurcation problem. The singu-
larity theory approach to a perturbation is the notion of an
unfolding. A:IR x IR x ﬂ?k + IR 1s said to be k-parameter
unfolding of afz,u) if A(z,u,0) = a(z,u). Singularity
theory provides a method for describing the bifurcation dia-
grams of all perturbations (unfoldings), modulo contact equi-
valence, through the idea of a universal unfolding. More
precisely, we call A(z,p,a) a universal unfolding of
ala,u) provided any other unfolding B(z,u,8), 8 € ®r* for
8 near 0, B(z,u,0) = afz,u), has the property that for
each g ¢ E?Q, B(+,-,B8) ~ A(-,-,9(8)) where ¢:ﬂ?l - ﬂ?k
is a smooth map. We allow the parameters of contact equiva-
lence (t,A,p) to depend on g (see [1] for a precise defi-
nition). In other words, if 4 is a universal unfolding of
a and B 1is any other unfolding (perturbation) of  then
each bifurcation diagram B(-,',s) = 0 1is equivalent to a
bifurcation diagram A(-,-,y(8)) = 0. Thus understanding all
bifurcation diagram A(:,:,a) for o near zero is tanta-
mount to understanding all perturbations of the bifurcation
diagram corresponding to a«-.

If either of the hypotheses in proposition 2.1 (a) or (b)
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hold then the following result of singularity theory [1]

implies that « has a universal folding.

PROPOSITION 2.2
(a) A universal folding with the minimum number of
parameters for 22 + uz 18 given by z2 + Uz + a;. If (a)
of proposition 2.1 holds, BA:IR x IR x R » IR <18 a untversal
unfolding of al(z,u) <if and only if Au(0,0,0) # 0.
(b) A universal unfolding with the minimum number of
3 3 2

parameters for 2z~ + uz <1s given by 2z~ + pz + a,2" + ay-

When (b) of proposition 2.1 holds, A:IRR x R x R% > R is

a universal unfolding of al(z,u) ©f and only if
0 0 aZu Y.
0 a a a
zZu zZ PN
det A A A A (2.2)
al Zul alu alzz
A AZ A A 2
0y o, o o,
where all derivatives are evaluated at (z2,u,0) = (0,0,0).

For the normal form given in (b) above one can ask which
bifurcation diagrams occur for which values of (al,ag). This
information is summarized in figure 1.5. The important obser-
vation here is that the separating curves shown in Figure 1.5
are tangent at (ul,ag) = (0,0). The universal unfolding
theorem also implies that there is a diffeomorphic copy of
Figure 1.5 occuring in the parameter space of any universal
unfolding. The order two contact of the two curves a, =0
and a, = a§/27 in Figure 1.5 implies that very careful

scaling is required in order to observe the hysteresis dia-

grams in Figure 1.4 (b) and (d) with a one parameter pertur-
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(a) “1:“;/27

(b)

(d) (c)

2 . . 3
FIGURE 1.5. Catalog of bifurcation diagrams for 2z~ - uz

+ a222 + . The letters in the figure refer to the bifurca-

tion diagrams listed in Figure 1.4; Z1.e., if (al,az) i8 in
region (a) then the assoctiated bifurcation diagram is equiva-
lent to Figure 1.4 (a). See [1] for details.

bation (unfolding) of the pitchfork diagram. Indeed, if
Afz,u,e) 1s a one parameter unfolding of a(z,u) then by
proposition 2.2, 4(-,*,e) - A(-,',al(e),ag(s)), where
A(z,u,al,uz) is the universal unfolding of proposition 2.2
and (ul(o),uZ(O)) = (0,0). Thus the observed bifurcation
diagram for A(.-,-,e) depends crucially on the location of
the curve ¢ -+ (uj(e),az(e)) passing through the origin at

e = 0. 8Since "most" curves are transverse to o, = 0 at the
origin, it is very easy using a one parameter perturbation to
miss (as Rosenblat and Cohen do) the possibility of a hystere-
sis loop in the bifurcation diagram. As a final remark we
note that if 4 satisfies the conditions of proposition 2.2
(b) then the curve ay; = 0 1in the standard normal form cor-

responds to the curve in the (ul,ag) space defined by elimi-

nating z and yu from
Alz,u,a) = Az(z,u,u) = Au(z,u,a) =0 (2.3)

while the curve o, = ag/27 corresponds to the curve defined
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by eliminating =z and u from

Alz,u,a) = A (z,u,0) = A4 (z,u,0) =0 (2.4)

This can be checked for the given universal unfolding.

ITTI. THE BIFURCATION EQUATIONS

We begin by considering the bifurcation of steady states
of (1.1). ILet ¢ be an eigenvector corresponding to the
eigenvalue (¢ of fx(o,o) and ¢ be an eigenvector for

f&(0,0)+ satisfying y:y = 1, y+¢ > 0. Then the equation
f(m:u) = 0
is equivalent to the pair of equations

(a) flzd + w,u) = (flz¢ + w,ul)-V)yp =0
(3.1)

(b) flz¢ + w,ul)yp =0

where x = z¢ + w, we<¢>L. The first of the above equations
can be solved, by the implicit function theorem, for

w = wlz,u) e <6>L satisfying w(o,u) = 0 and w (0,0) = 0.
The latter equality is easily checked by implicit differen-
tion, the former follows from f(0,u) = 0. The bifurcation

equation is given by
alz,u) = flz¢ + wla,p),u)y = 0. (3.2)

It is clear that «a(0,u) = 0. We consider two cases

(H1) fxx(0,0)(¢a¢)'¢ # 0,

(#H2)

e (0ow)= 05 fo (0,0)(d,8,0) ¥ # 0.

LXXL
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In either case, az(o,o) = fx(0,0)¢-w = 0 and azu(o,o)

= %% (0)¢ ¢y > 0. Straightforward differentiation of (3.2)

yields the following consequences of (H1) and (H2) on (3.2)

(H1) a (0,0) = a (0,0) = a(0,0) =0, a_ (0,0) > 0,
2 " Zu
aZZ(O,O) = fxx(0,0)(¢,¢)'w £ 0.
(H2) 0 = a(0,0) = a_(0,0) = a (0,0) =a__(0,0)=a_(0,0)
2 u 23 HH
= a (0,0) = a (0,0) and
23U HUY

azu(0,0) > 0 and azzz(o,o)z fwxx(o,O)(¢,¢,¢)-w#0

It follows immediately from proposition (2.1) that if (H1)

holds a(a,u) ~ a2 + pz and if (H2) holds then a(z,u) ~ z°

+ uz (+ depending on the sign of fxxx(0,0)(¢,¢,¢)'w). The
bifurcation diagram corresponding to (3.2) is given by Figure
1.1 in case (H1) holds and by Figure 1.2 in case (H2) holds.
Now consider the problem of 2r-periodic solutions of
(L.3). Let N:C;“ x R X ﬂ?k > ng defined on the Cl—2n—
periodic functions into the continuous 2n-periodic functions

be given by
Nix,u,a) = 2" - Ple,t,u,a)
We are interested in solutions of
N(x,u,a) = 0.

Let L[ = Nx(o,o,o) e é% - fx(a,O) be the Frechet derivative

and Ker L = {z¢:2e¢R}. We may write C;ﬂ = Ker L ®» W where
am

W ={x ¢ C;“:I x(t)* ¢ dt = 0} . Similarly Cg = {ry:reR}&®Y
o

2w
where Y = Range [ = {yecgﬂ:J y*v dt = 0}. The equation
o

¥ = 0 1is equivalent to the pair of equations
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2
(a) w'-F(zé + w,u,t,a) + (Zl—nj "Fl3 + woustsal)ty dE)y = 0
@ (3.3)

1 2
(b) Er J F(z¢ + wyu,t,a)yp dt = 0
o

where ® = z¢ + w, w e W. As before (3.3) (a) can be solved

for w = w(z,u,a) e W. An important point to observe is that

w(z,u,0) = w(z,u) where the w on the right is the w
solved for in (3.1) (a). The bifurcation equation is given
by

am
Al u,0) = 5%— J F(z¢ + w(z,u,a),u,t,a) "y dt = 0 (3.4)
o

If (z,u,o0) satisfies (3.4) then «x = 2¢ + w(z,u,a) satis-

fies (1.3). It is immediate that
Alz,u,0) = alz,ul,

i.e., A(z,u,0) 1is a k-parameter unfolding of a(z,u). We
now seek conditions on F so that A4 is a universal unfold-
ing of a, i.e., we ask what are all possible perturbations
of the bifurcation diagram associated with (3.2). We may as
well assume that 4 depends on no more parameters than the
minimum required for a universal unfolding. Thus if (H1)
holds we take o ¢ IR and if (H2) holds we assume a € ﬂ?z.
If (H1) holds, proposition 2.2 gives that A4 1is a univer-
sal unfolding of a if and only if
1 an
Au(0,0,0) = 77 J Fa(0,0,t,O)-w dt # 0

o

If, for example
Flz,u,t,a) = fle,u) + aglx,u,t)

the requirement is simply that g¢(0,0,¢) % has nonzero mean.
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In this case one gets bifurcation diagrams as in Figure 1.3.
If g(0,0,t)-y has mean zero one either gets bifurcation
diagrams as in Figure 1.3 or the transverse crossings as in
Figure 1.1. This last situation could arise if, for instance,
g(0,u,t) = 0. We do not pursue further the degenerate case
that Au = 0 here ag it is straightforward (see [2]). Rather
we will consider later the more interesting degenerate case
when A(z,u,0) fails to be a universal unfolding of the
pitchfork.

If (H2) holds, proposition 2.2 implies that 4 1is a uni-

versal unfolding of g if and only if (2.2) holds. Since

Ay = azzu = ¢ and azu # 0 (2.2) is equivalent to
0 Q a
2 223
det Aa A Au 5z
1 O 7
A Aa A =
oy oM LPLL

Clearly, this inequality requires either Aa # 0 or Au

1 2
# 0 or both. But no new phenomena will be obtained by re-
quiring both to be nonzero. Hence we assume Au # 0, Au
1 2

= 0. The inequality above is then reduced to

zu z2z2
£ 0 (3.5)

In view of (3.5), A4 will be a universal unfolding of « if,

for example,

F(x,u,t,a1,u2) = flx,n) + u2g(x,t) + alh(x,t,u) (3.6)
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where
1 an
4, =z= I glo,¢):y dt =0, A w =Y
2 2
1 21
A = f h(0,t,0)y dt # 0 (SH7)
oy ™,
1 an
Augzz n 2 [0 g:x:x(o;t)(‘b: o) v dt # 0

The bifurcation diagrams corresponding to (3.4) when (3.6),
(3.7) hold are given in Figure 1.4. Which particular diagram
one sees depends on where (al,ag) lies in relation to the
curves (2.3) and (2.4) in (al,az) space.

It should be noted that all the perturbed bifurcation
diagrams in Figure 1.3 and 1.4 can be the result of a purely
autonomous perturbation of (1.1), in which case the solution
branches correspond to steady state solutions of (1.3).

We end this note by observing that the results of Rosen-
blat and Cohen [2] can be recovered rather easily from the
above considerations. They study one parameter periodic
perturbations of (1.1) so that their results can be expected
to be imbedded in our universal unfolding. We shall see that
this is the case. In particular, Rosenblat and Cohen consi-

der the model equation

!

! =z - x° + elg(t) + zh(t)} (3.8)

In this case clearly af(z,u) = uz - zS. To simplify notation

an

we use <f> é% J f(t)dt; if the 2n-periodic function f
0 -

satisfies <f> = 0 we denote by f the unique 2w-periodic,

mean-zero antiderivative of f. The equation (3.3) (a) be-

comes
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w' = pw - 3z(w2 - <w2>) - 522w -~ (w3 - <w3>)

+ ellg(t) - <g>) + a(h(t) = <h>) + (wh - <wh>)]

It follows that w = 0 if e =0, i.e., w(z,u,e) =cb(z,u,c)

the resulting equation for ® is then given by

w' = pw - 335(52 5 <52>) = Szgﬁ - EZ(BS = <53>)

(3.9)
+ (g(t) - <g>) + 2(h(t) - <h>) + e(wh - <wh>)

At this point the essential observation one makes from (3.9)

is that
— —~—
w(0,0,0) = (g - <g>). (3.10)

The bifurcation equation (3.4) is given by

Alz,u,e) = uz - PL seZaen?s - eden’s +e<g>
(3.11)
+ ez<h> + e <ih> 5
i.e., A 1is a one parameter unfolding of uz - zS. By

proposition 2.2 (b), Alz,u,e) ~ uz - z3 + ag(e)zg + al(e).

More precisely
3 2
Alz,u,e) = t(z,u,e) (A(u,e)Z(z2,u,e) = 2° + az(s)Z +u1)(3.12)

where (z,u,0) =1, A(w,0) =y, Z(z2,u,0) = z, aJ(O)
=a2(0) =0. Which bifurcation diaagrams are observed will

depend crucially on the placement of the curve
e > (uz(e),ul(s)) (3.13)

which passes through the origin for e = ¢ in Figure 1.5.

The table below summarizes the results of our calculations.
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Table 1.6
Perturbation Curve Bifurcation
e{g(t)+xh(t)} e+(u2(s),a1(e)) diagram
<g> # 0 aj(O) £ 0 (a) or (b)
<g> = 0, <éh> £ 0 ai(O) = () (a) or {c)
0”_%’(0) £ 0
<g> =0, h =20 aé(o) =0 (a) or (c)

ui(O) = ug(O) =0

<g%s £ 0 al"(0) = 0

<g> =0, h =0 aé(0) = & (a) or (c)
<% =0 af¥ o) =0, x = 0,1,2,5,4

GEEs 40 af800) # 0

In Table 1.6, the first column, labeled 'perturbation',
consists of various sets of assumptions on the functions f
and g¢. Column two, labeled 'curve', contains the implica-
tions of these assumptions on the derivatives of the ui(e).
In all cases, the derivative asserted to be nonzero is pro-
portion to the corresponding non-zero mean in the perturba-
tion column (i.e., aj(o) = <g>). 1In column three, the
bifurcation diagram corresponding to the particular set of
hypotheses in the perturbation column is specified. 1In all
cases considered, diagrams (a) or (c) in Figure 1.4 are

obtained. This follows immediately from the information in
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in Figure 1.5. In fact, if o, = 0(gk) and o, = 0(c*)

1 2
near e = ¢ then % > 3¢ 1s a necessary condition in order
that the bifurcation diagrams (b) or (d), the hysteresis
loops, occur.

The results summarized in the first three rows of table
1.6 confirm the formal results of Rosenblat and Cohen. In
the last row, if <g> = <§3> =0, h = 0, Rosenblat and
Cohen contend that the resulting bifurcation diagram is the
displaced pitchford (see Figure 4 [2]). Clearly this is
false if <§2f§§3> # 0. In fact, the displaced pitchfork
can occur if and only if az(e) = u2(e) =l O

Table 1.6 motivates the followihg interesting open prob-
lem: can conditions be found on the perturbation elg(t)

+ xh(t)} which result in a bifurcation diagram having a
hysteresis loop?

We indicate briefly in the paragraphs below how the
results in table 1.6 are determined.

The first row of table 1.6 obtains since when 3z = ;i = ¢
in (3.12), the left hand side begins with e<g>, while the
right hand side is o, (e) + 0(c?).

If <g>» = 0, one shows Z€(0,u,0) = 0. (To see this,
differentiate (3.12) with respect to e and set 2z = e = 0.)
Then, setting % = u = 0 in (3.12) one observes (recall
(3.10)) that the left hand side begins with e2<§h> while
the right hand side is al(s) # ol .

If <¢g> =0 and h = 0 one shows AE(O,O) = 0. Setting
2 = u =0 in (3.12), one observes that the left hand side
begins with —gs<§3> and the right hand side is az(e)+0(e4).

To see that a, = 0(92), differentiate (3.12) twice with
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respect to z, set =z =y = 0, and evaluate module 52.

To complete the calculation, first show that ng(o’“’O)
= 0 and AEQ(O,O) = (0. The first equality is obtained by
differentiating (3.12) twice with respect to ¢ and setting
2 = e = 0. The second equality is obtained by evaluating
(3'12)259 at z =y =€ = 0. To compute ay set p=z = 0

in (3.12) and observe that the RHS is o, + 0(e’) while the

1
LHS is —ez <53> . Then set u =3 = 0 in (3.9) to obtain

w(0,0,e) =g - e°g° + 0(94).

The result follows.
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