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1. INTRODUCTION
Consider an autonomous parameter-dependent system of the form

x = f(x,\) , (1.1)

with f : R" xIRk +R" sufficiently smooth. We will assume that the system is

symmetric, that is to say we have
f('Yx)A) = Yf(x,)\) (1.2)

for all y belonging to a compact group I' of linear operators on]Rn; by standard
theory we may assumethat I' is a closed subgroup of the orthogonal group O(n),
and hence also a Lie group. We are mainly interested in the case dim I' > 0,
since otherwise most of our discussion becomes trivial. We want to study
secondary bifurcations for (1.1); by this we mean bifurcations from non-zero
equilibria and from non-constant periodic solutions.

When there is no symmetry (i.e. I is trivial) the bifurcation problem has
been studied using a wide variety of methods which essentially all reduce

to a combination of one of the following : the Liapunov-Schmidt method,
reduction to center manifolds, Poincaré mappings and normal form theory. Using
these methods one obtains for example easily all bifurcations which can appear
generically in one-parameter problems (k=1); these are saddle-node and Hopf

bifurcations at equilibria, and saddle-nodes of limit cycles and period-doublings
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at non-constant periodic solutions (see e.g. Guckenheimer and Holmes (1983)).
In the symmetric case a lot of work has been done about steady-state and Hopf
bifurcations at equilibria which are invariant under the full group T. In

that case the methods mentioned above combine perfectly with a group-theoretic
approach, especially with group representation theory; the outcome has been

a by now well established equivariant bifurcation theory (see e.g. Vanderbauwhede
(1982), Golubitsky, Stewart and Schaeffer (1988)).

The situation changes considerably when one wants to study bifurcations near
equilibria which do not have the full I-symmetry, or near non-constant periodic
solutions. Indeed, such solutions generate, by the group action, a compact
invariant manifold filled with either equilibria or periodic solutions, and

the corresponding "local" bifurcation problem takes a somewhat more global
flavour : one has to study bifurcations near this invariant manifold, and

not near a particular solution on it. As a consequence the classical methods

- Liapunov-Schmidt, center manifold and Poincaré-mapping - are no longer
directly applicable, since in their usual formulation the starting point is
always a particular solution (equilibrium or periodic). So the first step
towards a general bifurcation theory for this case seems to be to establish
appropriate versions of the basic methods, adapted to and incorporating the
symmetries involved in the problem.

In this paper we prove a relatively simple result which clearly indicates

a possible approach. We show that near any group orbit any equivariant vector
field decomposes into two equivariant vector fields; one of these is at each
point tangent to the group orbit through that point, and therefore its flow

is just a "drift" along group orbits; the second component of the decomposition
leaves a normal section to the given group orbit invariant, and its bifurcations
in this normal section generate, via the group action, the bifurcations of the
original vector field. The idea of such a decomposition was first suggested

by Chossat and Golubitsky (1987); the additional frequencies which are a
consequence of the drift along group orbits have already been introduced
before by Renardy (1982), Dangelmayr (1986), Iooss (1986) and Chossat (1986).
In the next section we give a precise formulation of the decomposition result
and discuss its consequences for the bifurcation problem; in section 3 we

prove theorem 1.

2. RESULTS AND DISCUSSION

Let T be a closed subgroup of 0(n) and L(I') its Lie algebra, i.e. L(I') is
the tangent space to I' at the identity operator; all elements of L(T) are
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anti-symmetric linear operators onR". We also remark that the group I' acts

on its Lie algebra by the action
(v,n) € IxL(1) » yny L € L(r) . (2.1)

s n
Fix xoe IR and let I‘x0

knows from general theory that Pxo is a smooth manifold, with tangent space

at the point x, given by L(I‘)x0 = {nx0|n €L(r')}. Let Y be the orthogonal

= {Yx0|Y€IW be the corresponding group orbit. One

complemtent of L(I‘)x0 in R"; both L(I‘)x0 and Y are invariant under the action

of the isotropy subgroup of X which we denote by Eo :
2 = Y erlyx0=x0} . (2.2)

By the tubular neighborhood theorem (see Bredon (1972) for a general theory,
or Vanderbauwhede (1982) for a more direct treatment) there exists a 20-

invariant open neighborhood © of the origin in Y such that :

(i) u= {Y(x0+y)|yeir, y€Q} is a T-invariant open neighborhood of Ix, in
n
R ;

e _ . -1
(ii) if Yl(X0+Y1) = Yz(xo+y2) for Y, € T and ;€ Y (i=1,2) then Yy Yy € 3.
Our main result is then the following (see also Krupa (1988)) :

Theorem 1. The neighborhood @ of the origin in Y can be chosen such that next
to the properties (i)-(ii) above also the following holds :

Each l-equivariant vector field f : U >R" can be written in the form
£(v(xg+y)) = YLE(y)+n(y)(xy+y)] (2.3)

where £ : @ > Y and n : Q> L(I') have the same smoothness properties as f,

and are Eo-equivariant 3
f(oy) = of(y) , 1(oy) = oﬁ(y)o_1 , Vo € 1 . (2.4)

Remark 1. In general the mappings f and fj will not be uniquely determined
by f; indeed, if L(ZO) is the Lie algebra of Zy, and if¢:0- L(EO) is any
(sufficiently smooth) Iy equivariant mapping, then (2.3) and (2.4) remain
valid if we replace f and n by themappingsf1 : 9+ Y and ﬁl : @ > L(I)
defined by
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£ = B - L) (xgty)

A () = Ay) + Ly) .

Therefore, if L(ZO) is nontrivial (i.e. if dim £, > 0) we may have non-

0
uniqueness. Of course, f£(0) is uniquely determined by f(xo).

Remark 2. When f : UxA »R" is a I-equivariant vectorfield depending on a
parameter A in a parameter space A, then (2.3) and (2.4) hold for each A €4,
with £ : Q%A > Y and §§ : @xA > L(I) as smooth as f.

The result of theorem 1 can be formulated in a different way. Because of (2.4)
the formula (2.3) says that any [-equivariant vectorfield f can be decomposed

into two I'-equivariant vectorfields fT : U-+R" and fN : U »]Rn, given by
f.(0(xgty)) i= (W xpty) £ (v(xgty)) = vE(Y) . (2.5)
For each x = Y(x0+y) € U we have fT(x) = n(x)x, with n(x) := Yﬁ(y)Y-l € L(r);

this means that fT(x) is at each point x € U tangent to the group orbit, and
hence the flow of fT is simply a "drift" along group orbits. The flow of f

N
leaves the normal section S := {x0+y|y'EQ} to the group orbit Pxo invariant;
the flow on S is described by the reduced Zo-equivariant equation

y = i(y) . (2.6)

Using (2.3) it is then easily verified (see also Krupa (1988)) that the flow of

f on U is given by
x(t3v(xgty)) = vY(t5y) (x+5(t5y)) (2.7)

where y(t;y) denotes the flow of (2.6), and Y : RxQ » T is the solution of

the initial value problem
y = yi(y(t;y)) ., y(0) =14 . (2.8)

It follows that the flow of f on U may be understood as the flow of the EO-

equivariant vectorfield f on S modulated by "drift along the (group) orbit".

Let us now return to the bifurcation problem. Let f : EfIXBﬂc >R" be T-equi-

variant, and suppose that for some parameter-value Ao the system (1.1) has
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an equilibrium solution io(t) = Xys Or, more generally, a solution of
"rotating wave' type :

%, (t) = e”"tx0 ,  VtER, (2.9)

with Ny € L(T) and Xy ER". For A = AO the group orbit Fxo is invariant under
the flow, and we want to discuss bifurcation near this invariant manifold.

When we decompose f near Fxo then we have
f(O,AO) =0 and n(O,XO) =Ny - (2.10)

i.e. for A = AO the vectorfield f on Q has an equilibrium y = 0.

Now suppose that at A = AO an invariant manifold M bifurcates from Fxo; by the
equivariance we may assume that M is I-invariant. By {2.7) there exists an
f-invariant manifold MXo c 8§ such that Mn SCIMxU and 20(¥x0) ] be. Conversely,
each bifurcation from y = 0 for the reduced vectorfield f will generate, via the
group action, an invariant manifold bifurcating from Fxo. So we have reduced the
problem to that of the bifurcations from y = 0 for the vectorfield f(y,A).
Theorem 1 may be extended by replacing the group orbit Fxo by a I'-invariant
manifold of the form I'M, where M itself is a compact manifold. The torus of
standing waves obtained by Hopf bifurcation in an 0(2)-equivariant system is

an example of such a M. In this setting we require that a l'-equivariant vector
field on M decomposes into a I'-equivariant vector field tangent to the sections
YM and a [-equivariant vector field tangent.to group orbits. This motivates

the following theorem :

Theorem 2. Let M ¢ R” be a smooth and compact submanifold satisfying the
following conditions :

(1) TfoiL(F)x = {0} for each x € M

(ii) all points x € M have the same isotropy subgroup ZO H

(iii) the sets Zx 1= {YE I‘I‘{xe M} are independent of x€ M, and therefore

form a closég subgroup I of T.
Then T'(M) := {Yx[Ye I, xEM} is a compact, I-invariant submanifold of Rr".
Moreover, if m : N » F'(M) is the normal bundle of I'(M), and Y := v_l(M), then
there exists a I-invariant open neighborhood @ of M in Y such that the following
holds :
(a) U := {yy|YE€T, yE€Q} is an open T-invariant neighborhood of I'(M) in R";
(b) if (¥, = YyY, with vy, €T and y, € Q (i=1,2), then y;lyz €75

(c) each T-equivariant vectorfield f : U >TR" can be written in the form
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£(vy) = Y[E(y) + aly)yl , (2.11)

with f : @ > TQ a I-equivariant vectorfield over Q, and n : @ > L(T) a

I-equivariant mapping, both with the same smoothness as f.

Hypotheses (i)-(iii) imply that, for x € M, T M is complementary to L(I')x in
TXFM and the projection of f(x) to TxM with kernel L(I')x e Nx(FM) defines a

Z-equivariant vector field. In particular M = {xo} corresponds to theorem 1.

If io(t) is a periodic solution of (1.1) for A = XO’ and io(t) is not a rotating

wave, then one can apply theorem 2 with M = {ﬁo(t)ltEIR}. As a result, the bifur-
cation problem near I'(M) = {Yio(t)IYGEF, t €R} reduces to the bifurcation problem
near M for the reduced I-equivariant vectorfield; moreover, ﬁo(t) is, for

A= AO’ still a periodic solution of the reduced equation
7= £y, . (2.12)

What are now the consequences of our theorems for the basic methods of bifurca-
tion theory? First, it is sufficient to find a center manifold ﬁc'for £ containing
M (={x0} or ={io(t)|t€HH, depending on the case), since Wc = {yx|y€r, x eﬁc}
is then a center manifold through I'(M). Also, one should construct a Poincaré
mapping for io(t) as a periodic solution of (2.12) (and not for the original
equation (1.1)); see Chossat and Golubitsky (1987) for an example. By the way,
the reduction of (1.1) tot (2.12) is in a sense already a kind of Poincaré
mapping, although the result is not a mapping but a vectorfield.

Finally one can apply Liapunov-Schmidt methods to (2.12); since such methods
concentrate on steady-state or periodic, this implies (via (2.7) and Floquet
theory for (2.8)) that one will obtain solutions of the original equation (1.1)
of the form

x(t) = eMty(t) , (2.13)

with n € L(T) and y(t) a periodic function; if one implements this in the
situation of theorem 1 and studies steady-state or Hopf bifurcation for (2.12),
then one refinds some of the results of Renardy (1982) on bifurcation from
rotating waves. When the starting point is a periodic solution io(t) of

(2.12), then one may study subharmonic bifurcation for (2.12) using the approach
outlined in Vanderbauwhede (1987). For example, a period-doubling for (2.12)
will result in an "invariant-manifold-doubling" for (1.1). The advantage of

the Liapunov-Schmidt method is that one can work directly with the original
equation, without explicitly making the reduction to (2.12). Indeed, the
function x(t) as given by (2.12) will be a solution of (1.1) if and only if
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y(t) is a solution of the equation

¥ = F(y,n,A) = £(y,A) - ny . (2.14)
Since one looks for periodic y(t), one can apply the Liapunov-Schmidt method
to (2.14), in which n € L(T') appears as a supplementary unknown. The problem
is still I-equivariant, since

F(yy, Yn¥5,A) = ¥E(y,m,A) VWET. (2.15)

We hope to report elsewhere on the details of this approach.

3. PROOF OF THEOREM 1

The proof of theorem 1 is based on the following lemma.

Lemma. Under the conditions of theorem 1, let K be a Zo-invariant complement

of L(Zo) in L(T). Then there exists a I,-invariant neighborhood @ of the

0
origin in Y and a unique smooth mapping n* : @xR" + K such that

z - n*(y,2)(xgty) €Y, V(y,z) €axR". (3.1)
Moreover, n*(y,z) is linear in its second argument, and also Eo-equivariant :

n*(oy,0z) = un*(y,z)o_l , Vo€ 20 5 (3.2)
Proof. Let P be the orthogonal projection in R" onto L(I‘)x0 = Kxj; then
Y = ker P. Define ¢ : YxR"xK - Kx, by

¢(y,z,n) 1= P(z-n(xgt+y)) . (3.3)

This mapping is smooth, linear in (z,n) GIRPXK, with ¢(0,0,0) = 0 and
DHQ(O,O,O).C = -Cxo, such that Dn¢(0,0,0) is an isomorphism between K and
Kx,. The result then follows from the implicit function theorem and the fact

0
that ¢(oy,0z,onc 1) = o¢(y,z,n) for o € 20.

Using this lemma the proof of theorem 1 is almost immediate : one simply

takes
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A(y) := n*(y,£(xyty)) (3.4)

and

i(y) f(x0+y) = ﬁ(y)(x0+y) ; (3.5)

The proof of theorem 2 uses essentially the same idea but requires some more

technicalities.
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