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1 Introduction

The Yale art historian George Hersey showed us the columns in Figure 1 and asked us
whether the ideas of symmetry breaking could be used to help classify architectural columns.
Provoked by this question and the intriguing columns in that figure, we attempted to an-
swer Hersey in the following way. We view a column as a deformed cylinder and column
symmetries as the subgroup of the symmetries of the cylinder that preserve the column.

Figure 1: Plate xv from G. Guarini [2]. (Left) Fluted column (see Figure 7). (Right) Spiral
column with k large (see Figure 9). (Center) Spiral column with k = 1. See Table 2 for a
definition of k.

More precisely, we think of a column as a function on a cylinder (either finite or infinite)
where the function tells us how far to deform the cylinder in the direction normal to the
cylinder. The symmetries of a column are the symmetries that preserve the level contours of
the function, that is, the isotropy subgroup of the defining function. In this paper we present
the mathematical classification of the 29 different types of column symmetry. We note that
there is a related classification of the rod groups that corresponds to the columns with discrete
symmetry. See [1]. The classification theorem is stated and proved in Section 2. Level
contours (drawn on a flattened cylinder using MATLAB) of representatives of the twenty-
eight nontrivial column symmetry types are presented in Section 3, as are three-dimensional
images of columns drawn using geomview.



2 Symmetries of Columns

We define a column by a real-valued function f on the cylinder C = S1 ×R. Let (ϕ, z) ∈ C.
The function f(ϕ, z) measures the height of the column in the direction normal to the cylinder
at the point (ϕ, z).

The group of symmetries of the cylinder is

Γ = D2(τ, κ)+̇(SO(2) ⊕ R)

where Γ acts on (ϕ, z) ∈ C by

(θ, t)(ϕ, z) = (ϕ + θ, z + t) (θ, t) ∈ SO(2) ⊕ R

τ(ϕ, z) = (−ϕ, z)

κ(ϕ, z) = (ϕ,−z).

Multiplication in Γ follows from the definition of the action. Suppose that (Aj , (θj , tj))
is in Γ for j = 1, 2, where Aj ∈ D2, θj ∈ SO(2) and tj ∈ R. Then multiplication is given by

(A2, (θ2, t2)) · (A1, (θ1, t1)) = (A2A1 , A2(θ1, t1) + (θ2, t2)). (1)

We wish to classify columns by their symmetries. A symmetry of the column f : C → R

is γ ∈ Γ such that
f(γ(ϕ, z)) = f(ϕ, z) ∀(ϕ, z) ∈ C.

The symmetry group Σf ⊂ Γ is the collection of all symmetries of f . We classify all subgroups
Σ which are symmetry subgroups for some column f .

Our classification proceeds as follows. To each subgroup Σ ⊂ Γ, we can associate the
normal subgroup

Σ0 = Σ ∩ (SO(2) ⊕ R). (2)

(So Σ0 consists of the pure ‘translations’ in Σ.) Thus it suffices to

(i) classify the closed subgroups Σ0 of SO(2) ⊕ R,

(ii) for each subgroup Σ0 in (i), compute the subgroups Σ ⊂ Γ that satisfy (2).

The calculation in (ii) is simplified by observing that Σ is contained in the normalizer of Σ0.
As usual, we identify conjugate subgroups of Γ. In addition, we identify subgroups that

are related by axial scalings. More precisely, we define the scaling transformation sα : Γ → Γ
by

sα(A, θ, t) = (A, θ, αt), (A, θ, t) ∈ Γ.

Provided α 6= 0, this is an isomorphism. We say that two subgroups Σ, Σ′ are related by a
scaling if sαΣ = Σ′ for some nonzero α.



Classification of Subgroups of SO(2) ⊕R.

In this section, we classify the closed subgroups of SO(2) ⊕ R up to scaling and conjugacy
in Γ. Also, we compute the normalizers of these subgroups in Γ.

Lemma 2.1 Suppose that C is a compact subgroup of SO(2) ⊕ R. Then C ⊂ SO(2) ⊕ 1.

Proof: If (θ, t) ∈ SO(2) ⊕ R and t 6= 0, then (θ, t) generates a noncompact subgroup of
SO(2) ⊕ R (isomorphic to Z). It follows that (θ, t) 6∈ C.

Proposition 2.2 Suppose that G is a closed connected subgroup of SO(2) ⊕ R. Then, up

to conjugacy and scaling, G is one of the subgroups

SO(2) ⊕ R, SO(2) ⊕ 1, 1 ⊕ R, L, 1,

where

L = {(t, t) ∈ SO(2) ⊕R : t ∈ R}.

Proof: If dim G = 2, then connectivity implies that G = SO(2) ⊕ R. If dim G = 1, then
connectivity implies that G is group isomorphic to either SO(2) or R. In the first case,
it follows from Lemma 2.1 that G = SO(2) ⊕ 1. In the second case, there is a smooth
isomorphism h : R → G ⊂ SO(2) ⊕ R. This isomorphism is given by h(t) = (θ0t, a0t)
for some (θ0, a0) ∈ SO(2) ⊕ R (defined as h(1)). By assumption a0 6= 0. If θ0 = 0, then
G = 1 ⊕ R. If θ0 6= 0, then by axial scaling we can arrange that a0 = θ0 and G = L.

From now on, we use the abbreviations R = 1⊕R and SO(2) = SO(2)⊕1. The proper
closed subgroups of SO(2) are given by Zk, k ≥ 1: the subgroup of rotations of the cylinder
through angles which are multiples of 2π/k. In addition, we set Z ⊂ R to be the subgroup of
unit axial translations of the cylinder generated by the element (0, 1) ∈ SO(2)⊕R. Finally,
for any ω ∈ R, we define

Nω = {(ωn, n) ∈ SO(2) ⊕ R : n ∈ Z}.

Of course, N0 = Z.

Theorem 2.3 Up to axial scaling and conjugacy, the closed subgroups Σ0 ⊂ SO(2)⊕R are

listed in Table 1.

Proof: Since Σ0 is abelian, we can write Σ0
∼= C ⊕ Zp ⊕ Rq where C is compact and

p, q ≥ 0. Clearly, p + q ≤ 1. By Lemma 2.1, C = SO(2) or C = Zk.
Assume that C = SO(2). Since SO(2) ⊕ R is connected, the only subgroup satisfying

dim Σ0 = 2 is Σ0 = SO(2) ⊕R. Suppose next that dim Σ0 = 1. We claim that Σ0 = SO(2)
or Σ0 = SO(2) ⊕ Z. Choose the smallest positive t ∈ R such that there is θ ∈ SO(2) with
(θ, t) ∈ Σ0. Since (θ, 0) ⊂ Σ0, it follows that Σ0 = SO(2) ⊕ tZ, where tZ is the subgroup
of SO(2) ⊕ R generated by (0, t). By making an axial scaling, we can set t = 1 so that
Σ0 = SO(2) ⊕ Z.

Now assume that C = Zk. If dim Σ0 = 1, then it follows from Proposition 2.2 that
Σ0 = Zk ⊕ R or Σ0 = Zk ⊕ L. If dim Σ0 = 0, then either Σ0 = Zk or Σ0

∼= Zk ⊕ Z. In the



dim Σ0 Σ0 H
2 SO(2) ⊕ R D2

1 SO(2) D2

SO(2) ⊕ Z D2

Zk ⊕ R D2

Zk ⊕ L Z2(τκ)
0 Zk D2

Zk ⊕ Z D2

Zk ⊕ Nω 0 < ω < π/k Z2(τκ)
Zk ⊕ Nπ/k D2

Table 1: Classification of closed subgroups Σ0 ⊂ Γ up to scaling and conjugacy. The
normalizers are given by N(Σ0) = H ⊕ (SO(2) ⊕R)

latter case, we can choose a generator (a, b) ∈ Z ⊂ SO(2) ⊕R with smallest b > 0. Making
an axial scaling, we can suppose that the generator is of the form (ω, 1) for some ω ∈ R. In
other words, Σ0 = Zk ⊕ Nω. Note that Zk ⊕ Nω+2π/k = Zk ⊕ Nω, so we can suppose that
|ω| ≤ π/k. Using formula (1) we compute that

τ · (ωt, t) · τ−1 = (−ωt, t),

where τ · (ωt, t) is an abbreviation for (τ, (0, 0)) · (1, (ωt, t)). Hence up to conjugacy, we may
suppose that ω ≥ 0. The case ω = 0 is the distinguished case N0 = Z.

Proposition 2.4 The normalizers of the subgroups Σ0 ⊂ SO(2) ⊕R have the form

N(Σ0) = H+̇(SO(2) ⊕ R),

where the subgroup H ⊂ D2 is as given in Table 1.

Proof: Since SO(2) ⊕R is abelian, it is clear that SO(2) ⊕R ⊂ N(Σ0). Hence N(Σ0) =
H+̇(SO(2)⊕R) for some subgroup H ⊂ D2. We compute that A · (θ, t) ·A−1 is the element
A(θ, t) ∈ SO(2) ⊕ R. Hence, H consists of those elements A ∈ D2 that preserve Σ0. The
element τκ acts as −I on SO(2) ⊕ R and so is always contained in H . It follows that
H = Z2(τκ) or H = D2. It now suffices to determine whether or not τ preserves Σ0, that
is, whether or not Σ0 is preserved by the transformation (θ, t) 7→ (−θ, t).

Untwisted Symmetry Groups

Suppose that Σ ⊂ Γ is a symmetry group. Then Σ0 = Σ ∩ (SO(2) ⊕ R) is one of the
subgroups listed in Table 1. We say that Σ is an untwisted subgroup of Γ if Σ is conjugate
to a subgroup of the form K+̇Σ0 where K is contained in the subgroup H given in Table 1.
The untwisted symmetry groups are listed in Table 2.

It is not the case that every subgroup K ⊂ H produces a symmetry group. For example,
when Σ0 = SO(2) ⊕R, the only symmetry group Σ corresponding to Σ0 is Σ = Γ. (This is



Σ0 Σ
SO(2) ⊕R Γ
SO(2) Z2(τ)+̇SO(2) D2+̇SO(2)
SO(2) ⊕ Z Z2(τ)+̇(SO(2) ⊕ Z) D2+̇(SO(2) ⊕ Z)
Zk ⊕R Z2(κ)+̇(Zk ⊕ R) D2+̇(Zk ⊕ R)
Zk ⊕ L Zk ⊕ L Z2(τκ)+̇(Zk ⊕ L)
Zk Zk Z2(τ)+̇Zk Z2(κ) ⊕ Zk

Z2(τκ)+̇Zk D2+̇Zk

Zk ⊕Nω 0 ≤ ω ≤ π/k Zk ⊕Nω Z2(τκ)+̇(Zk ⊕Nω)
Zk ⊕ Z Z2(τ)+̇(Zk ⊕ Z) Z2(κ)+̇(Zk ⊕ Z) D2+̇(Zk ⊕ Z)
Zk ⊕Nπ/k Z2(τ)+̇(Zk ⊕Nπ/k) Z2(κ)+̇(Zk ⊕ Nπ/k) D2+̇(Zk ⊕Nπ/k)

Table 2: The 22 untwisted symmetry groups Σ ⊂ Γ

independent of the restriction to untwisted symmetry groups.) To verify this point, observe
that SO(2) ⊕ R acts transitively on the cylinder C. Hence if Σ is the symmetry group of a
function f : C → R, then f is the constant function. It follows that f is invariant under Γ,
and that the symmetry subgroup Σ = Γ.

When Σ0 contains SO(2), the function f is constant on each horizontal cross-section of
C and hence automatically has the symmetry τ . In these cases, the only possibilities are
K = Z2(τ) and K = D2. Similarly, when Σ contains R then automatically κ ∈ Σ and the
only possibilities are K = Z2(κ) and K = D2.

In all other cases, there are no restrictions on K other than the condition K ⊂ H .

Twisted Symmetry Groups

We continue to suppose that Σ is a symmetry group with Σ0 = Σ ∩ (SO(2) ⊕R). We have
Σ ⊂ H+̇(SO(2) ⊕ R) where H is given in Table 1. The canonical projection π : Γ → D2

induces a projection π : Σ → H .
We say that a symmetry group Σ ⊂ Γ is twisted if it is not conjugate to an untwisted

symmetry group. Equivalently, there exists an A ∈ π(Σ) such that A 6∈ Σ.
The next lemma states that, without loss of generality, we can always suppose that the

element A = τκ is not responsible for twisting.

Lemma 2.5 Suppose that Σ is a symmetry group and that τκ ∈ π(Σ). Then there is a

subgroup of Γ that is conjugate to Σ and contains τκ. The conjugacy leaves Σ0 unchanged.

Proof: Recall that τκ acts as −I on SO(2) ⊕ R. By assumption (τκ, θ, t) ∈ Σ for some
(θ, t) ∈ SO(2) ⊕ R. We conjugate by the element (−θ/2,−t/2) ∈ SO(2) ⊕ R. Compute
that

(1 , (−θ/2,−t/2)) · (τκ , (θ, t)) · (1 , (θ/2, t/2)) = (τκ , (0, 0)),

as required.



Σ0 π(Σ) generators of Σ/Σ0

Zk Z2(κ) κ̃
D2 τ, κ̃

Zk ⊕ Z Z2(τ) τ̃
Z2(κ) κ̃
D2 τ, κ̃
D2 τ̃ , κ
D2 τ̃ , κ̃

Table 3: The 7 twisted symmetry groups Σ ⊂ Γ. Σ is generated by Σ0 together with the
generators of Σ/Σ0. Notation: κ̃ = (κ, (π/k, 0)), τ̃ = (τ, (0, 1/2))

Proposition 2.6 Let Σ be a twisted symmetry group. Then either Σ0 = Zk, Σ0 = Zk ⊕ Z

or Σ0 = Zk ⊕ Nπ/k. In addition, π(Σ) is one of the three subgroups Z2(τ), Z2(κ) and D2.

Remark: The possibility Σ0 = Zk ⊕ Nπ/k will be eliminated in the proof of Theorem 2.7.

Proof: It follows from Lemma 2.5 that we can eliminate the subgroups Σ0 for which
H = Z2(τκ), that is we can eliminate Zk ⊕ L and Zk ⊕ Nω.

Next, suppose that Σ0 contains SO(2). As observed in the previous subsection, Σ con-
tains τ . If Σ is larger than Z2(τ)+̇SO(2), then π(Σ) = D2. It follows from Lemma 2.5
that τκ ∈ Σ and hence Σ = D2+̇Σ0. In either case, Σ is untwisted. The possibility that
Σ0 contains R can be eliminated similarly. This completes the proof that Σ0 is one of the
groups Zk, Zk ⊕ Z or Zk ⊕ Nπ/k.

Recall that π(Σ) is a subgroup of D2. If π(Σ) = 1, then Σ = Σ0. If π(Σ) = Z2(τκ), then
Σ is conjugate to Z2(τκ)+̇Σ0 by Lemma 2.5. Hence, for Σ to be twisted, π(Σ) must be one
of the three remaining subgroups of D2.

Theorem 2.7 Up to conjugacy and scaling, there are seven twisted symmetry groups in Γ.

These are as listed in Table 3.

Proof: By Proposition 2.6, we can assume that Σ0 = Zk, Zk ⊕ Z or Zk ⊕ Nπ/k and that
K = π(Σ) is one of the subgroups Z2(τ), Z2(κ) or D2. We consider the three possibilities
for K in turn.

Suppose that K = Z2(τ). Then σ = (τ, (θ, t)) ∈ Σ for some (θ, t) ∈ SO(2) ⊕ R.
Conjugating by (−θ/2, 0) ∈ SO(2) ⊕R, we can set θ = 0. Note that

σ2 = (1, (0, 2t)) ∈ Σ0.

When Σ0 = Zk, it follows that t = 0 in which case σ = τ , and there is no twisting. When
Σ0 = Zk ⊕ Z, there is the additional possibility that 2t ∈ Z but t 6∈ Z. Since Z ⊂ Σ,
this reduces to the case t = 1/2. The argument is more complicated when Σ0 = Zk ⊕Nπ/k.
Squaring yields the condition (0, 2t) ∈ Zk⊕Nπ/k. Working modulo Zk⊕Nπ/k, we can choose
σ so that t = 1. But still working modulo Nπ/k, we can replace σ by σ = (τ, (π/k, 0)).
Conjugating once again, we have σ = τ and there is no twisting.



The case K = Z2(κ) is similar. Conjugation reduces to σ = (κ, (θ, 0)) and squaring
yields the condition 2θ ∈ Zk. Twisting occurs when θ = π/k but only for Σ0 = Zk and
Σ0 = Zk ⊕ Z.

Finally, suppose that K = D2. We concentrate attention on the two generators

σ1 = (τ, (θ1, t1)) σ2 = (κ, (θ2, t2))

of Σ modulo Σ0. Since the reflections are orthogonal, we can simultaneously conjugate so
that θ1 = t2 = 0. Squaring the generators, we obtain that θ2 ∈ Z2k and either t1 = 0,
2t1 ∈ Z or t1 ∈ Z depending on whether Σ0 = Zk, Σ0 = Zk ⊕ Z or Σ0 = Zk ⊕ Nπ/k. The
various combinations of generators yield one untwisted subgroup and one twisted subgroup
for Σ0 = Zk, and one untwisted subgroup and three twisted subgroups for Σ0 = Zk ⊕ Z.
Once again, there is no twisting when Σ0 = Zk ⊕ Nπ/k. The arguments are similar to the
previous cases of K; we replace σj by untwisted group elements.

3 Classification of Columns

The results of the previous section show that there are twenty-nine symmetry classes of
columns. The symmetry class of a column can be determined by answering a sequence of
questions. The most important question is:

Are the symmetries of the column continuous, discrete and infinite, or finite?

The column has continuous symmetries when the column can be slid along itself. These
symmetries can occur either using either axial translations or rotations about the axis, or
by a combination of the two. With two exceptions infinite discrete symmetry groups occur
when the column is axially periodic but has no continuous symmetries. Both of the first two
types of symmetry groups are infinite. If the symmetry group of a column is not infinite,
then it is finite.

3.1 Columns with Continuous Symmetry

If the column has both axial-translation and rotation symmetry, than the column is a cylinder
with symmetry group Γ. Continuous symmetries come in three types: rotations about the
column axis (columns of revolution), translations along the column axis (fluted columns), or
corkscrew symmetries which are a mixture of the two (spiral columns).

Columns of Revolution — Four Types

There are four types of column with rotational SO(2) symmetry. Two types are periodic
in the axial direction and two are not. The nonperiodic columns may have a reflection
symmetry in the horizontal plane (D2+̇SO(2) — for example a column which is bowed out
at the center) or not (Z2(τ)+̇SO(2) — a column which widens at the base). See Figures 2
and 3.

The periodic columns of revolution may have an up-down symmetry (D2+̇(SO(2)⊕Z))
or not (Z2(τ)+̇(SO(2) ⊕ Z)). See Figures 4 and 5.



Figure 2: Nonperiodic column of revolution with no up-down reflection.

Figure 3: Nonperiodic column of revolution with up-down reflection.

Fluted Columns — Two Types

All remaining symmetry groups have at least Zk symmetry for some k, that is, rotation
symmetry through an angle 2π/k. In our description of this classification we now set k = 1
with the understanding that there is a version of each of the remaining columns for each
natural number k. Indeed, the pictures we show all have k = 2.

There are two types of columns with axial translation symmetry: those which have a
plane of reflection across a plane containing the axis of the cylinder (D2+̇R) and those that
do not (Z2+̇R). See Figures 6 and 7.

Spiral Columns — Two Types

There are two types of spirals — both of which have twisted translation symmetry. There
are the spirals that are symmetric when the column is rotated by 180◦ in a plane containing
the axis of the cylinder (Z2(τκ)+̇L) and those that do not have this symmetry (L). See
Figures 8 and 9.



Figure 4: Periodic column of revolution with no up-down reflection.

Figure 5: Periodic column of revolution with up-down reflection.

3.2 Columns with Discrete Symmetry

There are two types of symmetry groups that are infinite and discrete — those with corkscrew
symmetries and those without.

Periodic Columns with No Corkscrew Symmetry — Eight Types

Recall that τ is a reflection through a plane containing the axis of the cylinder and κ is the
reflection through the midplane – the up-down symmetry. Each of these symmetries has a
glide reflection version

τ̃ = (τ, (0, 1/2)) κ̃ = (κ, (π, 0)).

There are ten subsets G ⊂ {τ, τ̃ , κ, κ̃} that form symmetry groups when coupled with Z.
These subsets are:

{κ} {τ} {κ̃} {τ̃} {τ, κ} {τ̃ , κ} {τ, κ̃} {τ̃ , κ̃} ∅ {τκ}.

The symmetry groups of the corresponding periodic columns are: < G,Z > — the group
generated by G and Z. Examples of columns having one pure reflection symmetry are
found in Figures 10 and 11. Examples of columns having precisely one glide reflection are
given in Figures 12 and 13. Columns having two reflections or glide reflections are shown



Figure 6: Fluted column with no left-right reflection.

Figure 7: Fluted column with left-right reflection.

in Figures 14, 15, 16 and 17. The last two subsets correspond to symmetry groups that
lie in infinite families and these infinite families have corkscrew symmetries (see Figures 21
and 22).



Figure 8: Spiral column with no up-down rotation.

Figure 9: Spiral column with up-down rotation.

Figure 10: Periodic column with up-down reflection.



Figure 11: Periodic column with left-right reflection.

Figure 12: Periodic column with up-down glide reflection.

Figure 13: Periodic column with left-right glide reflection.



Figure 14: Periodic column with up-down and left-right reflections.

Figure 15: Periodic column with up-down glide reflection and left-right reflection.

Figure 16: Periodic column with up-down reflection and left-right glide reflection.



Figure 17: Periodic column with up-down and left-right glide reflections.



Discrete Corkscrew Columns — Five Types

There are three column types having Nπ symmetry. These columns remain the same when
translated in the axial direction a unit distance and simultaneously rotated through the angle
180◦ (π/k, in general). Among these columns are those that are invariant under reflection
through the centerplane of the column (Z2(κ)), those that are invariant under reflection
through a plane containing the cylinder axis (Z2(τ)) and those that are invariant under both
reflections. See Figures 18, 19 and 20.

Figure 18: Corkscrew column with π/2 rotation and left-right reflection.

Figure 19: Corkscrew column with π/2 rotation and up-down reflection.

There are two continuous families depending on ω with discrete corkscrew motions (those
with Nω symmetry). See Figures 21 and 22.



Figure 20: Corkscrew column with π/2 rotation and left-right and up-down reflections.

Figure 21: Corkscrew column with ω rotation where 0◦ ≤ ω ≤ 180◦

k
and no additional

symmetry.

Figure 22: Corkscrew column with ω rotation where 0◦ ≤ ω ≤ 180◦

k
and up-down rotation.



3.3 Columns with Finite Symmetry — Seven Types

This types of column have neither a pure translation symmetry nor any symmetry that
includes a translation symmetry. There are seven possible symmetry groups:

1 < κ > < κ̃ > < τκ > < τ > < τ, κ > < τ, κ̃ > .

An example of a column with no symmetry is given in Figure 23. Columns with just a
single reflection or glide reflection are shown in Figure 24, 25, 26 and 27, while columns with
exactly two reflection or glide reflection symmetries are shown in Figure 28 and 29.

Figure 23: Column with no symmetries.

Figure 24: Column with up-down reflection.



Figure 25: Column with up-down glide reflection.

Figure 26: Column with left-right reflection.

Figure 27: Column with up-down rotation.



Figure 28: Column with up-down and left-right reflections.

Figure 29: Column with up-down glide reflection and left-right reflection.
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